Academia.eduAcademia.edu
COPYRIGHT AND CITATION CONSIDERATIONS FOR THIS THESIS/ DISSERTATION o Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. o NonCommercial — You may not use the material for commercial purposes. o ShareAlike — If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original. How to cite this thesis Surname, Initial(s). (2012). Title of the thesis or dissertation (Doctoral Thesis / Master’s Dissertation). Johannesburg: University of Johannesburg. Available from: http://hdl.handle.net/102000/0002 (Accessed: 22 August 2017). UNDERSTANDING THE USE PATTERNS OF MEDICINAL PLANTS: INVESTIGATING THREE ETHNOBOTANICAL HYPOTHESES IN THE MPUMALANGA PROVINCE, SOUTH AFRICA by JEAN LEON ISIDORE NTENDESHA MULEBA Thesis submitted in fulfilment of the requirements for the degree PHILOSOPHIA DOCTOR (PhD) In ENVIRONMENTAL MANAGEMENT In THE FACULTY OF SCIENCE at the UNIVERSITY OF JOHANNESBURG, SOUTH AFRICA Supervisor: PROF. KOWIYOU YESSOUFOU Co-supervisor: PROF. ISAAC T. RAMPEDI NOVEMBER 2020 Table of Contents DECLARATION................................................................................................................................ vi LIST OF FIGURES ........................................................................................................................... vii LIST OF TABLES ...............................................................................................................................ix ABSTRACT .......................................................................................................................................... x ACKNOWLEDGEMENTS ............................................................................................................. xii DEDICATION ................................................................................................................................. xiii LIST OF ABREVIATIONS AND ACRONYMS........................................................................ xiv STRUCTURE OF THE THESIS ...................................................................................................... xv CHAPTER 1 .......................................................................................................................................... 1 GENERAL INTRODUCTION AND STUDY CONTEXTUALISATION ................................ 1 1.1 INTRODUCTION .......................................................................................................................... 1 1.2 CONTEXTUALISATION OF THE PRESENT STUDY ............................................................. 1 1.3 BRIEF OVERVIEW OF ETHNOBOTANICAL HYPOTHESES ............................................... 5 1.4 PROBLEM STATEMENT AND JUSTIFICATION OF THE STUDY ................................... 12 1.5 AIM, OBJECTIVES AND HYPOTHESES ................................................................................. 15 1.5.1 Aim ...................................................................................................................................... 15 1.5.2 Objectives ........................................................................................................................... 15 1.5.3 Hypotheses......................................................................................................................... 15 1.6 STUDY SITE: THE MPUMALANGA PROVINCE ................................................................. 16 CHAPTER 2 ........................................................................................................................................ 22 LITERATURE REVIEW ON ETHNOBOTANICAL RESEARCH .......................................... 22 2.1 INTRODUCTION ........................................................................................................................ 22 2.2 OVERVIEW OF ETHNOBOTANY IN AFRICA ...................................................................... 22 2.2.1 Ethnobotany in southern Africa ...................................................................................... 23 2.2.2 Ethnobotany in South Africa ........................................................................................... 24 2.3 CURRENT MAJOR CONCEPTS AND PROBLEM IN ETHNOBOTANY .......................... 25 2.3.1 Historic context.................................................................................................................. 25 2.3.2 Approaches to Ethnobotany ............................................................................................ 26 2.3.3 Major fields of Ethnobotany ............................................................................................ 27 2.3.3.1 Quantitative ethnobotany ........................................................................................... 28 2.3.3.2 First quantitative data in ethnobotany ........................................................................ 29 iii 2.3.3.3 Experimental assessment and Hypothesis-testing .................................................... 30 2.3.3.4 Applied ethnobotany ..................................................................................................... 31 2.3.3.5 Three general approaches to analysing quantitative ethnobotanical data ............ 32 2.4 CALL FOR A PARADIGM SHIFT AND RIGOROUS QUANTITATIVE DATA ............... 36 2.5 SCOPE OF THE PRESENT THESIS........................................................................................... 38 2.6 BRIEF SUMMARY OF LITERATURE REVIEWED................................................................. 38 CHAPTER 3 ........................................................................................................................................ 40 GENERAL PATTERNS OF MEDICINAL PLANTS SELECTION BY LOCAL COMMUNITIES ............................................................................................................................... 40 3.1 INTRODUCTION ........................................................................................................................ 41 3.2. MATERIAL AND METHODS ................................................................................................. 43 3.2.1 Study area........................................................................................................................... 43 3.2.2 Data collection ................................................................................................................... 44 3.2.3 Data analysis ...................................................................................................................... 45 3.3 RESULTS ....................................................................................................................................... 45 3.4 DISCUSSION ................................................................................................................................ 50 3.5 CONCLUSION ............................................................................................................................. 54 CHAPTER 4 ........................................................................................................................................ 56 THE USE OF ECOLOGICAL THEORIES TO GENERATE ETHNOBOTANICAL KNOWLEDGE: APPARENCY THEORY AND RESOURCE AVAILABILITY .................... 56 4.1. INTRODUCTION ................................................................................................................... 57 4.2 MATERIALS AND METHODS ............................................................................................. 62 4.2.1 Study area........................................................................................................................... 62 4.2.2 Data Collection .................................................................................................................. 64 4.2.2.1 Source of information .................................................................................................... 64 4.2.2.2 Measuring of variables .................................................................................................. 65 4.2.3 Data analysis .......................................................................................................................... 66 4.3 RESULTS ................................................................................................................................... 67 4.3.1 Test of ecological apparency theory ............................................................................... 67 4.4 DISCUSSION ............................................................................................................................ 71 4.5 CONCLUSION ......................................................................................................................... 74 CHAPTER 5 ........................................................................................................................................ 75 ETHNOBOTANICAL KNOWLEDGE, ENVIRONMENTAL MANAGEMENT AND POTENTIAL BARRIERS RESTRICTING KNOWLEDGE GROWTH .................................. 75 iv 5.1 INTRODUCTION .................................................................................................................... 76 5.2 MATERIAL AND METHODS ......................................................................................... 80 5.2.1 Study area............................................................................................................................... 80 5.2.1.1 Mpumalanga Province .................................................................................................. 80 5.2.1.2 Kruger National Park (KNP) ........................................................................................ 80 5.3 DEFINITION OF VARIABLES USED IN THIS STUDY ..................................................... 82 5.4 DATA COLLECTION ............................................................................................................. 82 5.5 DATA ANALYSIS .................................................................................................................... 83 5.6 RESULTS AND DISCUSSION ............................................................................................... 85 5.7. CONCLUSION ........................................................................................................................ 96 CHAPTER 6 ........................................................................................................................................ 98 CHAPTER 7 ...................................................................................................................................... 103 REFERENCES .................................................................................................................................. 103 APPENDICES .................................................................................................................................. 134 v DECLARATION STUDENT NUMBER: 201613201 I declare that UNDERSTANDING THE USE PATTERNS OF MEDICINAL PLANTS: INVESTIGATING THREE ETHNOBOTANICAL HYPOTHESES IN THE MPUMALANGA PROVINCE, SOUTH AFRICA is my own work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references. One Paper arising from this thesis has been published. ________________________ _____________________ SIGNATURE JEAN LEON ISIDORE NTENDESHA MULEBA DATE :29/11/2020 vi LIST OF FIGURES Figure 1.1 The geographic location of the Mpumalanga Province, with a highlight of the Kruger National Park………………………………………………………………………………26 Figure 1.2 Diagram indicates the overall structure (see below for details). Each chapter is linked to the next through arrows. Chapter 1 (General Introduction) covers all the themes of ethnobotany as science. While the chapters 2, 3,4 and 5 present the factors leading to the formation of use patterns of medicinal plants selection based on the hypotheses testing in the province. While Chapter 6 presents a general discussion and conclusions on issues of medicinal plants use patterns in this thesis. ……………………………………………………………………………………………………….29 Figure 3. 1: Diagnostic plots showing non-normality of the residuals of untransformed data………………………………………………………………. …………………………………56 Figure 3.2: Diagnostic plots showing improved normality of the residuals of untransformed data…………………………………………………………………………………………………..57 Figure 3.3: Diagnostic using a negative binomial model. Relationships between number of medicinally used woody plants and the total number of woody plants per family in the Mpumalanga province, South Africa. ……………………………………………………………58 Figure 4.1 Forest cover in Mpumalanga province, South Africa………………………………73 Figure 4.2 Relationships between plant height and medicinal status. Taller plants are more likely to be medicinal. Medicinal status is coded 1 (medicinal) and 0 (non-medicinal) ……………………………………………………………………………………………………….78 Figure 4.3. Relationships between plant height and plant use value. Taller plants tend to have higher use value. ……………………………………………………………………………………79 Figure 4.4. Relationships between plant height and total plant use. Taller plants tend to have more uses…………………………………………………………………………………………… 80 Figure 5.1 Meta-model illustrating the prediction of availability hypothesis. Different paths (arrows) of the relationships of total abundance with medicinal status are colour-coded; black, direct path, green, shortest indirect path, and red, longest, and most strong indirect path. The width of the arrow is indicative of the strength of the relationships between two variables. vii Values on the arrows are path coefficients, SE, standard error………………………………………………………………………………………………….95 Figure 5.2 Meta-model illustrating the potential influence of plant abundance outside (a) versus inside (b) the Kruger National Park. Different paths (arrows) of the relationships of total abundance with medicinal status is colour-coded; black, direct path, green, shortest indirect path, and red, longest, and most strong indirect path. The width of the arrow is indicative of the strength of the relationships between two variables. Values on the arrows are path coefficients, SE, standard error………………………………………………………………103 Figure 5.3 The most complex meta-model illustrating the simultaneous influence of outside and inside plant abundance on medicinal knowledge. Different paths (arrows) of the relationships of total abundance with medicinal status are colour-coded; black, direct path, green, shortest indirect path, and red, longest, and most strong indirect path. The width of the arrow is indicative of the strength of the relationships between two variables. Values on the arrows are path coefficients, SE, standard error…………………………………………………………………………………………………105 viii LIST OF TABLES Table 3.1 Residual values from various model fitting to medicinal data from Mpumalanga province, South Africa………………………………………………………………………………60 Table 5.1 Native (shrubs and trees) medicinal distribution in the Mpumalanga province and the Kruger National Park (KNP)…………………………………………………………………..98 ix ABSTRACT For centuries, humans have developed vital knowledge of interactions with their environment and scientific decisions need to benefit from this knowledge so that human interactions with the environment can be sustainable. Scientific decisions on conservation problems must be culturally appropriate to the local communities living close to the environment where the problems occur. Unfortunately, several studies that investigate the human dimension to conservation used a multi-disciplinary approach integrating various disciplines such as environmental anthropology, environmental sociology, human-environment geography, environmental humanities but surprisingly without acknowledging ethnobotany as one of the key disciplines that can inform conservation science. This is difficult to believe since ethnobotany studies human-environment interactions with a focus on its plant components due to complexity of current societal problems, segmentation of knowledge and management sectors, and limited collaboration between scientists and decision makers. To address this situation, ethnobotany as science must embrace the theory-inspired and hypothesis-driven approach. This is the only way human-plant interactions can be better understood. This thesis attempted to answer questions such as how and why people select particular medicinal plants for wide range of uses in the Mpumalanga province of South Africa. By using the theoryinspired and hypothesis-driven approach, it is possible to establish the links between botanical and cultural diversity in the province, and also develop appropriate methodologies required for determining conservation priority of culturally important plant species in the province. This thesis investigated three ethnobotanical hypotheses developed to further the understanding of ethnomedicinal use processes and patterns, their potential to help facilitate biocultural conservation in the province. The three hypotheses were as follows: - the theory of non-random plant selection to test the general taxonomic patterns of medicinal plant selection by local communities, followed by -the ecological apparency theory and resource availability hypothesis to investigate how ecological theories can be integrated to generate ethnobotanical knowledge and lastly the availability hypothesis to demonstrate how ethnobotanical knowledge can inform conservation decisions. In the first test: the theory of non-random plant selection tested 811 woody plants by fitting the commonly used simple linear regression model as well as the negative binomial model. This analysis confirmed the hypothesis and revealed that some plant families are over-utilised. The proportion of overutilised families ranges from 50% (linear regression with untransformed data) and 55% (linear regression after log–log transformation) to 34% (negative binomial model. In the second test, a Generalised Linear Model (GLM) was fitted to test the ecological apparency theory and resource availability hypothesis, to find out if plant height predicts medicinal status (plant height as the predictor and medicinal status as the response variable) and thus specifying the binomial error family, given that the response variable is binary (a plant is either medicinal or not). In addition, a GLM model with a Gaussian error structure was fitted to the height or life form data. To test if these variables (height and life form) predict the total number of recorded plants uses, the negative binomial GLM model was fitted using the glm. nb function as x implemented in the R library MASS (Venables and Ripley, 2002). While the resource availability hypothesis was fitted the same way but this time using plant growth rate as a predictor with a standardised and continuous predictor variables Hmax and growth rate before the analysis to facilitate the interpretation. The analysis showed that plant maximum height correlates significantly and positively with medicinal status (β=0.06±0.01, P<0.001), suggesting that taller plants tend to be more medicinal than shorter ones. While, plant height does not correlate with the probability of plant being medicinally overused, whether this probability is treated as a binomial variable (β=0.004±0.01, P=0.68) or a proportion (β=0.002±0.007, P=0.77). Regarding the resource availability hypothesis, there was no evidence that plant growth rate predicts neither medicinal status (β=-18.64±52.71, P=0.72) nor the probability of plant being overused irrespective of whether this probability is estimated as a binary variable (β=11.92±49.18, P=0.80) or as a proportion (β=6.16±34.03, P=0.85). Furthermore, plant growth rate does not correlate with Use Value (β=9.22±29.54, P=0.75) nor does it correlate with the total number of uses (β=-9.64±26.38, P=0.71). The last analysis of the availability hypothesis was tested using a dataset of 806 woody plants including medicinal plant uses and their abundance inside and outside the Kruger National Park (KNP)/ South Africa (medicinal status, total number of recipes/plants, number of plants organs/recipes). Four different scenarios of Structural Equation Models (SEMs) were fitted to the data collected. All SEMs, P>0.05, indicating the good fit of these SEMs. It was found that total abundance is a significant positive predictor of medicinal status, and so is abundance outside KNP. These findings support the availability hypothesis. However, not only abundance inside KNP is not a direct significant correlate of medicinal status, but also the relationship between both is negative. The lack of predictive power of inside-abundance is most likely because some species are exclusively found inside KNP and local communities have no access to them. KEYWORDS Paradigm shift, quantitative ethnobotany, use patterns, medicinal plants, mass biodiversity extinction, Kruger National Park, Mpumalanga province, South Africa. xi ACKNOWLEDGEMENTS First of all, I would like to thank the Lord Almighty, the Creator of the Universe for granting me the opportunity, the strength and the health to complete the present study. Because with Him, nothing is impossible. He is God. He changes not (Numbers 23:19). I gratefully acknowledge the contributions of the following individuals and institutions to this study: • Professor Kowiyou Yessoufou: my research supervisor, who took time to groom me throughout this study and never gave up on me even when I thought I could not go on. His endless encouragement, friendship, patience, scientific discipline and excellent guidance. His support (academic and financial) at a critical moment will always be remembered wherever I go. • Professor Isaac T. Rampedi: my research co-supervisor, his endless constructive engagement, patience, meticulous proof-reading, advice and excellent guidance have made this research a truly wonderful learning experience. • The University of Johannesburg (U.J): especially for the financial support provided through the Global Excellence Stature (GES) and Merit bursary offered by the Faculty of Science. • Professor Catherine Ngila: for divine appointment and scientific advice. • Dr Simphiwe Ngquangweni: for being always there for us. xii DEDICATION To: Terry Ntendesha Lynn Ntendesha Irvine Ntendesha Matthew Ntendesha xiii LIST OF ABREVIATIONS AND ACRONYMS AIC: Akaike Information Criterion DBH: Diameter at breast Height FIC: Informant consensus factor GES: Global Excellence Stature GLM: Generalized Linear Model. GDP: Gross domestic product KNP: Kruger National Park LM: Linear Model NTFPs: Non-timber forest products NBT: Nature-based tourism PAs: Protected areas IUCN: The International Union for Conservation of Nature NSBA: National Spatial Biodiversity Assessment UJ: University of Johannesburg RCI: Relative cultural importance SANBI: South African Institute of Biodiversity SEM: Structural equation modelling SEPASAL: Survey of Economic Plants for Arid and semi-Arid Lands U.V: Use- Value xiv STRUCTURE OF THE THESIS The thesis is structured around six chapters as graphically represented in Figure 1.2. The chapter 1, is an introduction to the thesis. It introduces the project, highlights its aim and objectives and demonstrates the importance of ethnobotany for environmental or biodiversity management. Next is chapter 2, which is the literature review. This chapter provides an indepth presentation of what is currently known in ethnobotany and which is relevant to the present project. While chapters 3, 4 and 5 present the findings for objectives 1,2 and 3, respectively. However, these 3 chapters are structured in such a way that i) background and justification of each objective are presented, ii) the readers are reminded of the study area (even though broader details of the study area are presented in chapter 1), iii) the method used for each objective is presented as well as iv) the corresponding results and discussion. The thesis ends with chapter 6 which presents the overall conclusion of the project, including the implications for environmental management with a focus on biodiversity conservation. xv Chapter 1 General Introduction Chapter 2 Literature Review Chapter 3 General Patterns of Medical Plants selection by Local Communities Chapter 4 The Use of Ecological Theories to Generate Ethnobotanical Knowledge Chapter 5 Ethnobotanical Knowledge, Environmental Management and Potential Barriers restricting Knowledge Growth Chapter 6 General Conclusions Figure 1.2. Diagram indicates the overall structure of the thesis 1.1 Overview of Chapter 1 Chapter 1 is entitled “General Introduction". The objective of this chapter is to introduce the research project, highlight its aim and objectives and presents the study area. It provides background information and further introduces the need for a study using medicinal plants xvi as a model to discuss the factors leading to the formation of use patterns that explain the selection of these medicinal plants in the Mpumalanga province. 1.2 Overview of Chapter 2 Chapter 2 of this thesis is entitled " Literature review". This chapter provides an in-depth presentation of what is currently known in ethnobotany and which is relevant to the present project in the context of Africa, southern Africa and South Africa. 1.3 Overview of Chapter 3 Chapter 3 is entitled “General patterns of medicinal plants selection by local communities". Here, three relative statistic approaches were fitted including simple linear regression analysis, with log-transformation of "count data" compared to the generalised linear model with negative binomial to perform a robust test of the non-random hypothesis of medicinal plant selection using the woody flora of the Mpumalanga province, South Africa. At the end, the best statistic approach candidate for comparative analysis of plant selection is discussed. 1.4 Overview of Chapter 4 Chapter 4 is entitled " The use of ecological theories to generate ethnobotanical knowledge". Where do medicinal values or medicinal properties reported for various plant species come from (Gaoue et al. 2017)? Are they coming from the woody or herbaceous plants, exotic or native plants? Understanding the origin of medicinal values and properties is critical as to what are the major driving forces that lead to the selection of medicinal plants. These questions are discussed by assessing the plant -herbivory interactions that lead to the human selection of medicinal plants through rigorous testing of the ecological apparency theory (Feeny,1976) and the resource availability hypothesis (Coley, 1987 a, b). xvii 1.5 Overview of Chapter 5 Chapter 5 is entitled “Application of ethnobotanical knowledge for environmental management". To date, studies that address medicinal plant use behaviour patterns are very few. Does the presence of the Kruger National Park have an impact on human groups living in its surroundings? Medicinal plant use behaviour patterns are discussed as well as their possible causes. What causes plant species use behaviour to differ from one location to another? What are the many driving factors, including the role of the environment in which human groups are included? 1.6 Overview of Chapter 6 The last chapter highlights the general conclusion of the project, including the implications for environmental management with a focus on biodiversity conservation. xviii CHAPTER 1 GENERAL INTRODUCTION AND STUDY CONTEXTUALISATION 1.1 INTRODUCTION Changes in ecosystems have been more rapid during the past 50 years than at any other time in human history and evidence that the world is entering the sixth mass extinction period is actually on the increase in the history of life (Millennium Ecosystem Assessment 2005 a, b; Chapin III et al. 2000). This extinction period is characterised by an unprecedented rate of biodiversity loss, mediated through anthropogenic activities (Bamosky et al. 2011) and it should be addressed as global concern urgently given the benefits humans derive from biodiversity (shelter, food, recreation, medicine) (Gascon et al. 2015). More importantly, it is now well understood that the bulk of these unprecedented levels of loss of biodiversity are human-induced damage and alterations to the global environment as a result of poor and inefficient use of natural resources (Wright 2005; WCMC 2003; Sala et al. 2000; Daily 1999). Moreover, it should be known that forests host the richest biodiversity in the world among the terrestrial ecosystems (Nakashizuka, 2007; Wright, 2002). But unfortunately, the long-term sustainability of rainforests, and the wide range of goods and services they provide, may now be under severe threat as a result of uncontrollable anthropogenic activities (Foley et al. 2007). 1.2 CONTEXTUALISATION OF THE PRESENT STUDY As part of biodiversity, plant diversity has and will continue to play a central role in the daily life of human beings. Globally, cultivated and wild plants provide people with food supplements, herbal medicine, services, construction materials and resources for the manufacture of craft, tools and ornaments. Plant’s central role in the everyday life has significant importance in developing countries, where all aspects of daily activity involve 1 direct use of plant resources, (e.g., subsistence agriculture, livestock grazing, firewood, medicinal plants collection (FAO 2007 a; World Development Report 2007; Hamilton et al.2003; Ford 1978). Evidence that the world has entered the sixth mass extinction period is on the increase, and this period is characterised by the unprecedented rate of loss of biodiversity mediated by anthropogenetic activities (Barnosky et al. 2011; Ceballos et al. 2015), and therefore understanding human-plant interactions is of practical importance as this can provide mechanisms that would regulate anthropogenic pressure on natural resources. However, when compared with ecological studies, for example, very little effort indeed has been devoted to uncovering the real factors that drive human selection and use of specific species. Yet harvesting non-timber forest products (NTFPs) for medicinal, food or other purposes is growing with significant unintended consequences not only for the livelihood of the people who depend on it (Belcher et al. 2005; Shackleton et al. 2005) but also for the ecological sustainability of the systems that are harvested (Gaoue et al. 2013; Moegenburg and Levey, 2002; Silvertown, 2004; Ticktin, 2004). For example, NTFPs represent more than $90 billion worth of products harvested annually and sustain the livelihood of more than 300 million people worldwide (Pimentel et al. 1997). Humans form biological populations in a very rapidly changing world, and the ways that these humans relate to nature are determined by social constructions of value or culture (Balée, 1989). These needs can be assessed for the entire population, and how they are met will predict the number of certain plants to meet them. Similarly, a population's use of fuel for warmth and materials for shelter can be quantified to determine how procurement of these materials will affect the floral environment. Further, human activity and natural 2 environmental disturbance determine the distribution and the availability of plants. The relative quantity of a specific plant in time and space may reflect either human gathering practices or environmental variable that are present in such a landscape, in addition, plants have determined the very course of civilisation. Global geographical predispositions, such as the extension of landmasses and the availability of species amenable to domestication causally conditioned acceptance and the interchange of knowledge, technology and germplasm (Diamond 2005). Furthermore, over many centuries, man has developed an intricate relationship with the natural environment, especially in using environmental resources to satisfy own subsistence needs, thus earning a living especially when these resources are used sustainably. This is true with water resources and geological resources but also different types of plants that occur naturally in different biomes and ecological habitats (Londono et al. 2016; Garcia et al. 2020; Matthews et al. 2020). However, when facing unprecedented looming extinction threats, from climate change, deforestation, biodiversity loss and many more, there is a need to understand through scientific study research some cultural practices and values of diverse societies, that can promote mitigation strategies and thus enhancing conservation (Barnosky et al. 2011; Ceballos et al. 2015). In the present thesis, the relationship between human and plants has led to what is increasingly regarded as the emerging study field of ethnobotany in different parts of the world (Xolocotzi, 1983; Shava et al. 2009; de Albuquerque and Hurrell,2010; Mohammad Hossein et al. 2019). In addition, de Albuquerque (2005) defined ethnobotany as the study of the direct interrelations between peoples from living cultures and the plants in their environment. Thus, ethnobotany examines these interrelations between people and plants 3 from the perspective of Western science (de Albuquerque and Hurrell, 2010) and is a relatively new scientific discipline which, unlike other more established sciences, has not been yet systematised and formalised (Hamilton et al. 2003). However, it has been practised by many scientists who value this discipline and recognise that ethnobotany has a relevant role in the development of societies (Hamilton et al. 2003). Different studies have demonstrated that ethnobotany's history goes up to the relations between human beings and plants and to the domains of applied botany and botanic ethnography (Balick & Cox 1996, Hamilton et al. 2003). It is, therefore, important to understand how local people are using plant resources and to document this knowledge before it becomes lost in acculturation processes (Bhagwat et al. 2008; Nakashizuka, 2007; Cunningham, 2001). In this context, ethnobotanical studies, which study the classification, use, and management of plants by people, represent an ideal scientific approach to this challenge (Martin, 2004). By recognising that ethnobotany concerns those who actually manipulate or think about the local vegetation directly, the field is immediately demarcated either to the study of self-sufficient societies or to an examination of the conduct of specific activities. Those who must gather or raise their food and build their shelters are in actual contact with plants. They must know how to recognise certain plants, when to gather them, and what to expect from them. Nevertheless, people dependent upon a market economy for provision are not removed from making decisions about plants; they select for cultural, social and utilitarian reasons; they classify them; and they have rules for manipulating them (Ford, 1978). Ethnobotany, as the science of plant-human interactions, has for long been a discipline that largely documents the diversity of plant uses by local people through interviews and surveys. Recently, however, this focus on documenting traditional uses of plants is 4 increasingly being questioned. Specifically, several authors (e.g., de Albuquerque et al. 2006; Ford and Gaoue, 2017; Hart et al. 2017) have now called for a shift toward more hypothesisdriven approach in ethnobotany because that is the only way human-plant interactions can be better understood. Questions such as how and why people select particular plants for a wide range of uses must be investigated. Despite the recent multiple calls for the shift, most recent ethnobotanical studies still prefer the traditional knowledge documentation approach (e.g., Leso et al. 2017). In contrast, over the last couple of decades, the links between biological and cultural diversity have been investigated to develop methodologies for determining conservation priority of culturally important plants species (de Albuquerque and Oliveira, 2007; Cristancho and Vining, 2004; Garibaldi and Turner, 2004). As a result, several theories and hypotheses have been developed to further our understanding of local ethnomedicinal use processes and patterns (Gaoue et al. 2017) and their potential to help facilitate biocultural conservation (de Albuquerque and Oliveira, 2007; Cuerrier et al. 2015; Garibaldi and Turner, 2004). Though these theoretical frameworks have long been proposed, in South Africa, for example, different uses of medicinal plants are very well documented (e.g., van Wyk, 2008), unfortunately, very few studies have thoroughly examined and tested their major predictions. Nonetheless, the questions of how and why some plants are preferentially used rather than others are poorly explored (but see Yessoufou et al. 2015). This research provides some insights regarding the contribution to why and how medicinal plants are selected in Mpumalanga province, South Africa. 1.3 BRIEF OVERVIEW OF ETHNOBOTANICAL HYPOTHESES Ethnobotany has evolved from a discipline that largely documented the diversity of plant use by local people to one focused on understanding how and why people select plants for a wide 5 range of uses. This progress has been in response to a repeated call for theory-inspired and hypothesis driven research to improve the rigor of the discipline. Ethnobotanical education has rightly focused on training emerging ethnobotanists in key concepts and methods such as interviews, participant observation, free-listing, livelihood analysis, and emic versus etic approaches (Martin 2007). The potential to learn about herbal medicine, psychoactive plants, or the natural connection to land and organisms can draw students into the discipline of ethnobotany. However, our ability to keep them in this discipline is directly linked to the level of mastery they have in developing research frameworks and methods that are consistent with the scientific methods used in other disciplines. Learning the fundamental theories of a discipline is one of the first steps in understanding that discipline, generating new knowledge, and furthering the discipline’s understanding of patterns and processes. Despite improvements, recent ethnobotanical research has overemphasized the use of quantitative ethnobotany indices and statistical methods borrowed from ecology, yet underemphasized the development and integration of a strong theoretical foundation. To advance the field of ethnobotany as a hypothesis-driven, theoretically inspired discipline, it is important to first synthesize the existing theoretical lines of research. Seventeen (17) majors’ theories and hypotheses were reviewed more recently (see Gaoue et al. 2017) that can be used as starting point for developing research questions that can advance the understanding of people-plant interactions. These majors theories and hypotheses are as follows: versatility hypothesis, availability hypothesis, diversification hypothesis, plant use value hypothesis, theory of non-random plant selection, the doctrine of signature, optimal defense theory, ecological apparency hypothesis, the resource availability theory , the optimum foraging theory, age, gender dynamics of knowledge hypothesis, urbanisation and knowledge loss hypothesis, social network as driver of knowledge dynamics, cultural 6 keystone species, utilitarian redundancy model hypothesis, taboo as conservation strategy hypothesis, taboo as luxury hypothesis. Primary predictions and testable hypotheses were identified and then discussed for each theory or major hypothesis (Gaoue et al. 2017). The most promising hypothesis-driven approaches to date have come from testing whether patterns of human selection for medicinal plants align with the predictions of the theoretical frameworks from ecology (e.g. de Albuquerque 2006; de Albuquerque and Oliveira 2007; Alencar et al. 2010; Bennett 2007; Bennett and Husby 2008; Vandebroek and Balick 2012; Reyes-García et al. 2013b; Quiroz and van Andel 2015; Voeks and Leony 2004; Voeks 2007). However, for such efforts to expand beyond individual research groups and sites, it is important for ethnobotanists to recognize the breadth of current ethnobotanical theories and understand how these theories can be used to develop testable hypotheses. Further, it is critical for emerging ethnobotanists to be exposed to these theories in a systematic way. Developing research to test these predictions will make significant contributions to the field of ethnobotany and create the critical mass of primary literature necessary to develop metaanalyses and to advance new theories in ethnobotany. From the above seveteen theories and hypotheses, three were selected to document the diversity of plant use by local people in the Mpumalanga province, where the trade in medicinal plants is huge, and it is highly unlikely that at current levels of exploitation, the sustainable supply of medicinal plants will ever meet the demand. In the present research project three theories and hypotheses were tested, including the theory of non-random plant selection, the ecological apparency hypothesis and the resource availability theory, and finally the availability hypothesis. 7 1.3.1 Why the choice of only three theories and hypotheses? The growing number of ethnobotanical studies has revealed an imporatant finding : behaviours related to the use of plant resources are recurrent in different human populations. These repeated behavioural attitudes in plant use are known also as pattern which can be expressed in general terms of pharmacopoeia (habits of dominant plantss, main therapeutic indications of the plants), it may be further observed in the ways by which different human populations use the same plant species (Medeiros & de Albuquerque,2015).In general, patterns may be generated in two ways: (a) diffusion and (b) convergence (Bletter 2007). Diffusion is the process of information transmission between individuals belonging to the same or different human groups. Patterns generated through diffusion may occur because of contact between individuals and exchanges of information between close or distant populations, which occurs for members of a local population who migrate to a distant location and transmit their knowledge to the inhabitants of this new location. When information on plant use crosses community borders and reaches new locations, the resulting plant-use patterns do not result from independent discoveries by the communities. Instead, the information shared between different populations has a common origin. This process characterises the diffusion of knowledge. Different communities may also acquire the same plant-use behaviour independently in a process known as convergence. These patterns can be characterised in taxonomic patterns, patterns related to plant habit, patterns related to species origin and biogeographical distribution, patterns related to therapeutic indications and those linked to the environment itself. Mpumalanga province is a very interesting case study for ethnobotanical research, given the fact that it comprise 3% of southern Africa, but yet support 21% of its species diversity. As a 8 result of this concentration of sepcies diversity, the trade in medicinal plants is huge and not sustainable. The assumption here is that there are clear patterns in the province that justify the trade in medicinal trade. Therefore, the only way to explore these patterns would be to attempt to answer questions such as how and why people select particular medicinal plants for a wide range of uses in the Mpumalanga province, South Africa would be through the investigation and the testing of three theories and hypotheses, whose predictions are related to the observed patterns. The theories and hypotheses included firstly the theory of nonrandom plant selection which is linked to the taxonomic pattern, because chemical compounds with medicinal value are not equally distributed among different botanical families (Gottlied et al. 2002), at least two behaviours can be expected : (a) certain families have higher medicinal value and are therefore more frequently used than others and (b) different families are used to treat different afflictions. What are the families that are most used and traded in the province? Secondly, the ecological apparency theory & the resource availability hypothesi, these two are related to plant habit (Stepp & Moerman, 2001). These theories are expected to inform on which species are most important from a medicinal perpective in the province. In Mpumalanga province, the observation will be based on trees and shrubs, thus, contrasting with the original predictions of these theories that were based purely on the predominance of herbs, especially ruderals, in pharmacopoeias ( Stepp & Moerman 2001). This was followed by the third hypothesis that is related to role of the environment, in this case the availability hypothesis to inform on how plant use behaviours may differ from one location to another depending on many factors, including the role of the environment in which human groups are involved. Such as the presence of the KNP and its impact on the plant use and knowledge development in the province that is facing high trade in medicinal plants. 9 1.3.1.1 The theory of non-random selection of plants The theory of non-random plant selection was developed by Daniel Moerman (Moerman 1979,1991,1996). It was intended, in part to counter the belief at the time that Native American medicine was only placebo (Moerman 1979). This theory predicts that medicinal plant selection is not random and that the number of medicinal species in a given family in a given region would be a linear (on a log scale) function of the total number of plant species in that family. 1.3.1.2 The ecological apparency theory & the resource availability hypothesis The ecological apparency hypothesis is directly related to the optimal defense theory. The primary prediction of this hypothesis is that species with short lifespans(non-apparent) will face lower pressure and are more likely to use inexpensive qualitative defense while species with long lifespans (apparent) will face higher pressure from herbivore and invest in more expensive quantitative defenses (Feeny, 1976). While the resource availability theory shares the ecological apparency hypothesis, it suggests however, that plant defense investment is not primarily related to the risk of herbivory but the resource level of the habitat to which the plant is adapted (Endara and Coley, 2011). The resource availability hypothesis predicts that species adapted to high resource environments (e.g., highlight, nutrient-rich habitats) are more likely to grow quickly and use qualitative defense, while species adapted to low resource environments (e.g., lowlight, nutrient-poor habitats) are more likely to grow slowly and have high levels of defense—primarily quantitative but also qualitative (Coley et al. 1985; Endara and Coley, 2011; Stamp 2003). Fast-growing/ short-lived species that can tolerate higher rates 10 of herbivory and invest more in qualitative defense (e.g., alkaloids) will have more medicinal uses and will be more sought after than long-lived/slow-growing species which invest more in quantitative defenses. 1.3.1.3 The availability hypothesis The availability hypothesis states that plants are used for medicine because they are more accessible or locally abundant ( de Albuquerque 2006; Voeks 2004). This hypothesis was born, in part, out of studies revealing the importance of anthropogenic habitats or disturbed areas in provisioning woody and introduced species for medicine (Gavin 2009; Stepp and Moerman 2001; Voeks 2004). Availability is often conceptualized as a physical distance from a home or community to the location where a plant grows in the wild, but could also be considered in terms of seasonality, abundance, price, as well as access to markets, gardens or natural areas where plants are found (de Albuquerque 2006; Estomba et al., 2006). The availability hypothesis has been tested by examining the location where people indicate they collect medicinal plants, and, more broadly, by correlating the local abundance or dominance of plants with use-values. 1.3.1.4 Importance of the Mpumalanga province as study site? Mpumalanga province was chosen over other provinces such as KwaZulu-Natal, Eastern Cape or Limpopo provinces, because the province is a unique case study that has an extraordinary diversity in plant species (Mucina and Rutherford, 2006; Ferrar and Lötter, 2007). It only comprises 3% of southern Africa’s surface area, yet supports 21% of its species diversity. This diversity is not evenly distributed, but is predominantly confined to four Centres and two Regions of Endemism. The trade in medicinal plants is huge, and it is highly unlikely that at current levels of exploitation, the sustainable supply of medicinal plants will ever meet the demand (Mucina and Rutherford, 2006; Ferrar and Lötter, 2007). It is important to be able 11 to identify areas that could potentially support, or provide plants to the medicinal plant trade. Furthermore, this province is known to have two well - defined communities, namely indigenous forests and wetlands, that occur within the broader vegetation communities of the province. Both forests and wetlands are important for their role in ecosystem processes and their richness in biodiversity. The indigenous forest biome is the smallest, estimated at 40 353 ha or 0.51% of the surface area, most widely distributed, and most fragmented biome in South Africa, estimated at 0.33% of the land surface area (von Maltitz and Fleming, 1999). 1.4 PROBLEM STATEMENT AND JUSTIFICATION OF THE STUDY The ongoing environmental crisis, e.g., biodiversity crisis or the 6th mass extinction, pointed fingers at humans as the main drivers of the crisis (Ceballos et al. 2015). Humans drive biodiversity loss, ecosystem disruption, etc. through their unsustainable use of their environment, e.g., plant harvest for medicine (MEA, 2005 a, b). For centuries, humans have developed vital knowledge of and interactions with their environment. Scientific decisions need to benefit from this knowledge so that human interactions with the environment can be sustainable (Poe et al. 2014). For example, scientific decisions on conservation problems must be culturally appropriate to the local communities living close to the environment where the problems occur. Unfortunately, several studies that investigate the human dimension to conservation used a multi-disciplinary approach integrating various disciplines such as environmental anthropology, environmental sociology, human-environment geography, environmental humanities but surprisingly without acknowledging ethnobotany as one of the key disciplines that can inform conservation science (Bennett et al. 2017). This is difficult to believe since ethnobotany studies human-environment interactions with a focus on its plant components. To change this, ethnobotany must embrace the theory-inspired and hypothesis- 12 driven approach (de Albuquerque, 2009; de Albuquerque and Hanazaki,2009; Bennett, 2005; Ford, 1978; Hurrell and de Albuquerque, 2012; Martin, 2007; Gaoue et al. 2017). Ethnobotany has, for a very long time, been concerned with the documentation of the diversity of plants used by local people, how they use them, and which parts of the plants are used (Balick, 1996; Etkin, 1988). This traditional approach led some authors to criticise the discipline of ethnobotany as "weak" or "pseudoscience" (de Albuquerque and Hanazaki, 2009; Alexiades,1996; Gaoue et al. 2017). For example, some authors wondered whether the discipline ever has a unifying theory (Ford,1978), while others presented ethnobotany as too descriptive without theoretical frameworks and/or methodological rigour (Phillips and Gentry, 1993a). As a result, authors such as Bennett (2005) and de Albuquerque & Hanazaki (2009) supported the need to shift from more quantitative ethnobotany to more theoryinspired and hypothesis-driven ethnobotany. Whilst hypotheses are proposed explanations for an observation, theories are an "integrated and hierarchical set of empirical hypotheses that together explain a significant fraction of a scientific observation" (Krebs, 2000). It is only through the development of theories and hypotheses that we can understand not only how and why people select plants for a wide range of uses, and how traditional ethnobotanical knowledge can inform conservation decisions. In response to critics, Martin (2007) detailed precisely how the limitations of the traditional approach could be overcome with a hypothetico-deductive method. Begossi (1996) showed how ecological methods could be applied in ethnobotany while Hoffman and Gallaher (2007) utilised species-area curves to estimate the diversity of species used by cultural groups. McClatchey et al. (2013) rather called for interdisciplinary ethnobotany that integrates ecological knowledge as well as statistics, evolution, geography and anthropology. However, 13 these different attempts to improve the methodological and philosophical approaches of ethnobotany (Gaoue et al. 2017) led instead to generalised use of ethnobotanical indices (Hoffman and Gallaher, 2007). Consequently, there is still a lack of a theoretical framework that Phillips and Gentry (1993 a, b) called for. Interestingly, these critics of ethnobotany are evidence that the discipline is at an inflexion point on its trajectory. Other disciplines, e.g., ecology, faced similar challenges with several authors asking whether ecology had general laws or a unifying theory (Aarssen, 1997; Lawton, 1999; Marquet et al. 2014; Weiner, 1995). Gaoue et al. (2017) believed and rightfully so, that ethnobotany could be informed of the historical trajectory of other disciplines (ecology, evolution) in response to Phillips and Gentry's (1993 a, b) and others' call for a paradigm shift in ethnobotany (Salick et al. 2003; Gaoue et al. 2017). Some authors have responded to the calls for more theory-and hypothesis-driven ethnobotany (e.g., Hart et al. 2017; Robles-Arias et al. 2020). Further examples include the theory-based studies in cognitive ethnobotany (e.g., Atran, 1998; Alexiades, 1996; Brown, 1977; Conklin, 1954; Hunn, 1975; Medin and Atran,2004; Turner, 2000) which result in the formulation of general principles of folk biological classification (Berlin et al. 1973; Berlin, 1973; Brown,2000). Early attempts of theory-inspired studies also include the biocultural research in economic ethnobotany with in-depth analysis of the biochemical basis and pharmacologic implications of food, psychoactive, and medicinal plant uses by local people (Etkin, 1988; Johns, 1986). The majority of these studies tested whether patterns of human selection of medicinal plants match ecology-driven predictions (e.g., de Albuquerque, 2006; de Albuquerque and Oliveira, 2007; Alencar et al. 2010; Bennett, 2007; Bennett and Husby, 2008; Vandebroek and Balick, 2012; Reyes-García et al. 2013b; Quiroz and van Andel, 2015: 14 Voeks and Leony, 2004; Voeks, 2007). There is a need for the ongoing efforts to "expand beyond individual research groups and sites" (Gaoue et al. 2017), and for ethnobotanists to embrace the new directions required for the discipline such that theories can be used to develop testable hypotheses. How can we understand the dynamic relationships between plants and people outside theories and hypotheses? The answer is positive. The present project aims to contribute to filling the lack or scanty theory-testing studies in ethnobotany in such a way that ethnobotanical knowledge can inform environmental management (e.g., decisions for biodiversity management). Further details are provided in Chapter 2. 1.5 AIM, OBJECTIVES AND HYPOTHESES 1.5.1 Aim The project aims to explore the importance of ethnobotany for environmental or biodiversity management. 1.5.2 Objectives To reach the aim of the study, the following objectives are set: • To test for the general patterns of medicinal plant selection by local communities. • To demonstrate how ecological theories can be integrated to generate ethnobotanical knowledge. • To demonstrate how ethnobotanical knowledge can inform conservation decisions. 1.5.3 Hypotheses The corresponding hypotheses to the objectives of the study are as follows: For objective 1: 15 • Non-random hypothesis – Medicinal plant selections are not taxonomically random. This implies that large families are more likely to contain more medicinal plants than small families. Details of this hypothesis are in chapter 3. For objective 2: • Ecological apparency Theory – Less apparent plants (short-lived, herbaceous, early successional) are more likely to be used for medicine than more apparent plants (perennial, woody, dominant plants) (de Albuquerque and Lucena, 2005). • Resource availability hypothesis – Fast growing/short-lived species are more likely to be medicinal than long-lived/slow-growing species (Alencar et al. 2009; Almeida et al. 2005, 2012). Details of these hypotheses are in chapter 4. For objective 3: • Availability hypothesis – Plants that are abundant or easily accessible to people are more likely to be medicinal. Applied to a protected area, the Kruger National Park, the test of the hypothesis provides an important biodiversity management option for local biodiversity Details of this hypothesis are in chapter 5. 1.6 STUDY SITE: THE MPUMALANGA PROVINCE IN SOUTH AFRICA South Africa is one of the world’s biodiversity-rich countries with more than 19 500 indigenous plant species from around 350 plant families (Crouch et al. 2008). With a total population estimated to 58.56 million whereas with less than one doctor per 100.000 (Statistics 16 SA, 2019). The major ethnic parts of the group are the Zulu, Xhosa, Bapedi (North Sotho), Tswana, South Ndebele, Basotho (South Sotho), Venda, Tsonga, and Swazi, all of which predominantly speak Southern Bantu languages. Black South African ethnicity's native distribution is also found across countries neighbouring South Africa. Not surprisingly, a large pool of traditional ethnobotanical and ethno-medicinal knowledge exists, especially regarding the use of plants (Lall, 2018). Regional studies from Fourie et al. (1992) and Arnold et al. (2002) have shown that 243 of 300 evaluated medicinal plants show biological activity in a range of target assays with antiplasmodial activity. In other words, biological resources and related ethnobotanical indigenous knowledge constitute a promising starting point for medicinal bioprospecting for the development of natural products and drugs (Lall 2018). For example, between 1981 and 2013, an average of 30% of worldwide drug developments was based on natural products (Wynberg et al. 2015). Apart from that, sizable economic potential is also attributed to non-medicinal bioprospecting for a growing world market of natural food and beverage products, fibre, botanical uses, biopesticides and organic personal care products (Laird et al. 2010; GVR 2019). South Africa’s is one of the most biodiverse countries in the world, and its biodiversity contributes significantly to the national economy, and to local livelihoods. With a varied geography ranging from plains and savannas to deserts and high mountains, South Africa’s ecosystems support over 95,000 species, and its rich biodiversity contributes significantly to the national economy, particularly through naturebased tourism (NBT). The total contribution of Travel and Tourism to South Africa’s gross domestic product (GDP) in 2016 is estimated at 9.3 percent (WTTC), a significant portion of which is directly linked to natural assets, particularly protected areas (PAs). Biodiversity and its habitats also contribute to the livelihood of the poorest segments of the population, by 17 providing a range of goods, such as food, biomass fuel, and medicine; and services such as water. However, the country as whole is facing some threats to its biodiversity including from the (1) Agriculture sector due to inappropriate agricultural practices, inappropriate grazing management (overstocking, inappropriate fire management) causing habitat loss and disruption of the ecosystem function; (2) Plantation forestry that causes direct habitat loss; (3) Urbanisation causing threat of bio-invasion by invasive alien species; (4) Coal mining;(5) Climate change. The study area of the present project is the Mpumalanga province, South Africa (Figure 1.1). The province is located in the northeastern part of South Africa and covers an area of 76.520 Km2. It is comprised of a diversity of landscapes characterised by grassland, savannah, and warm-temperate and subtropical forest biomes. Grasslands are most prevalent in Mpumalanga, making up 65% of the province, while the indigenous forests occupy only 0.51% of the Mpumalanga's territory. It contains a unique suite of plant species (316 obligate forest taxa) not found in any other major type in the region (Lötter et al. 2014). The altitude varies between 110 m and 2328 m above sea level while mean annual rainfall ranges between 341 and 1933 mm. The mean annual temperature ranges from100C to 230C (Schulze, 1997). Fiftyeight vegetation mapping units occur in this province as a result of a diversified topography and climate (Mucina and Rutherford, 2006; Ferrar and Lötter, 2007). 18 Figure 1.1 The geographic location of the Mpumalanga province, with a highlight of the Kruger National Park. The Mpumalanga province also harbours a unique system, the Kruger National Park (KNP) which is located in the north-eastern part of South Africa between 22o 25' and 25o 32' S and 30o 50' and 32'E (Figure 1.1). The KNP is shared with another province, the Limpopo province. It is part of the "Greater Maputaland -Pondoland-Albany" biodiversity hotspot (Perera et al. 2011). Within the KNP, rainfall varies from 440 mm in the north to 740 mm in the south 19 (Venter, 1990). Mean annual temperature is around 21oC -23 oC, but in summer temperatures often exceed 38 oC, whereas frost can occur sporadically during Winter. The KNP is one of the largest natural reserves (20,000 km2) in Africa. It is a 'woodland biome' of southern Africa (Schmidt et al. 2007) with various habitats found within its boundaries. In the province, the indigenous forest is the smallest, widely distributed and most fragmented biome in South Africa, estimated at 0.33% of the land surface area (von Maltitz and Fleming, 1999). In addition, forests occur in smaller size ranging from (<10ha) to patches (Cooper, 1985; Geldenhuys, 1991; Mucina et al. 2006). These patches are relicts of past vegetation patterns and home to numerous habitat specialists. The total indigenous forests in the province are estimated at 40 353 ha or the equivalent of 0.51% of the province surface area (Mucina et al. 2007). The Mpumalanga province has extraordinary diversity in plant species, with estimated 4946 taxa occurring within the province; yet it only comprises 3% of southern Africa's surface area and supports 21% of these countries' plant taxa. However, this high level of plant diversity is not evenly distributed across Mpumalanga. Two regions of Plant Endemism are recognised within the province. These are the high lying Drakensberg Afromontane Region and the more tropical Maputaland-Pondoland Region (Davis et al. 1994). The Drakensberg Afromontane Region is an archipelago-like region which incorporates an area of approximately 84 500 km2 in southern Africa. The number of plant species restricted to this specific region is not known, but species endemism is high (Davis et al. 1994). However, White (1983) broadly describes the Afromontane region (extending to Ethiopia) to have an estimated species diversity of approximately 4000 and endemism is around 75%. This region incorporates several distinct centres, such as the Barberton, Wolkberg and Lydenburg Centres 20 within Mpumalanga, as well as the Drakensberg Alpine Centre on the southern Drakensberg. Threats identified include fire misuse, alien plant invasion, over-grazing, timber plantations, uncontrolled bark-harvesting, and firewood collection (Davis et al. 1994; Site Af67). The Maputaland-Pondoland Region is largely continuous and incorporates an area of approximately 201 640 km2. An estimated 7.5% of the region occurs within protected areas. Approximately 7000 plants taxa are recorded for the area, and endemism is around 26%. These endemics are concentrated in the grasslands. Threats identified are largely attributed to the high populations occurring in this region but also include timber plantations, extensive agriculture, urban and industrial development, alien plant invasions and dune mining (Davis et al. 1994; Site Af59). In chapters 3, 4 and 5, further backgrounds of the study areas are presented with highlights of what is relevant to each chapter. 21 CHAPTER 2 LITERATURE REVIEW ON ETHNOBOTANICAL RESEARCH 2.1 INTRODUCTION Chapter 2 consists of a review of the relevant literature about ethnobotany in the contexts of Africa, southern Africa, South Africa, and provides further an in-depth presentation of what is currently known in ethnobotany as science and which is relevant to the present thesis. The review looks at three components including Section 2.2 overview of ethnobotany in Africa while section 2.3 deals with current major concepts and problem in ethnobotany. Section 2.4 is devoted to the call for a paradigm shift and the need for rigorous quantitative data. Also, a summary of these sections is provided. 2.2 OVERVIEW OF ETHNOBOTANY IN AFRICA Africa as a continent has a remarkable flora coupled with its distinctiveness and its diversity, moreover evidenced, by as many as 88 % of endemic species (Mucina et al. 2007; Davis et al. 1994). The interaction of human-plant has a longstanding story and has been further enhanced significantly by biotechnology even though the exploitation of the new natural products has led to concern for their conservation (Moyo et al. 2011; Nigro et al. 2004). Some important sources of ethnobotanical accounts in Africa include among others: Dounias' review (2000) for Central and West Africa, Williamson (1955) and Lindsay (1978) for East African flora, while Burkhill's (1985) volumes concentrated on West Tropical Africa' keystones. The overall plant use on the continent has received more consideration in the literature especially during the last three decades (see Iwu (1993) and Neuwinger (2000), and this trend is expected to 22 continue through the programmes such as the Survey of Economic Plants for Arid and semiArid Lands (SEPASAL) (Nigro et al. 2004; Davis et al. 1998; SEPASAL, 2003). 2.2.1 Ethnobotany in southern Africa The overall ethnobotanical research in southern Africa has been extensively and thoroughly reviewed by van Wyk (2002) as evidenced by numerous works on the useful plants of southern Africa, including "A guide to useful plants of southern Africa" (van Wyk and Gericke, 2000, 2018), " Medicinal plants of South Africa" (van Wyk et al. 1997, 2009) and "Poisonous plants of South Africa" (van Wyk et al. 2002). At the sub-regional level, very little, however, has been recorded on the traditional plant use during the pre-colonial times (van Wyk,2002). The available information in this field is the one that had been extracted from the current records (see Cunningham, 1988). In this context, several publications are worth mentioning including Liengme (1983), Cunningham et al. (1992), Cunningham (1989) and van Wyk and Gericke (2000). Additionally, very few publications describe some outstanding contributions of ethnobotany studies such as Liengme (1983) on Kwanyama Ovambos and Van den Eynden (1992) on the Topnaar Khoi. While other studies present the useful plants of Lesotho (Jacot-Guillarmod (1966), the useful plants of Zimbabwe by Ellert (1984), including a valuable account of plant use in Namibia (Koenen,1996,2001). Whereas the useful plants of Hambukushu in Botswana were presented by Larson (1975, 1981, 1986) and Bandeira reported the useful plants in Mozambique (Bandeira,1994). 23 2.2.2 Ethnobotany in South Africa In South Africa, the first ethnobotanical study was recorded in Namaqualand (Van der Stel (1685) and Skead (2009). The study focused in the listing of some of the most important plant families based on a simple count of species used as medicinal (Watt and BreyerBrandwijk,1962; Hutchings et al. (1996); van Wyk and Gericke (2000) and van Wyk and Wink 2004). This trend contrasted, however, with the quantitative use that had become routine in ethnobotanical research globally (De Caluwé et al. 2009; Grace et al. 2009; Tardio and Pardo de Santayana, 2008; Teklehaymanot and Giday, 2010; Teklehaymanot,2009). South Africa's ethnic diversity depends on a wide variety of medicinal plants for the treatment of ailments in both humans and animals (van Wyk,2002; van Wyk and Gericke (2000); van Wyk and Wink 2004; Masika and Afolayan, 2000), however, there is a marked imbalance in the existing literature among these cultures. Most of the available literature focuses on a single region, culture or category of plant use. Certain ethnic cultures are extensively studied than others. The most common studies concern the KwaZulu Natal province, with 1032 species recorded as Zulu medicinal plants (Hutchings et al. 1996; Faber et al. 2007; Du Toit, 1971; Faber et al. 2010; Corrigan et al. 2011), followed by 166 medicinal plant species frequently gathered in the Eastern Cape province (Dold and Cocks, 2002; Cocks and Dold, 2006). Furthermore, the use patterns of important plants of the Khoi-San (van Wyk and Gericke, 2000; van Wyk, 2008; De Beer and van Wyk, 2011; Nortje and Van Wyk, 2015) are worthy of mentioning, including some important contributions in the form of unpublished theses such as Van der Merwe (2000) on Tswana ethnoveterinary medicinal plants, Mabogo (1990) on Venda ethnobotany, Eckert (2000) on Northern Ndebele resource management and Rankoana (2000) on the ethnobotany of Dikgale community (North Sotho). 24 Currently, little is known regarding the full extent of useful plants of Ndebele and Swazi ethnic cultures (two of the five ethnic cultures) in our study area and there is still a need for comprehensive and systematic documentation of the useful plants of these ethnic cultures as well as their human-plant interactions (van Wyk,2002). 2.3 CURRENT MAJOR CONCEPTS AND PROBLEM IN ETHNOBOTANY 2.3.1 Historic context The concept of ethnobotany since its introduction by Harshberger in 1896 has been modified several times in terms of its definition, objectives and methods, due to its multifaceted nature. It encompasses areas of scientific knowledge as diverse as botany, anthropology and ecology, to name a few (de Albuquerque & Hurrell,2010). From the 1950s through the 1980s, the cognitive and classificatory approach was concerned with the people of certain regions classifying and ordering the plants in their environments. Finally, after the 1980s, the focus of ethnobotanical research turned to its socio-ecological aspects, which incorporated ecological tools, techniques and statistical measurements (Clément,1998; Oliveira et al. 2010). Over the years, debates about the methods and purpose of ethnobotany have increased in scientific research, specialised publications, associations and scientific events related to aspects of local knowledge. These scientific debates in ethnobotany have naturally modified the perspective of work in this field. From the end of the nineteenth century through the middle of the twentieth century, ethnobotany, ethnobotanists were concerned with recording uses and common names in a locality. 25 2.3.2 Approaches to Ethnobotany Ethnobotany is an interdisciplinary field, that combines the aspects of botany and ethnology as well as many others, has been approached by researchers from two perspectives: the practical or utilitarian and, the philosophical (Alcorn,1995). The "practical or the utilitarian approach" is equated to asking a basic question as "What good is this plant?"(Alcorn,1995). This solitary question has been the approach used by early ethnobotanists including Harshberger (Alcorn,1995). Alcorn further suggested an additional basic question: " What does this plant signify or what is its cultural meaning?" (Alcorn,1995). Similarly, Brent Berlin framed the above questions by "How and in what ways do humans use nature?" And "How do human societies view nature?"(Berlin,1992). Additionally, even Schultes, who focused mostly on the utilitarian value of plants, described ethnobotany's scope so that it included concepts about plant life (Schultes,1992). The investigation of the meaning of plants within a culture largely has been the domain of anthropologists while both anthropologists and botanists have investigated the utilitarian aspects of plants. The utilitarian approach still dominates today's research agenda (Schultes, 1992). Further, Victoria Toledo describes ethnobotany as " a discipline-oriented towards the exploration of new plant resources able to be converted into new raw materials for the industry" (Toledo,1995). Whereas Michael Balick discusses the role of researchers in germplasm conservation, ethnobotanists often have the opportunity to collect valuable genetic material, because several researchers work in remote areas (Balick,1995). Both anthropologists and botanists have examined practical aspects while in contrast, the theoretical viewpoint has been the exclusive domain of anthropologists (Balick,1995). 26 2.3.3 Major fields of Ethnobotany The science of ethnobotany encompasses four major fields, including (1) basic documentation of traditional botanical knowledge; (2) quantitative evaluation of the use and management of botanical resources; (3) experimental assessment of the benefits derived from plants, both for subsistence and commercial ends, and (4) applied ethnobotany. This section reviews three of the four major fields in ethnobotany namely: Field of quantitative evaluation of the use and management of botanical resources (evaluation of use-values, relative use-values, the proportion of agreement, and preference ranking; Phillips and Gentry,1993 a, 1993 b; Assogbadjo et al. 2011; Avocevou-Ayisso et al. 2011); the field of experimental assessment of the benefits derived from plants, both for subsistence and commercial ends (assessment of benefits, hypothesis testing and prediction; Soleri and Smith,1995; de Albuquerque,2006; Alencar et al. 2009); and finally, the field of applied ethnobotany(applied projects that seek to maximise the value that local people attain from their ecological knowledge and resources(Gustafson et al. 1992; Cox,1994). Moreover, the ethnobotany as science encompasses three different types of studies including descriptive studies, causality studies, and diagnostic studies (de Albuquerque and Hanazaki, 2009). "Descriptive studies" usually define a set of useful plants of a given human community within a wide range of utilitarian categories or a certain cultural domain, while "causality studies" seek to determine factors that could explain the use and knowledge of plants. And finally, the "diagnostic studies" are studies that are relatively new to ethnobotanical investigations, and are intended to seek and test the efficiency and validity of certain techniques and methods used in ethnobotany (see Reyes-Garcia et al. 2006 a; Silva et al. 2005; Monteiro et al. 2008; Tardio and Pardo-de-Santayana, 2008). 27 The present thesis is part of what is called "causality studies" that seek to determine factors that could explain the use and knowledge of plants. This type of research utilises hypotheticaldeductive reasoning to test its hypotheses (Phillips and Gentry 1993 a, 1993 b; Vanderbroek et al. 2004; Almeida et al. 2005; Estomba et al. 2006; see also Höft et al. 1999). 2.3.3.1 Quantitative ethnobotany The concept of quantification is defined as the application of quantitative techniques to the direct analysis of contemporary plant use data (Prance,1987, Phillips,1996). Quantification in ethnobotany encompasses aspects related to the analysis of people's knowledge of the uses of plant species. Further, it includes the use of indices or quantitative techniques and the application of statistical analyses. The term "quantitative ethnobotany" was cited first by Balée (1987) and has appeared in various studies to confer greater robustness on the analysed data (de Albuquerque, 2009). However, for quantification to be effective, it is necessary to trace the objectives of the work and to define adequate methods for the questions; otherwise, an unreliable interpretation of the data could be generated (Leonti et al. 2020). Quantitative ethnobotany was found to be contributing to the methodological advances of ethnobotany (de Albuquerque, 2010 b), however, de Albuquerque (2010 b) further stated that the term quantitative has become synonymous with quantification in ethnobotany, which is not necessarily associated with the hypothetical-deductive method that was used in the original design of Phillips and Gentry (1993 a). Similarly, in the last decades, ethnobotanists have broadened the discipline's methods and goals resulting in a shift from purely descriptive to more quantitative approaches (Carneiro, 28 1978; Trotter and Logan,1986; Prance et al. 1987; Johns et al. 1990; Phillips and Gentry, 1993; Phillips et al. 1994; Galeano, 2000; Macia et al. 2001; Collins et al. 2006; Reyes-Garcia et al. 2007; Vandebroek, 2010). Nonetheless, the incorporation of different methodologies and approaches by ethnobotanical researchers highlights the need for systematisation and consolidation of current studies and practices. Until recently, data analysis from a quantitative perspective gave ethnobotany a subjective and descriptive character in inventories of useful plants, but this analysis has gradually assumed a less subjective and more experimental character. Ethnobotanists by combining ethnobotanical and ecological data have highlighted the importance of the tropical forest to traditional peoples and, conversely, the profound effects that indigenous people may have on "wild" vegetation (Anderson & Posey,1989; Balée & Gely,1989; Boom,1985). Since the 1990s, ethnobotanists' research of local knowledge has incorporated quantitative analysis tools to estimate the relationship between biological and cultural diversity and to examine the importance of natural resources for local populations (Medeiros et al. 2011). Moreover, quantification and hypothesis-testing help to generate quality information. The techniques used in this respect include cluster, regression analysis, analysis of variance and log-linear modelling. Thus, quantification gave researchers the ability to assess people's knowledge of plant resources and incorporate the perspective of many informants, as noted by Fraser & Junqueira (2010) as some wild plant resources are severely threatened by habitat loss and species selective overexploitation. 2.3.3.2 First quantitative data in ethnobotany The quantification of ethnobotanical data was first undertaken in a study of the Chacabo Indians of Amazonian Bolivia (Boom,1987). This was a major step toward a much more 29 rigorous methodology, where a statistical approach could be utilised. An ethnobotanical study of 360 vascular plant species known by the Chacabo Indians of Amazonian Bolivia identified plant uses for 305 species. This was a very important step that was followed later by Phillips and Gentry (1993a) while working with mestizo people in Tambopata, Peru, they proposed a new quantitative method for ethnobotanical studies. They studied three plots in seven different forest types in a total of 6.1 hectares. Family use values were calculated for plants employed in commerce, construction, food, technology, and medicine (Phillips & Gentry,1993 b). 2.3.3.3 Experimental assessment and Hypothesis-testing Dating from the first half of the nineteenth century, ethnobotany consisted of descriptive texts that sought to list plants and their uses (Hunn, 2007; de Albuquerque et al. 2013; Gaoue et al. 2017). Over the last four decades, however, this type of descriptive contribution has been, largely criticised on the basis that, while the information provided might be of interest, the knowledge gained has a fragile or even non-existent theoretical basis and little methodological rigour (see Phillips & Gentry,1993; de Albuquerque,2009, 2013; Gaoue et al. 2017). Due to rapid changes in livelihood, resulting in rapid changes in the way people relate to the environment, making the relationship between people and plants increasingly complex, ethnobotanists have been increasingly compelled to move beyond descriptive studies and develop a theoretical framework that explains human behaviour with plant resource use (Gaoue et al. 2017). In this thesis, both theory and hypothesis are defined according to (Krebs, 2000; Quinn and Dunham,1983). Accordingly, hypotheses are proposed explanations of observed natural phenomena or patterns, whereas a theory is an integral and hierarchical set of empirical 30 hypotheses that together explain a significant fraction of scientific observation (Krebs, 2000). As such, theories are hypotheses which have been rigorously tested and for which support for the generalisation has been found. Most of these theories studied in ethnobotany are adapted from ecology or related disciplines and serve as possible explanations for ethnobotanical patterns. 2.3.3.4 Applied ethnobotany Applied ethnobotany can be defined as ethnobotany applied to conservation and sustainable development. Applied ethnobotany draws on both personal (including traditional) and scientific forms of knowledge, allowing comparisons and integration for the benefits of conservation and sustainable development, especially for developing countries (Hamilton et al. 2003). Unlike traditional ethnobotanical studies, applied ones are designed from the outset using theoretical methods and references to address practical issues (Hamilton et al. 2003). Thus, applied ethnobotany is an approach within ethnobotanical research that aims to meet specific demands. For example, applied ethnobotany can concentrate on efforts for the conservation and sustainable use of biodiversity or the development of drugs of medical and /or pharmacological interest (Hamilton et al. 2003). Applied ethnobotany and its methods are seen as a local, decentralised approach, where local people participate and contribute to resolving conservation and resource management problems in resourceful ways, rather than being part of the problem (Cunningham,2001). Furthermore, applied ethnobotany encompasses some fundamental strengths in its approaches and methods that can be used in the field of ethnobotany and these strengths are as follows: (a)-They allow the knowledge, wisdom and practices of local people to play fuller roles in identifying and finding solutions to problems of conservation and sustainable 31 development. (b)-Local people are involved fundamentally in investigations so that there is a better chance of "buy-in". (c)- Realistic case- studies of ways of balancing conservation with use become available to inform the evolution of national and other higher-level policies (Hamilton et al. 2003). As result of these strengths, applied ethnobotany is expected therefore, to play a significant part in addressing the different challenges in ethnobotany including : conservation of plants (including varieties of crops) and other forms of biological diversity; botanical inventories and assessments of the conservation status species; sustainability in supplies of wild plant resources, including of non-timber products; enhanced food security, nutrition and healthcare; preservation, recovery and diffusion of local botanical knowledge and wisdom; reinforcement of ethnic and national identity; greater security of land tenure and resource ownership; assertion of the rights of local and indigenous people; agreements on the rights of communities in protected areas; identification and development of new economic products from plants, for instance crafts, foods, herbal medicines and horticultural plants and contributions to new drug development (Campbell & Luckert,2002; Cruells,1994; Cunningham, 2001; Laird,2002; Martin, 1995; Schultes & von Reis,1995). 2.3.3.5 Three general approaches to analysing quantitative ethnobotanical data Quantitative approaches used for analysing informant knowledge are grouped under three categories (Phillips & Gentry,1993 b); informant consensus, subjective allocation, and uses totalled. 32 Informant consensus This method is used to establish the relative importance of each use, directly from the degree of consensus in informants' responses. It requires a highly structured questionnaire. The relative importance of each species is evaluated by the proportion of respondents who cited it. The importance of different plants or uses is assessed by the proportion of informants who independently report knowledge of a given or who claim to have used a plant in a specific way (Adu-Tutu et al. 1979; Angels Bonet et al. 1992; Elvin-Lewis et al. 1985; Johns et al. 1990, Johns & Kimanani,1991; Joly et al. 1987; Kainer & Duryea, 1992; Phillips & Gentry,1993 a,1993 b; Phillips et al. 1994; Trotter & Logan, 1986). The advantages of this approach are that this yields data that can be tested statistically, and it is relatively reliable despite being timeconsuming because individual informants or households must be interviewed separately. In general, procedures based on "informant consensus" tend to be more objective as they are designed to eliminate investigator bias in attributing relative importance to a given plant (Phillips,1996). Subjective allocation Subjective allocation is a set of techniques for evaluating the value or importance of a species according to the members of a specific community. The subjective nature of this approach stems from researchers who assign predetermined values to plants. Among the main examples of subjective allocation is the cultural significance index (Turner,1988; Stoffle et al. 1990; Silva et al. 2010). In the subjective allocation approach, the relative importance of each use is subjectively assigned by the researcher. The importance of different plants or uses is estimated by the researcher based on his or her assessment of the cultural significance of each plant or use (Berlin et al. 1966, 1974; Lee,1979; Pinedo-Vasquez et al. 1990; Prance et al. 1987; 33 Stoffle et al. 1990; Turner,1973, 1988). This is a quicker approach than informant consensus for evaluating the cultural significance of plants. Yet, compared with informant consensus, the results are more subjective and less amenable to statistical analysis. Data for this kind of analysis can be collected by one or more interview techniques or by direct observation or by both. Uses totalled Under this quantitative category, there is no attempt to quantify the relative importance of each plant used. However, the number of uses (or activities) is simply totalled, by category of plant use, plant taxon, or vegetation type. Not surprisingly this has been the most popular approach since it is the fastest and most straightforward way to quantify ethnobotanical data (Anderson,1990,1991; Anderson & Posey,1989; Balée & Gely,1989; Bennett,1992; Boom, 1985,1989,1990; Bye,1995; Kapur et al. 1992; Moerman,1979,1991; Paz y Miño et al. 1991, Salick, 1992; Toledo et al. 1992; Unruh & Alcorn,1988). But uses totalled has two principal disadvantages: First, minor uses are treated as equivalent to even the most important of uses. Second, the total numbers of uses recorded may be more a function of research effort than of the relative significance of each use, plant, or vegetation type. Like those for subjective allocation, data for this kind of analysis are often collected with one or more interview techniques, and sometimes by direct observation. 34 2.3.3.6 Major problem in Ethnobotany Ethnobotany, as the science of human-plant interactions (Prance et al. 1987), has for long been a discipline that largely has been concerned with its relationship to theory. In this section, however, I discussed some of the trends related to the major problem existing currently in ethnobotany. In its early stages, ethnobotanical research largely consisted of contextual lists of plants with their associated preparation and uses in remote areas (Balick,1996; Etkin,1988). But more recently, the focus on documenting traditional uses of plants is increasingly being questioned. Specifically, several authors (e.g., de Albuquerque et al. 2006; Ford and Gaoue, 2017; Hart et al. 2017) have now called for a shift toward more hypothesis-driven approach in ethnobotany because that is the only way human-plant interactions can be better understood. Despite the recent multiple calls for the shift, most recent ethnobotanical studies still prefer the traditional knowledge documentation approach (e.g., Leso et al. 2017). As a result of such approach, the discipline of ethnobotany has been criticised as " weak", "soft subject", "hardcore science" or " pseudoscience" (de Albuquerque and Hanazaki, 2009; Alexiades,1996). These trends still ongoing in the field despite a few examples to the contrary. However, the exception includes the theoretically grounded, extensive body of research in cognitive ethnobotany (e.g., Atran,1998; Alexiades,1996; Brown,1977; Conklin, 1954; Hunn,1975; Medin and Atran,2004; Turner et al. 2000) which led to general principles of folk biological classification (Berlin et al. 1973; Brown, 2000). 35 2.4 CALL FOR A PARADIGM SHIFT AND RIGOROUS QUANTITATIVE DATA Ethnobotany has incorporated over time, different theories from areas such as anthropology, ecology, genetics, evolution, and economy, and this interdisciplinary exchange have become allied with the studies documenting traditional botanical knowledge. As such incorporation evolved, the science of ethnobotany becomes intrinsically interdisciplinary, thus making it susceptible to charges of being imprecise and vague. In contrast, the scientific rigour of ethnobotanical research has increased dramatically in the past two decades due to the adoption of quantitative methods (Phillips,1996), by hypotheses, reproducible methods, and statistical comparable measures of variation. Forty-two years ago, Ford (1978) questioned whether or not the discipline has a unifying theory, while Phillips and Gentry (1993a) criticized the predominant use of descriptive studies in ethnobotany as well as the lack of theoretical frameworks and/or methodological rigour. This self-criticism successfully prompted more recent ethnobotanical studies to follow the lead of Begossi (1996) by incorporating ecological methods in ethnobotany. As a result, an increasing number of studies, in efforts to include quantitative rigour, utilised species-area curves, to estimate the diversity of species used by cultural groups, and ethnobotanical indices (see Hoffman and Gallaher, 2007). International and local meaningful protocols and procedures for conducting ethical research are now considered essential components of the research process. Recent efforts have focused on advancing ethnobotanical education based on interdisciplinary training, core concepts, and competencies that bridge the natural and social sciences (McClatchey et al. 2013). Though important, these approaches have not addressed Phillips and Gentry's (1993 a, b) call for formulating a theoretical framework, emphasizing instead on methodological rigour (de 36 Albuquerque, 2009) and generalised use of ethnobotanical indices (Hoffman and Gallaher,2007). Acknowledging the persistent lack of theory-inspired research in ethnobotany, Martin (2007) detailed precisely how this progress could be achieved with a hypothetico-deductive approach. Both Bennett (2005) and de Albuquerque and Hanazaki et al. (2009) repeated the call for 'less quantification' and more theory-inspired and hypothesisdriven research in ethnobotany. Also, Bennett (2005) noted that ethnobotanical education also needs a major shift to meet the needs of the discipline's evolution. The challenges faced by ethnobotany are similar to those of other sister disciplines. For example, in the 1990s several prominent ecologists questioned if the discipline of ecology had general laws or a unifying theory (Aarssen, 1997; Lawton, 1999; Marquet et al. 2014; Weiner, 1995). As a result of this selfreflection, ecology progressed as a discipline, moving from simply documenting patterns to understanding the underpinning processes that generate ecological patterns across time and spatial scales. Ethnobotany, drawing inspiration from sister disciplines (ecology, evolution, anthropology, archaeology, etc.), can do the same (Salick et al. 2003). The most promising hypothesis-driven approaches to date have come from testing whether patterns of human selection for medicinal plants align with the predictions of the theoretical frameworks from ecology (e.g., de Albuquerque,2006; de Albuquerque and Oliveira, 2007; Alencar et al. 2010; Bennett, 2007; Bennett and Husby, 2008; Vandebroek and Balick, 2012; Reyes-García et al. 2013b; Quiroz and van Andel, 2015: Voeks and Leony, 2004; Voeks, 2007). If there is not such a conceptual paradigm shift in ethnobotany, some questions that have motivated researchers for decades regarding the use of a more hypothesis-driven approach, will remain unresolved or poorly answered. Questions such as " Why, when, how and where people select particular plants for a wide range of uses must be investigated. 37 2.5 SCOPE OF THE PRESENT THESIS This research project is part of what is called "causalities studies" (see Section 2.3.2), that seek to determine factors that can explain the use and knowledge of plants (evaluation of usevalues, relative use-values, preference ranking), thus moving from the traditional identification and documentation of indigenous plants and their subsequent selection as medicinal plants in the Mpumalanga province. Given the research aim and objectives, as delineated above in chapter 1, the scope of this thesis will focus on a greater scientific rigour in terms of setting and testing of ethnobotanical hypotheses, and their quantification through different predictions. Many early ethnobotanical studies, as some still are today, were largely or entirely descriptive, being concerned essentially with documenting the local names and uses of plants (Cunnigham,1997; Etkin & Meilleur,1993; Fernandez, 2002; Fonseca,2000; Martinez, 2002). The present thesis, however, falls within the new line of ethnobotanical research and, more importantly, aims to contribute to filling the lack or scanty theory-testing studies in ethnobotany and can inform environmental management. In so doing, this thesis: i) advances our understanding of human-plant interactions, ii) contributes to the long-overdue critical mass of primary literature required to develop meta-analyses and new theories in ethnobotany. 2.6 BRIEF SUMMARY OF LITERATURE REVIEWED Three ethnobotanical components were reviewed in chapter 2, and more importantly, they were very relevant to the topic studied in this thesis. The chapter described the concepts, the major existing problem and critics born out of the major problem, approaches and majors’ fields, as well as the relative scope of the ethnobotany as science, which prompted the call for 38 a paradigm shift and the need for more quantitative data analysis leading to the adoption of theories driven and hypothesis testing in ethnobotany. The literature reviewed has revealed some interactions between human-plants and folk taxonomies, plant-related mythology, ethnoveterinary medicine and pre-colonial plant use especially for some ethnic culture that are still poorly studied and recorded, and more importantly, there is still a lack of rigorous of quantitative data for most of the studies in ethnobotany. 39 CHAPTER 3 GENERAL PATTERNS OF MEDICINAL PLANTS SELECTION BY LOCAL COMMUNITIES “Testing the non‑random hypothesis of medicinal plant selection using the woody flora of the Mpumalanga Province, South Africa” Isidore Muleba1. Kowiyou Yessoufou1. Isaac T. Rampedi1 Received: 7 August 2019 / Accepted: 29 April 2020 © Springer Nature B.V. 2020 Abstract Medicinal plants have been used by local communities to treat all sorts of diseases, and this unique indigenous knowledge has been documented in various studies. However, using this vast knowledge to formulate and test hypothesis in ethnobotany is not yet a common practice in the discipline despite recent calls for more hypothesis-driven ethnobotanical researches. Here, we collected ethnobotanical data on 811 woody plant species in the Mpumalanga Province of South Africa to test the non-random hypothesis of medicinal plant selection, which predicts a positive correlation between the size of plant families and the number of medicinal plants in the families. We tested this hypothesis by fitting the commonly used simple linear regression model and the negative binomial model. Our analysis confirmed the hypothesis and revealed that some plant families are over-utilised—i.e., contain more medicinal plants than expected. The identification of over-utilised families is the first step towards the prioritisation of research efforts for drug discovery. The proportion of overutilised families ranges from 50% (linear regression with untransformed data) and 55% (linear regression after log–log transformation) to 34% (negative binomial model). With the simple linear model and untransformed data, the top over-utilised families are Fabaceae (residual = + 34.44), Apocynaceae (+ 5.82) and Phyllanthaceae (+ 5.53). The log-transformed model confirms these three families as the top over-utilised families but in a slightly different sequence: Fabaceae (+ 1.55), Phyllanthaceae (+ 0.83) and Apocynaceae (+ 0.79). However, using the negative binomial model, Fabaceae is no longer even part of the top 10 over-utilised families, which are now Phyllanthaceae (+ 2.09), Apocynaceae (+ 1.51), Loganiaceae (+ 1.48), Rhamnaceae (+ 1.48), Sapotaceae (+ 1.48), Oleaceae (+ 1.39), Salicaceae (+ 1.39), Clusiaceae (+ 1.30), Boraginaceae (+ 1.28) and Lamiaceae (+ 1.18). This suggests that the relative medicinal value of some families may have been over-estimated in comparison with others. Our study is an illustration of the need to apply appropriate model while testing ethnobotanical hypotheses to inform priority setting for drug discovery. Keywords Ethnobotanical hypothesis · Fabaceae · Generalised linear model with negative binomial · Phyllanthaceae 40 3.1 INTRODUCTION A tremendous amount of data on medicinal plant uses has been documented worldwide over the years. Such data may include plants that are used to treat particular diseases, plant organs used, how the plant parts or organs are collected and how such medicines are prepared (York et al. 2011; Elansary et al. 2015; Leso et al. 2017). In the light of this wealthy dataset available in ethnobotany, some authors indicated that we now have enough information with which we should be formulating and testing theories and hypotheses that can advance the scope of ethnobotany as a scientific discipline (e.g., Albuquerque et al. 2006; Ford and Gaoue 2017; Gaoue et al. 2017; Hart et al. 2017). Such paradigm shifts towards a more hypothesis or theory-driven ethnobotany are necessary to make ethnobotany a stronger scientific discipline with theories and hypotheses that can be used to predict new medicinal plant uses as well as explain plant-human interactions (Gaoue et al. 2017). Interesting questions that can be investigated for a better understanding of humanplant interactions are as follows: is traditional medicine a placebo? Why some plants in a particular family are predominantly used or over-utilised in some pharmacopoeias while other plants are less used (under-utilised)? To answer this question, a hypothesis has been proposed, termed a "non-random hypothesis" (Moerman, 1979,1991,1996), which predicts that large families are more likely to be richer in medicinal plants than small-sized families. This hypothesis implies that medicinal plants are not randomly selected by local communities such that a linear positive relationship is expected between the number of medicinal plants in families and the size of those families (Moerman,1979). Initially, Moerman (1979) formulated and tested this hypothesis to demonstrate that the traditional medicine of Native Americans 41 was not a placebo. Because of this non-random selection, some plant families tend to be overor under-represented in a given pharmacopoeia (Moerman,1979,1991; Moerman and Estabrook, 2003; Ford and Gaoue, 2017). This implies that plant family can become a strong determinant of plant use-value (Phillips and Gentry,1993), and in one of his early studies, Moerman (1991) already explained this by the fact that species in the same family, due to their evolutionary relatedness, share some characteristics of plant defence inherited from common ancestors, which influence their physiology and effectiveness as medicines. Using a phylogenetic approach, recent studies confirmed that closely related plant families are more likely to have similar medicinal uses than those that are phylogenetically distant (SaslisLagoudakis et al. 2013; Yessoufou et al. 2015). Several studies tested the non-random hypothesis in several geographic contexts, e.g., in Amazonian Ecuador (Bennett and Husby, 2008), in Belize (Amiguet et al. 2006), in Kashmir (Kapur et al. 1992), and recently in Hawai'i, USA (Ford and Gaoue, 2017) and Ecuadorian Amazon (Robles-Arias et al. 2020). These studies reported strong support for the hypothesis. In particular, Robles-Arias et al. (2020) demonstrated that the prediction of the hypothesis could be gender-specific. Nonetheless, such hypothesis-driven ethnobotanical studies are scant particularly in plant-rich countries with wealthy medicinal knowledge. South Africa is one of these species-rich families, with a remarkable plant diversity estimated at approximately 24,000 vascular plants, but where ethnobotanical studies still are less theorydriven. The different uses of medicinal plants are very well documented, e.g., ~3000 medicinal plants are recorded in the country, including 350 species known to be commonly used and traded (e.g., van Wyk and Gericke,2000; Fennell et al. 2004; van Wyk, 2008; York et al. 2011; Elansary et al. 2015; Leso et al. 2017). 42 Furthermore, in studies that tested the non-random hypothesis, the methodological approaches used could be improved. For example, by fitting the simple linear model to the untransformed data he collected, Moerman (1979) did not account for normal residuals and homogeneity of variance. Recently, Ford and Gaoue (2017) have fitted the same model but on log-transformed data to account for that bias. Even so, the log-transformation performs poorly on "count data" (here, the number of medicinal plants) in comparison with a generalised linear model with negative binomial (see O'Hara and Kotze, 2010). The application of these various statistics whilst ignoring their limitation is a potential source of bias, not necessarily in the overall outcome of hypothesis testing, but more critically for the identification of over-utilised versus under-utilised families. In the present study, the non-random hypothesis of medicinal plant selection in the Mpumalanga province of South Africa was tested. Specifically, the different statistical approaches to explore the relationships between the number of known medicinal plants in families and the size of the family in the province were applied. 3.2. MATERIAL AND METHODS 3.2.1 Study area Mpumalanga is one of the nine South African provinces within the Greater Maputaland Pondoland Albany Biodiversity Hotspot, harbouring the southern half of the Kruger National Park and other centres of endemism. The Mpumalanga Province is divided into three districts, namely Gert Sibande, Nkangala, and Ehlanzeni. Local communities are diverse in culture, and together with language discrepancies, there is a rich base of traditional knowledge. These communities include Siswati (30%), while 26% of the inhabitants speak isiZulu (26%), isiNdebele (10.3%), Sepedi (21.2%) and Xitsonga (11.6%) (Tshikalang et al. 2016). Four major 43 vegetation types are dominant in the study area, namely the highveld grasslands, escarpment grassland-forest mosaic, eastern Lowveld savannah and the north-western bushveld savannah (Schmidt et al. 2007). These vegetation types are represented in three distinct biomes: forest, savannah, and grassland (Schmidt et al. 2007). The rainfall varies from a minimum of 440 mm in the north to a maximum of 740 mm in the south of the Kruger National Park (KNP) (Venter,1990). Mean annual temperature is around 21–23 °C, but in summer temperatures often exceed 38 °C, and frost can occur sporadically during winter. 3.2.2 Data collection Data on the floristic composition of the Mpumalanga Province were collected through intensive four-year fieldwork conducted from 2008 to 2012 by (Yessoufou, 2012). These data were supplemented by an existing database, i.e., the book entitled Trees and shrubs of Mpumalanga and Kruger National Park by Schmidt et al. (2007). This book contains both floristic and ethnobotanical knowledge of the region collected for more than 10 years of fieldwork. This book provided a unique botanical knowledge (including some medicinal uses) for a comprehensive checklist of 811 plant species representing 97 botanical families, of which 321 were reported to have some medicinal uses (Schmidt et al. 2007). Also, data were collected from PRECIS (SANBI,2005), a comprehensive inventory of ethnomedicinal flora of Southern Africa containing 800,000 records of taxa grouped by order and regions (Magill et al. 1983; Germishuizen and Meyer, 2003). More importantly, the ethnobotanical data were further collected from Prelude medicinal plants Database (https:// www.Africanmuseum.be/en/. From these datasets, two variables were selected including (1) the total number of plants species per family in the province and (2) the total number of medicinal plants recorded for each family in the province 44 3.2.3 Data analysis All analyses were done in R (R Development core Team 2017) using several medicinal species recorded per families as response variable (count data) and the total number of species documented in the province for each family as a predictive variable. Firstly, a simple linear model was fitted (model 1) to the untransformed data as commonly done in previous studies (Amiguet et al. 2006; Moerman,1996,1979). Followed by a test for normality of the residuals. As this analysis indicated non-normality (Figure S1), the response and predictor variables were then log(x+1)-transformed to address the normality issues (Figure 3.3). In the (model 2), a general linear model was fitted to the transformed variables as done in a few recent studies (e.g., Ford and Gaoue, 2017). Finally, because of the poor performance of simple linear regression with log-transformation of "count data" compared to the generalised linear model with negative binomial (see O'Hara and Kotze, 2010), a negative binomial model (model 3) was fitted to the dataset (see Zeileis et al. 2008; O'Hara and Kotze, 2010). For each of these models, over-utilised families were identified as those with positive residuals; this means these families contain a higher number of recorded medicinal species than would be expected from the model fitted. 3.3 RESULTS From the woody flora of the Mpumalanga province, forty percent (~40%) of medicinal plants were recorded from almost seventy-six (~76%) of woody plant families in this study area (Table 3.1). Our analysis revealed that some plant families are over-utilised, while others are under-utilised (Figure 2.3; Table 3.1). The proportion of over-utilised families ranges from 50% in line with Moerman's linear regression approach through 55% (linear regression after log- 45 log transformation) to 34% (negative binomial model). Following Moerman's approach, the top over-utilised families are Fabaceae (residual= +34.44), Apocynaceae (+5.82) and Phyllanthaceae (+5.53). The log-transformed model confirms these three families as the top over-utilised families but in a slightly different sequence: Fabaceae (+1.55), Phyllanthaceae (+0.83) and Apocynaceae (+0.79). However, using the negative binomial model, Fabaceae is no longer even part of the top 10 over-utilised families, which are now: Phyllanthaceae (+2.09), Apocynaceae (+1.51), Loganiaceae (+1.48), Rhamnaceae (+1.48), Sapotaceae (+1.48), Oleaceae (+1.39), Salicaceae (+1.39), Clusiaceae (+1.30), Boraginaceae (+1.28) and Lamiaceae (+1.18) (Table 3.1). The top 10 under-utilised families comprise Celastraceae (− 0.05), Monimiaceae (− 0.06), Aquifoliaceae, Arecaceae, Canellaceae, Cornaceae, Gentianaceae, Hernandiaceae, Picrodendraceae and Piperaceae (− 0.06, each). 46 Figure 3.1: Diagnostic plots showing non-normality of the residuals of untransformed data 47 Figure 3.2: Diagnostic plots showing improved normality of the residuals of untransformed data 48 Figure 3.3: Diagnostic using a negative binomial model. Relationships between the number of medicinally used woody plants and the total number of woody plants per family in the Mpumalanga Province, South Africa. The names of some families could not be read clearly, because they are superposed; Table 3.1 presents the full list of plant families with their residual values indicating their position with the fit lines. Fit lines of different models tested are colour-coded. Families that are above of the fit line of a model are considered over-utilised (have a positive residual), and families below the fit line are considered under-utilised (have a negative residual) 49 3.4 DISCUSSION Almost 40% of the total woody species have local medicinal applications as remedies to certain illnesses, and this proportion is approximately three times higher than the proportion (12.5%) of the known medicinal plants in South Africa (van Wyk and Gericke, 2000; Arnold et al. 2002; Williams et al. 2013). In addition, the medicinal plants of the Mpumalanga province are, however, well represented at the family level since they represent nearly 76% of woody plants families in this province. This is perhaps indicative of the richness of the province in medicinal flora, although we only focussed on woody flora, suggesting that the proportion of medicinal plants is likely greater than what we report here if non-woody plants were included in the analysis. Indeed, as suggested by the optimal defense theory, non-apparent species, that is, species with short lifespans (herbaceous, early successional plants), are subjected to lower herbivore pressure than apparent species (e.g., perennial, dominant plants, woody plants). As a result, non-apparent plants produce "cheap" defenses but in high quality (e.g., alkaloids), while apparent species invest quantitatively more in "expensive" defenses, e.g., lignins (Feeny,1976). Consequently, more herbs are likely to be medicinal than woody plants (de Albuquerque and Lucena,2005; da Silva et al. 2018). There is, therefore, a need for future studies to incorporate herbaceous plants into their analysis to further test the non-random hypothesis (or other theories). 50 Table 3.1 Residual values from various model fitting to medicinal data from Mpumalanga province, South Africa GLM, Generalized Linear Model; LM, Linear Model. Families are ranked based on the residuals of the GLM with negative binomial. Family names in bold are those identified by GLM with negative binomial as medicinally over-utilized Families Models fitted GLM with negative LM with log LM with binomial transformed data untransformed data Phyllanthaceae 2.09137599 0.835053937 5.53969331 Apocynaceae 1.512669883 0.797571948 5.822771068 Loganiaceae 1.483800427 0.54292917 2.654769982 Rhamnaceae 1.483800427 0.54292917 2.654769982 Sapotaceae 1.483800427 0.54292917 2.654769982 Oleaceae 1.395826781 0.764759196 2.884923327 Salicaceae 1.395826781 0.764759196 2.884923327 Clusiaceae 1.306267267 0.628796291 2.513231103 Boraginaceae 1.284008961 0.452975379 2.026462207 Lamiaceae 1.179202762 0.383068814 1.53969331 Ochnaceae 1.091813997 0.33070534 1.283077758 Vitaceae 1.091813997 0.33070534 1.283077758 Melianthaceae 1.054285932 0.716902316 2.256615552 Ebenaceae 1.028372859 0.653876636 3.707694395 Rutaceae 1.013622608 0.353145109 1.052924413 Capparaceae 0.987603461 0.447536572 1.566155516 Solanaceae 0.90086612 0.228918134 0.53969331 Annonaceae 0.890820041 0.40565274 1.513231103 Moraceae 0.780670125 0.219613716 0.052924413 Sapindaceae 0.67899315 0.095367151 -0.088614466 Bignoniaceae 0.644334221 0.119276287 0.398154431 Proteaceae 0.585792491 0.15184317 -0.690460035 51 Balanitaceae 0.541522014 0.429220243 1.256615552 Lauraceae 0.541522014 0.429220243 1.256615552 Polygalaceae 0.541522014 0.429220243 1.256615552 Urticaceae 0.541522014 0.429220243 1.256615552 Xanthorrhoeaceae 0.479787019 -0.016686618 -0.345230018 Cannabaceae 0.468902343 0.253933572 0.884923327 Malpighiaceae 0.468902343 0.253933572 0.884923327 Salvadoraceae 0.468902343 0.253933572 0.884923327 Combretaceae 0.464496089 0.317404399 -0.292305605 Myrtaceae 0.233749663 -0.176546974 -1.46030669 Araliaceae 0.175847832 -0.168405786 -0.601845569 Celastraceae -0.050674529 0.336270859 -1.265843398 Monimiaceae -0.060486287 0.270807822 0.628307776 Aquifoliaceae -0.060486287 0.270807822 0.628307776 Arecaceae -0.060486287 0.270807822 0.628307776 Canellaceae -0.060486287 0.270807822 0.628307776 Cornacaeae -0.060486287 0.270807822 0.628307776 Gentianaceae -0.060486287 0.270807822 0.628307776 Hernandiaceae -0.060486287 0.270807822 0.628307776 Picrodendraceae -0.060486287 0.270807822 0.628307776 Piperaceae -0.060486287 0.270807822 0.628307776 Pittosporaceae -0.060486287 0.270807822 0.628307776 Plumbaginaceae -0.060486287 0.270807822 0.628307776 Ranunculaceae -0.060486287 0.270807822 0.628307776 Velloziaceae -0.060486287 0.270807822 0.628307776 Asparagaceae -0.121431586 0.023755135 0.256615552 Chrysobalanacea -0.121431586 0.023755135 0.256615552 Cyatheaceae -0.121431586 0.023755135 0.256615552 Podocarpaceae -0.121431586 0.023755135 0.256615552 e 52 Gerrardinaceae -0.121431586 0.023755135 0.256615552 Rhizophoraceae -0.121431586 0.023755135 0.256615552 Achariaceae -0.182802184 -0.151531536 -0.115076673 Stilbaceae -0.182802184 -0.151531536 -0.115076673 Ulmaceae -0.182802184 -0.151531536 -0.115076673 Scrophulariaceae -0.192652143 -0.464229047 -2.46030669 Icacinaceae -0.244562436 -0.287494441 -0.486768897 Myricaceae -0.244562436 -0.287494441 -0.486768897 Passifloraceae -0.244562436 -0.287494441 -0.486768897 Burseraceae -0.266145623 -0.509383545 -2.831998914 Verbenaceae -0.339455167 -0.551421378 -3.203691139 Fabaceae -0.34385417 1.558579578 34.441851 Apiaceae -0.369100661 -0.492509295 -1.230153345 Primulaceae -0.431799265 -0.573870894 -1.601845569 Thymelaeceae -0.431799265 -0.573870894 -1.601845569 Malvaceae -0.48727429 0.376352255 -1.867688967 Asteraceae -0.527738476 -0.259957106 -5.407382277 Rosaceae -0.684479905 -0.820923581 -3.088614466 Acanthaceae -0.874760528 -0.956886486 -4.203691139 Euphorbiaceae -0.882966212 0.683522402 2.043696567 Buxaceae -1.311885364 -0.422339358 -0.371692224 Connaraceae -1.311885364 -0.422339358 -0.371692224 Cupressaceae -1.311885364 -0.422339358 -0.371692224 Escalloniaceae -1.311885364 -0.422339358 -0.371692224 Hamamelidaceae -1.311885364 -0.422339358 -0.371692224 Linaceae -1.311885364 -0.422339358 -0.371692224 Lythraceae -1.311885364 -0.422339358 -0.371692224 Marattiaceae -1.311885364 -0.422339358 -0.371692224 Melastomataceae -1.311885364 -0.422339358 -0.371692224 Nyctaginaceae -1.311885364 -0.422339358 -0.371692224 53 Onagraceae -1.311885364 -0.422339358 -0.371692224 Osmundaceae -1.311885364 -0.422339358 -0.371692224 Santalaceae -1.311885364 -0.422339358 -0.371692224 Pedaliaceae -1.311885364 -0.422339358 -0.371692224 Portulacaceae -1.311885364 -0.422339358 -0.371692224 Menispermaceae -1.311885364 -0.422339358 -0.371692224 Erythroxylaceae -1.351560192 -0.669392045 -0.743384448 Kirkiaceae -1.351560192 -0.669392045 -0.743384448 Putranjavaceae -1.432931235 -0.980641621 -1.486768897 Streliziaceae -1.474574712 -1.091731403 -1.858461121 Penaeaceae -1.516818324 -1.185656476 -2.230153345 Ericaceae -1.559630896 -1.267018074 -2.601845569 Flacourtiacae -2.057984046 -1.794066979 -6.690460035 Anacardiaceae -2.060053913 -0.473216099 -13.32799566 Rubiaceae -2.895742049 -0.924598236 -19.41661012 Families are ranked based on the residuals of the GLM with negative binomial. Family names in bold are those identified by GLM with negative binomial as medicinally over-utilized GLM generalized linear model, LM linear model 3.5 CONCLUSION This study provides an overview of the test of a non-random hypothesis to assess the general patterns of medicinal plants selection by local communities in the Mpumalanga province. Here, relatively three statistic approaches were fitted including a simple linear regression analysis, with log-transformation of "count data" compared to the generalised linear model with negative binomial to perform a robust test of the non-random hypothesis of medicinal plant selection using the woody flora of the Mpumalanga province, South Africa. This thesis assessed one of the most common ethnobotany theories developed in the 1970s (Moerman,1979) the non-random plant theory. The non-random medicinal plant theory 54 suggests that some plant families are bound to contain fewer species with medicinal values and uses than expected by chance. The premise is that species in these families are evolutionary less likely to contain secondary chemistry efficient against disease. A nonrandom hypothesis of medicinal plant selection using the woody flora of the Mpumalanga province was performed to determine the taxonomic patterns of medicinal plants. At least two behaviours were observed in this study: certain families have higher medicinal value and are therefore more frequently used than others. The finding reveals that chemical compounds with medicinal value are not equally distributed among different botanical families (Gottlied et al. 2002). Ethnobotany needs to understand the cultural reasons for a taxon's usage or its avoidance in this context. Moreover, it was found that overused and underused species are not the same for each one of the three statistical analysis approaches used in this thesis. Conversely, certain families appear to behave discrepantly in particular contexts. Important family such as Fabaceae for example was found overused and underused according to statistical approaches used. This finding is consistent with taxonomic patterns observed among previous studies in Moerman's approach that shows that certain families are over-used and others under-used in terms of the number of species in indigenous medicinal floras when compared to the overall available flora of a specific region (Moerman,1979). This provides additional strong evidence to the body of literature that plant use by indigenous people does not occur randomly and more importantly, will add to the discussion on the non-random medicinal plants by expanding the geographical range for this theory and proposing new ways of analysing the data. 55 CHAPTER 4 THE USE OF ECOLOGICAL THEORIES TO GENERATE ETHNOBOTANICAL KNOWLEDGE: APPARENCY THEORY AND RESOURCE AVAILABILITY HYPOTHESIS IN MPUMALANGA, RSA Abstract An ethnobotanical study was conducted to examine the selection of medicinal plants in the Mpumalanga province in South Africa, where the ecological apparency theory and the resource availability hypothesis were tested based on patterns related to plant habits. A Generalised Linear model (GLM) was fitted in each scenario, to investigate if plant height predicts medicinal status (plant height as the predictor and medicinal status as the response variable) and specifying the binomial error family, given that the response variable is binary (a plant is either medicinal or not). In addition, a GLM model with a Gaussian error structure was fitted to the height or life form data to test if these variables (height and life form) predict the total number of recorded plants uses. In addition, a negative binomial GLM model was fitted using the glm. nb function as implemented in the R library MASS (Venables and Ripley, 2002). Another GLM model was fitted this time to test the resource availability hypothesis, using plant growth rate as a predictor with a standardised and continuous predictor variables Hmax and growth rate prior to the analysis to facilitate the interpretation of results. The analysis showed that plant maximum height correlates significantly and positively with medicinal status (β=0.06±0.01, P<0.001), suggesting that taller plants tend to be more medicinal than shorter ones. Whereas, plant height does not correlate with the probability of plant being medicinally overused whether this probability is treated as a binomial variable (β=0.004±0.01, P=0.68) or a proportion (β=0.002±0.007, P=0.77). The finding from the resource availability hypothesis showed that there was no evidence that plant growth rate predicts neither medicinal status (β=-18.64±52.71, P=0.72) nor the probability of plant being overused irrespective of whether this probability is estimated as a binary variable (β=11.92±49.18, P=0.80) or as a proportion (β=6.16±34.03, P=0.85). Furthermore, plant growth rate does not correlate with Use Value (β=9.22±29.54, P=0.75) nor does it correlate with the total number of uses (β=-9.64±26.38, P=0.71). Keywords: Ethnobotany, diversification hypothesis testing, versatility hypothesis testing, native plants, exotic plants. 56 4.1. INTRODUCTION Plant secondary metabolites play a significant role in structuring interactions between plants and the network of organisms that comprise terrestrial communities (Ehrlich & Raven,1964; Berenbaum,1983; Roirberg & Isman,1992; Barbosa et al. 1991). Plant secondary metabolites play key ecological roles by defending plants from herbivore and pathogens (Goncalves et al. 2016; de Albuquerque 2006;Fraenkel,1959; Odum & Pinkerton,1955; Ehrlich & Raven, 1964; Whittaker & Feeny, 1971), providing oviposition and feeding cues (Da Costa & Jones,1971; Raybould & Moyes, 2001; Macel & Vrieling, 2003; Nieminen et al. 2003), and attracting natural enemies of herbivores (Turlings et al. 1990; Dicke & van Loon, 2000; Kessler & Baldwin, 2001) in addition to conferring an array of physiological adaptions to plants, such as pigmentation (e.g., flavonoids and carotenoids), protection against UV (e.g., flavonoids), and structure (e.g., lignins). All plants invest resources in secondary metabolite production (Fraenkel, 1959; Dethier, 1954; Whittaker & Feeny,1971) which can incur a cost (reviewed in Huot et al. 2014) but can also lead to increased plant fitness (Ehrlich & Raven, 1964; Cornell & Hawkins, 2003; Agrawal et al. 2012; Moore et al. 2014). In tropical forests, the evolutionary relationships between herbivores and plant have resulted in an impressive variety of adaptations and interactions. Herbivore pressure has led to the evolution of chemical, mechanical, and phenological defences in plants. Herbivores in turn have evolved to cope with food plants that are trying to starve or poison them. These relationships affect food webs, nutrient cycling, and community diversity, and thus every organism in tropical forests. Moreover, the environment can also strongly modify the 57 phenotypic expression of defences in everyone. In their carbon/ nutrient hypothesis, Bryant et al. (1983) suggest that resources present more than growth demands are put into defence. However, little is known about the relative proportion of damage caused by specialist and generalist herbivores in the indigenous forests of the Mpumalanga province, South Africa. Yet such information is important for understanding nature and how plants allocate resources between defensive and physiological functions. Feeny (1975,1976) and Rhoades & Cates (1976) formulated hypotheses explaining the evolution of plant defences based on plant apparency. Plant apparency, or commonness, is an important indicator of the utilisation of plant resources (Feeny, 1976; Guèze et al. 2014). The plant apparency hypothesis implies that more apparent plants suffer more herbivory and, thus, invest more in quantitative chemical defenses (Feeny,1976; Smilanich et al. 2016; Soldati et al. 2016; Strauss et al. 2015). Apparency plants were predicted to adaptively produce quantitative chemical defences (i.e., high concentrations) because of the longevity of their leaf tissue. Quantitative compounds were hypothesised to defend plant tissues by reducing herbivore growth rate through decreased digestibility of consumed leaf tissue. As outlined in the original paper, these defences evolved to be effective against both specialist and generalist herbivores (invertebrate folivores), although specialist was predicted to be less abundant to these types (Feeny,1975). In the present chapter, ecological and evolutionary outcomes of the interactions between herbivores and their host plants in a subtropical forest of the Mpumalanga province were examined. In particular, two of the recently reviewed hypotheses in ethnobotany (Gaoue et al. 2017): the apparency theory and the resources availability hypothesis were investigated. 58 These hypotheses have been used to make predictions regarding plant life-history traits that correspond to classes of antiherbivore defence and have also provided useful information for understanding how plants allocate resources between defensive and physiological functions. Further, fast-growing/short-lived species that can tolerate higher rates of herbivory and invest more in quantitative defence (e.g., alkaloid) will have more medicinal and will be more sought after than long-lived/slow-growing species which invest more in quantitative defences. This might explain why some weeds and plants in disturbed areas or secondary vegetation are sometimes more highly sought after locally for medicinal purposes than non-weedy and those in primary forest (Stepp and Moerman, 2001; Voeks, 2004). As a result of their interactions with herbivores, plants develop strategies to survive herbivory in the form of e.g., chemical defences, and in return, herbivores tailor their responses to survive plant chemical reactions (Ehrlich and Raven,1964; Thompson,1988; Endara and Coley, 2011), a mechanism referred to an 'arms race' (Endara and Coley, 2011). Humans use these chemicals or secondary metabolites that plant engineer in response to herbivory for medicinal purposes. These plant-herbivore interactions that lead to a human selection of medicinal plants are framed in several hypotheses, of which, ecological apparency theory (Feeny, 1976) and resource availability hypotheses Coley et al. 1985) are the most debated (Endara and Coley 2011; Gaoue et al. 2017). The ecological apparency hypothesis was the first attempt to explain patterns of plant chemical defences (the quantity and the differences among plants) in response to herbivory (Feeny, 1976; see also Rhoades and Cates, 1976). According to the hypothesis, more apparent plants are long-lived plants bound to be found by herbivores (generalists and specialists), thus under strong herbivory pressure, and therefore would invest highly in secondary metabolites, 59 e.g., tannins, to defend themselves against herbivores (Feeny,1976). In that case, tannins are produced in high quantity to reduce the digestibility of plant leaves as a mechanism to avoid herbivory from both generalist and specialists (quantitative defence). In contrast, unapparent plants are short-lived plants i.e., plants with short lifespans, and this character makes it difficult for specialist herbivores to feed on them as opposed to generalists. To survive most of the herbivory from generalists, unapparent plants develop what Feeny (1976) referred to as qualitative chemical defences by producing secondary 'inexpensive' metabolites in low concentration and of small-sized molecules, e.g., alkaloids, effective in fighting herbivores, thus making unapparent plants more likely medicinal than apparent plants (Gaoue et al. 2017). Consequently, herbaceous, early successional plants or short plants are more likely to be used for medicine than "apparent" plants which are perennial, woody, and dominant plants) (de Albuquerque and Lucena, 2005). Like the prediction of the ecological apparency hypothesis, the resource availability hypothesis also predicts that apparent plants spend more resources on defences unlike unapparent plants (Coley,1987 a, b). However, the latter hypothesis, instead of linking differences in defence investment across plant species to plant apparency, predicts that differences in defence investment are rather determined by the cost/benefit ratio of such investment (Coley et al. 1985). This means that a plant would invest resources in defences only if the benefits out of the investments surpass the resources invested, that is the cost of investment, irrespective of whether the plant is apparent or not and irrespective of the level of herbivory. For example, it is not beneficial or profitable for a fast-growing plant to invest resources heavily on defences since they can easily and quickly replace damaged organs, e.g., loss of leaves to herbivory or any form of harvest (Endara and Coley, 2011). As such, plants 60 growing in resources-rich environments (e.g., high-light, nutrient-rich habitats) vs. resourcepoor environment (e.g., low-light, nutrient-poor habitats) would not invest equally in defences: in the former environment, plants would grow faster (high growth rate), synthesize qualitative chemicals (e.g., alkaloids) with more likely medicinal bioactivity; in the latter environment, plants would exhibit slow growth rate and investment heavily on quantitative defences (to protect the costly investment in defences) that are less of medicinal importance for human, e.g. tannin (Coley et al. 1985; Endara and Coley, 2011; Stamp, 2003). Due to this strong connection to growth rate, the resource availability hypothesis is also referred to as growth rate hypothesis (Coley,1987 a, b: Stamp, 2003). This might explain why some weeds and plants in disturbed areas or secondary vegetation are sometimes more highly sought after locally for medicinal purposes than non-weedy plants and those in primary forests (Stepp and Moerman, 2001; Voeks, 2004). Few studies have tested the above theories in ethnobotany. Of those that have, most found no support for the ecological apparency theory, but they did provide support for the resource availability hypothesis (Alencar et al. 2009; Almeida et al. 2005, 2012). Almeida et al. (2012) found that plants from a low resource environment (especially trees) tended to have high levels of quantitative and qualitative defense compounds and have higher antimicrobial activity than plants from a high resource environment (especially herbs), which often had qualitative defense compounds but with lower antimicrobial activity. Recent studies on the global patterns of plant use by human ask whether species ecological apparency is the main drivers of their medicinal use (e.g., Dai et al. 2015, Goncalves et al. 2016). Here, the following central questions were investigated: (a) does ecological apparency 61 affect the probability of plants being medicinal or in a medicinally over-utilized family? Is resource availability a determinant prediction of medicinal use and plant use value? 4.2 MATERIALS AND METHODS 4.2.1 Study area The Mpumalanga Province is situated in the northeastern part of South Africa and covers an area of 76.520 km2. It is part of the "Greater Maputaland-Pondoland-Albany "biodiversity hotspot (Perera et al. 2011), comprising a diversity of landscapes characterised by grassland, savannah, and warm-temperate and subtropical forest biomes. Grasslands are most prevalent in Mpumalanga, making up 65% of the province. The altitude varies between 110 m and 2328 m above sea level while mean annual rainfall ranges between 341 and 1933 mm. The mean annual temperature ranges from 100C to 23 0C (Schulze, 1997). Fifty-eight vegetation mapping units occur in this province as a result of a diversified topography and climate (Mucina and Rutherford, 2006; Ferrar and Lötter,2007). The indigenous forests are largely confined to the north-south running Mpumalanga Escarpment and, of the 24 forest types occurring in South Africa, five are represented in the Mpumalanga province and four major vegetation elements are dominant including Highveld grasslands, escarpment grassland-forest mosaic, eastern Lowveld savannah and north-western bushveld savannah. With the indigenous forests making up 0.51% of the Mpumalanga's territory, it contains a unique suite of plant species (316 obligate forest taxa) not found in any other major vegetation type in the region (Lötter et al. 2014). These are represented in three distinct biomes: forest, savannah, and grassland (Schmidt et al. 2007). Moreover, the most species-rich plant families and genera in the province included Asplenium, Asparagus, Rhoicissus, Searsia, Maytenus and Ficus and the most dominant growth form subcategories are small trees (31%), tall trees (16%), tall shrubs (11%), herbs (9%), woody climbers(8%), Herbaceous climbers (6%), geophytic herbs (5%), 62 graminoids (5%), epiphytes(3%), soft shrubs 1.5%), succulent herbs (0.7%), succulent trees (0.5%), graminoid climbers (0.2%) and tree-ferns (0.1%) ( Lötter et al. 2014). Currently, five dominant ethnic groups are distributed in three distinct districts (www.mpumalanga.gov). Figure 4.1 Forest cover in Mpumalanga province, South Africa 63 4.2.2 Data Collection 4.2.2.1 Source of information Data on plant maximum height and life forms were collected through 4-year fieldwork (20082012). These data were verified and completed using the book of Schmidt et al. (2007) who documented plant diversity and plant functional traits over 10 years of data collection in the province of Mpumalanga. Data on plant uses were collected through an intensive literature search. All recorded uses were categorized into seven (07) groups: medicinal, food/fodder, ornament, cosmetic/soap, fuel/fire/charcoal, construction, and ritual/spiritual. One source of information is the book Trees and Shrubs of Mpumalanga and Kruger National Park (Schmidt et al. 2007). The ethnobotanical knowledge documented in this book was collected for more than 10 years of intensive fieldwork. Another source of data was the PhD thesis of Yessoufou (2012), who collected botanical and ecological data in the province of Mpumalanga through 4-year intensive fieldwork (2008-2012). The third important source of data was PRECIS (National Herbarium (PRE) Computerised Information System databank (SANBI, 2005), a comprehensive inventory of ethnomedicinal flora of Southern Africa containing 800.000 records of taxa grouped by order and regions (Magill et al. 1983; Germishuizen & Meyer, 2003). The last important source of data is PRELUDE. Although PRELUDE is primarily focused on documenting plant diversity in Central Africa, it also accommodates documented ethnobotanical knowledge (articles, publications, and papers) of various African regions including South Africa (http://www.africamuseum.be). In the end, the resulting dataset includes 817 vascular plants representing 98 families in 344 medicinal plant species. Plant 64 names and families follow the Angiosperm Phylogeny Group classification (APG IV) Chase et al. (2016). 4.2.2.2 Measuring of variables The variable apparency (predictor) was measured in two ways: plant maximum height and life forms. Plant height was collected from Schmidt et al. (2007). Life form was defined as shrubs (height<0.5m), trees (height>0.5m). Then the medicinal use, which is the response variable, was measured in two ways: medicinal status (medicinal vs. non-medicinal), and the probability of being medicinally overused. Medicinal status was recorded as explained in section 4.2.2.1 above. In Chapter 3, species are grouped into over- and under-utilized families. This was done using different modelling approaches. Here the categorization based on the Negative Binomial Generalized Linear Modeling is used, and for analysis purpose, species in over-utilized families are coded 1 and species in under-utilized families are coded 0 such that the probability of a plant being overor under-utilised is either 1 or 0, respectively. In addition, two more response variables were also added, the Use Value (UV) and the total number of recorded uses. The total number of uses was determined as the sum of the number of uses recorded for each species in the categories medicinal, food/fodder, ornament, cosmetic/soap, fuel/fire/charcoal, construction, and ritual/spiritual. The sources of information are presented in section 4.2.2.1 above. To measure species growth rate consistent with the resource availability hypothesis, we retrieved their wood density from Yessoufou (2012) who collected over 4 years wood materials of species in the study area and determined in the lab their density. Missing values were imputed as explained in the data analysis section. 65 Species growth rate was estimated as the inverse of their wood density, consistent with King et al. (2006). All data analysed in this chapter are presented in the appendix B. 4.2.3 Data analysis All analyses were done in R (R Core Team 2020) and all the R scripts used are provided in the Supplementary Information. To test if plant height predicts medicinal status, the Generalized Linear Model (GLM) was fitted to the data, using plant height as the predictor and medicinal status as the response variable, and specifying the binomial error family, given that the response variable is binary (a plant is either medicinal or not). To test for correlation between life form and medicinal status, the same model was also fitted but this time life form is the predictor (trees, shrubs). Furthermore, plant heigh or life form were tested to find out they could predict plant’s probability of being overused. The plant probability was approximated in 2 ways: as a binary variable (0/1) or as a proportion. When the probability was estimated a binary variable, a GLM model with a binomial error structure was fitted to the plant height variable. However, when the probability was estimated as a proportion variable, a beta-regression model was rather fitted as implemented in the R library betareg (Cribari-Neto and Zeileis, 2010; Grün et al. 2012). The beta-regression is most appropriate when modeling a response variable that is continuous but constrained within the interval (0,1), e.g., a proportion (Ferrari and CribariNeto, 2004; Simas et al. 2010). Such continuous variable follows a beta-distribution. In addition, to test if the height or life form predicts UV, a GLM model with a Gaussian error structure was fitted to the height or life form data. To test if these variables (height and life form) predict the total number of recorded plants uses, the negative binomial GLM model was fitted using the glm. nb function as implemented in the R library MASS (Venables and 66 Ripley, 2002). The negative binomial GLM was most indicated to model a count data, here the total number of recorded plants uses, as demonstrated in several studies (e.g., O'hara and Kotze, 2010). To test the resource availability hypothesis, all alternative models mentioned above were also fitted but this time using plant growth rate as a predictor. I standardised the continuous predictor variables Hmax and growth rate before the analysis to aid interpretation (Gelman and Hill, 2006). 4.3 RESULTS 4.3.1 Test of ecological apparency theory Firstly, the analysis showed that plant maximum height correlates significantly and positively with medicinal status (β=0.06±0.01, P<0.001), suggesting that taller plants tend to be more medicinal than shorter ones (Figure 4.2). However, plant height does not correlate with the probability of plant being medicinally overused, whether this probability is treated as a binomial variable (β=0.004±0.01, P=0.68) or a proportion (β=0.002±0.007, P=0.77). 67 1.0 0.6 0.8 1 0.0 0.2 0 0.4 medicinal status 10 20 30 Height Figure 4.2 Relationships between plant height and medicinal status. Taller plants are more likely to be medicinal. Medicinal status is coded 1 (medicinal) and 0 (non-medicinal). Secondly, no significant relationship was found between life-form and medicinal status (β=0.96±0.65, P=0.14), neither do we find a relationship between life-form and the probability of plant being medicinally overused, again irrespective of how this probability was approximated: as a binomial variable (β=0.87±0.65, P=0.18) or as a proportion variable (β=0.35±0.36, P=0.33). Thirdly, on Use Value (UV), plant height correlates significantly and positively with UV (β=0.05±0.006, P<0.001; Figure 4.3), but UV does not show such relationship with life-form 68 (β=0.41±0.32, P=0.20). Interestingly, plant height predicts the total number of uses recorded for each species, such that taller plants (β=0.02±0.004, P<0.001) but not life form (β=0.29±0.30, 4 0 2 abs(UV) 6 P=0.32) tend to have more uses than shorter plants (Figure 4.3). 0 10 20 30 40 Height Figure 4.3 Relationships between plant height and plant use-value. Taller plants tend to have higher use-value. 69 1.0 0.8 5 0.6 4 3 0.0 0 0.2 1 0.4 2 total use 10 20 30 Height Figure 4.4 Relationships between plant height and total plant use. Taller plants tend to have more uses. 4.3.2 Test of resource availability theory Resource availability was approximated as plant growth rate. All the analyses conducted show no evidence that growth rate predicts neither medicinal plant status (β=-18.64±52.71, P=0.72) nor the probability of plant being overused irrespective of whether this probability is estimated as a binary variable (β=11.92±49.18, P=0.80) or as a proportion (β=6.16±34.03, P=0.85). Furthermore, plant growth rate does not correlate with Use Value (β=9.22±29.54, P=0.75) nor does it correlate with the total number of uses (β=-9.64±26.38, P=0.71). 70 4.4 DISCUSSION Based on apparency theory, unapparent plants, e.g., species with short lifespans, face lower herbivore pressure and consequently do not spend resources heavily in quantitative defences; rather they use "inexpensive" qualitative defences to survive generalist herbivores (Feeny,1976). Because these qualitative defence compounds (e.g., alkaloids) have more medicinal bioactivity than quantitative defense compounds (e.g., lignin), it is expected that, from an ethnobotanical perspective, unapparent plants, e.g., short-lived, herbaceous, early successional, small-sized plants (e.g., shrubs vs. trees) are more likely to be medicinal than apparent plants, e.g., perennial, woody, dominant plants (trees vs. shrubs) (de Albuquerque and Lucena,2005). The present study showed that plant maximum height correlates significantly and positively with medicinal status, suggesting that taller plants, thus apparent plants, tend to be used medicinally than shorter ones, i.e., unapparent or less apparent plants. In the light of the apparency theory, this finding is unexpected, adding to the lack of support for apparency theory reported in other studies (Alencar et al. 2009; Almeida et al. 2005, 2012). This unexpected finding could imply that more apparent species because they are easily found by herbivores, are more likely to suffer heavy herbivory and would therefore provide a heavy chemical response in return (secondary metabolites) as a defence mechanism (Feeny, 1976, Rhoades, 1976), which would result in them being identified by humans as medicinal (Albuquerque et al. 2006). The analysis further reveals that plant height correlates significantly and positively with UV and even predicts the total number of uses recorded for each species, such that taller plants tend to have more uses than shorter plants. These findings imply the importance of plant height in the development of medicinal knowledge. 71 Based on these different but concordant findings, a consequential expectation would be that taller plants, thus more apparent plants would have a higher probability of being in medicinally over-utilised families. Such expectation was not confirmed in the present study. This implies that being medicinal is not necessarily a guarantee that the plant would be medicinally over-utilised. Over-utilisation maybe therefore driven by different factors other than the medicinal status of a species, such as e.g., the effectiveness of the bioactivity of the secondary compound synthesised by the plant, and the phylogenetic relationships of the plants with other plant species (Saslis-Lagoudakis et al. 2012; Yessoufou et al. 2015). The phylogenetic aspects of this question are not explored in the present study, and therefore a conclusive direction could not be given on whether apparency theory can be linked to overutilisation or not. Similarly, there was no significant relationship between life-form and medicinal status, or between life-form and the probability of plant being medicinally overused, again irrespective of how this probability was approximated. There was also no link between life form and UV or the total number of uses. These results are likely linked to how life form was defined: plants < 0.5 m height categorized as shrubs (less apparent) and plants >0.5 m, i.e., more apparent as trees (Maurin et al. 2014). This threshold of 0.5 m is arbitrarily defined and does not have any ecological basis. This, perhaps, maybe not only the underlying reason for a lack of significant relationship between life form and medicinal status or the probability of being over-utilized but also may mirror the difficulty in the definition of species apparency. Indeed, defining plant species apparency is challenging (see Dai et al. 2015, Albuquerque et al. 2006, Goncalves et al. 2016). However, a recent meta-analysis, following previous conclusions from Coley (1989) and Chaplin (1989), suggests an alternative to the apparency 72 theory, which is the resources availability hypothesis (Endara and Coley, 2011). This hypothesis posits that slow-growth species are more likely to invest more in secondary chemistry to defend biomass accumulated over a long-time period at a slow rate than fastgrowing species. Surprisingly, all tests run in the present study to test the resources availability hypothesis did not support the hypothesis. Specifically, all the analyses conducted show no evidence that growth rate predicts neither medicinal plant status nor the probability of plant being overused irrespective of whether this probability is estimated as a binary variable or as a proportion. Furthermore, plant growth rate does not correlate with Use Value nor does it correlate with the total number of uses. Testing many of these ethnobotanical hypotheses is challenging because of difficulties in quantitatively assessing the chemistry of plants and accounting for how compounds may interact. For example, using dried plant material can potentially reduce actual bioactivity (Kursar and Capson, 1999), and failing to compare the plant part used with other plant parts not used medicinally can bias results (but see McCune and Johns, 2007). The synergistic effect of combining multiple species in one medicine is also difficult to understand (see Coe and McKenna, 2017). Future studies could explore the widespread practice of using certain plant parts, harvest times, and harvest places to the genetic and phenotypic chemical variation of plants as predicted by these two theories; and if the disproportionate use of exotic plants as medicine in some contexts is primarily due to their high intrinsic growth rate rather than for diversification purposes. 73 4.5 CONCLUSION Does the ecological apparency theory affect the probability of plants being medicinal or in a medicinally over-utilised family and is resource availability a determinant prediction of medicinal use and plant use value? These two questions investigated were in this study and found that the ecological apparency theory and the resource availability hypothesis do not explain all facets of the selection and use patterns of these resources in the study. The weak predictive power that is observed in this study may presumably because this study scoped and analysed only the medicinal woody flora, or because the currently available evidence derives from a single geographically isolated study with a particular methodological approach. More research avenues will be able to discover more factors that drive these theories in ethnobotany. 74 CHAPTER 5 ETHNOBOTANICAL KNOWLEDGE, ENVIRONMENTAL MANAGEMENT AND POTENTIAL BARRIERS RESTRICTING KNOWLEDGE GROWTH Abstract The availability hypothesis predicts that plants that are abundant and easily accessible to people are more likely to be medicinal than those that are not. By protecting species diversity away from people, protected areas (PAs) may act as a limiting factor to traditional knowledge development towards medicinal uses. To test this hypothesis, a dataset of 806 woody plants including (medicinal status, total number of recipes/plants, number of plants organs/recipes) was collected for almost 20 years of fieldworks on medicinal plant uses and their abundance inside and outside the Kruger National Park, South Africa. Four different scenarios of structural equation models (SEMs) were fitted to the data. For all SEMs, P>0.05, indicating the good fit of these SEMs. It was found that total abundance is a significant positive predictor of medicinal status, and so is abundance outside KNP. These findings support the availability hypothesis. However, not only abundance inside KNP is not a direct significant correlate of medicinal status, but also the relationship between both is negative. The lack of predictive power of inside-abundance is most likely because some species are exclusively found inside KNP and local communities have no access to them. It also shows that the positive and direct correlation of total abundance with medicinal status is actually driven by outside abundance. In addition, the negative relationships between inside abundance and medicinal status implies that abundant plants inside KNP tend to be not-medicinal, further providing evidence that PAs hinder the development of medicinal knowledge. Furthermore, when inside and outside abundance were included simultaneously in the model as two distinct variables, inside abundance was never a direct significant predictor of medicinal uses, but it was so via an indirect path mediated by outside abundance. This suggests that outside abundance is the key variable driving the development of medicinal plant knowledge. Cumulatively, these findings suggest that, by strictly protecting biodiversity, PAs break or block the natural processes or mechanisms driving the development of medicinal knowledge by local communities. Keywords: Availability hypothesis – Ethnobotany – Kruger National Park – Traditional medicine 75 5.1 INTRODUCTION The environment among other factors may play a fundamental role in the observed differences in plant use among different communities, which may result in divergent patterns (for example, the higher use of herbs in certain environments and higher use of trees in others). Several studies have shown that the environment plays an important role in the selection of medicinal plants and reported that individuals from different ethnic groups or origins inhabiting nearby or neighbouring regions in similar environments tend to use similar repertoires of medicinal plants. Coe and Anderson (1999) compared two neighbouring indigenous groups of different ethnicities in Nicaragua and observed that 80 % of their medicinal plant repertoires was shared between the two groups. Similarly, de Albuquerque et al. (2008) compared the plant components of pharmacopoeias from an indigenous group and rural community of the Caatinga of the state of Pernambuco, Brazil, and noted similarities among the plants used, even greater similarities when the native plants were analysed separately. Furthermore, the importance of the environment on plant selection can also be observed in studies showing differences in the pharmacopoeias of peoples of the same origin that live in different environments. Ladio et al. (2007) compared the knowledge of medicinal plants of the Mapuche people inhabiting arid steppe and humid forest areas of the Argentinean Patagonia and observed that only 40% of the plants were used by both groups. The high discrepancy was attributed to the two communities inhabiting different ecosystems, which limits the acquisition of contacts with the same plants by the two groups. Moreover, Saslis-Lagoudakis et al. (2014) studied 12 ethnic groups in Nepal and found that local pharmacopoeias are more similar when cultures are placed in similar floristic environments. In addition to the variations 76 in the repertoire of medicinal plants reported according to the ecosystem, the richness in medicinal plants itself also varies because certain ecosystems can for medical practices according to bioenvironmental logic, which is guided by the physicochemical properties of the plants (Johnson, 2006), and certain ecosystems favour a greater presence of certain bioactive compounds over others (see Voeks, 2004; de Albuquerque et al. 2012). Thus, certain ecosystems may support greater use of native medicinal plants: together with historical and cultural factors, these factors may help explain why certain areas a higher richness of native species in their pharmacopoeias have than others depending on their local availability. According to Gaoue et al. (2017), the availability hypothesis states that plants are used for medicinal because they are accessible or locally abundant (see also de Albuquerque, 2006). Thus, a plant or a drug (or anything else) needs first to be available in one way or the other for its application to be possible. The rationale here would be that the costs invested to obtain a certain herbal drug or remedy depend on the balance between supply and demand while the demand may be influenced by a range of parameters (Benítez et al. 2016). But when the availability of a product is strictly limited such as for example, with exotic and rare key plant species or when the collection of the crude drug is laborious, the expected benefits driving the demand have a more dramatic impact on the value chain (Lopes, 2019). Further, the availability and cultural valuation of a product influence its use, expenditure, and price, following economic concepts and the availability theory is already reflected in the wellestablished economic law of balance and supply (Leonti et al. 2020). Accordingly, ethnobotany enables the identification of available and useful species in a region, and those species with a potential use (Cartaxo et al. 2010; de Albuquerque et al. 2011a, 2011b). It determines how local communities use each species (Lucena et al. 2008; Almeida, 77 2010), coupled with the identification of preferred sites for resources collection while providing ways in which a resource is exploited (de Albuquerque and Andrade, 2002; de Albuquerque et al. 2005). In addition, ethnobotany assesses not only the intensity of resource exploitation but describes also alternative management strategies from the perspective of local communities including, different conservation priorities, and other demands that should be addressed through public policies (de Albuquerque et al. 2007; Monteiro et al. 2010; Florentino et al. 2007; Nascimento et al. 2009; Oliveira et al. 2007; Melo et al. 2009; de Albuquerque et al. 2009). Documenting such people's knowledge of medicinal plants is the critical first step in the search for drugs that improve human health (Newman and Cragg, 2012; Lahlou, 2013). How has the traditional knowledge of medicinal plants been developed? This is a question of interest for all ethnobotanists simply because understanding the mechanism driving the development of traditional knowledge would inform how to manage this knowledge, how to protect them and, more importantly, how to promote their continuous development. One of the hypotheses that were born, in part, out of studies revealing the importance of anthropogenic habitats or disturbed areas in provisioning weedy and introduced species for medicine (Gavin, 2009; Stepp and Moerman, 2001; Voeks, 2004) is known as the availability hypothesis (ease of acquisition). The availability hypothesis states that plants are used for medicine because they are more accessible or locally abundant (de Albuquerque, 2006; Voeks, 2004), it predicts that plants that are easily accessible to people are more likely to be medicinal than those that are not, due to the rarity or restricted distribution of the latter (Voeks, 2004; de Albuquerque, 2006). 78 Thus, availability is often conceptualised as a physical distance from a home or community to the location where a plant grows in the wild, but could also be considered in terms of seasonality, abundance, price, as well as access to markets, gardens, or natural areas where plants are found (de Albuquerque, 2006, Estomba et al. 2006). Furthermore, the availability hypothesis has been tested by examining the location where people indicate they collect medicinal plants and, more broadly, by correlating the local abundance or dominance of plants with use-values. However, this hypothesis has received mixed support (de Albuquerque, 2006; Gonçalves et al. 2016; de Oliveira Trindade et al. 2015), with native species sometimes preferred, despite their lower abundance or accessibility. In this study, the availability hypothesis in the Mpumalanga province was investigated, specifically within the context of a protected area of the Kruger National Park (KNP), South Africa. Protected areas are key ecological systems delimited to protect species-rich geographic regions for a continued provision of ecosystem goods and services (DeFries et al. 2007; Dudley, 2008; Heywood, 2016). The Kruger National Park (KNP) covers about 20.000 km2 and spans across two provinces of South Africa (Mpumalanga and Limpopo). It has an entire flora >1900 plants species, including 458 tree and shrubby plants referred to as woody flora largely documented and its materials conserved at the University of Johannesburg in the forms of GenBank and Herbarium as well as at other various Herbaria and Labs in South Africa following intensive data collection between 2005-2007 (Lahaye et al. 2008) and 20082009(Yessoufou et al. 2015). It was hypothesised that protected areas (PAs) are potentially one of those factors that may limit or prevent the development of medicinal plant knowledge by local communities. By protecting species-rich habitats away from the frequent use of local communities, it is expected a clear decline in available vegetation or key plant species that 79 could have been used by local people, which means that the available or remainder vegetation will become the focus for more frequent and intensive harvesting of more high values species. As result, PAs were expected to prevent or at least limit the development, by these communities, of comprehensive medicinal knowledge of plants distributed within their borders, an implication of the availability hypothesis (Voeks, 2004; de Albuquerque, 2006). 5.2 MATERIAL AND METHODS 5.2.1 STUDY AREA 5.2.1.1 Mpumalanga Province Mpumalanga is one of the nine South African provinces within the Greater Maputaland Pondoland Albany Biodiversity Hotspot, harbouring the southern half of the Kruger National Park and other centres of endemism. The Mpumalanga Province is divided into three districts, namely Gert Sibande, Nkangala, and Ehlanzeni. Local communities are diverse in culture, and together with language discrepancies, there is a rich base of traditional knowledge. These communities include Siswati (30%), while 26% of the inhabitants speak isiZulu, isiNdebele (10.3%), Sepedi (21.2%) and Xitsonga (11.6%) (Tshikalang et al. 2016). Four major vegetation types are dominant in the study area, namely the highveld grasslands, escarpment grassland-forest mosaic, eastern Lowveld savannah and the north-western bushveld savannah (Schmidt et al. 2007). These vegetation types are represented in three distinct biomes: forest, savannah, and grassland (Schmidt et al. 2007). 5.2.1.2 Kruger National Park (KNP) The Kruger National Park setting started with the British who created the Sabie Game Reserve in South Africa in 1898, a protected area that would later become Kruger National Park, in 80 1926 (Lockwood et al. 2006). It is one of the largest natural reserves covering an area of 20.000km2 in Africa. It is a woodland biome of southern Africa (Schmidt et al. 2007) with various habitats found in its boundary. KNP is a protected area, associated with the category II of the International Union for Conservation of Nature (IUCN), (NSBA, 2004). However, the local African people were not consulted about their fate (Chatty and Colchester, 2002), a removal which would later happen at Yellowstone (Spence, 1999). In both cases, the local people were left alone to absorb their loss. Traditional uses of African land for firewood collection, livestock grazing, hunting, plant gathering, and logging, all became instantly illegal in the park because of the national legislation (Carruthers, 1995). Thus, the protected area of the Kruger National Park in this study belongs to the 19th century Yellowstone Model, that is thought of involving the expulsion of native people; preserving wilderness free from human influence; fortress conservation, a top-down control, a non-participatory management system, tourism and recreation (Phillips, 2003 a). Kruger National Park indicates the presence of strict enforcement, which implies that it cannot coexist with the protection of rights of indigenous people (Campese et al. 2009). In such instance of restricted access, local communities including different ethnic groups in the province may not have a say concerning the real and potential knowledge of the available medicinal plants within the protected area of KNP. Therefore, understanding the process of development of traditional knowledge of medicinal plants in such context as well as the species with larger use-value can have important implications for the conservation and management of natural resources of the Kruger National Park. 81 5.3 DEFINITION OF VARIABLES USED IN THIS STUDY The following variables are defined for data analysis. The variable inside abundance is the number of sites where each plant is found inside the Kruger National Park (Schmidt et al. 2007). Outside abundance is the number of sites where each plant is recorded outside the Kruger National Park (Schmidt et al. 2007). Total abundance is the sum of inside and outside abundances. Data on abundance were collected from fieldwork complemented by various sources indicated above. Plant medicinal knowledge is defined using three metrics, medicinal status, number of recipes and number of organs used medicinally. In addition, the following information was also documented for each of the 806 plant species: point locations, medicinal status (medicinal vs non-medicinal), the number of recipes and the total number of plant organs used for medicinal treatment. The main objective of the study in this chapter is to use this dataset not only to test the availability hypothesis (ease of acquisition) but more importantly, to test the potential impact of the protected area (KNP) on the development and growth of knowledge. 5.4 DATA COLLECTION Data used in the present study were collected over a long period of extensive effort and were documented in multiple forms (book, papers, and online database). First, Schmidt et al. (2007), over 10 years of the botanical survey across the Mpumalanga province, including the KNP, published a reference book "Trees and shrubs of Mpumalanga and Kruger National Park". This book provides photographic illustrations, different uses (including medicinal), broader distribution including site locations of all woody species in the province and KNP. The number of site locations for a species is used as a metric for inside or outside abundance for the species. 82 Second, in the Department of Botany of the University of Johannesburg, multiple botanical expeditions were also conducted. Lahaye et al. (2008) and Yessoufou et al. (2015) collected, through intensive seven-year fieldworks in the study area (from 2005 to 2007, and 2008-2012, respectively), plant information and plant materials that are preserved in various Herbaria and Labs in South Africa, including the Herbarium of the University of Johannesburg. These field collections and the book of Schmidt et al. (2007) are the main sources of species distributions used in the present study for 806 woody plants, both found inside and outside the KNP across the province of Mpumalanga. Lastly, in addition to the book of Schmidt et al. (2007), data on the medicinal status of each plant (medicinal vs non-medicinal), the total number of recipes involving each plant and the number of plant organs (roots, leaves, barks) used in those recipes were collected from the Prelude Database for Medicinal Plants in Africa (Royal Museum for Central Africa, 2017), a database of all ethnobotanical studies that ever took place in Africa, country by country, since 1847. From this unique database, the focus was only on the publications on the Mpumalanga province, South Africa and where other additional sources were explored such as SANBIPlantZafrica (SANBI PlantZafrica, 2000) and (ethnobotanical books that focused on southern Africa's woody flora (Coates-Palgrave, 2002; Germishuizen and Meyer, 2003; Boon, 2010; van Wyk, 2011). 5.5 DATA ANALYSIS All analyses were done in R 3.5 (R Development Core Team 2019) in the library PiecewiseSEM (Lefcheck, 2016), and the R scripts used are provided as supplemental information. The first test explored whether total abundance predicts plant medicinal knowledge, which was measured either as medicinal status, number of recipes or number of organs used. To this end, 83 a structural equation model (SEM) was fitted to the dataset as implemented in the R library PiecewiseSEM (Lefcheck, 2016). This SEM analysis was done on the first meta-model built based on the following assumptions: that the total abundance would predict medicinal status, and this assumption is grounded on the availability hypothesis. As an implication of the availability hypothesis, total abundance was further expected to predict the number of recipes involving a given species and the number of organs used medicinally. The rationale for these assumptions is that more abundant species are more likely to be medicinal (availability hypothesis), and plants that have more organs used medicinally are more likely to be involved in more recipes than not. Finally, plants involved in a medicinal recipe are medicinal. All these expectations were translated into the first meta-model (Figure 5.1), followed by a test of fitness of this metamodel to the data using the function GLM with specifically a binomial error structure for medicinal status (as this is a binary variable, medicinal vs non-medicinal). To test the potential influence of PAs on the development of medicinal plant knowledge, three additional alternative meta-models were built. These meta-models are too based on similar expectations explained above, and upon which the first meta-model is grounded with the following differences. In the meta-model in Figure 5.2a, total abundance is replaced with abundance outside the KNP; in Figure 5.2b, total abundance is replaced with abundance inside the KNP, and in the last meta-model (Figure 5.5), total abundance is replaced by simultaneous abundance outside and inside the KNP. The rationale here is that plants that are inside PAs are less likely to be medicinal, even if they are abundant inside the park because they are less often in contact with local communities (unless they are abundant outside the KNP). In contrast, plants that are outside the park 84 would more likely be medicinal because they are in everyday contact with local communities, particularly plants that are abundant (availability hypothesis). All these expectations were tested fitting the SEM to all meta-models as presented in details in the R scripts (Supplemental Information). 5.6 RESULTS AND DISCUSSION The availability hypothesis was firstly tested by employing the structural equation modelling (SEM) approach. The meta-model built includes total plant abundance (plant abundance inside + outside of KNP), number of recipes for each plant and number of organs used medicinally (see Figure 5.1 for full model). The first SEM analysis revealed a perfect fit of this meta-model to the data collected and explains the medicinal status of plants (Fisher C = 0, df = 2, P = 1.00). This model shows that only total plant abundance is a significant positive predictor of medicinal status; that is, more abundant plants tend to be medicinal than not, thus a support for the availability hypothesis (Voeks, 2004; de Albuquerque, 2006). The model further reveals three paths through which the total abundance of plants predicts their medicinal status. There is a direct path (black arrow in Figure 5.1) with a path coefficient β = 0.04. Then, there are two indirect paths, one through some recipes (green path on Figure 5.1, β = 0.25), and the other one through both number of organs used and some recipes (the red path on Figure 5.1) with the highest path coefficient (β = 1.03). 85 Figure 5.1 Meta-model illustrating the prediction of availability hypothesis. Different paths (arrows) of the relationships of total abundance with medicinal status are the colour-coded; black, direct path, green, shortest indirect path, and red, longest, and most strong indirect path. The width of the arrow is indicative of the strength of the relationships between two variables. Values on the arrows are path coefficients, SE, standard error. Second, the main question was explored: does the establishment of such a large national park, the Kruger National Park (20.000 km2), protecting ~ 500 woody plants (Venter, 1990; Schmidt et al. 2007), influence the development and growth of medicinal plant knowledge in the province? The theoretical expectation is that plants that are inside PAs would less likely be medicinal, even if they are abundant within KNP. Alternatively, plants that are outside the KNP would more likely be medicinal because they are easily accessible to local communities, particularly plants that are abundant (availability hypothesis). To explore these two alternative expectations, two meta-models were built (Figures 5.2 a, 5.2 b) in which only plant abundance outside and inside KNP were included, respectively (Figure 86 5.3), as opposed to only total abundance in Figure 5.1. The first meta-model (Figure 5.2a) that contains only plant abundance outside the KNP (henceforth referred to as "outside abundance") has an overall perfect fit to data (C = 0, df = 2, P = 1.00) and is similar, from all aspects to the meta-model in Figure 5.4. Specifically, outside abundance predicts better medicinal status through the same three paths identified in the meta-model containing total abundance (Figure 5.1), with the red path in Figure 5.2a being the strongest (black path, β = 0.06; green path, β = 0.26 and red path, β = 1.07). This is additional support for the availability hypothesis: more abundant plants outside KNP tend to be medicinal than not. However, the second meta-model (Figure 5.2b), which also shows a perfect fit to the data (C = 0, df = 2, P = 1.00), reveals one important difference from the previous models (Figures 5.1, 5.2a): not only the direct path between abundance inside KNP and medicinal status is no longer significant, but the coefficient of this direct path is negative. If abundance inside KNP is not a significant predictor of medicinal status, this is a piece of evidence that, by strictly protecting biodiversity, PAs break or block the natural processes or mechanisms driving the development of medicinal knowledge by local communities. This lack of predictive power of inside abundance is most likely because, although both inside and outside KNP share some common species, other species are exclusively found inside the park (Table 5.1) that local communities may not know of or do not have access to. It also shows that the positive and direct effect of total abundance on plant medicinal status, found in Figure 5.1, is driven by outside abundance (Figure 5.2a). 87 Table 5.1. Native (shrubs and trees) medicinal distribution in the Mpumalanga province and the Kruger National Park (KNP) Families Exclusive Families Exclusive KNP Mpumalanga Province Asteraceae Brachylaena ilicifolia Celastraceae Salacia kraussii Asteraceae Gymnanthemum Achariaceae Xylotheca kraussiana amygdalinum (Delile) Sch. Bip. ex Walp Asteraceae Vernonia adoensis Annonaceae Uvaria lucida Asteraceae Vernonia tigna Apocynaceae Adenium multiflorum Capparaceae Boscia foetida Apocynaceae Holarrhena pubescens rehmanniana Celastraceae Cassine peragua Apocynaceae Strophanthus kombe Capparaceae Cadaba aphylla Apocynaceae Strophanthus _petersianus Capparaceae Cadaba natalensis Capparaceae Capparis sepiaria Sapotaceae Elaeodendron croceum Euphorbiaceae Sapotaceae Elaeodendron zeyheri Euphorbiaceae Androstachys johnsonii Croton _pseudopulchellus 88 Celastraceae Gymnosporia Fabaceae Afzelia quanzensis Fabaceae Albizia amara buxiffolia Celastraceae Pterocelastrus rostratus Clusiaceae Garcinia gerrardii Fabaceae Albizia forbesii Clusiaceae Hypericum revolutum Fabaceae Cassia abbreviata Clusiaceae Hypericum Fabaceae Cordyla africana Fabaceae Newtonia hildebrandtii roeperianum Acanthaceae Sclerochiton ilicifoloius Achariaceae Kiggelaria africana Fabaceae Xeroderris stuhlmannii Anacardiaceae Harpephyllum Hernandiaceae Gyrocarpus americanus Protorhus longifolia Strychnaceae Strychnos potatorum Searsia chirindensis (Baker f.) Moraceae Ficus natalensis Monanthotaxis caffra Rubiaceae Hymenodictyon caffrum Searsia (Anacardiaceae) Searsia (Anacardiaceae) Annonaceae parvifolium Monimiaceae Xymalos monospora Rubiaceae Pavetta harborii 89 Apocynaceae Gonioma kamassi Salvadoraceae Salvadora persica Apocynaceae Strophanthus Ebenaceae Diospyros loureiriana speciosus Araliaceae Schefflera umbellifera Asparagaceae Dracaena aletriformis Asparagaceae Dracaena transvaalensis Xanthorrhoeaceae Aloe arborescens Xanthorrhoeaceae Aloe castanea Cornacaeae Curtisia dentata Cyatheaceae Cyathea dregei Ebenaceae Diospyros galpinii Ebenaceae Diospyros natalensis Phyllanthaceae Andrachne ovalis Euphorbiaceae Euphorbia grandidens Asteraceae Sapium ellipticum Asteraceae Sapium integrum Fabaceae Vachellia erioloba (E. Mey.) P.J.H. Hurter 90 Fabaceae Adenopodia spicata Fabaceae Bauhinia tomentosa Fabaceae Calpurnia glabrata Fabaceae Dalbergia obovata Icacinaceae Apodytes dimidiata Lamiaceae Leonotis leonurus Lauraceae Cryptocarya transvaalensis Lauraceae Cryptocarya woodii Rosaceae Leucosidea sericea Malpighiaceae Acridocarpus natalitius Malpighiaceae Triaspis hypericoides Malvaceae Abutilon angulatum Malvaceae Abutilon sonneratum Tiliaceae Grewia flava Meliaceae Turraea floribunda Melianthaceae Bersama lucens 91 Melianthaceae Greyia sutherlandii Ochnaceae Ochna oconnori Ochnaceae Ochna serrulata Ochnaceae Ochna holstii Laureaceae Ocotea bullata Laureaceae Ocotea kenyensis Podocarpaceae Afrocarpus falcatus Polygalaceae Polygala virgata Proteaceae Faurea macnaughtonii Proteaceae Faurea rochetiana Proteaceae Protea caffra Proteaceae Protea gaguedi Proteaceae Protea roupelliae Proteaceae Protea wewitschii Rosaceae Prunus africana Rhamnaceae Scutia myrtina Rutaceae Calodendrum capensis Rutaceae Vepris lanceolata 92 Rutaceae Zanthoxylum Capense Rutaceae Zanthoxylum davyi Flacourtiaceae Gerrardina foliosa Flacourtiaceae Trimeria grandifolia Sapotaceae Manilkara concolor Sapotaceae Manilkara discolor Sapotaceae Mimusops obovata Solanaceae Solanum aculeastrum Scrophulariaceae Halleria lucida Ulmaceae Chaetachne aristata Vitaceae Rhoicissus digitata Vitaceae Rhoicissus tomentosus Fabaceae Lessertia microphylla Fabaceae Psoralea latifolia Thymelaeceae Peddiea africana Scrophulariaceae Buddleja saligna Scrophulariaceae Buddleja salviifolia 93 In addition, the finding of negative relationships between inside abundance and medicinal status implies that abundant plants inside KNP tend to be not-medicinal, further providing evidence that protected areas hinder the development and growth of medicinal knowledge. Interestingly, while the direct path between inside abundance and medicinal status becomes non-significant, the indirect path mediated by both the number of organs used and the number of recipes become the strongest among all models (β = 1.66). Figure 5.2 Meta-model illustrating the potential influence of plant abundance outside (a) versus inside (b) the Kruger National Park. Different paths (arrows) of the relationships of total abundance with medicinal status is the colour-coded; black, direct path, green, shortest indirect path, and red, longest, and most strong indirect path. The width of the arrow is indicative of the strength of the relationships between two variables. Values on the arrows are path coefficients, SE, standard error. 94 Finally, to further clarify this negative effect of PAs on the development of medicinal plant knowledge, a final metamodel was built, in which inside and outside plant abundances are simultaneously included (Figure 5.4). Moreover, If PAs truly have this negative effect, then the expectation of the positive effect of outside abundance (Figure 5.4a) can be cancelled or at least weakened by the negative effect of inside abundance (Figure 5.4 b) such that none of these two variables (outside and inside abundances) would be significant predictors of medicinal status The SEM analysis of this last meta-model (Figure 5.5) identified the path "organ used ~ inside abundance" as a missing path, but a non-significant one with P = 0.73, meaning that plant abundance inside KNP is not a significant predictor of the number of organs used in traditional medicine, confirming that KNP may be limiting the development and growth of knowledge of plant uses. As suggested above, this is most likely because KNP has plants that are exclusively found within its borders and for which no medicinal uses could be developed because they are not accessible to people (Table 5.1). However, when this missing path was included in the meta-model, all endogenous variables become conditionally dependent, and the test of directed separation becomes impossible. I, therefore, left that missing path out of the SEM analysis. This did not affect the strength of the meta-model as the model shows a good overall fit (C = 0.6, df = 2 and P=0.7390). 95 Figure 5.3 The most complex meta-model illustrating the simultaneous influence of outside and inside plant abundance on medicinal knowledge. Different paths (arrows) of the relationships of total abundance with medicinal status are a colour-coded; black, direct path, green, shortest indirect path, and red, longest, and most strong indirect path. The width of the arrow is indicative of the strength of the relationships between two variables. Values on the arrows are path coefficients, SE, standard error. 5.7. CONCLUSION Few studies have measured the impact of the protected areas on the development of knowledge for local communities. More recently, Robles-Arias et al. (2020) suggested that the presence of protected areas in an environment might hamper the development of medicinal knowledge in that environment. The availability hypothesis has been tested by examining the location where people indicate they collect medicinal plants and, more broadly, by correlating the local abundance or dominance of plants with use-values, and has yielded in general, mixed support (de Albuquerque, 2006; Gonçalves et al. 2016; de Oliveira, 2016; Trindade et al. 96 2015). The investigation of the availability hypothesis has revealed a lack of support in the context of the protected area of the Kruger National Park where the plant abundance variable had a negative relationship between inside abundance and medicinal status, contrasting thus with the positive relationship between outside abundance and medicinal status in this study. Few assumptions can be made concerning this finding: Firstly, due to the restricted access inside the park, a greater harvesting rate is expected near the community or outside the protected area regarding the shared common medicinal species (outside and inside the protected area), meaning that the proximity with the community will not affect species richness but will however affect the outside abundance variable. The second assumption is that according to Phillips and Gentry (1993 b), humans will experiment with (and learn to use) the most abundant plants in a given region, therefore, the development of full medicinal knowledge of some twenty-four (24) key species found uniquely inside the park (see Table 5.1) should be considered ex situ. 97 CHAPTER 6 GENERAL CONCLUSION 1. Major findings, discussions and contributions to the body of knowledge Studies using rigorous approaches are very limited in the study area while considering the potential for more theory-inspired and hypothesis-driven research in ethnobotany, regarding the identification of culturally important plant species to inform resource management. The extent of the use patterns of medicinal plants particularly through ethnobotanical hypotheses testing has not been fully explained and still lags with no basic scientific framework in Mpumalanga province. The current results presented here constitute the most comprehensive and up-to-date in-depth analysis of more hypothesis-driven and theoretically inspired approach. 6.1 General patterns of medicinal plants selection by local communities: non-random hypothesis This thesis assessed one of the most common ethnobotany' theories developed in the 1970s (Moerman,1979) the non-random plant theory. The theory suggests that some plant families are bound to contain fewer species with medicinal values and uses than expected by chance. The premise is that species in these families are evolutionary and less likely to contain secondary chemistry efficient against disease. Using the woody flora of the Mpumalanga province, the test has revealed at least two behaviours: certain families have higher medicinal value and are therefore more frequently used than others. Evidence that chemical compounds with medicinal value are not equally distributed among different botanical families (Gottlied et al. 2002). Moreover, it was found that overused and underused species are not the same 98 for each one of the three statistical analysis approaches used in this study. Conversely, certain families appear to behave discrepantly in particular contexts. Important family such as Fabaceae for example was found overused and underused according to statistical approaches used. More information needs to be gathered by researchers to explain whether these discrepancies are caused by cultural or other factors, or whether certain botanical families (especially those with a wide distribution) include species that are strongly divergent in terms of chemical composition. Despite the discrepancies observed through the different statistical approaches, this finding does not invalidate the evident and universal patterns observed for the taxonomy of medicinal species. The results confirm the strong evidence that plant use by local populations does not occur randomly (Moerman,1979) and this is inconsistent with the placebo effect hypothesis of popular medicine and medicinal plant selections are not taxonomically random. This finding is consistent with taxonomic patterns observed among previous studies in Moerman's approach (Moerman,1979). The finding does provide additional strong evidence to the body of literature that plant use by indigenous people does not occur randomly and more importantly will add to the discussion on the non-random medicinal plants selection by expanding the geographical range for this theory and proposing new ways of analysing the data. 6.2 The use of ecological theories to generate ethnobotanical knowledge: ecological apparency theory and resource availability hypothesis One of the research questions formulated in this thesis was specified as follows: Does the ecological apparency theory affect the probability of plants being medicinal or in a medicinally over-utilised family and is resource availability a determinant prediction of medicinal use and plant use value? These two questions were investigated in this study and 99 found that the ecological apparency theory and the resource availability hypothesis do not explain all facets of the selection and use patterns of these resources in the study. The weak predictive power may presumably due to the fact that the current study scoped and analysed only the medicinal woody flora, or because the currently available evidence derives from a single geographically isolated study with a particular methodological approach. Furthermore, in this study, plant maximum height correlates significantly and positively with medicinal status, suggesting that taller plants, thus apparent plants, tend to be used medicinally than shorter ones or the unapparent or less apparent plants. Thus, the apparency theory is not supported in the present study as it does involve a qualitative strategy that implies that most herbs have a short life cycle and are ephemeral (non-apparent), they accumulate compounds that are strongly bioactive and consequently very useful for treating humans’ diseases. The assumption is that the herbaceous plants used by traditional communities would form groups of plants potentially more likely to be incorporated into a culture, as result, bioprospecting efforts could be concentrated on these non-apparent species. While contrasting with the ecological apparency theory, the finding is consistent with a study conducted in a semiarid region of Ethiopia; a higher number of trees used for medicinal purposes was observed than any other plant habit (Zone et al. 2007). In addition, the importance of woody plants to local communities has been more evidenced in studies conducted in the semiarid region of Brazil (de Albuquerque et al. 2007). This is additional evidence to the body of knowledge indicating that in this subtropical Mpumalanga province, bioprospecting efforts would be concentrated more on apparent woody flora or trees in the form of stem bark extractions for different therapeutic indications and targets. Furthermore, it was found that the resource availability hypothesis, proxied as 100 plant growth rate in this study, did not have empirical support. The growth rate does not predict the medicinal status nor does it predict the probability of being overused. Contrasting so with suggestions (see Stepp and Moerman (2001), they suggested that both the ecological apparency theory and the resource apparency hypothesis, can explain the use and selection of medicinal plants by local communities. This suggestion is based on simple evidence, that is in many parts of the world, medicinal plants compiled in different human communities are dominated by herbs. If the pattern is, in fact, a worldwide trend, it is possible to predict the type of environments in which there is a greater likelihood of finding plants with medicinal potential according to their floristic composition (Stepp and Moerman (2001). 6.3 Ethnobotanical knowledge, environmental management and potential barriers restricting knowledge growth The selection of medicinal plants is done first according to bioenvironmental logic, which is guided by the physicochemical properties of the plants (Johnson, 2006), and secondly according to the availability of certain ecosystems that favour a greater presence of certain bioactive compounds over others (Voeks,2004; de Albuquerque et al. 2012). The result in this study confirms that certain ecosystems support greater use of native medicinal plants; together with historical and cultural factors, these factors explain why certain areas have a higher richness of native species in their pharmacopoeias than others. However, some key medicinal species are found exclusively within the confines of the protected area of the Kruger National Park, thus not accessible for use by the local communities. As such, it is suggested that some local strategies of use and conservation of local resources be constructed in a collective and participatory manner, counting on the involvement of the local communities at all stages, from the identification of the problems or central questions, up to the 101 implementation of the proposed solutions. Moreover, it is important to emphasise the need to include within these local strategies of management and conservation the species that have been proven to have a wide local use on its real use. To that end, a list of twenty-four (24) key medicinal species recorded exclusively inside the protected area of KNP is included in this study (Schmidt et al. 2007), these species need to be grown ex-situ in the proximity community so to encourage human-plant interactions leading to the development and growth of medicinal knowledge. 6.3 Recommendations for future studies Based on the evidence highlighted in the general conclusions the following recommendations are formulated: A follow-up research to this study is recommended with emphasis on increasing the scope of the study, particularly the inclusion and analysis of exotic plant species especially in the protected area of the Kruger National Park. It is further suggested that future studies should focus on the construction of a knowledge framework that would involve a comprehensive analysis of all other life forms including woody flora, non-woody flora, local communities outside the Kruger National Park in the surrounding of Mpumalanga province, Limpopo province as well as the communities on the other side of the KNP in Mozambique as these parameters can affect the overall hypotheses testing. Moreover, due to its complexity, testing hypotheses related to use patterns of medicinal plants is not an easy task, but simple predictions can be made. Therefore, statistical approaches used in this thesis could be redefined and expanded beyond the Mpumalanga province. 102 CHAPTER 7 REFERENCES Aarssen, L. W. 1997. On the progress of ecology. Oikos 80:177–178. Adu Tutu, M., Afful, Y., Asante-Appiah, K., Lieberman, D., Hall, J.B. and Elvin-Lewis, M., 1979. Chewing stick usage in southern Ghana. Economic Botany, 33(3), pp.320-328. Agrawal AA, Heil M. 2012. Synthesizing specificity: multiple approaches to understanding the attack and defense of plants. Trends in Plant Science 17: 239–242. Akaike, H., 1973. Information theory and an extension of the maximum-likelihood principle. Á in Petrov, BN and Csaki, F.(eds), 2nd Int. Symp. on Information Theory. Alcorn, J.B. 1995. The scope and aims of ethnobotany in a developing world. Pp. 23-39. In: R.E. Schultes & S.V. Reis (eds). Ethnobotany: evolution of a discipline. Cambridge, Timber Press. Alencar, N. L., T.A.des Araujo, E. L. C. de Amorim, U. P. Albuquerque, T. Antonio, D.S. Araújo, E. Lúcia, et al. 2009. Can the apparency hypothesis explain the selection of medicinal plants in an area of Caatinga vegetation? A chemical perspective. Acta Botanica Brasilica 23:911–911. Alencar, N.L., de Sousa Araújo, T.A., de Amorim, E.L.C. and de Albuquerque, U.P., 2009. The inclusion and selection of medicinal plants in traditional pharmacopoeias— evidence in support of the diversification hypothesis. Economic Botany, 64(1), pp.68-79. Alencar, N. L., F. R. Santoro, and U. P. Albuquerque.2014. What is the role of exotic medicinal plants in local medical systems? A study from the perspective of utilitarian redundancy. Brazilian Journal of Pharmacognosy 24:506–515. Alexiades, M.N. 1999. Ethnobotany of the Ese Eja: Plants, Health, and Change in an Amazonian Society 1999, Graduate Centre, City University. Alexiades, M.N. & Sheldon, J.W. 1996. Ethnobotanical Research: A Field Manual. New York, The New York Botanical Garden. Ali-Shtayeh MS, Yaniv Z, Mahajna J. 2000. Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. Journal of Ethnopharmacology 73: 221-232. Almeida, C.D.F.C.B.R., D.L. de Vasconcelos Cabral, C.C.B. Rangel de Ameida, FAlmeida, C. D. F. C. B. R., D. L. de Vasconcelos Cabral, C. C. B. Rangel de Almeida, E. L. Calvanti de Amorim ELC, de Albuquerque UP (2012). A Comparative study of the antimicrobial activity of native and exotic plants from the Caatinga and Atlantic Forest selected through an ethnobotanical survey. Pharmaceutical Biology 50: 201-207 Almeida C.D.F.C.B.R, Ramos MA, Amorim ELC, Albuquerque UP (2010) A comparison of knowledge about medicinal plants for three rural communities in the semi-arid region of northeast of Brazil. J Ethnopharmacol 127:674–684. 103 Almeida, C. D. F. C. B. R., T. C. de Lima e Silva, E. L. C. de Amorim, M. B. D. S. Maia, and U. P. Albuquerque. 2005. Life strategy and chemical composition as predictors of the selection of medicinal plants from the Caatinga Northeast Brazil. Journal of Arid Environments 62:127– 142. Amiguet, V. T., Arnason, J. T., Maquin, P., Cal, V., Sánchez-Vindas, P., & Alvarez, L. P. (2006). A regression analysis of Q’eqchi’Maya medicinal plants from southern Belize. Economic Botany, 60(1), 24–38. Amiri, F., Gholipouri, A., Kheirkhah, M. and Mirjalili, Mohammad Hossein., 2019. Study on Ethnobotany and the effect of ecological factor on the yield of essential oil of Ziziphora clinopodioides Lam. (Case Study: Yazd Province). Journal of Medicinal plants and Byproduct, 8(2), pp.189-199. Anderson, A.B., 1991. Forest management strategies by rural inhabitants in the Amazon estuary. Rain forest regeneration and management, pp.351-360. Anderson, A. B. 1990. Extraction and forest management by rural inhabitants in the Amazon Estuary. In A. B. Anderson, ed., Alternative to deforestation: steps toward sustainable use of the Amazon rainforest. New York: Columbia University Press. Anderson, A., and D. Posey. 1989. Management of a tropical scrub savanna by the Gorotire Kayap6 of Brazil. In Resource Management in Amazonia: Indigenous and Folk Strategies. D. Posey and W. Balee, eds. Pp. 159- 173. Bronx: The New York Botanical Garden. Ankli A, Sticher O, Heinrich M. 1999. Yucatec Maya medicinal plants versus nonmedicinal plants: indigenous characterization and selection. Human Ecology 27: 557-580. Araújo TAS, Alencar NL, Amorim ELC, Albuquerque UP. 2008. A new approach to study medicinal plants with tannins and flavonoids contents from the local knowledge. Journal of Ethnopharmacology 120: 72-80. Archer FM (1982) ‘n Voorstudie in verband met die eetbare plante van die Kamiesberge. Journal of South African Botany 48: 433–449. Archer FM (1990) Planning with people – ethnobotany and African uses of plants in Namaqualand (South Africa). Mitt. Inst. Allg. Bot. Hamburg 23: 959–972. Archer FM (1994) Ethnobotany of Namaqualand: the Richtersveld. M.A. thesis, University of Cape Town, Cape Town. Arias-Toledo B, Colantonio S, Galetto L (2007) Knowledge and Use of Edible and Medicinal Plants in Two Populations from The Chaco Forest, Córdoba Province, Argentina. Journal of Ethnobiology 27:218-232. Arias, D. M.R., Cevallos, D., Gaoue, O.G., Fadiman, M.G. and Hindle, T.,2020. Non-random medicinal plants selection in the Kichwa community of the Ecuadorian Amazon. Journal of ethnopharmacology, 246, p.112220. Arnold, T. H., Prentice, C. A., Hawker, L. C., Snyman, E. E., Tomalin, M., Crouch, N. R., et al. (2002). Medicinal and magical plants of southern Africa: An annotated checklist. Lucknow: National Botanical Institute. 104 Assogbadjo AE, Kakai RG, Adjallala FH, Azihou AF, Vodouhe GF, Kyndt T, Codija JTC (2011). Ethnic differences in use value and use patterns of the threatened multipurpose scrambling shrub (Caesalpinia bonduc L.) in Benin. J. Med. Plants Res. 5(9):1549-1557. Atran, S. 1998. Folk biology and the anthropology of science: Cognitive universals and cultural particulars. Behavioural and Brain Sciences 21 (04):547–569 Avocèvou-Ayisso, C.M.A., 2011. Etude de la viabilité des populations de Pentadesma butyracea Sabine et de leur socioéconomie au Bénin. These de Doctorat, Université d’Abomey-Calavi. Ayantundee, A., Briejer, M., Hiernaux, P., Udo, H., Tabo, R., 2008.Botanical Knowledge and its differentiation by age, gender, and ethnicity in South western Niger. Human Ecology 36, 881-889. Balée, W. and Gély, A., 1989. Managed forest succession in Amazonia: The Ka'apor case. Advances in economic botany, pp.129-158. Balée, W. 1988. Indigenous adaptation to Amazonian palm --- forests. Principes 32: 47-54. Baleé, W., Boom, B.M. Prance, G.T., and Carneiro, R.L., 1987. Quantitative ethnobotany and the case for conservation in ammonia. Conservation Biology, 1(4), pp.296-310. Balick, M.J. & Cox, P.A. 1996. Plants, people, and culture: the science of ethnobotany. New York, Scientific American Library. Bandeira SO (1994) The ethnobotany of non-medicinal plants of Inhaca Island, Mozambique. In: Seyani JH and Chikuni AC (eds) Proceedings of the 13th plenary meeting of AETFAT, Zomba, Malawi, 2–11 April 1991, Vol. 1, pp 39–46. National Herbarium and Botanic Gardens of Malawi, Zomba, Malawi. Barbosa P, Gross P, Kemper J. 1991. Influence of plant allelochemicals on the tobacco hornworm and its parasitoid, Cotesia congregata. Ecology 72: 1567–1575. Barnosky, A.D., Matzke, N., Tomiya, S., Wogan, G.O.U., Swartz, B., Quental, T.B., Marshall, C., McGuire, J.L., Lindsey, E.L., Maguire, K.C., Mersey, B., Ferrer, E.A., 2011. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57. doi:10.1038/nature09678. Bhagwat, S.A., Willis, J., Birks, H.J. & Whittaker, R.J. 2008. Agroforestry: a refuge for tropical biodiversity? In: Trends in Ecology and Evolution 23(5): 261-267. Bhat, R.B., Etejere, E.O. and Oladipo, V.T., 1990. Ethnobotanical studies from central Nigeria. Economic Botany, 44(3), pp.382-390. Begossi, A.1996.Use of ecological methods in ethnobotany: Diversity indices. Economic Botany 50:280-289. Belcher, B., Ruiz-Pérez, M., Achdiawan, R., 2005. Global patterns and trends in the use and management of commercial NTFPs: Implications for livelihoods and conservation 33, 1435–1452. Bennett, B. C., & Husby, C. E. (2008). Patterns of medicinal plant use: An examination of the Ecuadorian Shuar medicinal fora using contingency table and binomial analyses. Journal of Ethno Pharmacology, 116(3), 422–430. 105 Bennett, B.C., 2007. Doctrine of signatures: an explanation of medicinal plant discovery or dissemination of knowledge. Economic Botany, 61(3), pp.246-255. Bennett, B.C. and Prance, G.T., 2000. Introduced plants in the indigenous pharmacopoeia of Northern South America. Economic Botany, 54(1), 90-102. Bennett, B.C., 2005. Ethnobotany education, opportunities, and needs in the US. Ethnobotany Research and Applications, 3, pp.113-122. Bennett, B.C., 1992. Plants and people of the Amazonian rainforests. BioScience, 42(8), pp.599607. Benitez G, Molero-Mesa J, Gonzalez-Tejero MR (2016) A model to analyse the ecology and diversity of ethnobotanical resources: case study for Granada Province, Spain. Biodiv.Conserv 25:771-789, https:// doi.org/10.1007/s10531-016-1092-z. Benz, B. F., J. E. Cevallos, F. M. Santana, J. A. Rosales, and S. M. Graf. 2000. Losing Knowledge about Plant Use in the Sierra de Manatlán Biosphere Reserve, Mexico. Economic Botany 54(2):183–191. Berenbaum M. 1983. Coumarins and caterpillars: a case for coevolution. Evolution 37: 163– 179. Berlin, B.; Breedlove, D.E. & Raven, P.H. 1966. Folk taxonomies and biological classification. Science 154(3746): 273-275. Berlin, B., Breedlove, D.E. and Peter, H., Raven 1974 Principles of Tzeltal Plant Classification: An Introduction to the Botanical Ethnography of a Mayan-Speaking People of Highland Chiapas. New York: Academic. Berlin B. 1973. Folk systematics in relation to biological classification and nomenclature. Annual Review of Ecology and Systematics 4:259– 271. Bessong, P. O., Obi, C. L., Andréola, M. L., Rojas, L. B., Pouységu, L., Igumbor, E., et al. (2005). Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase. Journal of ethnopharmacology, 99(1), 83–91. Bletter N (2007) A quantitative synthesis of the medicinal ethnobotany of the Malinké of Mali and the Asháninka of Peru, with a new theoretical framework. J Ethnobiol Ethnomed 3:3 Boom, B.M., 1989. Use of plant resources by the Chácobo. Advances in Economic Botany, pp.7896. Boom, B M (1990) ‘Giving native people a share of the profits’, Garden 14: 28–31. Boom, B.M. (1987). Ethnobotany of the Chácobo Indians, Beni, Bolivia. Advances in Economic Botany 4, 1-68. [Examines plant use by a small Panoan group in Bolivia]. Boom, B. M. 1985. Amazonian Indians and the forest environ ment. Nature 314:324. Boon, D.,2010. Pooley’s Trees of Eastern South Africa- A complete guide. Flora and fauna. Publication Trust, Durban, South Africa. 106 Bonet, M.À., Blanché, C. and Xirau, J.V., 1992. Ethnobotanical study in river tenes valley (Catalonia, Iberian Peninsula). Journal of Ethnopharmacology, 37(3), pp.205-212. Briskin DP (2000) Medicinal plants and phytomedicines. Linking plant biochemistry to human health. Plant Physiol 124:507–514. Brown, C.H. 2000. Folk classification: an introduction. Pages 65–68 In Minnis P.E. ed Ethnobotany: A reader. Norman, University of Oklahoma Press. Brown, C. H. 1977. Folk botanical life-forms: Their universality and growth. American Anthropologist 79(2): 317–342. Bryant AT (1966) Zulu medicine and medicine men, new edn. Struik, Cape Town. Bryant JP, Chapin FS III, Klein DR. 1983. Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–68. Burchell WJ (1822–1824) Travels in the interior of Southern Africa.2 Vols. Longman, London. Burkhill HM (1985) The Useful Plants of West Tropical Africa. Volumes 1–3. Supplement to Keay RWJ, Hepper FN (eds) The Flora of West Tropical Africa. Royal Botanic Gardens, Kew. Burnham, Kenneth P., and David R. Anderson. 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach. 2d ed. New York: SpringerVerlag. Bye, R. 1995. Ethnobotany of the Mexican dry tropical in S. H. Bullock, H. A. Mooney & E. Medina, eds., forests. Cambridge University. Caetano, R.D.A., Albuquerque, U.P.D. and Medeiros, P.M.D., 2020. What are the drivers of popularity and versatility of medicinal plants in local medical systems? Acta Botanica Brasilica, 34(2), pp.256-265. Camou-Guerrero A, Reyes-García V, Martínez-Ramos M, Casas A (2008) Knowledge and Use Value of Plant Species in a Rarámuri Community: A Gender Perspective for Conservation. Human Ecology 36:259–272. Campbell, B.M. & Luckert, M.K. (2002). Uncovering the hidden harvest: valuation methods for woodland and forest resources. Earthscan, London, UK. Campese, J., 2009. Rights-based approaches: Exploring issues and opportunities for conservation. CIFOR. Carneiro, R.L., 1978. The knowledge and use of rain forest trees by the Kuikuru Indians of central Brazil. Names. Journal of the American Name Society Postdam, NY, 67, pp.201216. Carruthers, J., 1995. The Kruger National Park: a social and political history. University of Natal Press. Cartaxo SL, Souza MMA, Albuquerque UP. 2010. Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil. Journal of Ethnopharmacology 131: 326-342. 107 Castañeda, H. & Stepp, J.R. 2007. Ethnoecological importance value (EIV) methodology: assessing the cultural importance of ecosystems as sources of useful plants for the Guaymi people of Costa Rica. Ethnobotany Research & Applications 5: 249–257. Cavalcanti de Amorim, J. M. de Araújo, and U. P. Albuquerque. 2012. Comparative study of the antimicrobial activity of native and exotic plants from the Caatinga and Atlantic Forest selected through an ethnobotanical survey. Pharmaceutical Biology 50:201– 207. Cavender‐Bares, J., Kozak, K.H., Fine, P.V. and Kembel, S.W., 2009. The merging of community ecology and phylogenetic biology. Ecology letters, 12(7), pp.693-715. Ceballos, G., Ehrlich, P.R., Barnosky, A.D., Garcia, A., Pringle, R.M., Palmer, T.M., 2015. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253–e1400253. doi:10.1126/sciadv.1400253 Chapin III, F.S., Zavaleta, E.S., Eviner, V.T., Naylor R.L., Vitousek, P.M., Reynolds, H.L., Hooper, D.U., Lavorel, S., Sala, O.E., Hobbie, S.E., Mack, M.C. & Díaz, S. Consequences of changing biodiversity. In: Nature: 405: 234-242. Chase, M.W., Christenhusz, M.J.M., Fay, M.F., Byng, J.W., Judd, W.S., Soltis, D.E., Mabberley, D.J., Sennikov, A.N., Soltis, P.S. and Stevens, P.F., 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society, 181(1), 1-20. Chatty, D. and Colchester, M. eds., 2002. Conservation and mobile indigenous peoples: Displacement, forced settlement, and sustainable development (Vol. 10). Berghahn Books. Cheikhyoussef, A. and Embashu, W., 2013. Ethnobotanical knowledge on indigenous fruits in Ohangwena and Oshikoto regions in Northern Namibia. Journal of ethnobiology and ethnomedicine, 9(1), p.34. Clément, D. 1998. The historical foundations of ethnobiology (1860-1899). Journal of Ethnobiology 18(2): 161-187. Cocks, M., Dold, A.P., 2006. Cultural significance of biodiversity: the role of medicinal plants in urban African Cultural Practices in the Eastern cape, South Africa. Journal of Ethnobiology 26, 60–81. Coe, M. A., & McKenna, D. J. (2017). The Therapeutic Potential of Ayahuasca. In D. et al. Camfield (Ed.), Evidence-Based Herbal and Nutritional Treatments for Anxiety in Psychiatric Disorders (pp. 123–137). Springer Berlin. Coe, FG, Anderson GJ (1999) Ethnobotany of the Sumu (Ulwa) of Southeastern Nicaragua and comparisons with Miskitu plant lore. Econ Bot 53:363–386. Coley PD, Aide TM. 1989. Red coloration of tropical young leaves: a possible antifungal defence? J. Trop. Ecol. 5:293–300. Coley P D. 1987a. Interspecific variation in plant antiherbivore properties: the role of habitat quality and rate of disturbance. New Phytologist 106 (Supplement):251–263. Coley P D. 1987b. Effects of plant growth rate and leaf lifetime on the amount and type of anti-herbivore defense. Oecologia 74:531–536. 108 Coley, P.D., Bryant, J.P. & Chapin, F.S. III (1985) Resource availability and plant antiherbivore defense. Science, 230, 895–899. Collins, S., Martins, X., Mitchell, A., Teshome, A. and Arnason, J.T., 2006. Quantitative ethnobotany of two East Timorese cultures. Economic Botany, 60(4), pp.347-361. Comerford, S.C., 1996.Medicinal plants of two Mayan healers from and Andres, Peten, Guatemala. Economic Botany 50,327-336. Conklin, H. C. 1954. The relation of Hanunóo culture to the plant world. PhD dissertation, Yale University. Cooper, K.H., 1985. The conservation status of indigenous forests in Transvaal, Natal and Orange Free State, South Africa. Wildlife Society of Southern Africa, Durban. Cornell HV, Hawkins BA. 2003. Herbivore response to plant secondary compounds: a test of phytochemical coevolution theory. American Naturalist 161: 507–522. Corrigan, B.M., Van Wyk, B.-E., Geldenhuys, C.J., Jardine, J.M. 2011. Ethnobotanical plant uses in the KwaNibela Peninsula, St Lucia, South Africa. South African Journal of Botany 77 (2), 346–359. Cotton, C.M. and Wilkie, P.,1996. Ethnobotany: principles and applications (No. Sirsi) i9780471955375). Chichester: John Wiley & Sons. Cox PA (1994). The ethnobotanical approach to drug discovery: strengths and limitations. In. Chadwick DJ, Marsh J (editors). Ethnobotany and the search for new drugs. John Wiley and Sons, West Sussex. Pp. 25-41. Cribari-Neto F and Zeileis A (2010). Beta Regression in R. Journal of Statistical Software, 34(2), 1–24. Cristancho., & Vining. (2004). Culturally Defined Keystone Species. Human Ecology Review, 11(2), 153-164. Crouch, N., Douwel, E. Wolfson, W. M., Smith, G. F., & Edwards, T. (2008, September/October). South Africa’s bioprospecting, access and benefit-sharing legislation: Current realities, future complications, and a proposed alternative. South African Journal of Science 104. Cruells, M. G. (1994). La docencia de la etnobotánica en la facultad de ciencias, VI Congreso Latinoamericano de Botánico, Mar del Plata, Argentina. In Monographs in systematic Botany, vol. 68 (ed. R. Fortunato and N. Bacigalupo), pp. 235-245. Missouri Botanical Garden Press, St Louis, Missouri. Cuerrier, A., Turner, N. J., Gomes, T. C., Garibaldi, A., & Downing, A. (2015). Cultural Keystone Places: Conservation and Restoration in Cultural Landscapes. Journal of 70 Ethnobiology, 35(3), 427–448. http://doi.org/10.2993/0278-0771-35.3.427. Cunningham, A. B. (2001). Applied ethnobotany: people, wild plant use and conservation. Earthscan, London, UK. Cunningham AB (1988b) An investigation of the herbal medicine trade in Natal/KwaZulu Investigational report no. 29, Institute of Natural Resources, University of Natal. 109 Cunningham AB (1988c) Leaf production and utilization in Hyphaene coriacea: Management guidelines for commercial harvesting. South African Journal of Botany 54: 189–195. Cunningham AB (1989) Indigenous plant use: balancing human needs and resources. In: Huntley BJ (ed.) Biotic diversity in southern Africa, Strelitzia 1: 93–106. Cunningham AB, De Jager PJ, Hansen LCB (1992) The Indigenous Plant Use Programme. Foundation for Research Development, Pretoria. Cunningham M, Cunningham AB, Schippmann U (1997) Trade in Prunus africana and the implementation of CITES: Results of the research and development project 808 05 080. Landwirtschaftsverlag, Munster Da Costa CP, Jones CM. 1971. Cucumber beetle resistance and mite susceptibility controlled by the bitter gene in Cucumis sativus L. Science 172: 1145–1146. Dai, X., Zhang, W., Xu, J., Duffy, K.J. and Guo, Q., 2017. Global pattern of plant utilization across different organisms: Does plant apparency or plant phylogeny matter? Ecology and Evolution, 7(8), pp.2535-2545. Daily, G.C.1999.Developing a scientific basis for managing Earth’s life support systems. Conservation Ecology 3(2):14. Daily, G.C., Söderqvist, T., Aniyar, S., Arrow, K., Dasgupta, P., Ehrlich, P.R., Folke, C., Jansson, A.M., Janson, B.-O., Kautsky, N., Levin, S., Lubchenco, J., Mäler, K.-G., Simpson, D., Starrett, D., Tilman, D. & Walker, B. 2000. The Value of Nature and the Nature of Value. Science 289 (5478): 395-39. da Silva, T. C., da Silva, J. M., & Ramos, M. A. (2018). What factors guide the selection of medicinal plants in a local pharmacopoeia? A case study in a rural community from a historically transformed Atlantic forest landscape. Evidence-Based Complementary and Alternative Medicine, 2018, 2519212. Davidson P (1984) Lobedu material culture: a comparative study of the 1930’s and the 1970’s. Annals of the South African Museum 94: 41–201. Davis, E.W. 1995. Ethnobotany: an old practice, a new discipline. Pp. 40-51 In: R.E. Schultes & S.V. Reis (eds). 1995. Ethnobotany: evolution of a discipline. Cambridge, Timber Press. Davis SD, Ambrose JR, Cook FEM, Prendergast HDV (1998) The Survey of Economic Plants for Arid and Semi-Arid Lands (SEPASAL): What is in it for you? In: Prendergast HDV, Etkin NL, Harris DR, Houghton PJ (eds) Plants for Food and Medicine. Royal Botanic Gardens, Kew, pp 295–309. Davis, S.D., Heywood, V.H. & Hamilton, A.C. (eds). 1994. Centres of plant diversity. A guide and strategy for their conservation. Volume 1: Europe, Africa, South West Asia and the Middle East. IUCN Publications Unit, Cambridge, UK. de Albuquerque, U.P., de Lima Araújo, E., El-Deir, A.C.A., de Lima, A.L.A., Souto, A., Bezerra, B.M., Ferraz, E.M.N., Maria Xavier Freire, E., Sampaio, E.V.D.S.B., LasCasas, F.M.G. and de Moura, G.J.B., 2012. Caatinga revisited: ecology and conservation of an important seasonal dry forest. The Scientific World Journal, 2012. 110 de Albuquerque, U.P.D De Lucena, R.F., Lucena, C.M., Araújo, E.L., Alves, Â.G.., 2013. Conservation priorities of useful plants from different techniques of collection and analysis of ethnobotanical data. Anais da Academia Brasileira de Ciências, 85(1), pp.169186. de Albuquerque, U.P., Hurrell, J.A 2010 Ethnobotany: one concept and many interpretations de Albuquerque, U.P. and Hanazaki, N., 2009. Five problems in current ethnobotanical research—and some suggestions for strengthening them. Human Ecology, 37(5), pp.653-661. de Albuquerque, U.P., 2010. Implications of ethnobotanical studies on bioprospecting strategies of new drugs in semi-arid regions. The Open Complementary Medicine Journal, 2(1). de Albuquerque, UP., Soldati GT., Sieber SS., Ramos MA., Sa JC., Souza LC., (2011 a). The use of plants in the medical system of Fulni -o people (NE Brazil): A perspective on age and gender. Journal of Ethnopharmacology.133,866-873. de Albuquerque, UP., Soldati GT., Sieber SS., Ramos MA., Sa JC., Souza LC., (2011 b). Rapid ethnobotanical diagnosis of the Fulni-o indigenous lands (NE Brazil): Floristic survey and local conservations priorities for medicinal plants. Environment, Development and Sustainability 13, 277-292. de Albuquerque, U.P., de Lucena, R.F.P., do Nascimento, V.T., de Lima Araújo, E. 2008. Local uses of native plants in an area of Caatinga vegetation (Pernambuco, NE Brazil). Ethnobotany Research and Applications, 6, pp.003-014. de Albuquerque, U.P. and de Oliveira, R.F., 2007. Is the use-impact on native caatinga species in Brazil reduced by the high species richness of medicinal plants? Journal of Ethnopharmacology, 113(1), 156-170. de Albuquerque, U.P.D., and R.F.D. Lucena 2005. Can apparency affect the use of plants by local people in tropical forests? Interciencia, 30(8), 506-511. de Albuquerque, U. P. (2006). Re-examining hypotheses concerning the use and knowledge of medicinal plants: A study in the Caatinga vegetation of NE Brazil. Journal of Ethnobiology and Ethnomedicine, 2(1), 30. Albuquerque, U.P.D. and Andrade, L.D.H.C., 2002. Conhecimento botânico tradicional e conservação em uma área de caatinga no estado de Pernambuco, Nordeste do Brasil. Acta Botanica Brasilica, 16(3), pp.273-285. de Albuquerque, U.P., 2002. Uso e conservação de plantas e animais medicinais no estado de Pernambuco (Nordeste do Brasil): um estudo de caso. Interciencia, 27(6), 276-285. De Beer, J.J.J., Wyk Van, B., 2011. An ethnobotanical survey of the Agter-Hantam, Northern Cape province, South Africa, South African Journal of Botany 77, 741–754. De Caluwé, E., De Smedt S., Assogbadjo, A.E., Van Damme.P., Sinsin.B., Samson.R., 2009. Ethnic Differences in Use Value and Use Patterns of Baobab. African Journal of Ecology 47 (3)433-440. 111 DeFries, R., Achard, F., Brown, S., Herold, M., Murdiyarso, D., Schlamadinger, B., … de Souza, C.Jr. (2007). Earth observations for estimating greenhouse gas emissions from deforestation in developing countries. Environmental Science & Policy, 10, 385–394 Dethier VG. 1954. Evolution of feeding preferences in phytophagous insects. Evolution 8: 33– 54. de Lucena, R.F.P., de Medeiros, P.M., de Lima Araújo, E., Alves, A.G.C. and de Albuquerque, U.P., 2012. The ecological apparency hypothesis and the importance of useful plants in rural communities from Northeastern Brazil: An assessment based on use value. Journal of Environmental Management, 96(1), 106-115. de Lucena, R.F.P., do Nascimento, V.T., de Lima Araújo, E. and de Albuquerque, U.P., 2008. Local uses of native plants in an area of Caatinga vegetation (Pernambuco, NE Brazil). Ethnobotany Research and Applications, 6, pp.003-014. De Melo, J.G., de Amorim, E.L.C. and de Albuquerque, U.P., 2009. Native medicinal plants commercialized in Brazil-priorities for conservation. Environmental Monitoring and Assessment, 156, p.567. Dengler, J., Matthews, T.J., Steinbauer, M.J., Wolfrum, S., Boch, S., Chiarucci, A., Conradi, T., Dembicz, I., Marcenò, C., García‑Mijangos, I. and Nowak, A., 2020. Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. Journal of Biogeography, 47(1), pp.72-86. de Oliveira Trindade, M.R., Jardim, J.G., Casas, A., Guerra, N.M. and de Lucena, R.F.P., 2015. Availability and use of woody plant resources in two areas of Caatinga in Northeastern Brazil. Ethnobotany Research and Applications, 14, pp.313-330. De Oliveira, R.L., Neto, E. M.L., A Araújo, E.L, and de Albuquerque, U.P., 2007. Conservation priorities and population structure of woody medicinal plants in an area of caatinga vegetation (Pernambuco State, NE Brazil). Environmental monitoring and assessment, 132(1-3), pp.189-206. De Oliveira.D.R., de., de Figueiredo, P.R.L., de Araujo Alves, D., Barbosa., de Menezes, I.R.A., Coutinho, H.D.M and Kerntopf, M.R., Lemos, I.C.S., de Araujo Delmondes,G., Dos Santos, A.D., Santos, 2016 Ethnobiological survey of plants and animals used for the treatment of acute respiratory infection in children of a traditional community. Brazil. African Journal of Traditional, Complementary and Alternative Medicines.13(4) pp166-175 De Oliveira Trindade., Jardim, J.G., Casas, A., Guerra, E.S., and de Lucena, R.F.P.,2015. Availability and use of woody plant resources in two areas of Caatinga in Northeastern Brazil. Ethnobotany Research and Applications,14. pp 313-330 Dhillion, S.S., Svarstad, H., Amundsen, C., Bugge, H.C., 2002.Bioprospecting: effects environment and development. AMBIO3` (6),491-493. Diamond, J., 1997. Guns, Germs, and Steel: The Fate of Human Societies. WW Norton and Co., New York. 112 Diamond, J., (2005) Guns, Germs, and Steel. The Fates of Human Societies. WW Norton 919 and Company, New York/London. Dicke M, van Loon JJA. 2000. Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomologia Experimentalis et Applicata 97: 237–249. Dold AP, Cocks ML (2000) Indigenous plant use of the amaXhosa people on the eastern border of the Great Fish River Reserve, Eastern Cape. Annals of the Eastern Cape Museum 1: 26–53. Dold, A.P., Cocks, M.L., 2002. The trade in medicinal plants in the Eastern Cape Province, South Africa. South African Journal of Science 98, 589–597. dos Santos Silva, F., Albuquerque, U.P., Júnior, L.M.C., da Silva Lima, A., do Nascimento, A.L.B. and Monteiro, J.M., 2014. An ethnopharmacological assessment of the use of plants against parasitic diseases in humans and animals. Journal of Ethnopharmacology, 155(2), pp.1332-1341. Dounias E (2000) Review of ethnobotanical literature for Central and West Africa. Bulletin of the African Ethnobotany Network 2: 5–117. Douwes, E., Crouch, N. R., Edwards, T. J., & Mulholland, D. A. (2008). Regression analyses of southern African ethnomedicinal plants: Informing the targeted selection of bioprospecting and pharmacological screening subjects. Journal of Ethnopharmacology, 119(3), 356–364. Dudley, N., Stolton, S. and Elliott, W., 2013. Wildlife crime poses unique challenges to protected areas. Parks, 19(1), pp.7-12. Dudley, N. ed., 2008. Guidelines for applying protected area management categories. IUCN. Du Toit, B.M., 1971. The Isangoma: an adaptive agent among urban Zulu. Anthropology Quarterly 44, 51–65 Londoño, E., S., Newbold, T., Hudson, L.N., Contu, S., Hill, S.L., Lysenko, I., Arbeláez‐ Cortés, E., Armbrecht, I., Boekhout, T., Cabra‑García, J. and Dominguez‑Haydar, Y., 2016. Modelling and projecting the response of local assemblage composition to land use change across Colombia. Diversity and Distributions, 22(11), pp.1099-1111. Eckert B (2000) Natural resource management and local knowledge in transition: an anthropological perspective from the Laka of Mapela. PhD thesis, University of South Africa, Pretoria, South Africa. Elansary, H. O., Mahmoud, E. A., Shokralla, S, S, & Yessoufou, K. (2015). Diversity of plants, traditional knowledge and practices in local cosmetic industry in Egypt: A case study of Alexandria governorate in the Northern Egypt. Economic Botany, 69, 114–126. Ellert H (1984) The material culture of Zimbabwe. Longman, Zimbabwe. Ehrlich, P. R. and Raven, P. H. (1964) Butterflies and plants: a study in coevolution. Evolution 18, 586-608. 113 Elvin-Lewis, M., Hamiolos, D., El-Najdawi, E. and Wedner, H.J., 1985. Essential oil hypersensitivity in apththous stomatitis patients. Journal Dental Research, 64, p.33. Endara MJ, Coley PD (2011) The resource availability hypothesis revisited: a meta-analysis. Funct Ecol 25:389–398. Estomba, D., Ladio, A. and Lozada, M., 2006. Medicinal wild plant knowledge and gathering patterns in a Mapuche community from North-western Patagonia. Journal of Ethnopharmacology, 103(1), pp.109-119. Etkin, N.L., 1988. Ethnopharmacology: biobehavioural approaches in the anthropological study of indigenous medicines. Annual Review of Anthropology, 17(1), pp.23-42. Etkin, N. L. & Meilleur, B. A. (1993). Ethnomedicine in Polynesia: past trends and future directions. Journal de la Société des Oceanites 96, 19-27. Etkin NL. & Elisabetsky E., 2005, Seeking a transdisciplinary and culturally germane science: The future of ethnopharmacology Nina L. Etkin a, ∗, Elaine Elisabetsky b. Faber, M., Oelofse, A, Van Jaarsveld, P.J., Wenhold, F. A.M., Jansen van Rensburg, W.S., 2010. African leafy vegetables consumed by households in the Limpopo and KwaZuluNatal provinces in South Africa. South African Journal of Clinical Nutrition 23, 30–38. Faber, M., Van Jaarsveld, P.J., Laubscher, R., 2007. The contribution of dark-green leafy vegetables to total micronutrient intake of two- to five-year-old children in a rural setting. Water South Africa 33, 407–412. FAO (Food and Agriculture Organization) 2007a. The State of Food and Agriculture 2007. FAO Agriculture Series 38. Rome. Farnsworth, N, R., Soejarto., 1991.Global importance of medicinal plants. In: Akerele, O, O., Heywood, V., Synge, H., (Eds.), The Conservation of Medicinal Plants Cambridge University Press, Cambridge UK, pp.25-51. Fennell, C. W., Lindsey, K. L., McGaw, L. J., Sparg, S. G., Stafford, G. I., Elgorashi, E. E., et al. (2004). Assessing African medicinal plants for efficacy and safety: Pharmacological screening and toxicology. Journal of ethnopharmacology, 94(2–3), 205–217. Feeny, P. (1976). Plant apparency and chemical defense. In J. Wallace & R. Mansell (Eds.), Recent advances in phytochemistry. New York: Plenum Press. Feeny, P., 1975. Biochemical coevolution between herbivores. Coevolution of animals and plants. plants and their insect Ferrar, A.A., Lötter, M.C., 2007. Mpumalanga Biodiversity Conservation Plan Handbook. Mpumalanga Tourism & Parks Agency, Nelspruit. Ferrari, S.L.P., and Cribari-Neto, F. (2004). Beta Regression for Modeling Rates and Proportions. Journal of Applied Statistics, 31(7), 799–815. Fernández, M. (2002). Unpublished contribution at Taller Latinoamericana Desarrolla Curricular de Etnobotánica Aplicada, 21-23 February 2002, Dominican Republic. Jardín Botánico Nacional Dr. Rafael Ma. Moscoso. Fewkes, J.W. 1896. A contribution to ethnobotany. American Anthropologist 9: 14-21. 114 Figueiredo, G.M., Leitao-Filho, H.F. Begossi, A., 1993.Ethnobotany of Atlantic forest coastal communities’ diversity of plant uses in Gamboa (Itacuruçá Island, Brazil). Human Ecology 21(4), 419-430. Florentino, A.T.N., E.L. Araújo & U.P. Albuquerque. 2007. Contribuição de quintais agroflorestais na conservação de plantas da Caatinga, município de Caruaru, PE, Brazil. Acta Botanica Brasílica 21(1):37–47. dx.doi.org/10.1590/ S0102-33062007000100005. Foley, J.A., Asner, G.P., Heil Costa, M., Coe, M.T., DeFries, R., Gibbs, H.K., Howard, E.A., Olson, S., Patz, J., Ramanakutty, N. & Snyder, P. 2007. Amazonia revealed: forest degradation and loss of ecosystem goods and services in the Amazon Basin. In: Front. Ecol. Environ. 5 (1): 25-32 Fonseca, G. A. B. (2000). Following Africa’s lead in setting priorities. Nature 405, 393-394. Forbes VS (ed) (1986) Carl Peter Thunberg Travels at the Cape of Good Hope 1772–1775. Van Riebeeck Society, Cape Town. Ford, R.I. 1978. Ethnobotany: historical diversity and synthesis. In: Ford, R.I.; M. Hodge & W.L. Merril (ed.). The nature and status of ethnobotany. Annals of Arnold Arboretum. Michigan: Museum of Anthropology, University of Michigan. Anthropological Papers 67: 33-49. Ford, J., & Gaoue, O. G. (2017). Alkaloid-poor plant families, Poaceae and Cyperaceae, are over-utilized for medicine in Hawaiian pharmacopoeia. Economic Botany, 71(2), 123–132. Fourie, T. G., Swart, I., & Snyckers, F. O. (1992). Folk medicine: A viable starting point for pharmaceutical research. South African Journal of Science, 88, 190–192. Fraenkel G. 1959. The raison d’etre of secondary plant substances. Science 121: 1466–1470. Fraser, J.A. and Junqueira, A.B., 2010. How important is a use? Critical reflections on the conceptualization of use and importance in quantitative ethnobotany. Galeano, G. (2000). Forest Use at the Pacific Coast of Choco, Colombia: a quantitative approach. Economic Botany 54(3): 358–376. García Criado, M., Myers‐Smith, I.H., Bjorkman, A.D., Lehmann, C.E. and Stevens, N., 2020. Woody plant encroachment intensifies under climate change across tundra and savanna biomes. Global Ecology and Biogeography, 29(5), pp.925-943. Garibaldi, A. and Turner, N., 2004. Cultural keystone species: implications for ecological conservation and restoration. Ecology and society, 9(3). Gascon C, Brooks TM, Contreras-Mac Beath T, Heard N, Konstant W, Lamoreux J, Launay F, Maunder M, Mittermeier RA, Molur S and Al Mubarak RK (2015). The importance and benefits of species. Current Biology 25: 431-438 Gaoue, O. G., Coe, M. A., Bond, M., Hart, G., Seyler, B. C., & McMillen, H. (2017). Theories and major hypotheses in ethnobotany. Economic Botany, 71(3), 269–287. Gaoue, O.G., Horvitz, C.C., Ticktin, T., Steiner, U.K., Tuljapurkar, S., 2013. Defoliation and bark harvesting affect life-history traits of a tropical tree. J. Ecol. 101, 1563–1571. 115 doi:10.1111/1365-2745.12140. Gavin, M. C. 2009. Conservation implications of rainforest use patterns: Mature forests provide more resources but secondary forests supply more medicine. Journal of Applied Ecology 46: 1275–1282. Geldenhuys, C.J. and Van Wyk, B.E., 2002. Indigenous biological resources of Africa (116-132). Umdaus Press, Pretoria. Geldenhuys, C.J., 1991. Distribution, size and ownership of the southern Cape forests. South African Forestry Journal 158, 51–66. Gelman, A., and Hill, J. (2006). Applied Regression and Multilevel (Hierarchical) Models. Cambridge University Press. Germishuizen, G. and Meyer, N., 2003. Plants of southern Africa: an annotated checklist. Pretoria: National Botanical Institute. Godoy, R., Reyes-García., Byron, E., Leonard, W.R., Vadez, V., 2005.The effects of market economies on the well-being of indigenous peoples and their use of renewable natural resource. Annu. Rev. Anthropol. 34 (1), 121-138. https://doi.org/10.1146/ annu.rev. anthro.34.081804.120412. Gonçalves, P.H.S., de Albuquerque, U.P. and Medeiros, P.M.D., 2016. The most commonly available woody plant species are the most useful for human populations: A meta‑ analysis. Ecological Applications, 26(7), pp.2238-2253. Gottlieb OR, Borin MRMB, Brito NRS (2002) Integration of ethnobotany and phytochemistry: dream or reality? Phytochemistry 60:145–152 Grace, O.M., Simmonds, M.S.J., Smith, G.F., VanWyk, A.E., 2009. Documented utility and biocultural value of Aloe L. (Asphodelaceae): a review. Economic Botany 63, 167– 178. Grace OM, Prendergast HDV, Jäger AK, Van Staden J (2002) The status of bark in South African traditional healthcare. South African Journal of Botany 68: 21–30 Grün, B., Kosmidis, I., and Zeileis, A. (2012). Extended Beta Regression in R: Shaken, Stirred, Mixed, and Partitioned. Journal of Statistical Software, 48(11), 1–25. Guarim Neto, G. and Morais, R.G.D., 2003. Medicinal plants resources in the Cerrado of Mato Grosso State, Brazil: a review. Acta Botanica Brasilica, 17(4), 561-584. Guèze, M., Luz, A. C., Paneque-Gálvez, J., Macía, M. J., Orta-Martínez, M., Pino, J., & ReyesGarcía, V. (2014). Are ecologically important tree species the most useful? A case study from indigenous people in the Bolivian Amazon. Economic Botany, 68, 1–15. Gurib-Fakim, A., 2006.Medicinal plants: traditions of yesterday and drugs of tomorrow. Molecular Aspects of Medicine 27, 1–93. Gustafson KR, Cardellina JH, McMahon JB, Gulakowski RJ, Ishitoya J, Swallasi Z, Lewin NE, Blumberg PM, Weislow OS, Beutler JA, Buckheit RW, Cragg GM, Cox PA, Bader JP, Boyd MR (1992). A non-promoting phorbol from the Samoan medicinal plant Homalanthus nutans inhibits cell killing by HIV-1. J. Med. Chem.35:1978-1986. 116 GVR, Grand View Research. (2019). Retrieved from March 2019 https ://www.grand view research ch.com/press -release se/ global l-organic-personal-care-market. Hall, P. & Bawa, K., 1993. Methods to assess the impact of extraction of non-timber tropical forest products on plant populations. In: Economic Botany 47 (3) pp. 234- 247. Hamilton, A.C.; Shengji, P.; Kessy, J.; Khan, A.A.; Lagos-Witte, S. & Shinwari, Z.K.2003. The purposes and teaching of Applied Ethnobotany. Godalming, People and Plants working paper. 11. WWF. Harshberger, J.W. 1896. Purposes of ethnobotany. Botanical Gazette 21(3): 146-154. Hart, G., Gaoue, O.G., de la Torre, L., Navarrete, H., Muriel, P., Macía, M.J., Balslev, H., León-Yanez, S., Jorgensen, P. and Duffy, D.C., 2017. Availability, diversification and versatility explain human selection of introduced plants in Ecuadorian traditional medicine. PLoS One, 12(9), p.e0184369. Harvey WH, Sonder OW (eds) (1862) Flora Capensis Vol. 1. Hodges, Smith and Co., Dublin. Hedberg I (1993) Botanical methods in ethnopharmacology and the need for conservation of medicinal plants. J Ethnopharmacol 38:121-128. Heinz HJ, Maguire B (1974) The ethnobiology of the Ko Bushmen — their botanical knowledge and plant lore. Occasional Paper No 1, Botswana Society, Gaberone. Heywood, V.H., 2011. Ethnopharmacology, food production, nutrition and biodiversity conservation: towards a sustainable future for indigenous peoples. Journal of ethnopharmacology, 137(1), pp.1-15. Hill, A.F.1937. Economic botany. A textbook of useful plants and plant products. McGrawHill, New York. (2nd ed.,1952). Hoffman, B. and Gallaher, T., 2007. Importance indices in ethnobotany. Ethnobotany Research and Applications, 5, pp.201-218. Höft M, Barik SK, Lykke AM (1999). Quantitative Ethnobotany: Applications of multivariate and statistical analyses in ethnobotany. People and Plants Working Paper 6, People and Plants Initiative, UNESCO, Paris. 45 p. Human and Rousseau Publishers (1979) Simon van der Stel’s Journey to Namaqualand in 1685. Human and Rousseau, Cape Town. Human and Rousseau Publishers (1979) Simon van der Stel’s Journey to Namaqualand in 1685. Human and Rousseau, Cape Town. Hunn, E., 2007. Ethnobiology in four phases. Journal of Ethnobiology, 27(1), pp.1-10. Hunn, E., 1975. A measure of the degree of correspondence of folk to scientific biological classification. American Ethnologist, 2(2), pp.309-327. Hurrell, J.A. and Albuquerque, U.P., 2012. Is ethnobotany an ecological science? Steps towards a complex ethnobotany. Ethnobiology and Conservation, 1. Huot B, Yao J, Montgomery BL, He SY. 2014. Growth-defense trade-offs in plants: a balancing act to optimize fitness. Molecular Plant 7: 1267–1287. 117 Hutchings, A., Scott, A.H., Lewis, G., Cunningham, A.B., 1996. Zulu medicinal plants. An inventory. University of Natal Press, Pietermaritzburg. Iwu MM (1993) Handbook of African Medicinal Plants. CRC Press, Boca Raton, Florida. Jacot-Guillarmod A (1966) A contribution towards the economic botany of Basutoland. Botaniska Notiser 119: 109–212. Jain, S.K., Saklani, A.,1991. Observations on the ethnobotany of the ton’s valley region in the Uttarkashi District of the Northwest Himalaya, India Mountain Research and Development 11,157-161. Jernigan, K.2012. Plants with histories: the changing ethnobotany of Iquito speakers of Peruvian Amazon. Economic Botany 66:46-59. Jones, V.H. 1941. The nature and scope of ethnobotany. Chronica Botanica 6(10): 219- 221. Johnson, M., Colquhoun, A., 1996.Preliminary ethnobotanical survey of Kurupu-kari: an Amerindian settlement of Central Guyana. Economic Botany 50,182-194. Johnson LM (2006) Gitksan medicinal plants – cultural choice and efficacy. J Ethnobiol Ethnomed 2:29. Johns, T., 1986. Chemical selection in Andean domesticated tubers as a model for the acquisition of empirical plant knowledge. Plants Used in Indigenous Medicine and Diet: Biobehavioural Approaches. Redgrave Publishers, South Salem, New York, pp.266-288. Johns, T., J. O. Kokwaro, & E. K. Kimanani. 1990. Herbal remedies of the Luo of Siaya District, Kenya: establishing quantitative criteria for consensus. Economic Botany 44:369–381. Joly, L. G., S. Guerra, R. Séptimo, P. N. Solis, M. Correa, M. Gupta, S. Levy & F. Sandberg. 1987. Ethnobotanical inventory of medicinal plants used by the Guaymi Indians in western Panama, Part I. Journal of Ethno-pharmacology 20: 145-171. Joshi, A.R., Joshi, K., 2000.Indigenous knowledge and uses of medicinal plants by local communities of the Kali Gandaki Watershed Area. Nepal. Journal of Ethnopharmacology 73,175-183. Kainer, K.A. and Duryea, M.L., 1992. Tapping women’s knowledge: plant resource use in extractive reserves, Acre, Brazil. Economic botany, 46(4), pp.408-425. Kapur, S. K., A. K. Shahi, Y. K. Sarin, and D. E. Moerman. 1992. The medicinal flora of Majouri-kirchi forests (Jammu and Kashmir State), India. Journal of Ethnopharmacology 36:87–90. Kessler A, Baldwin IT. 2001. Defensive function of herbivore-induced plant volatile emissions in nature. Science 291: 2141–2144. Kew, R. B. G. (2017). Seed Information Database (SID). Version 7.1. King DA, Davies SJ, Tan S, Noord NAMD 2006. The role of wood density and stem support costs in the growth and mortality of tropical trees. Journal of Ecology 94, 670 –680. Kokwaro J. O. and E. K. Kimanani. 1991. Herbal remedies of the Luo of Siaya District, Kenya: establishing quantitative criteria for consensus. Economic Botany 44(3):369-381. 118 Krebs, C. J. 2000. Hypothesis testing in ecology. In: Boitani, L. and Fuller, T., Research techniques in animal ecology, Pages 1–14, New York: Columbia University Press. Kristensen, M. & Balslev, H. 2003. Perceptions use and availability of woody plants among the Gourounsi in Burkina Faso. Biodiversity and Conservation, 12: 1715–1739. Kristensen, M. & Lykke, A.M. 2003. Informant-based Valuation of Use and Conservation Preferences of Savanna Trees in Burkina Faso. Economic Botany, 57(2):203-217. io, USA. Kunwar RM, Baral Paudel P, Acharya RP, Thapa- Magar KB, Cameron M, et al. (2016) LandUse and Socioeconomic Change, Medicinal Plant Selection and Biodiversity Resilience in Far Western Nepal. PLoS ONE 11(12). Kunwar R., Acharya RP. Chaodhary CL. Medicinal plant dynamics in indigenous medicines in far west Nepal. J Ethnopharmacol [Internet]. Elsevier; 2015; 210±9. doi: 10.1016/j.jep.2015.01.035 PMID: 25655999 Kursar, T., and T. Capson. 1999. Ecologically guided bioprospecting in Panama. Pharmaceutical Biology 37:114–126. Ladio A, Lozada M, Weigandt M (2007) Comparison of traditional wild plant knowledge between aboriginal communities inhabiting arid and forest environments in Patagonia, Argentina. J Arid Environ 69:695–715. Lahaye R van der Bank M., Bogarin D, Warner J, Pupulin F, Gigot G et al. (2008). DNA barcoding the floras of biodiversity hotspots. Proc Natl Acad Sci USA 105: 2923–2928. http://www.pnas.org/cgi/content/abstract/105/ 8/2923? Laid, S., McClain., & Wynberg, R. (Eds.). (2010). Wild product governance: Finding policies that work for no-timber forest products. London: Earthscan Laird, S., McLain, R., & Wynberg, R. (Eds.). (2010). Wild product governance: Finding policies that work for non-timber forest products. London: Earthscan. Laird, S. (2002). Biodiversity and traditional knowledge: equitable partnerships in practice. Earthscan, London, UK. Lahlou, M., 2013. The success of natural products in drug discovery. Lall, N. (2018). Medicinal plants for holistic health and well-being. London: Academic Press, Elsevier. Larson TJ (1975) Craftwork of the Hambukushu of Botswana. Botswana Notes and Records 7: 109–120. Botswana Society, Gaborone. Larson TJ (1981) Ethnobotany of the Hambukushu of Botswana. Botswana Notes and Records 13: 145–148. Botswana Society, Gaborone. Larson TJ (1986) The ethno-medicine of the Hambukushu in 1950.Botswana Notes and Records 18: 39–47. Botswana Society, Gaborone. Lawton, J. H. 1999. Are there general laws in ecology? Oikos 84:177–192. Lee, R.B., 1979. The! Kung San: men, women and work in a foraging society. CUP Archive. 119 Lefcheck, J.S., 2016. PiecewiseSEM: Piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods in Ecology and Evolution, 7(5),573-579. Leonti, M., Sticher, O. and Heinrich, M., 2003. Antiquity of medicinal plant usage in two Macro-Mayan ethnic groups (Mexico). Journal of ethnopharmacology, 88(2-3), pp.119124. Leonti, M., Casus, L., Martin, DTO., Rodrigues, E., Benítez., 2020 Ecological Theories and Major Hypotheses in Ethnobotany: Their Relevance for Ethnopharmacology and Pharmacognosy in the Context of Historical Data. Leso, L.K., Elansary, H.O., Mearns, K. and Yessoufou, K., 2017. Ethnobotany at a local scale: diversity of knowledge of medicinal plants and assessment of plant cultural importance in the Polokwane local municipality, South Africa. Botany Letters, 164(1), 93-102. Liengme CA (1983a) A survey of ethnobotanical research in southern Africa. Bothalia 14: 621– 629. Liengme CA (1981) Plants used by the Tsonga people of Gazankulu. Bothalia 13: 501–518. Lindsay RS (1978) Medicinal Plants of Marakwet, Kenya. Royal Botanic Gardens, Kew. Lockwood, M.E., Worboys, G.L. and Kothari, A.E., Managing Protected areas: A Global Guided /ED. Michael Lockwood, Graeme L. Worboys and Ashishi Kothari (No. S944. 5P78. M35 2006.). Londono, S., Newbold, T., Hudson, L.N., Contu, S., Hill, S.L., Lysenko, I., Arbeláez‐Cortés, E., Armbrecht, I., Boekhout, T., Cabra‐García, J. and Dominguez‐Haydar, Y., 2016. Modelling and projecting the response of local assemblage composition to land use change across Colombia. Diversity and Distributions, 22(11), pp.1099-1111. Lopes AA (2019) Transnational links in rhino poaching and the black-market price of 1028 rhino horns. Aust J Agr Res Ec 63:95-115. https://doi.org/10.1111/1467-8489.12286. Lötter, M.C., Mucina, L., Witkowski, E.T.F., 2014. Classification of the indigenous forests of Mpumalanga Province, South Africa. South African Journal of Botany 90, 37–51. Lozada, M., Ladio, A and Weigandt, “Cultural transmission of ethnobotanical knowledge in a rural community of Northwestern Patagonia, Argentina, “Economic Botany, vol.60, no.4, pp.374-385,2006. Lucena. RFP., Arujo EDL., de Albuquerque UP., 2007 Does the Local Availability of Woody Caatinga Plants (Northeastern Brazil) Explain Their Use Value?' Lykke, A.M., Kristensen, M.K., Ganaba, S., 2004. Valuation of local use and dynamics of 56 woody species in the Sahel. Biodiversity and Conservation 13, 1961–1990. Mabogo DEN (1990) The ethnobotany of the Vhavenda. MSc thesis, University of Pretoria, Pretoria. Macel M, Vrieling K. 2003. Pyrrolizidine alkaloids as oviposition stimulants for the cinnabar moth, Tyria jacobaeae. Journal of Chemical Ecology 29: 1435– 1446. 120 Macia, M.J 2001, H. Romero-Saltos & R. Valencia. 2001. Patrones de uso en un bosque primario de la Amazonía ecuatoriana: comparación entre dos comunidades Huaorani. Pp 225–249. In: J. F. Duivenvoorden, H. Balslev, J. Cavelier, C. Grandez, H. Tuomisto, & R. Valencia (eds). Evaluación de recursos vegetales no maderables en la Amazonía noroccidental. IBED, Universiteit van Amsterdam, Amsterdam. Magill, R. E., Russell, G. G., Morris, J. W., & Gonsalves, P. (1983). PRECIS, the Botanical Research Institute herbarium data bank. Bothalia, 14(3/4), 481–495. Malan JS, Owen-Smith GL (1974) The ethnobotany of Kaokoland.Cimbebasia Ser. B 2,5: 131– 178. Mander, M. 1998. Marketing of indigenous medicinal plants in South Africa: a case study in KwaZulu-Natal. Food and Agricultural Organization of the United Nations, Rome. Marloth R (1913–1932) The Flora of South Africa (4 vols). William Wesley, London. Marquet, P.A., Allen, A.P., Brown, J.H., Dunne, J.A., Enquist, B.J., Gillooly, J.F., Gowaty, P.A., Green, J.L., Harte, J., Hubbell, S.P. and O’Dwyer, J., 2014. On theory in ecology. BioScience, 64(8), pp.701-710. Martinez, M. (2002). Unpublished contribution at Taller Latinoamericana Desarrolla Curricular de Etnobotánica Aplicada, 21-23 February 2002, Dominican Republic. Jardín Botánico Nacional Dr. Rafael Ma. Moscoso. Martinez-Alfaro, M. 1994. Estado actual de las investigaciones etnobotanicas en Mexico.Boletín de la Sociedad Botánica de México 55: 67-74. Martins DTO, Rodrigues E, Casu L, Benítez G, Leonti M (2019) The historical development of pharmacopoeias and the inclusion of exotic herbal drugs with a focus on Europe and Brazil. J Ethnopharmacol 240:111891. https://doi.org/10.1016/j.jep.2019.111891. Martin, G. J. 2007. Ethnobotany: A methods manual. Earthscan, London. Martin, G. (1995). Ethnobotany: a methods manual. Chapman and Hall, London, UK. Martin, G., Lee Agama, A., Beaman, J. H. & Nais, J. (2002). Projek Etnobotani Kinabalu: the making of a Dusun ethnoflora (Sabah, Malaysia). People and Plants working Paper 7. UNESCO, Paris. Martin, G.J. 2004. Ethnobotany: A methods manual. Earthscan Publications, London. Masika, P. J. and Afolayan, A. J. 2002. Antimicrobial activity of some plants used for the treatment of livestock disease in the Eastern Cape, South Africa. Journal of Ethnopharmacology, 83: 129-134. Matthews., T.J., Steinbauer, M.J., Wolfrum, S., Boch, S., Chiarucci, A., Conradi, T., Dembicz, I., Marcenò, C., García‐Mijangos, I. and Nowak, A., 2020. Species–area relationships in continuous vegetation: Evidence from Palaearctic grasslands. Journal of Biogeography, 47(1), pp.72-86. Matu, N.E., Staden, J.V.,2003. Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya. Journal of Ethnopharmacology 87,35-41. 121 Maurin, O., Davies, T.J., Burrows, J.E., Daru, B.H., Yessoufou, K., Muasya, A.M., Van der Bank, M. & Bond, W.J. (2014) Savanna fire and the origins of the ‘underground forests’ of Africa. New Phytologist, 204, 201–214. McCune, L. M., and T. Johns. 2007. Antioxidant activity relates to plant part, life form and growing condition in some diabetes remedies. Journal of Ethnopharmacology 112:461–9. McClatchey, W. C., G. E. Wagner, K. Hall, and P. Harrison. 2013. Vision and change for undergraduate ethnobiology education in the USA: Recommended curriculum assessment guidelines. Open Science Network in Ethnobiology, Fort Worth, Botanical Research Institute of Texas Press. Medeiros PM, Pinto BL, Nascimento VT. 2015. Can organoleptic properties explain the differential use of medicinal plants? Evidence from Northeastern Brazil. Journal of Ethnopharmacology 159: 43-48. Medeiros, P.R., Souza, A.T. and Ilarri, M.I., 2010. Habitat use and behavioural ecology of the juveniles of two sympatric damselfishes (Actinopterygii: Pomacentridae) in the south‑western Atlantic Ocean. Journal of Fish Biology, 77(7), pp.1599-1615. Medeiros, M.F.T., Silva, O.S. and Albuquerque, U.P., 2011. Quantification in ethnobotanical research: an overview of indices used from 1995 to 2009. Sitientibus série Ciências Biológicas, 11(2), pp.211-230. Medin, D. L., and S. Atran. 2004. The native mind: Biological categorization and reasoning in development and across cultures. Psychological Review 111(4): 960–983. Millennium Ecosystem Assessment 2005 a. Ecosystems and Human Well-being: Current States and Trends. Volume I. World Resources Institute. Washington DC. Millennium Ecosystem Assessment 2005 b. Ecosystems and Human Well-being: Biodiversity Synthesis. World Resources Institute. Washington DC. Milliken, W., Albert, D., 1996.The use of medicinal plants by the Yanomami Indians of Brazil. Economic Botany 50,10-25. Moegenburg, S.M. and Levey, D.J., 2002. Prospects for conserving biodiversity in Amazonian extractive reserves. Ecology Letters, 5(3), pp.320-324. Moerman, D. E. (1996). An analysis of the food plants and drug plants of native North America. Journal of Ethnopharmacology, 52(1), 1–22. Moerman, D. E. (1991). The medicinal fora of native North America: An analysis. Journal of Ethnopharmacology, 31(1), 1–42. Moerman, D. E. (1979). Symbols and selectivity: A statistical analysis of native American medical ethnobotany. Journal of Ethnopharmacology, 1(2), 111–119. Mohammad hosseini, M., Venditti, A. and Akbarzadeh, A., 2019. The genus Perovskia Kar.: ethnobotany, chemotaxonomy and phytochemistry: a review. Toxin Reviews, pp.122. 122 Monteiro, J.M., Lucena, R.F.P., Alencar, N.L., Nascimento, V.T., Araújo, T.A.S. and Albuquerque, U.P., 2008. When intention matters: comparing three ethnobotanical data collection strategies. Current topics in ethnobotany, pp.113-124. Monteiro, J.M., de Lima Araújo, E., Amorim, E.L.C. and de Albuquerque, U.P.,2010. Local markets and medicinal plant commerce: a review with emphasis on Brazil. Economic Botany,64(4), pp.352-366. Moore B, Andrew RL, Kulheim C, Foley WJ. 2014. Explaining intraspecific diversity in plant secondary metabolites in an ecological context. New Phytologist 201: 733–750. Moyo, M., Bairu, M.W., Amoo, S.O. Van Staden, J.2011. Plant biotechnology in South Africa: Micropagation research endeavours, prospects and challenges. South African Journal of Botany 77:996-1011 Mpumalanga Provincial Government. About Mpumalanga Province. Available from: www.mpumalanga.gov.za/about/province.htm accessed on 23 January 2019. Mucina, L., Geldenhuys, C.J., Rutherford, M.C., Powrie, L.W., Lötter, M.C., von Maltitz, G.P., Euston-Brown, D.I.W., Matthews, W.S., Dobson, L., McKenzie, B., 2006. Afro temperate, subtropical and azonal forests, in: Mucina, L., Rutherford, M.C. (Eds.), The vegetation of South Africa, Lesotho and Swaziland, South African National Biodiversity Institute, Pretoria, pp. 584–615. Mulholland, D.A., 2005. The future of ethnopharmacology: a Southern African perspective. Journal of Ethnopharmacology 100, 124–126. Mshigeni, K.E., 1990. Seaweeds in medicine and pharmacy: a global perspective. In: Mshigeni, K.E.(Ed), Proceedings of an International Conference of Experts from Developing Countries on Traditional Medicinal Plants. The United Republic of Tanzania, Ministry of Health, Dares Salaam University Press, pp.125-132. Mucina, L., Pienaar, E., van Niekerk, A., Lötter, M.C., Scott-Shaw, C.R., Meets, M., Seoke, L., Sekome, T., Siebert, S.J., Loffler, L., Cawe, S.G., Dold, A.P., Abbott, A., Kalwij, J., Tichý, L., 2007. Habitat-level Classification of the Albany Coastal, Pondoland Scarp and Eastern Scarp Forests. Unpublished Report for DWAF, Stellenbosch University, Matieland. Mucina, L., Rutherford, M.C., (Eds) 2006. The vegetation of South Africa, Lesotho, and Swaziland. South African National Biodiversity Institute, Pretoria. Nakashizuka, T. 2007. An interdisciplinary approach to sustainability and biodiversity of forest ecosystems: an introduction. In: Ecological Research 22: 359-360 Nascimento, V. T., L.G. Sousa, A. G. C. Alves, E.L. Araújo, and U. P. de Albuquerque. 2009 “Rural fences in agricultural landscapes and their conservation role in an area of caatinga (dryland vegetation) in Northeast Brazil.” Environment, Development and Sustainability 11, no. 5 (2009):1005-1029. Newman, D.J. and Cragg, G.M., 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of natural products, 75(3), pp.311-335. 123 Neuwinger, H.D., 2000. African traditional medicine: a dictionary of plant use and applications. With supplement: search system for diseases. Medpharm.EconomicBotany58(Suppl.), S280–S293. Nieminen M, Suomi J, Van Nouhuys S, Sauri P, Riekkola ML. 2003. Effect of iridoid glycoside content on oviposition host plant choice and parasitism in a specialist herbivore. Journal of Chemical Ecology 29: 823–844. Nigro.SA., Makunga.NP., Grace.OM 2004. Medicinal plants at the ethnobotanybiotechnology interface in Africa. 10.1016/S0254-6299(15)30310-0 South African Journal of Botany. Nortje, J.M., Van Wyk, B.-E., 2015. Medicinal ethnobotany of the Kamiesberg: Namaqualand, Northern Cape Province, South Africa. Journal of Ethnopharmacology 171, 205–222 doi: 10.1016/j.jep.2015.04.049. NSBA, (2004). Driver, A., Maze, K., Lombard, A.T., Nel, J., Rouget, M., Turpie, J.K., Cowling, R.M., Desmet, P., Goodman, P., Harris, J., Jonas, Z., Reyers, B., Sink, K. & Strauss, T. 2004. South African National Spatial Biodiversity Assessment 2004: Summary Report. Pretoria: South African National Biodiversity Institute. Odum HT, Pinkerton RC. 1955. Times speed regulator-the optimum efficiency for maximum power output in physical and biological systems. American Scientist 43: 331–343. O’Hara, R. B., & Kotze, D. J. (2010). Do not log-transform count data. Methods in Ecology and Evolution, 1(2), 118–122. Pappe L (1847) A list South African indigenous plants used as remedies by the colonists of the Cape of Good Hope. O.I. Pike, Cape Town. Pappe L (1850) Florae Capensis Medicae Prodromus. A.S. Robertson, Cape Town. Pappe L (1857) Florae Capensis Medicae Prodromus, 2nd edn. Cape Town. Paz y Minto C., G., H. Balslev, R. Valencia R., and P. Mena V. 1991. Lianas utilizadas por los indigenas Siona-Secoya de la Amazonia del Ecuador. Re-portes Tecnicos 1. Ecociencia, Quito, Ecuador. Paulino de Albuquerque, U. and de Holanda Cavalcanti Andrade, L., 2002. Uso de recursos vegetais da caatinga: o caso do agreste do estado de Pernambuco (Nordeste do Brasil). Interciencia, 27(7), pp.336-346. Pearn MGJ (2004) Medical ethnobotany of Australia – past and present. The Linnean Society, London. Perera, S.J., Ratnayake-Perera, D. and Proches, S., 2011. Vertebrate distributions indicate a greater Maputaland-Pondoland-Albany region of endemism. South African Journal of Science, 107(7-8), 1-15. Peters, C.M., 1996. Beyond Nomenclature and Use: A Review of Ecological Methods for Ethnobotanists. In: Alexiades M.N. (ed) Selected Guidelines for Ethnobotanical Research: A Field Manual. The New York Botanical Garden, Bronx, New York, pp 241276. 124 Phillips, O. (1996). Some quantitative methods for analysing ethnobotanical knowledge. In Alexiades, M. (ed.), Selected guidelines for ethnobotanical research: a field manual. The New York Botanical Garden, New York, pp. 171–197. Phillips, O.L., A.H. Gentry, C. Reynel, P. Wilkin & C. Galvez-Durand. 1994. Quantitative ethnobotany and Amazonian conservation. Conservation Biology 8:225-248. Phillips, O., and Gentry, A. H. (1993a). The Useful Plants of Tambopata, Peru: I. Statistical Hypotheses Tests with A New Quantitative Technique. Economic Botany 47: 15–32. Phillips, O., and Gentry, A. H. (1993b). The Useful Plants of Tambopata, Peru: II. Statistical Hypotheses Tests with a New Quantitative Technique. Economic Botany 47: 33–43. Phillips, A., 2003, June. Turning ideas on their head: the new paradigm for protected areas. In the George Wright Forum (Vol. 20, No. 2, pp. 8-32). George Wright Society. Pimentel, D., McNair, M., Buck, L., Pimentel, M., Kamill, J., 1997. The value of forest to world food security. Hum. Ecol. 25, 91–120. Pinedo-Vasquez, Miguel., Zarin, D., Jipp, P. and Chota‐Inuma, Jomber., 1990. Use‑values of tree species in a communal forest reserve in northeast Peru. Conservation Biology, 4(4), pp.405-416. Plotkin., Famolare, L., 1992.Conclusions and recommendations. In: Plotkin, M.J., Famolare, L. (Eds.), Sustainable Harvest and Marketing of Rain Forest Products. Island Press, Washington, DC, pp.310-313. Plotkin, M.J.,1988. The outlook for new agriculture and industrial products from the tropics. In: Wilson. (Ed.). Biodiversity. National Academy Press, Washington, DC, pp.106-116. Poe, M.R., LeCompte, J., McLain, R. and Hurley, P., 2014. Urban foraging and the relational ecologies of belonging. Social & Cultural Geography, 15(8), pp.901-919. Prance, GT. 1991. What is ethnobotany today? Journal of Ethnopharmacology 32: 209-216. Quinn, J. F., and A. E. Dunham. 1983. On hypothesis testing in ecology and evolution. American Naturalist 122:602–617. Quiroz, D., and T. van Andel. 2015. Evidence of a link between taboos and sacrifices and resource scarcity of ritual plants. Journal of Ethnobiology and Ethnomedicine 11:5. Rankoana SA (2000) Aspects of the ethnobotany of the Dikgale community in the Northern Province. MA thesis (Anthropology), University of the North, Pietersburg. Raybould AF, Moyes CL. 2001. The ecological genetics of aliphatic glucosinolates. Heredity 87: 383–391. RBGKew 2017. State of the world plants. https://stateoftheworldsplants.com/2017/usefulplants.html. (Accessed June 2018). 2020. R Core Team. 2020. Pinheiro, J., Bates, D., DebRoy, S. and Sarkar, D., nlme: linear and nonlinear mixed effects models. R package version 3.1-148. R Core Team 2019.R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. 2018 http://www.r-project.org/). 125 R Core Team 2017.R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. 2018 http://www.r-project.org/). Reyes-García, V., Vadez, V., Huanca, T., Leonard, W. and Wilkie, D., 2005. Knowledge and consumption of wild plants: a comparative study in two Tsimane’villages in the Bolivian Amazon. Reyes-García, V., Huanca, T., Vadez, V., Leonard, W. and Wilkie, D., 2006. Cultural, practical, and economic value of wild plants: a quantitative study in the Bolivian Amazon. Economic Botany, 60(1), 62-74. Reyes-Garcia, V., Martí, N., McDade, T., Tanner, S., and Vadez, V. (2007). Concepts and Methods in Studies Measuring Individual Ethnobotanical Knowledge. Journal of Ethnobiology 27: 182–203. doi:10.2993/0278-0771(2007)27[182: CAMISM]2.0.CO;2. Reyes-García, V., M. Guèze, A. C. Luz, J. Paneque- Gálvez, M. J. Macía,M. Orta-Martínez, J. Pino, et al. 2013a. Evidence of traditional knowledge loss among a contemporary indigenous society. Evolution and Human Behavior 34:249–257. Reyes-García, V., J. L. Molina, L. Calvet-Mir, L.Aceituno-Mata, J. J. Lastra, R. Ontillera, M. Parada, et al. 2013b. B Tertius gaudens: germplasm exchange networks and agroecological knowledge among home gardeners in the Iberian Peninsula.Journal of Ethnobiology and Ethnomedicine 9:53 Rhoades, D.F. & Cates, R.G. (1976) Toward a general theory of plant antiherbivore chemistry. Recent Advances in Phytochemistry (eds J.W. Wallace & R.L. Mansell), pp. 168–213. Plenum Press, New York. Ribeiro, D.A., de Oliveira, L.G.S., de Macêdo, D.G., de Menezes, I.R.A., da Costa, J.G.M., da Silva, M.A.P., Lacerda, S.R. and de Almeida Souza, M.M., 2014. Promising medicinal plants for bioprospection in a Cerrado area of Chapada do Araripe, Northeastern Brazil. Journal of ethnopharmacology, 155(3),1522-1533. Robbins WW, John PH, Barbara FM (1916). Ethnobotany of the Tewa Indians. Bureau of American Ethnology Bulletin. Smithsonian Institution, Washington, DC. 55:1-2. Roitberg BD, Isman M. 1992. Insect chemical ecology: an evolutionary approach. New York, NY, USA: Chapman & Hall. Rossato, S.C., De LeitãO-Filho, H.F. and Begossi, A., 1999. Ethnobotany of caiçaras of the Atlantic Forest coast (Brazil). Economic botany, 53(4),.387-395. Royal Museum for Central Africa. 2020 Prelude Database for Medicinal Plants in Africa. http://www.africamuseum.be/collections/external/prelude (Accessed 23 January 2020). Royal Museum for Central Africa. 2017 Prelude Database for Medicinal Plants in Africa. http://www.africamuseum.be/collections/external/prelude (Accessed 18 November 2017). Salas, M.T.R. Gomes, M. Hernandez, M.T.P. Lopez (2008). Plant cysteine proteinases: evaluation of the pharmacological activity Phytochemistry, 69, pp. 2263-2269. Salick, J. Alcorn E. Anderson J. et. al., 2003. Intellectual Imperatives in Ethnobiology: NSF Biocomplexity Workshop Report (Report), St. Louis, Missouri Botanical Garden. 126 Salick, J., 1992. Amuesha forest use and management: an integration of indigenous use and natural forest management. Biological Resource Management in the Tropics., pp.305-332. SANBI. (2005). PRECIS (PRE-Computerized Information System) databank. Pretoria: South African National Biodiversity Institute. SANBI PlantZafrica. 2000 Welcome to PlantZAfrica. http://pza.sanbi.org/ (Accessed on 12 September 2020). Santos CS, Barros FN, Paula M, Rando J, Nascimento VT, Medeiros PM. 2018. What matters when prioritizing a medicinal plant? A study of local criteria for their differential use. Acta Botanica Brasilica 32: 297-302. Saraiva ME, Ulisses AVRA, Ribeiro DA, et al. 2015. Plant species as a therapeutic resource in areas of the savanna in the state of Pernambuco, Northeast Brazil. Journal of Ethnopharmacology 171: 141-153. SEPASAL (2003) Survey of Economic Plants for Arid and Semi-Arid Lands. Available at: www.rbgkew.org.uk/ceb/sepasal. Shackleton, C.M., Guthrie, G., Main, R., 2005. Estimating the potential role of commercial over-harvesting in resource viability: a case study of five useful tree species in South Africa. L. Degrad. Dev. 16, 273–286. Shava, S., O'Donoghue, R., Krasny, M.E. and Zazu, C., 2009. Traditional food crops as a source of community resilience in Zimbabwe. International Journal of African Renaissance Studies, 4(1), pp.31-48. Schmidt, E., Lotter, M. and McClelland, W., 2007. Trees and shrubs of Mpumalanga and Kruger National Park. Johannesburg: Jacana Press 702. Schulze, R.E. 1997. South African Atlas for Agrohydrology and Climatology. Water Research Commission, Pretoria, Report TT82/96. Schultes, R.E. & Reis, S.V. (eds). 1995. Ethnobotany: evolution of a discipline. Cambridge, Timber. Schultes, R.E., 1992. Ethnobotany and technology in the Northwest Amazon: A partnership. Sustainable harvest and marketing of rain forest products, pp.7-13. Schultes, R.E., 1992. Ethnobotany and technology in the Northwest Amazon: A partnership. Sustainable harvest and marketing of rain forest products, pp.7-13. Silva VA, Nascimento VT, Soldati GT, Medeiros MFT, Albuquerque UP (2010) Técnicas para análise de dados etnobiológicos. In: Albuquerque UP, Lucena RFP, Cunha LVFC (eds) Métodos e técnicas na pesquisa etnobiológica e etnoecológica. NUPEEA, Recife, pp 187–206. Silva, A.J. and Andrade, L.D.H.C., 2005. Etnobotânica nordestina: estudo comparativo da relação entre comunidades e vegetação na Zona do Litoral-Mata do Estado de Pernambuco, Brasil. Acta bot. bras, 19(1), pp.45-60. Silvertown, J.W., 2004. Sustainability in a nutshell. Trends Ecology Evolution. 19, 276–278. doi:10.1016/j.tree.2004.03.022 127 Simas, A.B., Barreto-Souza, W., and Rocha, A.V. (2010). Improved Estimators for a General Class of Beta Regression Models. Computational Statistics & Data Analysis, 54(2), 348– 366. Singh, M.P., Malla, S.B., Rajbhandari, S.B., Manandhar, A., 1979.Medicinal plants of Nepal retrospects and prospects. Economic Botany 33,185-193. Skead, C.J., 2009. Historical plant incidence in southern Africa: a collection of early travel records in southern Africa. In: Manning, J.C., Anthony, N.C. (Eds.), Strelitzia 24. South African National Biodiversity Institute, Pretoria. Smilanich, A. M., Fincher, R. M., & Dyer, L. A. (2016). Does plant apparency matter? Thirty years of data provide limited support but reveal clear patterns of the effects of plant chemistry on herbivores. New Phytologist, 210, 1044–1057. Smith A (1895) A contribution to the South African materia medica,2nd edn. Lovedale, South Africa. Soldati, G.T., de Medeiros, P.M., Duque-Brasil, R., Coelho, F.M.G., Albuquerque, U.P., 2016. How do people select plants for use? Matching the Ecological Apparency Hypothesis with Optimal Foraging Theory. Environ. Dev. Sustain. 1–19. doi:10.1007/s10668-016-9844-1. Soleri, D. and Smith, S.E., 1995. Morphological and phenological comparisons of two Hopi maize varieties conserved in situ and ex situ. Economic Botany, 49(1), pp.56-77. Spencer, M.D., 1999. Dispossessing the wilderness: Indian removal and the making of the national parks. Oxford University Press. Stamp, N. 2003. Out of the quagmire of plant defense hypotheses. The Quarterly Review of Biology 39:258–275. Saslis-Lagoudakis, C. H., & Clarke, A. C. (2013). Ethnobiology: the missing link in ecology and evolution. Trends in Ecology & Evolution, 28(2), 67–68. Saslis-Lagoudakis, C. H., Hawkins, J. A., Greenhill, S. J., Pendry, C. A., Watson, M. F., Tuladhar-Douglas, W., et al. (2014). The evolution of traditional knowledge: Environment shapes medicinal plant use in Nepal. Proceeding of the Royal Society, Biological Sciences, 281, 20132768. Saslis-Lagoudakis CH, Savolainen V, Williamson EM, Forest F, Wagstaff SJ, Baral SR, Watson MF, Pendry CA, Hawkins JA. 2012 Phylogenies reveal predictive power of traditional medicine in bioprospecting. Proc. Natl Acad. Sci. USA 109, 15 835 – 15 840. (doi:10.1073/pnas.1202242109). Statistics SA http://www.sastssa.gov.za (accessed on 20 /April/2021). Stepp, J. R. and D. E. Moerman. 2001. The importance of weeds in ethnopharmacology. Journal of Ethnopharmacology 75:19–23. Steyn HP (1981) Nharo plant utilization. An overview. Khoisis 1: 1–30. 128 Stoffle RW, Halmo DB, Evans MJ, Olmsted JE (1990) Calculating the cultural significance of American Indian plants: Paiute and Shoshone ethnobotany at Yucca Mountain, Nevada. Am Antrhopol 92:416–432. Story R (1959) Some plants used by the Bushmen in obtaining food and water. Memoirs of the Botanical Survey of South Africa 30. Strauss, S. Y., Cacho, N. I., Schwartz, M. W., Schwartz, A. C., & Burns, K.C. (2015). Apparency revisited. Entomologia Experimentalis et Applicata,157, 74–85. Sujarwo, W., Arinasa, I.B.K., Salomone, F., Caneva, G., Fattorini, S., 2014. Cultural erosion of Balinese indigenous knowledge of food and nutraceutical plants. Econ. Bot. 68 (4), 426–437. https://doi.org/10.1007/s12231-014-9288-1. Tardio, J., Pardo de Santayana, M., 2008. Cultural importance indices: a comparative analysis based on the useful wild plants of southern Cantabria (northern Spain). Economic Botany 62, 24–39. Team, R.C., 2020. R: A language and environment for statistical computing; 2020. Telban B (1988) The role of medical ethnobotany in ethnomedicine: A New Guinea example. J Ethnobiol 8(2):149–169. Teklehaymanot, T., 2009. Ethnobotanical study of knowledge and medicinal plants used by the people in Dek Island in Ethiopia. Journal of Ethnopharmacology 124, 69–78. Teklehaymanot, T., Giday, M., 2010. Quantitative ethnobotany of medicinal plants used by Kara and Kwego semi-pastoralist people in lower Omo River Valley, Debub Omo Zone, Southern Nations, Nationalities and Peoples Regional State, Ethiopia. Journal of Ethnopharmacology 130, 76–84. Tshikalange, T. E., Mophuting, B. C., Mahore, J., Winterboer, S., & Lall, N. (2016). An ethnobotanical study of medicinal plants used in villages under Jongilanga Tribal Council, Mpumalanga, South Africa. African Journal of Traditional, Complementary and Alternative Medicine, 13(6), 83–89. Thompson, J.N., 1988. Coevolution and alternative interactions. Ecology, 69(4), pp.893-895. hypotheses on insect/plant Ticktin, T., 2004. The ecological implications of harvesting non-timber forest products. J. Appl. Ecol. 41, 11–21 Toledo, V.M. (1995). New paradigms for a new ethnobotany: Reflections on the case of Mexico. Pages 75-92 in R.E. Schultes and S. von Reis, eds. Ethnobotany: Evolution of a Discipline. Portland, USA. Toledo, V/M., A.I., Batis, R. Bacera, E. Martinez & C.H.H Ramos.1992. Products from the tropical rain forests of Mexico: An ethnoecological approach. Pages 99-109. Trotter, R.T. & M.H. Logan. 1986. Informant Consensus: A new approach for identifying potentially effective medicinal plants. Pp. 91-112 in Plants in Indigenous Medicine and Diet: Biobehavioural approaches. Edited by N.L. Etkin. Redgrave Publishers, Bedford Hills, NY. 129 Turlings TCJ, Tumlinson JH, Lewis WJ. 1990. Exploitation of herbivore induced plant odours by host-seeking parasitic wasps. Science 250: 1251–1253. Turner, N.J., Ignace, M.B. and Ignace, R., 2000. Traditional ecological knowledge and wisdom of aboriginal peoples in British Columbia. Ecological Applications, 10(5), pp.1275-1287. Turner NJ (1988) The importance of a rose: evaluating the cultural significance of plants in Thompson and Lillooet interior Salish. Am Anthropol 90:272–290. Turner, N.J., 1973. Plant taxonomic systems and ethnobotany of three contemporary indian groups of the pacific northwest (Haida, Bella Coola, and Lillooet) (Doctoral dissertation, University of British Columbia). Unruh, J., and Alcorn.J., 1988. Relative dominance of the useful component in young managed fallows at Brillo Nuevo. In Swidden-Fallow Agroforestry in the Peruvian Amazon, W. Denevan and C. Padoch, eds. Pp. 9-47. Lawrence: Allen Press. Urdang, U., 1951. The development of pharmacopoeias: review with special reference the pharmacopoeia Internationalis: Bull. World Health Organisation.4. 577-603. Van der Merwe D (2000) Use of ethnoveterinary medicinal plants in cattle by Setswanaspeaking people in the Madikwe area of the North West Province. MSc thesis, University of Pretoria, Pretoria, South Africa. Van Heerden FR, Vleggaar R, Horak RM, Learmonth RA, Maharaj V, Whittal RD (1998) Pharmaceutical compositions having appetite suppressant activity. International Patent PCT/GB98/01100, filed 15 April 1998. Van den Eynden V, Vernemmen P, Van Damme P (1992) The Ethnobotany of the Topnaar. Universiteit of Gent, Gent. Vandebroek, I., and M. J. Balick. 2012. Globalization and loss of plant knowledge: Challenging the paradigm. PLoS ONE 7: e37643. Vandebroek, I., 2010. The dual intracultural and intercultural relationship between medicinal plant knowledge and consensus1. Economic botany, 64(4), pp.303-317. Vandebroek, I., Van Damme, P., Van Puyvelde, L., Arrazola, S. and De Kimpe, N., 2004. A comparison of traditional healers’ medicinal plant knowledge in the Bolivian Andes and Amazon. Social Science & Medicine, 59(4), pp.837-849. Van der Stel, S., 1685. Simon van der Stel’s journey to Namaqualand in 1685. In: DeWet, G.C., Pheiffer, R.H.(Eds.), Facsimile edition. Human and Rossouw, Cape Town. van Wyk, B.-E., 1996. Priorities for biosystematics studies of the Southern African flora. South African Journal of Science 92, 327–329. van Wyk, B.E., Wink, M., 2004. Medicinal Plants of the World. Briza Publications, Pretoria. van Wyk, B. E. (2008). A broad review of commercially important southern African medicinal plants. Journal of ethnopharmacology, 119(3), 342–355. van Wyk, B.-E., Van Oudtshoorn, B., Gericke, N., 2009. Medicinal plants of South Africa. Revised and expanded edition. Briza Publications, Pretoria. 130 van Wyk, B.E. and Albrecht, C., 2008. A review of the taxonomy, ethnobotany, chemistry, and pharmacology of Sutherlandia frutescens (Fabaceae). Journal of ethnopharmacology, 119(3), 620-629. van Wyk, B.E. and Van Staden, J., 2002. A review of ethnobotanical research in southern Africa. South African Journal of Botany, 68(1), pp.1-13. van Wyk, B.E. and Gericke, N., 2000. People's plants: a guide to useful plants of Southern Africa. Briza Publications. van Wyk BE (2002) A review of ethnobotanical research in southern Africa. South African Journal of Botany 38: 1–13. van Wyk, B.E., 2011. The potential of South African plants in the development of new food and beverage products. South African Journal of Botany, 77(4), 857-868. van Wyk, B.-E., Van Oudtshoorn, B., Gericke, N., 2009. Medicinal plants of South Africa. Revised and expanded edition. Briza Publications, Pretoria. van Wyk, B.-E., Van Oudtshoorn, B., Gericke, N., 1997. Medicinal Plants of South Africa. Briza, South Africa. van Wyk, B.-E., Gericke, N., 2018. People's Plants: A Guide to Useful Plants of Southern Africa. 2nd ed. Briza Publications, Pretoria. Venables WN, Ripley BD (2002). Modern Applied Statistics with S, Fourth edition. Springer, New York. ISBN 0-387-95457-0 http://www.stats.ox.ac.uk/pub/MASS4/. Venter, F. J. (1990). A classification of land for management planning in the Kruger National Park. PhD Thesis, University of South Africa, Pretoria, South Africa. Vieira, L.S., Sousa, R.S. and Lemos, J.R., 2015. Plantas medicinais conhecidas por especialistas locais de uma comunidade rural maranhense. Revista Brasileira de Plantas Medicinais, 17(4), 1061-1068. Voeks, R.A., 2004. Disturbance pharmacopoeias: medicine and myth from the humid tropics. Annals of the Association of American Geographers, 94(4), pp.868-888. Voeks, R.A and A. Leony. 2004. Forgetting the forest: Assessing medicinal plant erosion in eastern Brazil. Economic Botany 58:94–106. Voeks, R. A. 2007. Are women reservoirs of traditional plant knowledge? Gender, ethnobotany and globalization in northeast Brazil. Singapore Journal of Tropical Geography 28:7–20. Von Koenen E (1996) Heil-, Gift- u Essbare Pflanzen in Namibia. Klaus Hess Verlag, Göttingen (Medicinal, poisonous and edible plants in Namibia). Von Koenen E (2001) Medicinal, Poisonous and Edible Plants in Namibia. Klaus Hess Publishers, Windhoek and Göttingen von Maltitz, G., Fleming, G., 1999. Status of indigenous forests in South Africa, in: Seydack, A.H.W., Vermeulen, W.J., Vermeulen, C. (Eds.), Towards sustainable management based on scientific understanding of natural forests and woodlands. Proceedings: 131 Natural Forests and Savanna Woodlands Symposium II, Knysna, South Africa, pp. 93– 99. Watt, J.M. and Breyer-Brandwijk, M.G., 1962. The Medicinal and Poisonous Plants of Southern and Eastern Africa being an Account of their Medicinal and other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal. The Medicinal and Poisonous Plants of Southern and Eastern Africa being an Account of their Medicinal and other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal., (Edn 2). WCMC (World Conservation Monitoring Centre) 2003. Strategic Plan for the Convention on Biological Diversity. United Nations Environmental Programme (UNEP) http://www.unepwcmc.org/gbc/cbd.htm (accessed 24. /08/20) Weiner, J. 1995. On the practice of ecology. Journal of Ecology 83:153–158. White, F. 1983. The vegetation of Africa: a descriptive memoir to accompany the UNESCO/AETFAT/UNSO vegetation map of Africa. Natural Resources Research 20, UNESCO, Paris. Whittaker RH, Feeny PP. 1971. Allelochemics: chemical interactions between species. Science 171: 757–770. Williams, V. L., Victor, J. E., & Crouch, N. R. (2013). Red listed medicinal plants of South Africa: Status, trends, and assessment challenges. South African Journal of Botany, 86, 23–35. Williamson J (1955) Useful Plants of Malawi. The Government Printer, Zomba. World Bank 2007. World Development Report 2008: Agriculture for Development. Washington D.C. Wright, S.J. 2002. Plant diversity in tropical forests: a review of mechanism of species coexistence. In: Oecologia 130: 1-14 Wright, S.J. 2005. Tropical forests in a changing environment. In: Trends in Ecology and Evolution 20 (10):553-560 WTTC (World Travel and Tourism Council) 2007. About WTTC. http://www.wttc.org/eng/About_WTTC/ (accessed 05.03.19) Wynberg, R., van Niekerk, J., & Kozanayi, W. (2015). Formalisation of natural product trade in Southern Africa: Unintended consequences and policy blurring biotrade and bioprospecting. Society & NaturalResources, 28, 559–574. Xolocotzi EH (1983) El concepto de etnobotánica. In: Barrera A (ed) La etnobotánica: três puntos de vista y uma perspectiva. Instituto Nacional de Investigaciones sobre Recursos Bióticos, Xalapa, pp 13–18. Yessoufou, K., Davies, T.J., Maurin, O., Kuzmina, M., Schaefer, H., van der Bank, M. and Savolainen, V., 2015. Large herbivores favour species diversity but have mixed impacts on phylogenetic community structure in an African savanna ecosystem. Journal of Ecology, 101(3), 614-625. 132 Yessoufou, K. (2012). Phylogenetic analysis of plant community assemblages in the Kruger National Park, South Africa (Doctoral dissertation, University of Johannesburg). York, T., De Wet, H., & Van Vuuren, S. F. (2011). Plants used for treating respiratory infections in rural Maputaland, KwaZulu-Natal, South Africa. Journal of Ethnopharmacology, 135(3), 696–710. Zeileis, A., Kleiber, C., & Jackman, S. (2008). Regression models for count data in R. Journal of Statistical Software, 27(8), 1–25. Zone A, Wondimu T, Asfaw Z, Kelbessa E (2007) Ethnobotanical study of medicinal plants around “Dheeraa” town, Arsi Zone, Ethiopia. J Ethnopharmacol 112:152–161 133 APPENDICES Supplementary Information APPENDIX A NON-RANDOM HYPOTHESIS DATA SET OBJECTIVE 1: TESTING NON-RANDOM HYPOTHESIS TREES AND SHRUBS DISTRIBUTION Family_APG_IV Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Achariaceae Achariaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Origin Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Genus_species Anisotes_formosissimus Anisotes rogersii Barleria_albostellata Barleria_rotundifolia Duvernoia_ aconitiflora Duvernoia_ adhatodoides Justicia_ campylostemon Mackaya _bella Metarungia_ longistrobus Ruspolia_ hypocrateriformis Ruttya _ovata Sclerochiton_ harveyanus Sclerochiton_ ilicifoloius Kiggelaria_ africana Xylotheca_ kraussiana Harpephyllum _caffrum Lannea_discolor Lannea_edulis Lannea_ gossweilleri Lannea_schweinfuthii Ozoroa__barbertonensis Ozoroa__engleri Ozoroa__obovata Ozoroa _ paniculosa Ozoroa_ paniculosa Protorhus_ longifolia Ozoroa _sphaerocarpa Sclerocarya_ birrea Rhus__batophylla Sersia_ chirindensis Medicinal_ status Mpumalanga KNP 0 0 2 0 0 4 0 0 3 0 19 2 0 5 1 0 5 1 0 5 0 0 9 0 0 9 1 0 0 2 0 24 4 0 15 0 1 2 0 1 53 0 1 0 2 1 22 0 1 39 6 0 27 6 0 3 0 0 9 23 0 5 0 0 4 5 0 1 7 0 18 0 0 1 0 1 21 0 1 11 1 0 54 36 0 4 0 1 43 0 134 Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Penaeaceae Penaeaceae Penaeaceae Monimiaceae Apiaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Rhus _dentata Rhus_ discolor Rhus__dracomontana Rhus _engleri Rhus__gerrardi Rhus__gracillima Rhus__grandidens Rhus_ guenzii Rhus__harveyi Rhus _keetii Rhus_lancea Rhus__leptodictya Rhus__lucida Rhus magalismontana Rhus__montana Rhus__pallens Rhus__pentheri Rhus__pondoensis Rhus__pygmaea Rhus pyroides Rhus pyroides Rhus__rehmanniana Rhus___sekhukhuniensis Rhus__species Rhus__tomentosa Rhus__transvaalensis Rhus__tumulicola Rhus_ tumulicola Rhus _tumulicola Rhus__wilmsii Rhus__zeyheri Annona__senegalensis Artabotrys__brachypetalus Hexalobus__monopetalus Monanthotaxis__caffra Monodora_ junodii Monodora__junodii__macrantha Uvaria gracilipes Uvaria_lucida Xylopia_ parviflora Olinia__emarginata Olinia__radiata Olinia__rochetiana Xymalos__monospora Heteromorpha_arborescens_Var_abyssinica 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 1 52 53 1 12 34 11 8 15 1 8 7 35 22 11 3 3 41 10 2 46 39 17 7 6 7 21 38 19 19 8 20 28 0 8 16 0 0 0 0 1 28 3 9 23 75 135 0 0 0 0 0 0 0 13 0 0 0 7 0 0 0 0 6 0 0 3 0 0 0 0 0 3 0 0 0 0 0 9 6 11 0 3 1 5 2 1 0 0 0 0 2 Apiaceae Apiaceae Apiaceae Apiaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Aquifoliaceae Araliaceae Araliaceae Araliaceae Araliaceae Araliaceae Araliaceae Araliaceae Arecaceae Arecaceae Arecaceae Arecaceae Asparagaceae Asparagaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Heteromorpha_arborescens_Var_frutescens Heteromorpha__involucrata Heteromorpha__pubescens Steganotaenia__araliacea Acokanthera__oppositifolia Acokanthera__rotundata Adenium__multiflorum Adenium__swazicum Ancyloboyrys_ capensis Carissa__bispinosa___bispinosa Carissa__bispinosa___Zambesiensis Carissa__edulis Carissa__tetramera Diplorhynchus__condylocarpon Gonioma__kamassi Holarrhena__pubescens Landolphia__kirkii Pachypodium_saundersii Rauvolfia__caffra Strophanthus__gerrardii Strophanthus__kombe Strophanthus__petersianus Strophanthus__speciousus Tabernaemontana__elegans Tabernaemontana__ventricosa Wrightia__natalensis Ilex__mitis Cussonia__natalensis Cussionia__paniculata Cussonia__spicata Cussonia__sphaerocephala Cussonia__transvaalensis Schefflera__umbellifera Seemannaralia__gerrardii Borassus__aethiopium Hyphaene__coriacea Hyphaene_ petersiana Phoenix__reclinata Dracaena__aletriformis Dracaena___transvaalensis Aloe_excelsa Aloe__alooides Aloe_angelica Aloe_arborescens Aloe_barberae 0 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 1 1 1 0 1 1 1 0 0 1 0 0 1 0 0 0 0 1 1 0 0 0 0 1 0 13 16 11 23 25 11 0 6 8 27 36 16 3 19 2 0 0 20 20 4 0 0 9 4 3 5 38 22 33 36 1 23 18 7 0 2 0 17 13 4 0 5 0 46 5 136 0 0 0 4 4 3 7 2 0 3 2 2 5 5 0 6 3 3 6 1 5 4 0 6 1 3 0 4 0 1 0 0 0 0 1 10 15 26 0 0 1 0 2 0 0 Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Balanitaceae Balanitaceae Bignoniaceae Bignoniaceae Bignoniaceae Bignoniaceae Bignoniaceae Bignoniaceae Boraginaceae Boraginaceae Boraginaceae Boraginaceae Boraginaceae Boraginaceae Boraginaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Aloe_castanea Aloe__littoralis Aloe_marlothii Aloe_spicata Brachylaena__discolor Brachylaena__huillensis Anisopappus__junodii Anisopappus_ smutsii Brachylaena__ilicifolia Brachylaena__rotundata Brachylaena__transvaalensis Eumorphia_ davyi Eumorphia___swaziensis Helichrysum__kraussii Lopholaena__corifolia Lopholaena__platyphylla Phymaspermum__acerosum Pulchea_dioscordia Senecio_barbertonicus Seriphium__plumosum Seriphium__species Tarchonanthus___trilobus Vernonia__adoensis Vernonia__amygdalina Vernonia__aurantiaca Vernonia_ colorata Vernonia__tigna Vernonia__triflora Vernonia__wollastonii Vernonia__myriantha Balanites__maughamii Balanites___pedicillaris Kigelia_ africana Markhamia__zanzibarica Rhigozum__obvatum Rhigozum_brevispinosum Rhigozum__zambesiacum Tecoma_capensis Cordia__caffra Cordia__grandicalyx Cordia__monoica Cordia_ovalis Cordia__sinensis Ehretia__amoena Ehretia__obtusifolia 1 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 1 0 32 0 65 21 2 3 2 7 9 13 30 4 4 31 37 1 17 5 18 29 16 19 6 6 1 17 31 5 16 19 20 1 9 3 3 6 7 19 2 0 13 13 1 30 14 137 0 1 7 12 0 5 0 0 0 0 2 0 0 0 0 0 0 14 1 0 0 0 0 0 0 6 0 0 0 0 11 3 8 4 0 0 7 3 1 6 10 10 6 10 19 Boraginaceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Buxaceae Canellaceae Cannabaceae Cannabaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Celastraceae Celastraceae Celastraceae Celastraceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Ehretia__rigida Commiphora__africana Commiphora__edulis Commiphora_glandulosa Commiphora__harveyi Commiphora__marlothii Commiphora_mollis Commiphora_neglecta Commiphora__pyracanthoides Commiphora__schimperi Commiphora__tenuipetiolata Commiphora__viminea Commiphora___woodii Commiphora__zanzibarica Bridelia_cathartica Bridelia_micrantha Bridelia_mollis Cleistantus__schlechteri Buxus_macowani Warburgia__salutaris Celtis__africana Trema__orientalis Boscia__albitrunca Boscia__angustifolia Boscia__foetida__filipes Boscia__foetida__minima Boscia foetida _rehmanniana Boscia__mossambicensis Cadaba_aphylla Cadaba_ natalensis Cadaba_termitaria Capparis__fascicularis Capparis__sepiaria Capparis__tomentosa Maerua__angolensis Maerua__cafra Maerua__decumbens Maerua__juncea Maerua_parvifolia Maerua__rosmarinoides Thilachium__africanum Cassine_peragua Catha_edulis Elaeodendron__croceum Elaeodendron__transvaalense 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 1 1 1 1 0 0 0 1 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 1 1 1 49 15 0 17 26 19 24 7 15 11 5 3 2 0 17 20 21 1 9 10 64 39 52 0 0 0 22 3 4 4 10 17 0 18 35 33 2 20 15 18 1 5 18 2 24 138 5 15 5 14 0 2 8 4 10 3 7 1 0 1 8 1 6 3 0 1 2 4 13 3 2 1 0 7 0 0 5 1 4 17 21 3 4 10 19 3 5 0 4 0 9 Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Fabaceae Fabaceae Chrysobalanaceae Clusiaceae Clusiaceae Clusiaceae Clusiaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Exotic Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Elaeodendron__zeyheri Gymnosporia__heterophylla Gymnosporia__maranguensis Gymnosporia_oxycarpa Gymnosporia__pubescens Gymnosporia_putterlickioides Gymnosporia__senegalensis Gymnosporia_buxifolia Gymnosporia_ glaucophyllia Gymnosporia_grandifolia Gymnosporia__harveyana Hippocratea__africana. Hippocratea_crenata Hippocratea__indica Hippocratea__longipetiolata Hippocratea_parvifolia Maytenus_peduncularis Maytenus__undata Putterlickia_verrucosa Salacia__kraussii Lauridia__tetragona Pterocelastrus___echinatus Pterocelastrus__rostratus Pterocelastrus_tricuspidatus Caesalpinia__rostrata Cassia_abbreviata Parinari__curatellifolia Garcinia__gerrardii Garcinia__livingstonei Hypericum__revolutum Hypericum__roeperianum Combretum__apiculatum Combretum_ celastroides Combretum___mkuzense Combretum_collinum Combretum__erythrophyllum Combretum__hereroense Combretum__imberbe Combretum__kraussii Combretum__microphyllum Combretum__molle Combretum_mossambicense Combretum__nelsonii Combretum__padoides Combretum__woodii 1 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0 1 1 1 1 0 1 0 0 0 0 4 16 4 0 0 0 23 47 28 5 25 3 0 0 15 3 29 38 6 0 7 45 8 0 1 19 14 1 5 17 3 65 0 0 12 65 55 24 41 11 71 5 6 5 13 139 0 0 9 3 4 6 17 0 5 0 1 3 9 4 12 6 1 2 1 3 0 0 0 0 3 1 2 0 8 0 0 44 5 1 11 7 40 41 0 16 6 30 0 3 1 Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Cornacaeae Connaraceae Cupressaceae Cyatheaceae Cyatheaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ericaceae Ericaceae Ericaceae Ericaceae Ericaceae Ericaceae Erythroxylaceae Erythroxylaceae Escalloniacea Euphorbiaceae Euphorbiaceae Phyllanthaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Combretum__zeyheri Pteleopsis__myrtifolia Terminalia__phanerophlebia Terminalia__prunioides Terminalia__sericea Curtisia__dentata Cnestis__polyphylla Widdringtonia__nodiflora Cyathea__capensis Cyathea___degrei Drypetes__arguta Drypetes__gerrardii Drypetes__mossambicensis Drypetes__reticulata Diospyros__austro_africana Diospyros__dichrophylla Diospyros__galpinii Diospyros__loureiriana Diospyros_lycioides Diospyros__mespiliformis Diospyros__natalensis Diospyros__villosa Diospyros__whyteana Euclea__crispa Euclea__crispa Euclea daphnoides Euclea__dewinteri Euclea__linearis Euclea_divinorum Euclea_ natalensis Euclea__undulata Euclea__species Euclea__schimperi Erica__cafforum Erica__drakensbergensis Erica__natalitia__Bolus Erica__oatesii Erica__species Vaccinum_exul Erythroxylum__delagoense Erythroxylum__emarginatum Choristylis__rhamnoides Acalypha__glabrata Acalypha__pubiflora Andrachne__ovalis 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 65 0 27 26 59 26 9 8 7 35 1 4 0 0 11 5 18 0 24 24 4 6 69 51 31 19 1 16 33 62 33 3 22 12 32 9 9 1 18 24 24 24 23 1 13 140 39 4 11 31 33 0 0 0 0 0 0 0 2 6 0 0 0 2 1 35 0 1 4 4 2 20 0 0 37 9 8 0 18 0 0 0 0 0 0 0 5 0 3 5 0 Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Androstachys__johnsonii Antidesma__venosum Alchornea__laxiflora Clutia___affinis Clutia__pulchella Croton__gratissimus Croton__madandensis Croton__megalobotrys Croton__menyhartiI Croton__pseudopulchellus Croton__steenkampianus Croton__sylvaticus Erythrococca__menyharthii Euphorbia__confinalis Euphorbia__cooperi Euphorbia__espinosa Euphorbia__evansii Euphorbia__excelsa Euphobia__grandialata Euphorbia__grandicornis Euphorbia__grandidens Euphorbia _guerichiana Euphorbia__ingens Euphorbia__lydenburgensis Euphorbia__rowlandii Euphorbia__tirucalli Euphorbia__sekukuniensis Euphorbia_species Euphorbia__triangularis Sapium__ellipticum Sapium___integerrimum Spirostachys_africana Suregada_africana Synadenium__cupulare Acacia _ataxacantha Acacia__borleae Acacia__brevispica Acacia_burkei Acacia__caffra Acacia__chariessa Acacia__ebutsiniorum Acacia__davyi Acacia__erioloba Acacia__erubescens Acacia__exuvialis 1 1 0 1 1 1 0 1 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 0 1 0 0 0 24 0 15 35 31 2 6 14 0 1 6 5 3 23 0 13 4 1 2 1 1 43 5 0 22 6 2 6 9 2 34 15 8 55 3 1 40 77 1 1 24 5 8 32 141 8 4 7 1 0 10 5 15 2 3 3 1 2 7 3 4 0 0 0 0 0 1 7 0 2 8 0 0 0 0 0 20 0 2 0 12 1 21 7 0 0 0 0 26 20 Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Acacia__galpini Acacia__gerrardii Acacia__grandicornuta Acacia__karroo Acacia__luederitzii Acacia__mellifera Acacia__nigrescens Acacia__nilotica Acacia__permixta Acacia_ polyacantha Acacia__robusta Acacia_robusta_robust Acacia__schweinfurthii Acacia Senegal Acacia_senegal_Brenan Acacia__sieberiana Acacia__tenuispinaL Acacia__swazica Acacia__tortilis Acacia_welwitschii Acacia__xanthophloea Adenopodia__spicata Aeschynomene__nodulosa Aeschynomene__rehmannii Afzelia__quanzensis Albizia__adianthifolia Albizia___amara Albizia__anthelmintica Albizia__brevifolia Albizia__forbesii Albizia__harveyi Albizia__petersiana Albizia__tanganyicensis Albizia__versicolor Baphia__massaiensis Bauhinia_galpinii Bauhinia_tomentosa Bolusanthus_speciosus Burkea_africana Calpurnia__aurea Calpurnia_glabrata Calpurnia__sericea Cassia_abbreviata Colophospermum_mopane Cordyla__africana 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 1 11 26 18 85 21 19 44 64 1 3 24 28 16 17 24 47 2 18 51 0 1 24 3 31 0 2 0 21 5 0 17 5 1 25 0 39 9 25 24 26 7 5 0 1 0 142 0 19 19 3 1 0 27 21 0 2 18 0 6 7 9 5 0 2 28 9 21 0 0 0 18 2 4 4 12 17 35 13 2 10 2 2 0 28 2 2 0 0 20 28 2 Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Crotalaria___capensis Crotalaria__doidgeae Crotalaria__laburnifolia Crotalaria__monteiroi Crotalaria___natalitia Crotalaria__pallida Dalbergia__armata Dalbergia__melanoxylon Dalbergia___nitidula_ Baker Dalbergia__obovata Dichrostachys_cinerea_Brummitt Dichrostachys__cinerea_ Brenan Elephantorrhiza__burkii Elephantorrhiza__elephantina Elephantorrhiza__obliqua Elephantorrhiza_praetermissa Eriosema__psoraleoides Elephantorrhiza__goetzei Erythrina__humeana Erythrina__latissima Erythrina__lysistemon Erythrina__zeyheri Faidherbia__albida Guibourtia__conjugata Indigofera__arrecta Indigofera__fulgens Indigofera___homblei Indigofera__lupatana Indigofera___swaziensis Indigofera__tinctoria Indigofera__tristoides Mundulea__sericea Newtonia__hildebrandtii Ormocarpum_kirkii Ormocarpum___trichocarpum Peltophorum_ africanum Philenoptera__violacea Piliostigma__thonningii Pseudarthria__hookeri Pterocarpus__angolensis Pterocarpus__lucens Pterocarpus__rotundifolius Pterolobium__stellatum Schotia_brachypetala Schotia__capitata 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 1 0 0 0 1 1 21 8 12 17 4 7 40 18 5 1 68 42 21 41 4 6 39 4 15 17 55 29 9 0 17 0 7 6 24 0 27 56 0 14 18 69 24 17 26 36 0 42 11 41 8 143 0 1 13 2 0 2 0 34 4 0 33 15 5 4 0 0 6 4 10 0 3 0 9 4 2 1 0 7 5 6 0 23 2 0 23 35 36 3 2 7 1 29 0 28 14 Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Flacourtiacae Hamamelidaceae Gentianaceae Hernandiaceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Icacinaceae Icacinaceae Kirkiaceae Kirkiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lauraceae Lauraceae Linaceae Loganiaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Schotia___latifolia Senna__petersiana Xanthocercis__zambesiaca Xeroderris__stuhlmannii Xylia_torreana Aphloia__theiformis Trichocladus__grandiflorus Anthocleista___grandiflora Gyrocarpus americanus Hippocratea_ africana Hippocratea_ crenata Hippocratea_ indica Hippocratea__longipetiolata Hippocratea_parvifolia Oliv. Apodytes__dimidiata Cassinopsis__ilicifolia (Hochst.) Kuntze Kirkia__acuminata Kirkia__wilmsii Clerodendrum__glabrum Clerodendrum__pleiosciadium Karomia_speciosa Leonotis__intermedia Leonotis__leonurus Leonotis__nepetifolia Premna__mooiensis Rhotheca__myricoides Hemzygia__albiflora Plectranthus__fruticosus Hemizygia__parvifolia Pycnostachys__urticifolia Salvia__dolomitica Syncolostemon__eriocephalus Tetradenia__brevispicata Tetradenia__riparia Tinnea__barbata Tinnea__rhodesiana Vitex__ferruginea Vitex___harveyana Vitex___obovata Vitex__patula Vitex_rehmannii Cryptocarya_ transvaalensis Cryptocarya__woodii Hugonia__orientalis Strychnos__cocculoides 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 1 1 0 0 2 25 6 0 0 4 14 11 0 3 0 0 17 3 42 30 3 29 50 0 16 4 6 0 28 44 17 29 3 11 6 11 9 42 4 16 2 2 28 0 11 14 26 0 11 144 0 16 23 4 2 0 0 3 4 3 9 4 12 6 0 1 15 0 10 3 6 0 0 0 1 4 0 0 0 4 0 0 0 5 0 4 8 8 2 3 1 0 0 3 0 Loganiaceae Loganiaceae Loganiaceae Loganiaceae Loganiaceae Loganiaceae Loganiaceae Proteaceae Proteaceae Rosaceae Lythraceae Malpighiaceae Malpighiaceae Malpighiaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Marattiaceae Celastraceae Meliaceae Meliaceae Meliaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Strychnos__decussata Strychnos__henningsii Strychnos__madagascariensis Strychnos_potatorum Strychnos_pungens Strychnos__spinosa Strychnos__usambarensis Leucospermum__gerrardii Leucospermum__saxosum Leucosidea__sericea Galpinia_transvaalica Acridocarpus_natalitius Triaspis_glaucophylla Triaspis__hypericoides Abutilon__angulatum Abutilon__sonneratum Adansonia_digitata Azanza__garckeana Cola__greenwayi Dombeya__burgessiiae Dombeya__cymosa Dombeya__rotundifolia Gossypium__herbaceum Grewia_ bicolor Grewia__caffra Grewia__flavescens Grewia__flavescens Grewia__gracillima Grewia__hexamita Grewia__inaequilatera Grewia__microthyrsa Grewia__monticola Grewia__sulcata Grewia__occidentalis Grewia__villosa Hibiscus__calyphyllus Hibiscus_micranthus Sterculia__murex Sterculia__rogersii Triumfetta__pilosa Marattia__faxinea Mystroxylon__aethiopicum Ekebergia__capensis Ekebergia__pterophylla Entandrophragma__caudatum 1 1 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 0 1 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 7 16 54 0 10 33 8 4 3 35 11 7 21 2 6 5 2 0 3 4 10 65 16 28 11 35 33 0 22 2 0 40 48 48 5 26 14 12 18 27 9 17 30 26 0 145 25 1 37 5 1 31 4 0 0 0 14 0 0 0 4 0 8 1 0 0 2 1 10 25 7 0 13 2 19 3 8 21 2 2 9 4 8 0 5 2 0 1 4 0 3 Meliaceae Meliaceae Meliaceae Meliaceae Meliaceae Melianthaceae Melianthaceae Melianthaceae Melianthaceae Melastomataceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Myricaceae Myricaceae Myricaceae Myricaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Nyctaginaceae Ochnaceae Ochnaceae Ochnaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Trichilia__dregeana Trichilia__emetica Turraea__floribunda Turraea__nilotica Turraea__obtusifolia Bersama__lucens Bersama__tysoniana Greyia__radlkoferi Greyia_sutherlandii Memecylon__natalense Ficus__abutilifolia Ficus__burkei Ficus__burtt_davyi Ficus__capreifolia Ficus__craterostoma Ficus_ glumosa Ficus__ingens Ficus natalensis Ficus__petersii Ficus__salicifolia Ficus__sansibarica Ficus__stuhlmannii Ficus__sur__Forssk. Ficus_sycomorus Ficus_tettensis Maclura_africana Myrica_pilulifera Morella_brevifolia Morella_microbracteata Morella_ serrata Eugenia__woodii Eugenia__mossambicencis Eugenia__natalitia Heteropyxis__canescens Heteropyxis__natalensis Syzygium__cordatum Syzygium__gerrardii Syzygium__guineense Syzygium__legatii Syzygium_species Syzygium_species Phaeoptilium__spinosum Ochna__arborea Ochna _inermis Ochna__natalitia 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 8 20 3 9 28 4 13 29 18 1 36 39 1 8 19 33 51 0 13 36 6 14 50 25 6 4 31 6 3 26 7 6 20 9 41 45 18 22 7 1 1 0 15 14 39 146 0 8 0 2 10 0 0 0 0 0 10 0 0 6 0 4 6 1 1 2 3 0 2 20 0 9 0 0 0 3 0 3 0 0 1 17 0 14 0 0 0 1 0 9 5 Ochnaceae Ochnaceae Ochnaceae Ochnaceae Ochnaceae Ochnaceae Ochnaceae Lauraceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Oleaceae Oleaceae Onagraceae Osmundaceae Santalaceae Chrysobalanaceae Passifloraceae Passifloraceae Passifloraceae Passifloraceae Pedaliaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Picrodendraceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Ochna__pulchra Ochna__oconnori Ochna__serrulata Ochna__barbosae Ochna__confusa Ochna_gamostigmata Ochna__holstii Ocotea__bullata Ocotea___kenyensis Olax_dissitiflora Ximenia__americana Ximenia_ caffra Chionanthus__battiscombei Chionanthus__foveolatus Chionanthus_foveolatus_Stearm Chionanthus__peglerae Jasmimun__abyssinicum Jasminum_breviflorum Jasminum__fluminense Jasminum__multipartitum Jasminum__stenolobum Olea__capensis Olea_capensis_macrocarpa Olea__europaea Schrebera__alata Ludwigia_octovalvis Todea_barbara Osyris__lanceolata Parinari__curatellifolia Adenia_spinosa Adenia_fruticosa Adenia_gummifera Paropsia__braunii Sesamothamnus__lugardii Antidesma__venosum Bridelia_cathartica Bridelia_micrantha Bridelia_mollis Flueggea__virosa Hymenocardia__ulmoides Margaritaria__discoidea Phyllanthus_pinnatus Phyllanthus__reticulatus Pseudolachnostylis__maprouneaefolia Androstachys__johnsonii 1 1 1 0 0 0 1 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 1 1 1 1 0 1 0 1 1 1 13 15 14 0 16 6 15 4 7 13 29 55 0 37 7 7 3 6 21 19 16 33 9 49 40 11 4 35 14 0 8 18 0 2 20 15 18 18 35 0 3 1 22 6 0 147 5 0 0 1 0 0 0 0 0 11 23 26 2 2 0 0 0 0 8 1 7 1 0 1 10 2 0 0 2 2 0 2 2 3 7 12 3 8 24 7 4 10 19 10 8 Piperaceae Pittosporaceae Plumbaginaceae Podcarpaceae Polygalaceae Polygalaceae Polygalaceae Portulacaceae Primulaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Rosaceae Putranjavaceae Putranjavaceae Ranunculaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rosaceae Rosaceae Rosaceae Rosaceae Rosaceae Rosaceae Rubiaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Piper__capense Pittosporum__viridiflorum Plumbago__auriculata Afrocarpus__falcatus Podocarpus__latifolius Securidaca__longipedunculata Polygala__virgata Portulacaria_afra Maesa__lanceolata Faurea_galpinii Faurea__macnaughtonii Faurea__rochetiana Faurea__saligna Protea__caffra Protea__caffra__falcata Protea__comptonii Protea__curvata Protea__gaguedi Protea__laetans Protea__parvula Protea__roupelliae Protea__rubropilosa Protea__simplex Protea___subvestita Protea__wewitschii Prunus__africana Drypetes__gerrardii Drypetes__reticulata Clematis__brachiata Berchemia__discolor Berchemia__zeyheri Helinus__integrifolius Phylica_paniculata Rhamnus__prinoides Scutia__myrtina Ziziphus_mucronata Ziziphus__rivularis Ziziphus__zeypherana Cliffortia__linearifolia Cliffortia__nitididula Cliffortia__repens Cliffortia___serpylliflia Cliffortia__strobilifera Anthospermum__welwitschii Breonadia__salicina 1 1 1 1 0 1 1 0 1 0 1 1 0 1 0 0 0 1 0 0 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 8 52 4 19 30 3 33 6 42 17 3 32 60 60 5 4 1 29 3 13 35 8 5 1 24 20 4 0 42 6 46 38 21 38 19 65 1 24 27 22 16 4 15 14 27 148 1 1 1 0 0 1 0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 1 8 4 3 2 1 0 17 6 0 0 0 0 0 0 0 4 Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Burchellia__bubalina Canthium__ciliatum Canthium__inerme Canthium__setiflorum Catunaregam__spinosa Cephalanthus__natalensis Coddia__rudis Crossopteryx__febrifuga Gardenia__resiniflua Gardenia__volkensii Heinsia__crinita Hymenodictyon__parvifolium Hyperacanthus__amoenus Keetia_ guenzii Kraussia__floribunda Lagynia__dryadum Leptactina__delagoensis Oxyanthus__speciosus Pachystigma__bowkeri Pachystigma__macrocalyx Pavetta__barbertonensis Pavetta_catophylla Pavetta__cooperi Pavetta_edentula Pavetta__harborii Pavetta__lanceolata Plectroniella__armata Psychotria_capensis Psychotria___zombamontana Psydrax_ locuples Pyrostria__hystrix Rothmannia__fischeri Tarenna_supra_axillaris Tarenna__zygon Tricalysia__junodii Tricalysia__lanceolata Vangueria__infausta Vangueria__madagascariensis Vangueria__parvifolia Calodendrum__capensis Clausena_anisata Ptaeroxylon__obliquum Teclea__pilosa Teclea__gerrardii Teclea__natalensis 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 21 20 39 0 10 40 26 0 1 21 0 0 28 15 16 0 0 16 5 24 3 6 18 22 0 16 17 38 7 4 6 29 24 0 2 36 60 19 8 27 37 20 4 2 3 149 0 0 0 5 9 0 6 3 0 10 5 5 2 0 2 4 1 0 0 0 0 11 0 0 3 2 6 0 0 3 3 0 0 3 10 0 11 0 0 0 3 9 6 0 0 Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Salicaceae Gerrardinaceae Salicaceae Salicaceae Salicaceae Salicaceae Salicaceae Salicaceae Salvadoraceae Salvadoraceae Salvadoraceae Sapindaceae Sapindaceae Sapindaceae Sapindaceae Sapindaceae Sapindaceae Sapindaceae Rutaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Toddalia__asiatica Toddaliopsis__bremekampii Vepris__lanceolata Vepris__reflexa Zanthoxylum__carpense Zanthoxylum__davyi Zanthoxylum__humile Zanthoxylum__leprieurii Flacourtia__indica Gerrardina__foliosa Homalium_dentatum Oncoba__spinosa Salix__mucronata Rawsonia__lucida Scolopia__zeyheri Trimeria__grandifolia Azima__tetracantha Salvadora__australis Salvadora__persica Allophylus__decipiens Deinbollia__oblongifolia Deinbollia__xanthocarpa Dodonaea_angustifolia_L.f Hippobromus__pauciflorus Pappea__capensis Stadmannia_oppositifolia Ptaeroxylon__obliquum Englerophytum__magalismontanum Englerophytum__natalense Manilkara__concolor Manilkara__discolor Manilkara__mochisia Mimusops__obovata Mimusops__zeyheri Sideroxylon__inerme Vitellariopsis__marginata Lycium__cinereum Lycium__shawii Solanum__aculeastrum Solanum__anguivi Solanum__catombelense Solanum_giganteum Solanum___lichtensteinii Solanum_kwebense Solanum_panduriforme 0 0 1 0 1 1 0 0 1 1 0 1 1 0 0 1 1 0 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 0 1 1 0 0 1 0 0 1 1 1 1 8 0 16 43 54 16 2 0 21 9 26 9 43 15 21 37 3 4 0 0 2 0 27 38 46 0 20 70 13 8 1 15 12 46 18 4 8 3 16 13 1 32 39 2 53 150 0 3 0 8 0 0 12 3 3 0 1 5 1 0 0 0 5 4 3 1 1 3 2 2 14 3 7 4 0 0 0 22 0 13 7 3 0 1 0 0 2 2 6 2 12 Solanaceae Scrophulariaceae Scrophulariaceae Stilbaceae Stilbaceae Stilbaceae Stilbaceae Stilbaceae Streliziaceae Thymelaeaceae Thymelaeaceae Ulmaceae Urticaceae Urticaceae Velloziaceae Verbenaceae Verbenaceae Vitaceae Vitaceae Vitaceae Vitaceae Vitaceae Vitaceae Vitaceae Vitaceae Menispermaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Penaeaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Rutaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Thymelaeaceae Thymelaeaceae Rhizophoraceae Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Exotic Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Native Exotic Native Native Native Native Native Native Native Native Native Native Native Solanum__rubetorum Bowkeria__citrina Bowkeria__cymosa Halleria__lucida Nuxia__congesta Nuxia__floribunda Nuxia__gracilis Nuxia__oppositifolia Strelitzia_caudata Dais_cotinifolia_L Englerodaphne__pilosa Chaetachne__aristata Obetia__tenax Pouzolzia__mixta Xerophyta_retinervis Lantana_rugosa Lippia_javanica Cissus__cactiformis Cissus__cornifolia Rhoicissus_digitata Rhoicissus_revoilii Rhoicissus__tomentosus Rhoicissus__tridentata Kotschya__parvifolia Kotschya__thymodora Tiliacora__funifera Flemingia__grahamiana Lessertia__microphylla Otholobium__wilmsii Psoralea__glabra Psoralea__latifolia Psoralea___rhizotoma Rhynchosia__clivorum Sesbania__sesban Tephrosia__cordata Tephrosia___polystachya Tephrosia__rhodesica Tephrosia__subulata Oricia__bachmannii Margaritaria__discoidea Margaritaria__discoidea_ subsp_Baill Micrococca__capensis Passerina_montana Peddiea__africana Cassipourea__malosana 0 0 0 1 0 1 0 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 1 1 12 1 22 48 43 21 5 23 9 29 3 29 22 27 52 43 57 6 8 6 15 28 50 7 5 1 18 10 32 2 23 3 15 23 9 11 22 11 2 1 3 3 21 21 12 151 0 0 0 0 0 1 0 21 0 0 0 0 5 10 3 10 4 5 19 0 5 0 2 0 0 0 1 0 0 0 0 0 0 12 0 1 9 0 0 0 4 0 0 0 0 Rhizophoraceae Salicaceae Salicaceae Salicaceae Salicaceae Scrophulariaceae Scrophulariaceae Scrophulariaceae Scrophulariaceae Scrophulariaceae Native Native Native Native Native Native Native Native Native Native Cassipourea__swaziensis Dovyalis__caffra Dovyalis__lucida. Dovyalis__rhamnoides Dovyalis__zeyheri Buddleja_auriculata Buddleja___dysophylla Buddleja__puchella Buddleja__saligna Buddleja_salviifolia 0 0 0 0 0 0 0 0 1 1 3 19 13 13 45 36 4 6 20 60 152 0 7 0 0 2 0 0 0 0 0 APPENDIX B APPARENCY THEORY AND RESOURCES AVAILABILITY DATA SET family_apg_IV origin Acanthaceae native Anisotes_formosissimus Acanthaceae native Anisotes_rogersii Acanthaceae native Barleria_albostellata Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Acanthaceae Achariaceae Achariaceae Anacardiaceae genus_species native Barleria_rotundifolia native native native native native native native native native native native native Duvernoia_aconitiflora Duvernoia_adhatodoides Justicia__campylostemon Mackaya__bella Metarungia__longistrobus Ruspolia__hypocrateriformis Ruttya__ovata Sclerochiton_harveyanus Sclerochiton_ilicifoloius Kiggelaria__africana Xylotheca__kraussiana Harpephyllum__caffrum probability_ wood density growth rate Height lifeform overuse 653 0,001531 2,5 tree 0 645,89 0,001548 2 tree 0 678 0,001475 2 tree 0 640 0,001563 2 tree 0 0 455,3562 0,002196 3 tree 0 560 0,001786 6 tree 0 653 0,001531 2,5 tree 0 849 0,001178 4 tree 0 678 0,001475 2 tree 0 455,3562 0,002196 3 tree 0 849 0,001178 4 tree 0 849 0,001178 4 tree 0 678 0,001475 2 tree 0 545,55 0,001833 15 tree 0 640 0,001563 2 tree 0 715,8333 0,001397 15 tree dbh UV 0,761459 -0,19901 0,513973 -0,11662 0,513973 -0,11662 total_use 0 0 0 0,513973 -0,11662 1,049841 -0,08805 3,559476 -0,03922 0,761459 -0,1009 1,742619 -0,06778 0,513973 -0,11662 1,049841 -0,08805 1,742619 -0,06778 1,742619 -0,06778 0,513973 -0,11662 17,87948 0,025346 0,513973 -0,11662 17,87948 0,025346 1 0 1 0 2 0 0 0 0 2 4 4 3 145 Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Lannea_discolor Lannea_edulis Lannea__gossweilleri Lannea_schweinfuthii Ozoroa__barbertonensis Ozoroa__engleri Ozoroa__obovata Ozoroa__paniculosa Ozoroa_paniculosa_salicina Protorhus__longifolia Ozoroa__sphaerocarpa Sclerocarya__birrea Rhus__batophylla Sersia_chirindensis Rhus_dentata Rhus__discolor Rhus__dracomontana Rhus__engleri Rhus__gerrardi Rhus__gracillima Rhus__grandidens Rhus__guenzii Rhus__harveyi Rhus__keetii Rhus_lancea Rhus__leptodictya Rhus__lucida Rhus__magalismontana__magalismotana Rhus_ magalismontana_coddi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 485 430 401 592,56 645,89 675 675 675 675 715,8333 645 440 645,89 701,9091 498,56 774,8 645,89 455,3562 678 774,8 678 689 774,8 689 725 698,6326 455,3562 653 653 0,002062 0,002326 0,002494 0,001688 0,001548 0,001481 0,001481 0,001481 0,001481 0,001397 0,00155 0,002273 0,001548 0,001425 0,002006 0,001291 0,001548 0,002196 0,001475 0,001291 0,001475 0,001451 0,001291 0,001451 0,001379 0,001431 0,002196 0,001531 0,001531 3 14 14 15 1,5 6 7,5 7,5 6 15 1,5 18 2 23 5 1 1,5 3 2 1 2 8 1 8 12 9 3 0,5 2,1 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree shrub tree 1,049841 15,83342 15,83342 17,87948 0,309643 3,559476 5,273421 5,273421 3,559476 17,87948 0,309643 24,65086 0,513973 37,9623 2,581718 0,151592 0,309643 1,049841 0,513973 0,151592 0,513973 5,908331 0,151592 5,908331 12,06837 7,270591 1,049841 0,044711 0,560099 -0,08805 0,020485 0,020485 0,025346 -0,13689 -0,03922 -0,02349 -0,02349 -0,03922 0,025346 -0,13689 0,038192 -0,11662 0,055464 -0,05206 -0,16546 -0,13689 -0,08805 -0,11662 -0,16546 -0,11662 -0,01895 -0,16546 -0,01895 0,009624 -0,01065 -0,08805 -0,2143 -0,11319 4 0 0 2 0 0 0 0 0 1 1 1 1 2 2 0 0 1 0 0 0 1 0 0 1 1 0 0 0 146 Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Anacardiaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Annonaceae Penaeaceae Penaeaceae Penaeaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Rhus__montana Rhus__pallens Rhus__pentheri Rhus__pondoensis Rhus__pygmaea Rhus__pyroides__pyroides Rhus__pyroides__gracilis Rhus__rehmanniana Rhus___sekhukhuniensis Rhus__species Rhus__tomentosa Rhus__transvaalensis Rhus_ tumulicola_tumulicola Rhus__tumulicola___meeuseana Rhus_ tumulicola_pumila Rhus__wilmsii Rhus__zeyheri Annona__senegalensis Artabotrys__brachypetalus Hexalobus__monopetalus Monanthotaxis_caffra Monodora_junodii_junodii Monodora__junodii__macrantha Uvaria_gracilipes Uvaria_lucida Xylopia__parviflora Olinia__emarginata Olinia__radiata Olinia__rochetiana 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 455,3562 849 762,2 774,8 653 599,9 675 675 455,3562 849 675 678 455,3562 774,8 653 653 678 603,33 510 748,6 750 712 780 593 640 786,275 498,56 786,275 849 0,002196 0,001178 0,001312 0,001291 0,001531 0,001667 0,001481 0,001481 0,002196 0,001178 0,001481 0,001475 0,002196 0,001291 0,001531 0,001531 0,001475 0,001657 0,001961 0,001336 0,001333 0,001404 0,001282 0,001686 0,001563 0,001272 0,002006 0,001272 0,001178 3 4 6 1 0,1 6 6 5 3 4 5 2 3,5 1 0,5 0,5 2 5 10 7 3 7 5 2 2 20 5 20 4 tree tree tree tree shrub tree tree tree tree tree tree tree tree tree shrub shrub tree tree tree tree tree tree tree tree tree tree tree tree tree 1,049841 1,742619 3,559476 0,151592 0,002625 3,559476 3,559476 2,581718 1,049841 1,742619 2,581718 0,513973 1,377368 0,151592 0,044711 0,044711 0,513973 2,581718 8,753288 4,669952 1,049841 4,669952 2,581718 0,513973 0,513973 29,67794 2,581718 29,67794 1,742619 -0,08805 -0,06778 -0,03922 -0,16546 -0,3277 -0,03922 -0,03922 -0,05206 -0,08805 -0,06778 -0,05206 -0,11662 -0,07719 -0,16546 -0,2143 -0,2143 -0,11662 1,909382 2,397772 2,14646 1,549456 2,14646 1,909382 1,263766 1,263766 2,886162 -0,05206 0,045616 -0,06778 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 2 1 1 4 2 2 0 1 0 2 1 0 147 Penaeaceae Apiaceae Apiaceae Apiaceae Apiaceae Apiaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Apocynaceae Aquifoliaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Xymalos__monospora Heteromorpha arborescensa_abyssinica Heteromorpha arborescens_fruitescens Heteromorpha__involucrata Heteromorpha__pubescens Steganotaenia__araliacea Acokanthera__oppositifolia Acokanthera__rotundata Adenium__multiflorum Adenium__swazicum Ancyloboyrys__capensis Carissa_bispinosa Carissa_bispinosa Carissa__edulis Carissa__tetramera Diplorhynchus__condylocarpon Gonioma__kamassi Holarrhena__pubescens Landolphia__kirkii Pachypodium_saundersii Rauvolfia__caffra Strophanthus__gerrardii Strophanthus__kombe Strophanthus__petersianus Strophanthus__speciousus Tabernaemontana__elegans Tabernaemontana__ventricosa Wrightia__natalensis Ilex__mitis 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 529,95 749,4889 455,3562 645,89 645,89 689 603,33 700 750 745 640 750 539,8 539,8 750 727,6667 698,6326 603,33 640 603,33 691,06 700 745,2356 748 774,7667 451,2 451,2 725 609,5 0,001887 0,001334 0,002196 0,001548 0,001548 0,001451 0,001657 0,001429 0,001333 0,001342 0,001563 0,001333 0,001853 0,001853 0,001333 0,001374 0,001431 0,001657 0,001563 0,001657 0,001447 0,001429 0,001342 0,001337 0,001291 0,002216 0,002216 0,001379 0,001641 25 10 3 1,5 1,5 8 5 6 3 1 2 3 5 5 3 8 10 5 4 5 18 6 7 17 15 8 8 12 30 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 43,96834 8,753288 1,049841 0,309643 0,309643 5,908331 2,581718 3,559476 1,049841 0,151592 0,513973 1,049841 2,581718 2,581718 1,049841 5,908331 8,753288 2,581718 1,742619 2,581718 24,65086 3,559476 4,669952 22,28977 17,87948 5,908331 5,908331 12,06837 60,6202 0,061339 -0,00322 -0,08805 -0,13689 -0,13689 -0,01895 -0,05206 -0,03922 -0,08805 -0,16546 -0,11662 -0,08805 -0,05206 -0,05206 -0,08805 -0,01895 -0,00322 -0,05206 -0,06778 -0,05206 0,038192 -0,03922 -0,02835 0,034165 0,025346 -0,01895 -0,01895 0,009624 0,074185 2 1 0 0 0 0 1 1 2 0 1 1 2 2 1 3 1 1 0 1 1 1 1 1 1 0 2 2 4 148 Araliaceae Araliaceae Araliaceae Araliaceae Araliaceae Araliaceae Araliaceae Arecaceae Arecaceae Arecaceae Arecaceae Asparagaceae Asparagaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Xanthorrhoeaceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Cussonia__natalensis Cussionia__paniculata Cussonia__spicata Cussonia__sphaerocephala Cussonia__transvaalensis Schefflera__umbellifera Seemannaralia__gerrardii Borassus__aethiopium Hyphaene__coriacea Hyphaene__petersiana Phoenix__reclinata Dracaena__aletriformis Dracaena___transvaalensis Aloe_excelsa Aloe__alooides Aloe_angelica Aloe_arborescens Aloe_barberae Aloe_castanea Aloe__littoralis Aloe_marlothii Aloe_spicata Brachylaena__discolor Brachylaena__huillensis Anisopappus__junodii Anisopappus__smutsii Brachylaena__ilicifolia Brachylaena__rotundata Brachylaena__transvaalensis 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 560 645,6 526,076 691,06 603,33 805 786,275 805 790 440 250 849 675 640 595 498,998 524,5 526,076 524,5 498,998 700 645 696,3875 655,6 645,89 653 675 689 846,8333 0,001786 0,001549 0,001901 0,001447 0,001657 0,001242 0,001272 0,001242 0,001266 0,002273 0,004 0,001178 0,001481 0,001563 0,001681 0,002004 0,001907 0,001901 0,001907 0,002004 0,001429 0,00155 0,001436 0,001525 0,001548 0,001531 0,001481 0,001451 0,001181 11 6 18 25 5 20 20 20 7 18 6 4 5 4 3 4 3 18 3 4 6 2 10 10 2 1,8 5 8 25 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 10,35343 3,559476 24,65086 43,96834 2,581718 29,67794 29,67794 29,67794 4,669952 24,65086 3,559476 1,742619 2,581718 1,742619 1,049841 1,742619 1,049841 24,65086 1,049841 1,742619 3,559476 0,513973 8,753288 8,753288 0,513973 0,426912 2,581718 5,908331 43,96834 0,003493 -0,03922 0,038192 0,061339 -0,05206 0,045616 0,045616 7,656162 6,91646 7,581925 6,807845 -0,06778 -0,05206 -0,06778 -0,08805 -0,06778 -0,08805 0,038192 -0,08805 -0,06778 -0,03922 -0,11662 -0,00322 -0,00322 -0,11662 -0,12405 -0,05206 -0,01895 0,061339 0 2 2 1 1 1 0 1 3 1 4 2 0 0 1 2 3 3 2 2 1 0 3 1 1 0 1 0 1 149 Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Asteraceae Balanitaceae Balanitaceae Bignoniaceae Bignoniaceae Bignoniaceae Bignoniaceae Bignoniaceae Bignoniaceae Boraginaceae native native exotic native native native native native native native native native native native native native native native native native native native native native native native native native native Eumorphia___davyi Eumorphia___swaziensis Helichrysum__kraussii Lopholaena__corifolia Lopholaena__platyphylla Phymaspermum__acerosum Pulchea_dioscordia Senecio_barbertonicus Seriphium__plumosum Seriphium__species Tarchonanthus_parvicapitulatus Tarchonanthus___trilobus Vernonia__adoensis Gymnanthemum_amygdalina Vernonia__aurantiaca Vernonia__colorata Vernonia__tigna Vernonia__triflora Vernonia__wollastonii Vernonia__myriantha Balanites__maughamii Balanites___pedicillaris Kigelia_ africana Rhigozum__obvatum Rhigozum__obvatum Rhigozum_brevispinosum Rhigozum__zambesiacum Tecoma_capensis Cordia__caffra 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 678 678 645,89 678 678 645,89 455,3562 645,89 774,8 475 689 749,4889 712,8 455,3562 455,3562 675 645 678 455,3562 675 932,4167 538,4 774,7667 750 750 595 498,998 370,4 748,6 0,001475 0,001475 0,001548 0,001475 0,001475 0,001548 0,002196 0,001548 0,001291 0,002105 0,001451 0,001334 0,001403 0,002196 0,002196 0,001481 0,00155 0,001475 0,002196 0,001481 0,001072 0,001857 0,001291 0,001333 0,001333 0,001681 0,002004 0,0027 0,001336 2 2 1,5 2 2 2 3,5 1,5 1 3 8 10 2,5 3 3 5 1,5 2 3 6 25 8 15 3 3 3 4 2 7 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 0,513973 0,513973 0,309643 0,513973 0,513973 0,513973 1,377368 0,309643 0,151592 1,049841 5,908331 8,753288 0,761459 1,049841 1,049841 2,581718 0,309643 0,513973 1,049841 3,559476 43,96834 5,908331 17,87948 1,049841 1,049841 1,049841 1,742619 0,513973 4,669952 -0,11662 -0,11662 -0,13689 -0,11662 -0,11662 -0,11662 -0,07719 -0,13689 -0,16546 -0,08805 -0,01895 -0,00322 -0,1009 -0,08805 -0,08805 -0,05206 -0,13689 -0,11662 -0,08805 -0,03922 0,061339 -0,01895 2,843461 1,709456 1,709456 1,709456 1,912156 1,423766 -0,02835 0 0 0 0 0 1 0 0 0 2 2 0 3 1 0 0 1 0 0 0 3 2 2 2 1 0 0 2 1 150 Boraginaceae Boraginaceae Boraginaceae Boraginaceae Boraginaceae Boraginaceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Burseraceae Euphorbiaceae Buxaceae Canellaceae Cannabaceae Cannabaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Cordia__grandicalyx Cordia__monoica Cordia_ovalis Ehretia__amoena Ehretia__obtusifolia Ehretia__rigida Commiphora__edulis Commiphora glandulosa Commiphora__harveyi Commiphora__marlothii Commiphora_mollis Commiphora_neglecta Commiphora__pyracanthoides Commiphora__schimperi Commiphora__tenuipetiolata Commiphora__viminea Commiphora___woodii Commiphora__zanzibarica Cleistantus__schlechteri Buxus_macowani Warburgia__salutaris Celtis__africana Trema__orientalis Boscia__albitrunca Boscia__angustifolia Boscia__foetida__filipes Boscia__foetida__minima Boscia__foetida__rehmanniana Boscia__mossambicensis 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 645,6 839,5 800 700 641,4286 535 525 749,4889 745,2356 865 400 440 630 455,3562 725 560 786,275 745,2356 645,6 640 725 780 725 748,6 640 640 595 595 770 0,001549 0,001191 0,00125 0,001429 0,001559 0,001869 0,001905 0,001334 0,001342 0,001156 0,0025 0,002273 0,001587 0,002196 0,001379 0,001786 0,001272 0,001342 0,001549 0,001563 0,001379 0,001282 0,001379 0,001336 0,001563 0,001563 0,001681 0,001681 0,001299 6 3 4 5 4 5 5 10 7 13 8 8 3 3 12 6 20 7 6 4 12 30 12 7 4 4 0,3 4 6 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree shrub tree tree 3,559476 1,049841 1,742619 2,581718 1,742619 2,581718 2,581718 8,753288 4,669952 13,89574 5,908331 5,908331 1,049841 1,049841 12,06837 3,559476 29,67794 4,669952 3,559476 1,742619 12,06837 60,6202 12,06837 4,669952 1,742619 1,742619 0,018182 1,742619 3,559476 -0,03922 -0,08805 -0,06778 -0,05206 -0,06778 -0,05206 3,209382 3,697772 3,44646 3,882633 3,540545 3,540545 2,849456 2,849456 3,826235 3,337845 4,186162 3,44646 -0,03922 -0,06778 0,009624 0,074185 0,009624 -0,02835 -0,06778 -0,06778 -0,25029 -0,06778 -0,03922 2 2 2 1 1 5 3 0 1 1 1 1 0 1 1 2 1 0 2 2 1 4 2 3 0 0 0 1 0 151 Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Capparaceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Cadaba_aphylla Cadaba___natalensis Cadaba_termitaria Capparis__fascicularis Capparis__sepiaria Capparis__tomentosa Maerua__angolensis Maerua__cafra Maerua__decumbens Maerua__juncea Maerua_parvifolia Maerua__rosmarinoides Thilachium__africanum Cassine_peragua Catha_edulis Elaeodendron__croceum Elaeodendron__transvaalense Elaeodendron__zeyheri Gymnosporia__heterophylla Gymnosporia__maranguensis Gymnosporia_oxycarpa Gymnosporia__pubescens Gymnosporia_putterlickioides Gymnosporia__senegalensis Gymnosporia_buxifolia Gymnosporia__glaucophyllia Gymnosporia__grandifolia Gymnosporia__harveyana Hippocratae__africana 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 595 595 595 524,5 524,5 524,5 774,8 498,56 645 677,52 796,8 688,75 641,4286 675 592,56 715,8333 910 741,4 529,9 698,6326 530 455,3562 525,3214 365,8 599,9 849 689 455,3562 741,4 0,001681 0,001681 0,001681 0,001907 0,001907 0,001907 0,001291 0,002006 0,00155 0,001476 0,001255 0,001452 0,001559 0,001481 0,001688 0,001397 0,001099 0,001349 0,001887 0,001431 0,001887 0,002196 0,001904 0,002734 0,001667 0,001178 0,001451 0,002196 0,001349 3 4 3 3 3 3 1 5 2 10 3 7 4 5 10 15 1 15 1,5 9 2,5 3 15 5 4 4 8 3 15 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 1,049841 1,742619 1,049841 1,049841 1,049841 1,049841 0,151592 2,581718 0,513973 8,753288 1,049841 4,669952 1,742619 2,581718 8,753288 17,87948 0,151592 17,87948 0,309643 7,270591 0,761459 1,049841 17,87948 2,581718 1,742619 1,742619 5,908331 1,049841 17,87948 -0,08805 -0,06778 -0,08805 -0,08805 -0,08805 -0,08805 -0,16546 -0,05206 -0,11662 -0,00322 -0,08805 -0,02835 -0,06778 -0,05206 -0,00322 0,025346 -0,16546 0,025346 -0,13689 -0,01065 -0,1009 -0,08805 0,025346 -0,05206 -0,06778 -0,06778 -0,01895 -0,08805 0,025346 1 2 0 0 2 1 1 1 1 1 0 0 3 1 5 3 2 2 0 0 0 0 0 1 3 0 0 1 0 152 Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Celastraceae Fabaceae Fabaceae Fabaceae Clusiaceae Clusiaceae Clusiaceae Clusiaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae native native native native native native native native native native native native native native exotic native native native native native native native native native native native native native native Hippocratea_crenata Hippocratea__indica Hippocratea__longipetiolata Hippocratea_parvifolia Maytenus_peduncularis Maytenus__undata Putterlickia_verrucosa Salacia__kraussii Lauridia__tetragona Pterocelastrus___echinatus Pterocelastrus__rostratus Caesalpinia__rostrata Caesalpinia_decapetala Cassia_abbreviata Garcinia__gerrardii Garcinia__livingstonei Hypericum__revolutum Hypericum__roeperianum Combretum__apiculatum Combretum__celastroides Combretum___mkuzense Combretum_collinum Combretum__erythrophyllum Combretum__hereroense Combretum__imberbe Combretum__kraussii Combretum__microphyllum Combretum__molle Combretum_mossambicense 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 675 675 689 675 741,4 741,4 220,8 750 741,4 745,2356 786,275 455,3562 455,3562 850 748,6 720,2 595 595 889,5281 640 640 774,7667 709,6611 888,2667 1112,612 786,275 641,4286 712 595 0,001481 0,001481 0,001451 0,001481 0,001349 0,001349 0,004529 0,001333 0,001349 0,001342 0,001272 0,002196 0,002196 0,001176 0,001336 0,001389 0,001681 0,001681 0,001124 0,001563 0,001563 0,001291 0,001409 0,001126 0,000899 0,001272 0,001559 0,001404 0,001681 5 5 8 4,5 15 15 3 3 15 7 20 3 3 7 15 12 3 3 9 4 4 15 12 5 20 20 4 9 3 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 2,581718 2,581718 5,908331 2,144407 17,87948 17,87948 1,049841 1,049841 17,87948 4,669952 29,67794 1,049841 1,049841 4,669952 17,87948 12,06837 1,049841 1,049841 7,270591 1,742619 1,742619 17,87948 12,06837 2,581718 29,67794 29,67794 1,742619 7,270591 1,049841 -0,05206 -0,05206 -0,01895 -0,05949 0,025346 0,025346 -0,08805 -0,08805 0,025346 -0,02835 0,045616 -0,08805 -0,08805 -0,02835 0,025346 0,009624 -0,08805 -0,08805 -0,01065 -0,06778 -0,06778 0,025346 0,009624 -0,05206 0,045616 0,045616 -0,06778 -0,01065 -0,08805 0 0 0 0 0 0 0 3 0 0 2 0 0 2 4 4 2 1 4 0 0 1 3 4 4 3 1 3 1 153 Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Combretaceae Cornaceae Connaraceae Cupressaceae Cyatheaceae Cyatheaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Combretum__nelsonii Combretum__padoides Combretum__woodii Combretum__zeyheri Pteleopsis__myrtifolia Terminalia__phanerophlebia Terminalia__prunioides Terminalia__sericea Curtisia__dentata Cnestis__polyphylla Widdringtonia__nodiflora Cyathea__capensis Cyathea___degrei Drypetes__arguta Drypetes___gerrardi Drypetes__mossambicensis Drypetes__reticulata Diospyros__austro_africana Diospyros__dichrophylla Diospyros__galpinii Diospyros__loureiriana Diospyros_lycioides Diospyros__mespiliformis Diospyros__natalensis Diospyros__villosa Diospyros__whyteana Eucllea__crispa__form__A Eucllea_ crispa_form_B Euclea_daphnoides 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 640 745,2356 714,7083 712 762,2 714,7083 1261,25 643,35 846,8333 849 749,4889 849 678 440 675 805 689 750 640 645 700 756,6 677,52 700 595 748,6 595 745,2356 640 0,001563 0,001342 0,001399 0,001404 0,001312 0,001399 0,000793 0,001554 0,001181 0,001178 0,001334 0,001178 0,001475 0,002273 0,001481 0,001242 0,001451 0,001333 0,001563 0,00155 0,001429 0,001322 0,001476 0,001429 0,001681 0,001336 0,001681 0,001342 0,001563 4 7 8 10 6 8 8 8 20 4 10 4 5 8 6 20 8 3 4 1,3 6 3 10 6 3 7 4 7 4 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 1,742619 -0,06778 0 4,669952 -0,02835 0 5,908331 -0,01895 0 8,753288 -0,00322 2 3,559476 -0,03922 1 5,908331 -0,01895 1 5,908331 -0,01895 1 5,908331 -0,01895 2 29,67794 0,045616 3 1,742619 -0,06778 0 8,753288 -0,00322 1 1,742619 -0,06778 0 2,581718 -0,05206 3 5,908331 -0,01895 1 3,559476 -0,03922 0 29,67794 0,045616 1 5,908331 -0,01895 1 1,049841 -0,08805 2 1,742619 -0,06778 0 0,240651 -0,14698 1 3,559476 -0,03922 1 1,049841 -0,08805 2 8,753288 -0,00322 3 3,559476 -0,03922 1 1,049841 -0,08805 1 4,669952 -0,02835 3 1,742619 -0,06778 2 4,669952 -0,02835 1 1,742619 -0,06778 0 154 Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ebenaceae Ericaceae Ericaceae Ericaceae Ericaceae Ericaceae Ericaceae Erythroxylaceae Erythroxylaceae Escalloniacea Euphorbiaceae Euphorbiaceae Phyllanthaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Euclea__dewinteri Euclea__linearis Euclea_divinorum Teclea__natalensis Euclea__undulata Euclea__species Euclea__schimperi Erica__cafforum Erica__drakensbergensis Erica__natalitia__Bolus Erica__oatesii Erica__species Vaccinum_exulBolus Erythroxylum__delagoense Erythroxylum__emarginatum Choristylis__rhamnoides Acalypha__glabrata Acalypha__pubiflora Andrachne__ovalis Androstachys__johnsonii Antidesma__venosum Alchornea__laxiflora Clutia___affinis Clutia__pulchella Croton__gratissimus Croton__madandensis Croton__megalobotrys Croton__menyhartiI Croton__pseudopulchellus 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 645 641,4286 510 401,2867 780 640 832,6 455,3562 678 678 678 645,89 678 675 440 780 770 675 645,6 846,8333 538,4 645 849 560 948,9167 675 545,55 849 675 0,00155 0,001559 0,001961 0,002492 0,001282 0,001563 0,001201 0,002196 0,001475 0,001475 0,001475 0,001548 0,001475 0,001481 0,002273 0,001282 0,001299 0,001481 0,001549 0,001181 0,001857 0,00155 0,001178 0,001786 0,001054 0,001481 0,001833 0,001178 0,001481 2 4 10 8 30 1,5 8 3 2 2 2 1,5 2 6 5 0,5 6 6 6 20 8 1,5 4 6 12 5 15 4 5 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree shrub tree tree tree tree tree tree tree tree tree tree tree tree tree 0,513973 1,742619 8,753288 5,908331 60,6202 0,309643 5,908331 1,049841 0,513973 0,513973 0,513973 0,309643 0,513973 3,559476 2,581718 0,044711 3,559476 3,559476 3,559476 29,67794 5,908331 0,309643 1,742619 3,559476 12,06837 2,581718 17,87948 1,742619 2,581718 -0,11662 -0,06778 -0,00322 -0,01895 0,074185 -0,13689 -0,01895 -0,08805 -0,11662 -0,11662 -0,11662 -0,13689 -0,11662 -0,03922 -0,05206 -0,2143 -0,03922 -0,03922 -0,03922 0,045616 -0,01895 -0,13689 -0,06778 -0,03922 0,009624 -0,05206 0,025346 -0,06778 -0,05206 0 1 2 2 1 0 3 0 0 2 0 0 0 0 1 1 1 0 3 1 2 1 2 1 1 1 3 0 1 155 Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Fabaceae Fabaceae Fabaceae Fabaceae native native native native native native native native native native native native native native native native native native native native native native exotic native native native native native native Croton__steenkampianus Croton__sylvaticus Erythrococca__menyharthii Euphorbia__confinalis Euphorbia__cooperi Euphorbia__espinosa Euphorbia__evansii Euphorbia__excelsa Euphobia__grandialata Euphorbia__grandicornis Euphorbia__grandidens Euphorbia__guerichiana Euphorbia__ingens Euphorbia__lydenburgensis Euphorbia__rowlandii Euphorbia__tirucalli Euphorbia__sekukuniensis Euphorbia_species Euphorbia__triangularis Ricinus_communis Sapium__ellipticum Sapium___integerrimum Spirostachys_africana Suregada_africana Synadenium__cupulare Acacia__ataxacantha Acacia__borleae Acacia__brevispica Acacia_burkei 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 734,75 723,7521 529,9 749,4889 698,6326 849 749,4889 741,4 678 678 805 762,2 725 645,89 678 675 745,2356 724,9333 440 745,2356 786,275 741,4 715,8333 675 678 749,4889 745 475 864,7333 0,001361 0,001382 0,001887 0,001334 0,001431 0,001178 0,001334 0,001349 0,001475 0,001475 0,001242 0,001312 0,001379 0,001548 0,001475 0,001481 0,001342 0,001379 0,002273 0,001342 0,001272 0,001349 0,001397 0,001481 0,001475 0,001334 0,001342 0,002105 0,001156 7 12 1,5 10 10 4 10 15 2 2 20 6 12 1,5 2 5 7 6 18 7 20 15 15 6 5 10 5 3 27 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 4,669952 12,06837 0,309643 8,753288 8,753288 1,742619 8,753288 17,87948 0,513973 0,513973 29,67794 3,559476 12,06837 0,309643 0,513973 2,581718 4,669952 3,559476 24,65086 4,669952 29,67794 17,87948 17,87948 3,559476 2,581718 8,753288 2,581718 1,049841 50,35189 -0,02835 0,009624 -0,13689 -0,00322 -0,00322 -0,06778 -0,00322 0,025346 -0,11662 -0,11662 0,045616 -0,03922 0,009624 -0,13689 -0,11662 -0,05206 -0,02835 -0,03922 0,038192 -0,02835 0,045616 0,025346 0,025346 -0,03922 -0,05206 -0,00322 2,249382 1,889456 3,437614 2 1 1 1 1 0 0 0 0 0 1 1 3 1 0 1 0 1 1 1 2 2 1 0 3 1 0 1 1 156 Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Acacia__caffra Acacia__chariessa Acacia__ebutsiniorum Acacia__davyi Vachelia_erioloba Acacia__erubescens Acacia__exuvialis Acacia__galpini Acacia__gerrardii Acacia__grandicornuta Acacia__karroo Acacia__luederitzii Acacia__mellifera Acacia__nigrescens Acacia__nilotica Acacia__permixta Acacia__polyacantha Acacia_robusta_robust Acacia_robusta_clavigera Acacia__schweinfurthii Acacia__senegal_leiorhachis Acacia__senegal__rostrata Acacia__sieberiana Acacia__tenuispinaL Acacia__swazica Acacia__tortilis Acacia_welwitschii Acacia__xanthophloea Adenopodia__spicata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 430 630 455,3562 745 741,4 985 850 780 725,32 725 786,275 749,4889 745 939,5333 1022,9 849 741,4 741,4 800 741,4 750 849 741,4 653 630 917,5 980 895 786,275 0,002326 0,001587 0,002196 0,001342 0,001349 0,001015 0,001176 0,001282 0,001379 0,001379 0,001272 0,001334 0,001342 0,001064 0,000978 0,001178 0,001349 0,001349 0,00125 0,001349 0,001333 0,001178 0,001349 0,001531 0,001587 0,00109 0,00102 0,001117 0,001272 14 3,5 3 6 15 10 5 30 12 12 20 10 6 30 10 4 15 15 20 2 15 4 18 2 3 15 15 30 20 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 15,83342 1,377368 1,049841 3,559476 17,87948 8,753288 2,581718 60,6202 12,06837 12,06837 29,67794 8,753288 3,559476 60,6202 8,753288 1,742619 17,87948 17,87948 29,67794 0,513973 17,87948 1,742619 24,65086 0,513973 1,049841 17,87948 17,87948 60,6202 29,67794 2,974849 1,99807 1,889456 2,377845 3,023461 2,737772 2,249382 3,511851 2,866235 2,866235 3,226162 2,737772 2,377845 3,511851 2,737772 2,092156 3,023461 3,023461 3,226162 1,603766 3,023461 2,092156 3,151925 1,603766 1,889456 3,023461 3,023461 3,511851 3,226162 1 0 0 0 1 0 2 0 1 0 1 1 0 2 2 2 1 1 1 0 0 2 1 1 1 1 3 3 1 157 Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Aeschynomene__nodulosa Aeschynomene__rehmannii Afzelia__quanzensis Albizia__adianthifolia Albizia___amara Albizia__anthelmintica Albizia__brevifolia Albizia__forbesii Albizia__harveyi Albizia__petersiana Albizia__tanganyicensis Albizia__versicolor Baphia__massaiensis Bauhinia_galpinii Bauhinia_tomentosa Bolusanthus_speciosus Burkea_africana Calpurnia__aurea Calpurnia_glabrata Calpurnia__sericea Cassia_abbreviata Colophospermum_mopane Cordyla__africana Crotalaria___capensis Crotalaria__doidgeae Crotalaria__laburnifolia Crotalaria__monteiroi Crotalaria___natalitia Crotalaria__pallida 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 849 475 775 805 725 734,75 880 805 750 865 725 593,3667 645 200,23 762,2 696,3875 780 749,4889 438,46 653 850 930,05 701,9091 849 455,3562 678 849 630 455,3562 0,001178 0,002105 0,00129 0,001242 0,001379 0,001361 0,001136 0,001242 0,001333 0,001156 0,001379 0,001685 0,00155 0,004994 0,001312 0,001436 0,001282 0,001334 0,002281 0,001531 0,001176 0,001075 0,001425 0,001178 0,002196 0,001475 0,001178 0,001587 0,002196 4 3 20 20 12 7 15 20 15 10 12 18 6 5 6 10 15 10 5 2 7 12 23 4 3 2 4 2,6 3 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 1,742619 1,049841 29,67794 29,67794 12,06837 4,669952 17,87948 29,67794 17,87948 8,753288 12,06837 24,65086 3,559476 2,581718 3,559476 8,753288 17,87948 8,753288 2,581718 0,513973 4,669952 12,06837 37,9623 1,742619 1,049841 0,513973 1,742619 0,815925 1,049841 2,092156 1,889456 3,226162 3,226162 2,866235 2,48646 3,023461 3,226162 3,023461 2,737772 2,866235 3,151925 2,377845 2,249382 2,377845 2,737772 3,023461 2,737772 2,249382 1,603766 2,48646 2,866235 3,324637 2,092156 1,889456 1,603766 2,092156 1,788627 1,889456 1 2 1 4 2 3 2 1 0 2 1 1 1 0 2 3 3 2 2 0 2 3 2 1 0 1 0 0 0 158 Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Dalbergia__armata Dalbergia__melanoxylon Dalbergia___nitidula Dalbergia__obovata Dichrostachys_ cinerea_africana Dichrostachys_cinerea_nyassana Elephantorrhiza__burkii Elephantorrhiza__elephantina Elephantorrhiza__obliqua Elephantorrhiza_praetermissa Eriosema__psoraleoides Elephantorrhiza__goetzei Erythrina__humeana Erythrina__latissima Erythrina__lysistemon Erythrina__zeyheri Faidherbia__albida Guibourtia__conjugata Indigofera__arrecta Indigofera__fulgens Indigofera___homblei Indigofera__lupatana Indigofera___swaziensis Indigofera__tinctoria Indigofera__tristoides Mundulea__sericea Newtonia__hildebrandtii Ormocarpum_kirkii Ormocarpum___trichocarpum 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 816,6 1000 745,2356 741,4 850 850 475 539,5 645,89 678 612,231 849 750 725 725 724,9333 484,25 800 455,3562 640 593 675 455,3562 593 630 780 741,4 351 678 0,001225 0,001 0,001342 0,001349 0,001176 0,001176 0,002105 0,001854 0,001548 0,001475 0,001633 0,001178 0,001333 0,001379 0,001379 0,001379 0,002065 0,00125 0,002196 0,001563 0,001686 0,001481 0,002196 0,001686 0,001587 0,001282 0,001349 0,002849 0,001475 15 6 7 15 7 7 3 1 0,3 2 5 4 3 12 12 0,5 30 12 3 2 2,5 5 3 2 3,5 5 18 9 5 tree tree tree tree tree tree tree tree shrub tree tree tree tree tree tree shrub tree tree tree tree tree tree tree tree tree tree tree tree tree 17,87948 3,559476 4,669952 17,87948 4,669952 4,669952 1,049841 0,151592 0,018182 0,513973 2,581718 1,742619 1,049841 12,06837 12,06837 0,044711 60,6202 12,06837 1,049841 0,513973 0,761459 2,581718 1,049841 0,513973 1,377368 2,581718 24,65086 7,270591 2,581718 3,023461 2,377845 2,48646 3,023461 2,48646 2,48646 1,889456 1,115376 0,26706 1,603766 2,249382 2,092156 1,889456 2,866235 2,866235 0,626986 3,511851 2,866235 1,889456 1,603766 1,760992 2,249382 1,889456 1,603766 1,99807 2,249382 3,151925 2,663535 2,249382 0 2 0 2 3 3 2 2 0 1 1 1 3 1 1 1 3 1 2 1 0 0 0 0 0 2 1 1 2 159 Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Flacourtiacae Hamamelidaceae Hernandiaceae Gentianaceae Celastraceae Celastraceae Celastraceae Icacinaceae Icacinaceae Kirkiaceae Kirkiaceae Lamiaceae Lamiaceae Lamiaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Peltophorum__africanum Philenoptera__violacea Piliostigma__thonningii Pseudarthria__hookeri Pterocarpus__angolensis Pterocarpus__lucens Pterocarpus__rotundifolius Pterolobium__stellatum Schotia_brachypetala Schotia__capitata Schotia___latifolia Senna__petersiana Xanthocercis__zambesiaca Xeroderris__stuhlmannii Xylia_torreana Aphloia__theiformis Trichocladus__grandiflorus Gyrocarpus_americanus Anthocleista___grandiflora Hippocratea__africana Hippocratea_crenata Hippocratea_parvifolia Apodytes__dimidiata Cassinopsis__ilicifolia Kirkia__acuminata Kirkia__wilmsii Clerodendrum__glabrum Clerodendrum__pleiosciadium Karomia_speciosa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1015,9 526,076 749,4889 455,3562 529,95 715,3 865 750 744,25 989,95 780 945,7 609,5 90 750 749,4889 526,076 741,4 786,275 592,56 612,231 675 805 689 775 523,175 331,2 677,52 700 0,000984 0,001901 0,001334 0,002196 0,001887 0,001398 0,001156 0,001333 0,001344 0,00101 0,001282 0,001057 0,001641 0,011111 0,001333 0,001334 0,001901 0,001349 0,001272 0,001688 0,001633 0,001481 0,001242 0,001451 0,00129 0,001911 0,003019 0,001476 0,001429 9 18 10 3 30 10 10 15 16 7 10 4 30 15 15 10 18 15 20 15 5 4,5 20 8 20 12 10 2,5 6 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 7,270591 24,65086 8,753288 1,049841 60,6202 8,753288 8,753288 17,87948 20,03214 4,669952 8,753288 1,742619 60,6202 17,87948 17,87948 8,753288 24,65086 17,87948 29,67794 17,87948 2,581718 2,144407 29,67794 5,908331 29,67794 12,06837 8,753288 0,761459 3,559476 2,663535 3,151925 2,737772 1,889456 3,511851 2,737772 2,737772 3,023461 3,068935 2,48646 2,737772 2,092156 3,511851 3,023461 3,023461 -0,00322 0,038192 0,025346 0,045616 0,025346 -0,05206 -0,05949 0,045616 -0,01895 0,045616 0,009624 -0,00322 -0,1009 -0,03922 1 3 1 2 2 0 2 0 2 1 3 1 0 1 0 2 1 2 2 3 2 0 1 0 2 0 3 1 1 160 Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lamiaceae Lauraceae Lauraceae Linaceae Loganiaceae Loganiaceae Loganiaceae Loganiaceae Loganiaceae Loganiaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Leonotis__intermedia Leonotis__leonurus Leonotis__nepetifolia Premna__mooiensis Rhotheca__myricoides Hemzygia__albiflora Plectranthus-fruticosus Hemizygia__parvifolia Pycnostachys__urticifolia Salvia__dolomitica Syncolostemon__eriocephalus Tetradenia__brevispicata Tetradenia__riparia Tinnea__barbata Tinnea__rhodesiana Vitex__ferruginea Vitex___harveyana Vitex___obovata Vitex__patula Vitex_rehmannii Cryptocarya__transvaalensis Cryptocarya__woodii Hugonia__orientalis Strychnos__cocculoides Strychnos__decussata Strychnos__henningsii Strychnos__madagascariensis Strychnos_potatorum Strychnos_pungens 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 595 595 30 745,2356 603,33 595 750 370,4 603,33 645 640 595 595 332 332 560 640 748,6 538,85 745,2356 774,7667 780 560 689 748 709,6611 727,6667 809 790 0,001681 0,001681 0,033333 0,001342 0,001657 0,001681 0,001333 0,0027 0,001657 0,00155 0,001563 0,001681 0,001681 0,003012 0,003012 0,001786 0,001563 0,001336 0,001856 0,001342 0,001291 0,001282 0,001786 0,001451 0,001337 0,001409 0,001374 0,001236 0,001266 3 3 15 7 5 3 3 2 5 2 4 3 4 4 2 6 4 7 5 7 15 10 6 8 12 12 8 15 7 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 1,049841 1,049841 17,87948 4,669952 2,581718 1,049841 1,049841 0,513973 2,581718 0,513973 1,742619 1,049841 1,742619 1,742619 0,513973 3,559476 1,742619 4,669952 2,581718 4,669952 17,87948 8,753288 3,559476 5,908331 12,06837 12,06837 5,908331 17,87948 4,669952 -0,08805 -0,08805 0,025346 -0,02835 -0,05206 -0,08805 -0,08805 -0,11662 -0,05206 -0,11662 -0,06778 -0,08805 -0,06778 -0,06778 -0,11662 -0,03922 -0,06778 -0,02835 -0,05206 -0,02835 5,503461 5,217772 -0,03922 -0,01895 0,009624 0,009624 -0,01895 0,025346 -0,02835 0 2 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 2 1 1 2 3 1 1 1 3 3 2 4 161 Loganiaceae Loganiaceae Proteaceae Proteaceae Rosaceae Lythraceae Malpighiaceae Malpighiaceae Malpighiaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Strychnos__spinosa Strychnos__usambarensis Leucospermum__gerrardii Leucospermum__saxosum Leucosidea__sericea Galpinia_transvaalica Acridocarpus_natalitius Triaspis_glaucophylla Triaspis__hypericoides Abutilon__angulatum Abutilon__sonneratum Adansonia_digitata Azanza__garckeana Cola__greenwayi Dombeya__burgessiiae Dombeya__cymosa Dombeya__rotundifolia Gossypium__herbaceum Grewia__bicolor Grewia__caffra Grewia__flavescens Grewia__flavescens Grewia__gracillima Grewia__hexamita Grewia__inaequilatera Grewia__microthyrsa Grewia__monticola Grewia__sulcata Grewia__occidentalis 1 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 770 510 645,6 645 745,2356 689 603,33 727,6667 595 745,2356 678 362,9563 749,4889 790 678 599,9 749,4889 849 512,26 849 678 712,8 512,26 455,3562 653 670 856,05 725 849 0,001299 0,001961 0,001549 0,00155 0,001342 0,001451 0,001657 0,001374 0,001681 0,001342 0,001475 0,002755 0,001334 0,001266 0,001475 0,001667 0,001334 0,001178 0,001952 0,001178 0,001475 0,001403 0,001952 0,002196 0,001531 0,001493 0,001168 0,001379 0,001178 7 10 0,4 2 9 8 5 5 3 3,5 2 25 10 24 5 9 10 4 5 4 2 7 5 3 2 3 4 12 4 tree tree shrub tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 4,669952 -0,02835 2 8,753288 -0,00322 2 0,030179 -0,23002 2 0,513973 -0,11662 0 7,270591 -0,01065 1 5,908331 -0,01895 0 2,581718 -0,05206 1 2,581718 -0,05206 3 1,049841 -0,08805 1 1,377368 -0,07719 1 0,513973 -0,11662 1 43,96834 0,061339 2 8,753288 -0,00322 0 40,91768 0,058462 3 2,581718 -0,05206 2 7,270591 -0,01065 3 8,753288 -0,00322 1 1,742619 -0,06778 0 2,581718 -0,05206 2 1,742619 -0,06778 1 0,513973 -0,11662 2 4,669952 -0,02835 1 2,581718 -0,05206 3 1,049841 -0,08805 1 0,513973 -0,11662 0 1,049841 -0,08805 0 1,742619 -0,06778 0 12,06837 0,009624 1 1,742619 -0,06778 2 162 Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Malvaceae Marattiaceae Maytenus Meliaceae Meliaceae Meliaceae Meliaceae Meliaceae Meliaceae Meliaceae Meliaceae Melianthaceae Melianthaceae Melianthaceae Melianthaceae Melastomataceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Grewia__villosa Hibiscus__calyphyllus Hibiscus_micranthus Sterculia__murex Sterculia__rogersii Triumfetta__pilosa Marattia__faxinea Mystroxylon__aethiopicum Ekebergia__capensis Ekebergia__pterophylla Entandrophragma__caudatum Trichilia__dregeana Trichilia__emetica Turraea__floribunda Turraea__nilotica Turraea__obtusifolia Bersama__lucens Bersama__tysoniana Greyia__radlkoferi Greyia_sutherlandii Memecylon__natalense Ficus__abutilifolia Ficus__burkei Ficus_ burtt Ficus__capreifolia Ficus__craterostoma Ficus__glumosa Ficus__ingens Ficus_ natalensis 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 70 475 689 548,75 420,14 530 774,8 725 786,275 849 805 816,6 487,9588 1000 780 90 641,4286 696,3875 640 712 849 351 427,3 607,8333 560 697,3 677,52 487,9588 805 0,014286 0,002105 0,001451 0,001822 0,00238 0,001887 0,001291 0,001379 0,001272 0,001178 0,001242 0,001225 0,002049 0,001 0,001282 0,011111 0,001559 0,001436 0,001563 0,001404 0,001178 0,002849 0,00234 0,001645 0,001786 0,001434 0,001476 0,002049 0,001242 3 3 8 12 6 2,5 1 12 20 4 20 40 25 13 10 3 10 10 6 7 4 20 18 6 6 10 10 25 20 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 1,049841 1,049841 5,908331 12,06837 3,559476 0,761459 0,151592 12,06837 29,67794 1,742619 29,67794 100,6227 43,96834 13,89574 8,753288 1,049841 8,753288 8,753288 3,559476 4,669952 1,742619 29,67794 24,65086 3,559476 3,559476 8,753288 8,753288 43,96834 29,67794 -0,08805 -0,08805 -0,01895 0,009624 -0,03922 -0,1009 -0,16546 0,009624 3,886162 2,752156 3,886162 4,374551 4,043388 3,582633 3,397772 2,549456 -0,00322 -0,00322 -0,03922 -0,02835 -0,06778 3,156162 3,081925 2,307845 2,307845 2,667772 2,667772 3,313388 3,156162 0 1 0 1 0 3 0 2 1 0 2 0 3 3 3 3 3 2 1 2 1 1 0 0 1 3 3 1 2 163 Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Moraceae Myricaceae Myricaceae Myricaceae Myricaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Myrtaceae Nyctaginaceae Ochnaceae Ochnaceae Ochnaceae Ochnaceae Ochnaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Ficus__petersii Ficus__salicifolia Ficus__sansibarica Ficus__stuhlmannii Ficus__sur__Forssk Ficus_sycomorus Ficus_tettensis Maclura_africana Myrica_pilulifera Morella_brevifolia Morella_microbracteata Morella___serrata Eugenia__woodii Eugenia__mossambicencis Eugenia__natalitia Heteropyxis__canescens Heteropyxis__natalensis Syzygium__cordatum Syzygium__gerrardii Syzygium__guineense Syzygium__legatii Syzygium_species Syzygium_species B Phaeoptilium__spinosum Ochna__arborea Ochna__inermis Ochna__natalitia Ochna__pulchra Ochna__oconnori 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 786,275 725,32 609,5 697,3 725,32 498 725,32 80 762,2 770 455,3562 560 715,3 595 643,35 750 698,6326 774,7667 780 774,7667 727,6667 889,5281 725 645,89 725 748,6 698,6326 603,33 875 0,001272 0,001379 0,001641 0,001434 0,001379 0,002008 0,001379 0,0125 0,001312 0,001299 0,002196 0,001786 0,001398 0,001681 0,001554 0,001333 0,001431 0,001291 0,001282 0,001291 0,001374 0,001124 0,001379 0,001548 0,001379 0,001336 0,001431 0,001657 0,001143 20 12 30 15 12 25 12 5 6 6 3 6 10 1,2 8 15 10 15 25 15 8 20 12 2 12 7 10 5 1 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 29,67794 12,06837 60,6202 17,87948 12,06837 43,96834 12,06837 2,581718 3,559476 3,559476 1,049841 3,559476 8,753288 0,209004 5,908331 17,87948 8,753288 17,87948 43,96834 17,87948 5,908331 29,67794 12,06837 0,513973 12,06837 4,669952 8,753288 2,581718 0,151592 3,156162 2,796235 3,441851 2,953461 2,796235 3,313388 2,796235 2,179382 -0,03922 -0,03922 -0,08805 -0,03922 -0,00322 -0,15262 -0,01895 0,025346 -0,00322 0,025346 0,061339 0,025346 -0,01895 0,045616 0,009624 -0,11662 0,009624 -0,02835 -0,00322 -0,05206 -0,16546 1 2 1 2 1 3 1 3 2 1 0 2 0 0 2 0 1 2 1 2 3 3 0 2 0 1 1 1 1 164 Ochnaceae Ochnaceae Ochnaceae Ochnaceae Ochnaceae Lauraceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Olacaceae Oleaceae Oleaceae Onagraceae Osmundaceae Santalaceae Chrysobalanaceae Passifloraceae Passifloraceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Ochna__serrulata Ochna__barbosae Ochna__confusa Ochna_gamostigmata Ochna__holstii Ocotea__bullata Ocotea___kenyensis Olax_dissitiflora Ximenia__americana Ximenia__caffra Chionanthus__battiscombei Chionanthus foveolatus_fovoelatus Chionanthus foveolatus_major Chionanthus__peglerae Jasmimun__abyssinicum Jasminum_breviflorum Jasminum__fluminense Jasminum__multipartitum Jasminum__stenolobum Olea_capensis_enervis Olea__capensis___Macrocarpa Olea__europaea Schrebera__alata Ludwigia_octovalvis Todea_barbara Osyris__lanceolata Parinari__curatellifolia Adenia_spinosa Adenia_fruticosa 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 745 714,7083 645 640 691,06 709,6611 809 725 538,85 712 762,2 714,7083 774,7667 677,52 750 750 640 679 745 688,75 427,3 715,3 677,52 849 645 645 592,56 438,46 678 0,001342 0,001399 0,00155 0,001563 0,001447 0,001409 0,001236 0,001379 0,001856 0,001404 0,001312 0,001399 0,001291 0,001476 0,001333 0,001333 0,001563 0,001473 0,001342 0,001452 0,00234 0,001398 0,001476 0,001178 0,00155 0,00155 0,001688 0,002281 0,001475 1 8 2 2 15 12 20 12 5 7 6 8 30 18 3 3 0,3 1,5 1 6 25 10 10 4 0,3 6 15 2,5 2 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree shrub tree tree tree tree tree tree tree shrub tree tree tree tree 0,151592 5,908331 0,513973 0,513973 17,87948 12,06837 29,67794 12,06837 2,581718 4,669952 3,559476 5,908331 60,6202 24,65086 1,049841 1,049841 0,018182 0,309643 0,151592 3,559476 43,96834 8,753288 8,753288 1,742619 0,018182 3,559476 17,87948 0,761459 0,513973 -0,16546 -0,01895 -0,11662 -0,11662 0,025346 0,009624 0,045616 0,009624 -0,05206 -0,02835 -0,03922 -0,01895 0,074185 0,038192 -0,08805 -0,08805 -0,25029 -0,13689 -0,16546 -0,03922 0,061339 -0,00322 -0,00322 -0,06778 -0,25029 -0,03922 0,025346 -0,1009 -0,11662 1 0 0 4 2 3 2 0 1 2 1 0 1 1 2 2 0 2 0 0 0 0 3 0 2 1 4 1 0 165 Passifloraceae Passifloraceae Pedaliaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Euphorbiaceae Euphorbiaceae Phyllanthaceae Phyllanthaceae Phyllanthaceae Picrodendraceae Piperaceae Pittosporaceae Plumbaginaceae Podcarpaceae Polygalaceae Polygalaceae Polygalaceae Portulacaceae Primulaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae native native native native native native native native native native native exotic exotic native native native native native native native native native native native native native native native native Adenia_gummifera Paropsia__braunii Sesamothamnus__lugardii Antidesma__venosum Bridelia_cathartica Bridelia_micrantha Bridelia_mollis Flueggea__virosa Hymenocardia__ulmoides Jatropha_curcas Jatropha_gossypiifolia Phyllanthus_pinnatus Phyllanthus__reticulatus Pseudolachnostylis__maprouneaefolia Androstachys__johnsonii Piper__capense Pittosporum__viridiflorum Plumbago__auriculata Afrocarpus__falcatus Podocarpus__latifolius Securidaca__longipedunculata Polygala__virgata Portulacaria_afra Maesa__lanceolata Faurea_galpinii Faurea__macnaughtonii Faurea__rochetiana Faurea__saligna Protea_caffra_caffra 0 0 0 1 1 1 1 1 1 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 1 1 1 1 1 715,8333 749,4889 849 727,6667 640 805 720,2 595 786,275 770 485 595 645,6 691,06 786,275 438,46 689 455,3562 529,95 809 712 595 612,231 438,46 677,52 709,6611 712 697,3 727,6667 0,001397 0,001334 0,001178 0,001374 0,001563 0,001242 0,001389 0,001681 0,001272 0,001299 0,002062 0,001681 0,001549 0,001447 0,001272 0,002281 0,001451 0,002196 0,001887 0,001236 0,001404 0,001681 0,001633 0,002281 0,001476 0,001409 0,001404 0,001434 0,001374 15 10 4 8 7 20 9 3 20 7 3 4,5 6 18 20 6 8 3 25 33 6 4 5 6 10 25 7 10 8 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 17,87948 8,753288 1,742619 5,908331 4,669952 29,67794 7,270591 1,049841 29,67794 4,669952 1,049841 2,144407 3,559476 24,65086 29,67794 3,559476 5,908331 1,049841 43,96834 71,70184 3,559476 1,742619 2,581718 3,559476 8,753288 43,96834 4,669952 8,753288 5,908331 0,025346 -0,00322 -0,06778 -0,01895 -0,02835 0,045616 -0,01065 -0,08805 0,045616 -0,02835 -0,08805 -0,05949 -0,03922 0,038192 0,045616 -0,03922 -0,01895 -0,08805 0,061339 0,080901 -0,03922 -0,06778 -0,05206 -0,03922 -0,00322 0,061339 -0,02835 -0,00322 -0,01895 1 0 0 3 2 1 4 1 0 4 4 1 3 2 3 2 1 1 2 2 2 2 1 2 2 4 2 1 3 166 Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Proteaceae Rosaceae Putranjavaceae Putranjavaceae Ranunculaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rhamnaceae Rosaceae Rosaceae Rosaceae Rosaceae Rosaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Protea__caffra__falcata Protea__comptonii Protea__curvata Protea__gaguedi Protea__laetans Protea__parvula Protea__roupelliae Protea__rubropilosa Protea__simplex Protea___subvestita Protea__wewitschii Prunus__africana Drypetes__gerrardii Drypetes__reticulata Clematis__brachiata Berchemia__discolor Berchemia__zeyheri Helinus__integrifolius Phylica_paniculata Rhamnus__prinoides Scutia__myrtina Ziziphus_mucronata Ziziphus__rivularis Ziziphus__zeypherana Cliffortia__linearifolia Cliffortia__nitididula Cliffortia__repens Cliffortia___serpylliflia Cliffortia__strobilifera 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 595 714,7083 714,7083 595 714,7083 745 643,35 745 714,7083 603,33 645 675 525,3214 689 678 786,275 887,1875 645,6 603,33 595 643,35 709,6611 697,3 595 529,9 675 678 800 455,3562 0,001681 0,001399 0,001399 0,001681 0,001399 0,001342 0,001554 0,001342 0,001399 0,001657 0,00155 0,001481 0,001904 0,001451 0,001475 0,001272 0,001127 0,001549 0,001657 0,001681 0,001554 0,001409 0,001434 0,001681 0,001887 0,001481 0,001475 0,00125 0,002196 3 8 8 3 8 1 8 1 8 5 1,5 5 35 8 2 20 15 6 5 4 8 12 10 0,6 1,5 6 2 4 3 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 1,049841 5,908331 5,908331 1,049841 5,908331 0,151592 5,908331 0,151592 5,908331 2,581718 0,309643 2,581718 79,53233 5,908331 0,513973 29,67794 17,87948 3,559476 2,581718 1,742619 5,908331 12,06837 8,753288 0,061644 0,309643 3,559476 0,513973 1,742619 1,049841 -0,08805 -0,01895 -0,01895 -0,08805 -0,01895 -0,16546 -0,01895 -0,16546 -0,01895 -0,05206 -0,13689 -0,05206 0,085047 -0,01895 -0,11662 0,045616 0,025346 -0,03922 -0,05206 -0,06778 -0,01895 0,009624 -0,00322 -0,20146 -0,13689 -0,03922 -0,11662 -0,06778 -0,08805 0 0 2 1 3 0 1 0 0 0 3 1 0 0 1 1 1 3 1 1 2 4 2 0 1 0 0 3 0 167 Rosaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Anthospermum__welwitschii Breonadia__salicina Burchellia__bubalina Canthium__ciliatum Canthium__inerme Canthium__setiflorum Catunaregam__spinosa Cephalanthus__natalensis Coddia__rudis Crossopteryx__febrifuga Gardenia__resiniflua Gardenia__volkensii Heinsia__crinita Hymenodictyon__parvifolium Hyperacanthus__amoenus Keetia__guenzii Kraussia__floribunda Lagynia__dryadum Leptactina__delagoensis Oxyanthus__speciosus Pachystigma__bowkeri Pachystigma__macrocalyx Pavetta__barbertonensis Pavetta_catophylla Pavetta__cooperi Pavetta_edentula Pavetta__harborii Pavetta__lanceolata Plectroniella__armata 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 455,3562 780 689 455,3562 523,175 810 745,2356 455,3562 370,4 698,6326 779,5 724,9333 590 498,56 689 749,4889 640 675 455,3562 523,175 689 455,3562 678 675 865 745,2356 745,2356 849 612,231 0,002196 0,001282 0,001451 0,002196 0,001911 0,001235 0,001342 0,002196 0,0027 0,001431 0,001283 0,001379 0,001695 0,002006 0,001451 0,001334 0,001563 0,001481 0,002196 0,001911 0,001451 0,002196 0,001475 0,001481 0,001156 0,001342 0,001342 0,001178 0,001633 3 30 8 3 13 2 7 3 2 10 10 2 3 5 8 10 4 5 3 16 8 3 2 5 2 7 0,5 4 5 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree shrub tree tree 1,049841 -0,08805 0 60,6202 0,074185 0 5,908331 -0,01895 0 1,049841 -0,08805 0 13,89574 0,015263 0 0,513973 -0,11662 0 4,669952 -0,02835 0 1,049841 -0,08805 1 0,513973 -0,11662 1 8,753288 -0,00322 0 8,753288 -0,00322 0 0,513973 -0,11662 1 1,049841 -0,08805 0 2,581718 -0,05206 2 5,908331 -0,01895 0 8,753288 -0,00322 0 1,742619 -0,06778 0 2,581718 -0,05206 1 1,049841 -0,08805 0 20,03214 0,029894 0 5,908331 -0,01895 0 1,049841 -0,08805 0 0,513973 -0,11662 0 2,581718 -0,05206 0 0,513973 -0,11662 1 4,669952 -0,02835 0 0,044711 -0,2143 1 1,742619 -0,06778 2 2,581718 -0,05206 0 168 Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rubiaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Rutaceae Salicaceae Gerrardinaceae Salicaceae Salicaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native native native Psychotria__capensis Psychotria___zombamontana Psydrax__locuples Pyrostria__hystrix Rothmannia__fischeri Tarenna__supra-axillaris Tarenna__zygon Tricalysia__junodii Tricalysia__lanceolata Vangueria__infausta Vangueria__madagascariensis Vangueria__parvifolia Calodendrum__capensis Clausena_anisata Teclea__pilosa Teclea__gerrardii Teclea__natalensis Toddalia__asiatica Toddaliopsis__bremekampii Vepris__lanceolata Vepris__reflexa Zanthoxylum__carpense Zanthoxylum__davyi Zanthoxylum__humile Zanthoxylum__leprieurii Flacourtia__indica Gerrardina__foliosa Homalium_dentatum Oncoba_spinosa_Forssk 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 675 745,2356 810 395,8 640 675 678 599,6667 675 758,15 689 689 805 641,4286 641,4286 688,75 714,7083 677,52 720,2 539,8 762,2 595 780 701,8 641,4286 603,33 675 750 539,8 0,001481 0,001342 0,001235 0,002527 0,001563 0,001481 0,001475 0,001668 0,001481 0,001319 0,001451 0,001451 0,001242 0,001559 0,001559 0,001452 0,001399 0,001476 0,001389 0,001853 0,001312 0,001681 0,001282 0,001425 0,001559 0,001657 0,001481 0,001333 0,001853 6 7 5 3 8 6 2 4 6 8 8 8 20 4 4 6 8 15 6 5 6 3 30 3 4 5 5 15 5 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 3,559476 4,669952 2,581718 1,049841 5,908331 3,559476 0,513973 1,742619 3,559476 5,908331 5,908331 5,908331 29,67794 1,742619 1,742619 3,559476 5,908331 17,87948 3,559476 2,581718 3,559476 1,049841 60,6202 1,049841 1,742619 2,581718 2,581718 17,87948 2,581718 -0,03922 -0,02835 -0,05206 -0,08805 -0,01895 -0,03922 -0,11662 -0,06778 -0,03922 -0,01895 -0,01895 -0,01895 0,045616 -0,06778 -0,06778 -0,03922 -0,01895 0,025346 -0,03922 -0,05206 -0,03922 -0,08805 0,074185 -0,08805 -0,06778 -0,05206 -0,05206 0,025346 -0,05206 0 0 0 0 1 0 0 0 0 0 0 0 1 4 1 0 0 1 3 2 2 2 2 0 1 1 1 0 1 169 Salicaceae Salicaceae Salicaceae Salicaceae Salvadoraceae Salvadoraceae Salvadoraceae Sapindaceae Sapindaceae Sapindaceae Sapindaceae Sapindaceae Sapindaceae Sapindaceae Rutaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Sapotaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae native native native native native native native native native native native native native native native native native native native native native native native native native native native exotic native Salix__mucronata Rawsonia__lucida Scolopia__zeyheri Trimeria__grandifolia Azima__tetracantha Salvadora__australis Salvadora__persica Allophylus__decipiens Deinbollia__oblongifolia Deinbollia__xanthocarpa Dodonaea_angustifolia_L.f Hippobromus__pauciflorus Pappea__capensis Stadmannia__oppositifolia Ptaeroxylon__obliquum Englerophytum__magalismontanum Englerophytum__natalense Manilkara__concolor Manilkara__discolor Manilkara__mochisia Mimusops__obovata Mimusops__zeyheri Sideroxylon__inerme Vitellariopsis__marginata Nicotiana_glauca Lycium__cinereum Lycium__shawii Solanum__aculeastrum Solanum__anguivi 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 524,5 538,85 745,2356 641,4286 640 745,2356 691,06 595 714,7083 715,3 715,3 714,7083 1119,45 786,275 1079,3 595 677,52 603,33 762,2 978 809 607,8333 809 770 641,4286 677,52 440,5 539,8 595 0,001907 0,001856 0,001342 0,001559 0,001563 0,001342 0,001447 0,001681 0,001399 0,001398 0,001398 0,001399 0,000893 0,001272 0,000927 0,001681 0,001476 0,001657 0,001312 0,001022 0,001236 0,001645 0,001236 0,001299 0,001559 0,001476 0,00227 0,001853 0,001681 3 5 7 10 2 7 2,5 4 9 10 10 9 13 20 20 4 10 5 6 15 15 5 15 6 4 1,8 4 5 3 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 1,049841 2,581718 4,669952 8,753288 0,513973 4,669952 0,761459 1,742619 7,270591 8,753288 8,753288 7,270591 13,89574 29,67794 29,67794 1,742619 8,753288 2,581718 3,559476 17,87948 17,87948 2,581718 17,87948 3,559476 1,742619 0,426912 1,742619 2,581718 1,049841 -0,08805 -0,05206 -0,02835 -0,00322 -0,11662 -0,02835 -0,1009 2,322156 2,893535 2,967772 2,967772 2,893535 3,152633 3,456162 0,045616 1,782216 1,846777 1,797938 1,810785 1,875346 1,875346 1,797938 1,875346 1,810785 -0,06778 -0,12405 -0,06778 -0,05206 -0,08805 3 2 0 3 2 0 2 1 1 0 1 1 2 1 2 1 2 1 2 3 4 0 2 2 3 1 2 2 0 170 Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Solanaceae Scrophulariaceae Scrophulariaceae Bignoniaceae Stilbaceae Stilbaceae Stilbaceae Stilbaceae Stilbaceae Streliziaceae Thymelaeaceae Thymelaeaceae Ulmaceae Urticaceae Urticaceae Velloziaceae Velloziaceae Verbenaceae Verbenaceae Verbenaceae Vitaceae Vitaceae Vitaceae native native native native native native native exotic native exotic native native exotic native native native native native native native native native native native native exotic exotic exotic native Solanum__catombelense Solanum_giganteum Solanum___lichtensteinii Solanum_kwebense Solanum_mauritianum Solanum_panduriforme Solanum__rubetorum Bowkeria__citrina Bowkeria__cymosa Jacaranda_mimosifolia Halleria__lucida Nuxia__congesta Nuxia__floribunda Nuxia__gracilis Nuxia__oppositifolia Strelitzia_caudata Dais_cotinifolia_L Englerodaphne__pilosa Chaetachne__aristata Obetia__tenax Pouzolzia__mixta Xerophyta_retinervis Duranta_erecta Lantana_camara Lantana_rugosa Lippia_javanica Cissus__cactiformis Cissus__cornifolia Rhoicissus_digitata 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 440,5 645,6 380,45 640 640 287,2 645 455,3562 849 715,8333 715,8333 741,4 715,8333 455,3562 745,2356 689 745,2356 455,3562 696,3875 790 774,8 95,85 745,2356 524,5 220,8 438,46 603,33 679 774,7667 0,00227 0,001549 0,002628 0,001563 0,001563 0,003482 0,00155 0,002196 0,001178 0,001397 0,001397 0,001349 0,001397 0,002196 0,001342 0,001451 0,001342 0,002196 0,001436 0,001266 0,001291 0,010433 0,001342 0,001907 0,004529 0,002281 0,001657 0,001473 0,001291 2 5 3 2 2 2 2 3 4 15 15 15 15 3 7 8 7 3 10 7 1 4 7 3 3 5 5 1,5 15 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 0,513973 2,581718 1,049841 0,513973 0,513973 0,513973 0,513973 1,049841 1,742619 17,87948 17,87948 17,87948 17,87948 1,049841 4,669952 5,908331 4,669952 1,049841 8,753288 4,669952 0,151592 1,742619 4,669952 1,049841 1,049841 2,581718 2,581718 0,309643 17,87948 -0,11662 -0,05206 -0,08805 -0,11662 -0,11662 -0,11662 -0,11662 -0,08805 -0,06778 0,025346 0,025346 0,025346 0,025346 -0,08805 -0,02835 -0,01895 -0,02835 -0,08805 -0,00322 -0,02835 -0,16546 -0,06778 -0,02835 -0,08805 -0,08805 -0,05206 -0,05206 -0,13689 0,025346 2 3 3 3 1 1 0 0 0 1 1 0 1 0 1 0 0 0 3 3 3 3 1 4 2 2 1 1 2 171 Vitaceae Vitaceae Vitaceae Vitaceae Vitaceae Menispermaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Penaeaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Fabaceae Rutaceae Euphorbiaceae Euphorbiaceae Euphorbiaceae Thymelaeaceae Thymelaeaceae Rhizophoraceae Rhizophoraceae Salicaceae native native native native native native native native native native native native native native native native native exotic exotic native native native native native native native native native native Rhoicissus_revoilii Rhoicissus__tomentosus Rhoicissus__tridentata Kotschya__parvifolia Kotschya__thymodora Tiliacora__funifera Flemingia__grahamiana Lessertia__microphylla Otholobium__wilmsii Otholobium_ polyphyllum Psoralea__glabra Psoralea__latifolia Psoralea___rhizotoma Rhynchosia__clivorum Sesbania_bispinosa Sesbania__sesban Tephrosia__cordata Tephrosia___polystachya Tephrosia__rhodesica Tephrosia__subulata Oricia__bachmannii Margaritaria_ discoidea_fagifolia Margaritaria__discoidea_nitida Micrococca__capensis Passerina_montana Peddiea__africana Cassipourea__malosana Cassipourea__swaziensis Dovyalis__caffra 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 712 786,275 595 640 640 805 678 645,89 653 455,3562 630 455,3562 774,8 455,3562 455,3562 612,231 645,89 653 645 593 525,3214 850 850 675 750 675 689 849 675 0,001404 0,001272 0,001681 0,001563 0,001563 0,001242 0,001475 0,001548 0,001531 0,002196 0,001587 0,002196 0,001291 0,002196 0,002196 0,001633 0,001548 0,001531 0,00155 0,001686 0,001904 0,001176 0,001176 0,001481 0,001333 0,001481 0,001451 0,001178 0,001481 7 20 4 2 2 20 2 2 2 3 3 3 1 3 3 5 0,7 2 1,5 2,5 35 30 7 5 3 5 8 4 5 tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree tree 4,669952 29,67794 1,742619 0,513973 0,513973 29,67794 0,513973 0,513973 0,513973 1,049841 1,049841 1,049841 0,151592 1,049841 1,049841 2,581718 0,080876 0,513973 0,309643 0,761459 79,53233 60,6202 4,669952 2,581718 1,049841 2,581718 5,908331 1,742619 2,581718 -0,02835 0,045616 -0,06778 -0,11662 -0,11662 0,045616 1,603766 1,603766 1,603766 1,889456 1,889456 1,889456 1,115376 1,889456 1,889456 2,249382 0,864064 1,603766 1,401066 1,760992 0,085047 0,074185 -0,02835 -0,05206 -0,08805 -0,05206 -0,01895 -0,06778 -0,05206 3 3 1 2 1 1 1 2 0 0 1 1 0 0 0 1 0 0 0 0 0 0 1 0 2 1 1 0 0 172 Salicaceae Salicaceae Salicaceae Scrophulariaceae Scrophulariaceae Scrophulariaceae Scrophulariaceae Scrophulariaceae Zamiaceae Zamiaceae Zamiaceae Zamiaceae Zamiaceae Zamiaceae Zamiaceae Zamiaceae Zamiaceae native native native native native native native native native native native native native native native native native Dovyalis__lucida Dovyalis__rhamnoides Dovyalis__zeyheri Buddleja_auriculata Buddleja___dysophylla Buddleja__puchella Buddleja__saligna Buddleja_salviifolia Encephalartos_cupidus Encephalartos_heenanii Encephalartos_humilis Encephalartos_inopinus Encephalartos_laevifolius Encephalartos_lanatus Encephalartos_lebomboensis Encephalartos_middelburgensis Encephalartos_paucidentatus 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 745,2356 745,2356 698,6326 849 745,2356 849 734,75 498,56 485 849 640 645,89 849 645,89 612,231 850 850 0,001342 0,001342 0,001431 0,001178 0,001342 0,001178 0,001361 0,002006 0,002062 0,001178 0,001563 0,001548 0,001178 0,001548 0,001633 0,001176 0,001176 7 7 10 4 7 4 7 5 0,3 4 0,3 2 4 2 5 7 7 tree tree tree tree tree tree tree tree shrub tree shrub tree tree tree tree tree tree 4,669952 4,669952 8,753288 1,742619 4,669952 1,742619 4,669952 2,581718 0,018182 1,742619 0,018182 0,513973 1,742619 0,513973 2,581718 4,669952 4,669952 -0,02835 -0,02835 -0,00322 -0,06778 -0,02835 -0,06778 -0,02835 -0,05206 -0,25029 -0,06778 -0,25029 -0,11662 -0,06778 -0,11662 -0,05206 -0,02835 -0,02835 0 0 1 0 0 1 3 2 3 1 2 2 2 1 2 2 2 173 APPENDIX C AVAILABILITY HYPOTHESIS DATA SET Supplementary Information Table S 5.1: List of medicinal plant species occurrence outside and inside the Kruger National Park (KNP) (Availability Hypothesis) Famili es Genus Stat us Ou tsi de In si d e Occ urre nce Differenc e_outside _inside Abund ance_t otale Re cip es R o o t B a r k L e a f Annon aceae Xylopia__parviflor a 1 1 bot h 0 2 0 1 0 0 Eupho rbiace ae Euphorbia__gueric hiana 1 1 bot h 0 2 0 0 0 0 0 Fabace ae Acacia__brevispica 1 1 bot h 0 2 0 0 0 0 0 Boragi naceae Cordia__caffra 2 1 bot h 1 3 0 0 0 0 0 Solana ceae Lycium__shawii_ 3 1 bot h 2 4 0 0 0 0 0 Acanth aceae Duvernoia_aconitif lora 5 1 bot h 4 6 0 0 0 0 0 Acanth aceae Duvernoia_adhato doides_ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal Se ed fr ui t 0 5 1 bot h 4 6 0 0 0 0 0 174 Fabace ae Crotalaria__doidg eae Acanth aceae Metarungia__long istrobus Fabace ae Tephrosia___polys tachya_ Combr etacea e Combretum__woo dii_ Morac eae Ficus__petersii_ Cappa raceae Capparis__fascicul aris Fabace ae Flemingia__graha miana_ Flacou rtiacea e Homalium__denta tum Verbe naceae Premna__mooiens is Icacina ceae Cassinopsis__ilicifo lia_ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 8 1 bot h 7 9 0 0 0 0 0 9 1 bot h 8 10 0 0 0 0 0 11 1 bot h 10 12 0 0 0 0 0 13 1 bot h 12 14 0 0 0 0 0 13 1 bot h 12 14 0 0 0 0 0 17 1 bot h 16 18 0 0 0 0 0 18 1 bot h 17 19 0 0 0 0 0 26 1 bot h 25 27 0 0 0 0 0 28 1 bot h 27 29 0 0 0 0 0 30 1 bot h 29 31 0 0 0 0 0 175 Olacac eae Olea__europaea Fabace ae Albizia__tanganyic ensis_ Solana ceae Solanum__catomb elense Eupho rbiace ae Erythrococca__me nyharthii Apocy naceae Adenium__swazic um_ Fabace ae Crotalaria__pallid a Onagr aceae Ludwigia_octovalv is Rubiac eae Kraussia__floribun da_ Fabace ae Crotalaria__monte iroi_ Fabace ae Acacia__swazica non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 49 1 bot h 48 50 0 0 0 0 0 1 2 bot h -1 3 0 0 0 0 0 1 2 bot h -1 3 0 0 0 0 0 5 2 bot h 3 7 0 0 0 0 0 6 2 bot h 4 8 0 0 0 0 0 7 2 bot h 5 9 0 0 0 0 0 11 2 bot h 9 13 0 0 0 0 0 16 2 bot h 14 18 0 0 0 0 0 17 2 bot h 15 19 0 0 0 0 0 18 2 bot h 16 20 0 0 0 0 0 176 Acanth aceae Barleria_rotundifol ia Burser aceae Commiphora__ma rlothii Rham Phylica_paniculata naceae Fabace ae Pseudarthria__hoo keri_ Rubiac eae Hyperacanthus__a moenus Olacac eae Chionanthus__fov eolatus Celastr aceae Maytenus__undat a_ Fabace ae Caesalpinia__rostr ata Tiliace ae Grewia__inaequila tera Pedali aceae Sesamothamnus__ lugardii_ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 19 2 bot h 17 21 0 0 0 0 0 19 2 bot h 17 21 0 0 0 0 0 21 2 bot h 19 23 0 0 0 0 0 26 2 bot h 24 28 0 0 0 0 0 28 2 bot h 26 30 0 0 0 0 0 37 2 bot h 35 39 0 0 0 0 0 38 2 bot h 36 40 0 0 0 0 0 1 3 bot h -2 4 0 0 0 0 0 2 3 bot h -1 5 0 0 0 0 0 2 3 bot h -1 5 0 0 0 0 0 177 Celastr aceae Hippocratae__afri cana. Celastr aceae Hippocratea__afri cana Rubiac eae Psydrax__locuples _ Combr etacea e Combretum__pad oides_ Morac eae Ficus__sansibarica Myrta ceae Eugenia__mossam bicencis Rubiac eae Pyrostria__hystrix _ Burser aceae Commiphora__sch imperi Cappa raceae Maerua__rosmari noides_ Apocy naceae Pachypodanthium __saundersii non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 3 3 bot h 0 6 0 0 0 0 0 3 3 bot h 0 6 0 0 0 0 0 4 3 bot h 1 7 0 0 0 0 0 5 3 bot h 2 8 0 0 0 0 0 6 3 bot h 3 9 0 0 0 0 0 6 3 bot h 3 9 0 0 0 0 0 6 3 bot h 3 9 0 0 0 0 0 11 3 bot h 8 14 0 0 0 0 0 18 3 bot h 15 21 0 0 0 0 0 20 3 bot h 17 23 0 0 0 0 0 178 Anacar diacea e Rhus__transvaalen sis Eupho rbiace ae Acalypha__glabrat a Anacar diacea e Rhus__pyroides__ pyroides_ Salvad oracea e Salvadora__austra lis_ Fabace ae Dalbergia___nitid ula_ Lamiac eae Pycnostachys__urt icifolia_ Lamiac eae Tinnea__rhodesian a Apiace ae Steganotaenia__ar aliacea Acanth aceae Ruttya__ovata_ Malva ceae Hibiscus__calyphyl lus non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 21 3 bot h 18 24 0 0 0 0 0 23 3 bot h 20 26 0 0 0 0 0 46 3 bot h 43 49 0 0 0 0 0 4 4 bot h 0 8 0 0 0 0 0 5 4 bot h 1 9 0 0 0 0 0 11 4 bot h 7 15 0 0 0 0 0 16 4 bot h 12 20 0 0 0 0 0 23 4 bot h 19 27 0 0 0 0 0 24 4 bot h 20 28 0 0 0 0 0 26 4 bot h 22 30 0 0 0 0 0 179 Rubiac eae Breonadia__salicin a Lamiac eae Rhotheca__myrico ides Eupho rbiace ae Acalypha__pubiflo ra_ Eupho rbiace ae Croton__madande nsis Astera ceae Brachylaena__huill ensis_ Cappar aceae Cadaba_termitaria Stercu liaceae Sterculia__rogersii Apocy naceae Diplorhynchus__co ndylocarpon_ Erythr oxylac eae Erythroxylum__em arginatum_ Fabace ae Indigofera___swaz iensis_ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 27 4 bot h 23 31 0 0 0 0 0 44 4 bot h 40 48 0 0 0 0 0 1 5 bot h -4 6 0 0 0 0 0 2 5 bot h -3 7 0 0 0 0 0 3 5 bot h -2 8 0 0 0 0 0 10 5 bot h 5 15 0 0 0 0 0 18 5 bot h 13 23 0 0 0 0 0 19 5 bot h 14 24 0 0 0 0 0 24 5 bot h 19 29 0 0 0 0 0 24 5 bot h 19 29 0 0 0 0 0 180 Celastr aceae Gymnosporia__gla ucophyllia Rhamn aceae Ziziphus__rivularis _ Celastr aceae Hippocratea__par vifolia Celastr aceae Hippocratea_parvi folia Rutace ae Teclea__pilosa_ Morac eae Ficus__capreifolia Fabace ae Acacia__schweinfu rthii_ Astera ceae Vernonia__colorat a Rubiac eae Plectroniella__arm ata_ Rubiac eae Coddia__rudis_ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 28 5 bot h 23 33 0 0 0 0 0 1 6 bot h -5 7 0 0 0 0 0 3 6 bot h -3 9 0 0 0 0 0 3 6 bot h -3 9 0 0 0 0 0 4 6 bot h -2 10 0 0 0 0 0 8 6 bot h 2 14 0 0 0 0 0 16 6 bot h 10 22 0 0 0 0 0 17 6 bot h 11 23 0 0 0 0 0 17 6 bot h 11 23 0 0 0 0 0 26 6 bot h 20 32 0 0 0 0 0 181 Anacar diacea e Rhus__pentheri_ Cappar aceae Boscia__mossambi censis Eupho rbiace ae Euphorbia__confin alis_ Burser aceae Commiphora__ten uipetiolata Fabace ae Indigofera__lupat ana Bignon iaceae Rhigozum__zambe siacum Olacac eae Jasminum__stenol obum_ Flacou rtiacea e Dovyalis__caffra_ Verbe naceae Vitex__ferruginea _ Verbe naceae Vitex___harveyan a_ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 41 6 bot h 35 47 0 0 0 0 0 3 7 bot h -4 10 0 0 0 0 0 3 7 bot h -4 10 0 0 0 0 0 5 7 bot h -2 12 0 0 0 0 0 6 7 bot h -1 13 0 0 0 0 0 7 7 bot h 0 14 0 0 0 0 0 16 7 bot h 9 23 0 0 0 0 0 19 7 bot h 12 26 0 0 0 0 0 2 8 bot h -6 10 0 0 0 0 0 2 8 bot h -6 10 0 0 0 0 0 182 Malva ceae Hibiscus_micranth us Olacac eae Jasminum__flumin ense_ Burser aceae Commiphora_molli s Rutace ae Vepris__reflexa_ Celastr aceae Gymnosporia__ma ranguensis Rubiac eae Catunaregam__spi nosa_ Ochna ceae Ochna__inermis Fabace ae Tephrosia__rhodes ica Phylla nthace ae Phyllanthus__pinn atus Rubiac eae Tricalysia__junodii _ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 14 8 bot h 6 22 0 0 0 0 0 21 8 bot h 13 29 0 0 0 0 0 24 8 bot h 16 32 0 0 0 0 0 43 8 bot h 35 51 0 0 0 0 0 4 9 bot h -5 13 0 0 0 0 0 10 9 bot h 1 19 0 0 0 0 0 14 9 bot h 5 23 0 0 0 0 0 22 9 bot h 13 31 0 0 0 0 0 1 1 0 bot h -9 11 0 0 0 0 0 2 1 0 bot h -8 12 0 0 0 0 0 183 Burser aceae Commiphora__pyr acanthoides Malva ceae Gossypium__herb aceum Cappar aceae Maerua__juncea Rubiac eae Pavetta_catophyll a Rubiac eae Vangueria__infaus ta_ Fabace ae Acacia__borleae_ Xanth orrhoe aceae Aloe_spicata Fabace ae Crotalaria__laburn ifolia_ Astera ceae Pulchea__dioscord ia Lythra ceae Galpinia_transvaal ica non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 15 1 0 bot h 5 25 0 0 0 0 0 16 1 0 bot h 6 26 0 0 0 0 0 20 1 0 bot h 10 30 0 0 0 0 0 6 1 1 bot h -5 17 0 0 0 0 0 60 1 1 bot h 49 71 0 0 0 0 0 3 1 2 bot h -9 15 0 0 0 0 0 21 1 2 bot h 9 33 0 0 0 0 0 12 1 3 bot h -1 25 0 0 0 0 0 5 1 4 bot h -9 19 0 0 0 0 0 11 1 4 bot h -3 25 0 0 0 0 0 184 Burser aceae Commiphora_glandulosa Simaro ubace ae Kirkia__acuminata Combr etacea e Combretum__micr ophyllum_ Vitace ae Cissus__cornifolia Cappar aceae Maerua_parvifolia Fabace ae Acacia__grandicor nuta_ Ebenac Euclea__daphnoid eae es__Hiern Fabace ae Acacia__exuvialis Tiliace ae Grewia__monticol a_ Sapota ceae Manilkara__mochi sia_ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 17 1 4 bot h 3 31 0 0 0 0 0 3 1 5 bot h -12 18 0 0 0 0 0 11 1 6 bot h -5 27 0 0 0 0 0 8 1 9 bot h -11 27 0 0 0 0 0 15 1 9 bot h -4 34 0 0 0 0 0 18 1 9 bot h -1 37 0 0 0 0 0 19 2 0 bot h -1 39 0 0 0 0 0 32 2 0 bot h 12 52 0 0 0 0 0 40 2 1 bot h 19 61 0 0 0 0 0 15 2 2 bot h -7 37 0 0 0 0 0 185 Fabace ae Acacia__erubesce ns Combr etacea e Terminalia__pruni oides Fabace ae Albizia__harveyi_ Lamiac eae Leonotis__nepetifo lia Anacar diacea e Rhus__magalismo ntana_magalismot ana__coddii Annon aceae Monodora__junod ii__macrantha Arecac eae Borassus__aethiop ium Xanth orrhoe aceae Aloe_excelsa Xanth orrhoe aceae Aloe__littoralis Burser aceae Commiphora__zan zibarica non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 8 2 6 bot h -18 34 0 0 0 0 0 26 3 1 bot h -5 57 0 0 0 0 0 17 3 5 bot h -18 52 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 186 Cappar aceae Boscia__foetida__ minima Combr etacea e Combretum___mk uzense Fabace ae Indigofera__fulgen s Fabace ae Pterocarpus__luce ns_ Malva ceae Azanza__garckean a_ Nyctag inacea e Phaeoptilium__spi nosum Ochna ceae Ochna__barbosae Rubiac eae Leptactina__delag oensis_ Sapin daceae Allophylus__decipi ens Acanth aceae Anisotes_formosis simus non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 1 insi de -1 1 0 0 0 0 0 0 2 insi de -2 2 0 0 0 0 0 187 Acanth aceae Ruspolia__hypocra teriformis Xanth orrhoe aceae Aloe_angelica Cappar aceae Boscia__foetida__ filipes Eupho rbiace ae Drypetes__mossa mbicensis_ Eupho rbiace ae Euphorbia__rowla ndii Fabace ae Baphia__massaien sis Fabace ae Xylia_torreana Tiliace ae Grewia__gracillim a_ Olacac eae Chionanthus__bat tiscombei Passifl oracea e Paropsia__braunii _ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 0 2 insi de -2 2 0 0 0 0 0 0 2 insi de -2 2 0 0 0 0 0 0 2 insi de -2 2 0 0 0 0 0 0 2 insi de -2 2 0 0 0 0 0 0 2 insi de -2 2 0 0 0 0 0 0 2 insi de -2 2 0 0 0 0 0 0 2 insi de -2 2 0 0 0 0 0 0 2 insi de -2 2 0 0 0 0 0 0 2 insi de -2 2 0 0 0 0 0 0 2 insi de -2 2 0 0 0 0 0 188 Acanth aceae Barleria_albostella ta Annon aceae Monodora__junod ii_ Cappar aceae Boscia__angustifol ia_ Celastr aceae Gymnosporia__ox ycarpa_ Labiat e Clerodendrum__pl eiosciadium Verbe naceae Vitex__patula_ Linace ae Hugonia__oriental is Meliac eae Entandrophragma __caudatum_ Rubiac eae Crossopteryx__feb rifuga_ Rubiac eae Tarenna__zygon_ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 189 Rutace ae Toddaliopsis__bre mekampii_ Sapind aceae Deinbollia__xanth ocarpa Sapind aceae Stadmannia__opp ositifolia_ Acanth aceae Anisotes_rogersii_ Celastr aceae Gymnosporia__pu bescens_ Celastr aceae Hippocratea__indi ca Combr etacea e Pteleopsis__myrtif olia Eupho rbiace ae Euphorbia__espin osa_ Fabace ae Guibourtia__conju gata Celastr aceae Hippocratea__indi ca non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 0 3 insi de -3 3 0 0 0 0 0 0 4 insi de -4 4 0 0 0 0 0 0 4 insi de -4 4 0 0 0 0 0 0 4 insi de -4 4 0 0 0 0 0 0 4 insi de -4 4 0 0 0 0 0 0 4 insi de -4 4 0 0 0 0 0 0 4 insi de -4 4 0 0 0 0 0 0 4 insi de -4 4 0 0 0 0 0 190 Rubiac eae Annon aceae Burser aceae Combr etacea e Rubiac eae Rubiac eae Celastr aceae Eupho rbiace ae Fabace ae Eupho rbiace ae Lagynia__dryadu m_ non me dici nal Uvaria__gracilipes non __Robson me dici nal Commiphora__edu non lis_ me dici nal Combretum__cela non stroides_ me dici nal Canthium__setiflor non um me dici nal Heinsia__crinita non me dici nal Gymnosporia__put non terlickioides me dici nal Drypetes__reticula non ta_ me dici nal Indigofera__tincto non ria me dici nal Drypetes__reticula non ta_ me dici nal 0 4 insi de -4 4 0 0 0 0 0 0 5 insi de -5 5 0 0 0 0 0 0 5 insi de -5 5 0 0 0 0 0 0 5 insi de -5 5 0 0 0 0 0 0 5 insi de -5 5 0 0 0 0 0 0 5 insi de -5 5 0 0 0 0 0 0 6 insi de -6 6 0 0 0 0 0 0 6 insi de -6 6 0 0 0 0 0 0 6 insi de -6 6 0 0 0 0 0 0 6 insi de -6 6 0 0 0 0 0 191 Eupho rbiace ae Alchornea__laxiflo ra_ Eupho rbiace ae Hymenocardia__ul moides_ Celastr aceae Hippocratea__cren ata__ Fabace ae Acacia_welwitschii _ Celastr aceae Hippocratea_crena ta Arecac eae Hyphaene__peters iana Anacar diacea e Rhus__dracomont ana Anacar diacea e Rhus__harveyi Araliac eae Cussonia__sphaer ocephala Astera ceae Lopholaena__platy phylla non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 0 7 insi de -7 7 0 0 0 0 0 0 7 insi de -7 7 0 0 0 0 0 0 9 insi de -9 9 0 0 0 0 0 0 9 insi de -9 9 0 0 0 0 0 0 9 insi de -9 9 0 0 0 0 0 0 1 5 insi de -15 15 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 192 Astera ceae Vernonia__auranti aca Eupho rbiace ae Drypetes__arguta Ebenac Euclea__dewinteri eae Ericace ae Erica__species Eupho rbiace ae Euphobia__grandi alata Fabace ae Acacia__chariessa Fabace ae Acacia__ebutsinior um Fabace ae Acacia__permixta Melast omata ceae Memecylon__nata lense Morac eae Ficus__burtt_davyi non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 193 Myrta ceae Syzygium_species Prote aceae Protea__curvata Protea ceae Protea___subvesti ta_ Rubiac eae Gardenia__resinifl ua_ Solana ceae Bowkeria__citrina _ Menis perma ceae Tiliacora__funifera Eupho rbiace ae Margaritaria__dis coidea Anacar diacea e Rhus__pygmaea_ Astera ceae Anisopappus__jun odii Burser aceae Commiphora___w oodii non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 1 0 outs ide 1 1 0 0 0 0 0 2 0 outs ide 2 2 0 0 0 0 0 2 0 outs ide 2 2 0 0 0 0 0 2 0 outs ide 2 2 0 0 0 0 0 194 Eupho rbiace ae Euphorbia__grand icornis Eupho rbiace ae Euphorbia__specie s__A__Malelane Fabace ae Acacia__tenuispin aL Fabace ae Schotia___latifolia Rutace ae Teclea__gerrardii Fabace ae Psoralea__glabra Rutace ae Oricia__bachmann ii Anacar diacea e Lannea__gossweill eri Anacar diacea e Rhus__montana Anacar diacea e Rhus__pallens non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 2 0 outs ide 2 2 0 0 0 0 0 2 0 outs ide 2 2 0 0 0 0 0 2 0 outs ide 2 2 0 0 0 0 0 2 0 outs ide 2 2 0 0 0 0 0 2 0 outs ide 2 2 0 0 0 0 0 2 0 outs ide 2 2 0 0 0 0 0 2 0 outs ide 2 2 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 195 Oliniac eae Olinia__radiata Bignon iaceae Rhigozum__obvat um Ebenac Euclea__species eae Fabace ae Aeschynomene__n odulosa Lamiac eae Hemizygia__parvif olia Protea ceae Leucospermum__s axosum Myrica ceae Morella_microbrac teata Olacac eae Jasmimun__abyssi nicum Prote aceae Protea__laetans Rubiac eae Pavetta__barberto nensis non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 196 Rutace ae Teclea__natalensis Thyme laecea e Englerodaphne__p ilosa Fabace ae Psoralea___rhizot oma Eupho rbiace ae Micrococca__cape nsis_ Rhizop horace ae Cassipourea__swa ziensis Anacar diacea e Rhus__batophylla _ Aspara gaceae Dracaena___trans vaalensis Astera ceae Eumorphia___dav yi_ Astera ceae Eumorphia___swa ziensis Eupho rbiace ae Drypetes___gerrar di non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 3 0 outs ide 3 3 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 197 Eupho rbiace ae Euphorbia__excels a_ Fabace ae Crotalaria___natal itia Fabace ae Elephantorrhiza__ obliqua Flacou rtiacea e Aphloia__theiform is Lamia ceae Leonotis__interme dia_ Lamia ceae Tinnea__barbata_ Protea ceae Leucospermum__g errardii Stercul iaceae Dombeya__burges siiae Osmun daceae Todea_barbara Prote aceae Protea__comptonii _ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 198 non me dici nal Rosace Cliffortia___serpyll non ae iflia_ me dici nal Scroph Buddleja___dysop non ulariac hylla_ eae me dici nal Acanth Justicia__campylos non aceae temon me dici nal Anacar Ozoroa__barberto non diacea nensis e me dici nal Xanth Aloe__alooides non orrhoe aceae me dici nal Xanth Aloe_barberae non orrhoe aceae me dici nal Astera Vernonia__triflora non ceae _ me dici nal Celastr Gymnosporia__gra non aceae ndifolia me dici nal Ebenac Diospyros__dichro non eae phylla_ me dici nal Eupho rbiace ae Drypetes__gerrard ii_ 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 199 Eupho rbiace ae Protea ceae Rubiac eae Buddl ejacea e Fabac eae Anacar diacea e Bignon iaceae Combr etacea e Eupho rbiace ae Eupho rbiace ae Euphorbia__lyden burgensis non me dici nal Protea__simplex non me dici nal Pachystigma__bo non wkeri me dici nal Nuxia__gracilis_ non me dici nal Kotschya__thymod non ora me dici nal Rhus__species non me dici nal Rhigozum__brevis non pinosum me dici nal Combretum__nels non onii me dici nal Euphorbia__sekuk non uniensis me dici nal Euphorbia__triang non ularis me dici nal 5 0 outs ide 5 5 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 5 0 outs ide 5 5 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 200 Fabace ae Elephantorrhiza_p raetermissa Lamiac eae Salvia__dolomitica Morac eae Ficus_tettensis Myrica ceae Morella_brevifolia Ochna ceae Ochna_gamostigm ata Olacac eae Jasminum_breviflo rum Scroph ulariac eae Buddleja__puchell a Anacar diacea e Rhus___sekhukhu niensis Anacar diacea e Rhus__tomentosa Araliac eae Seemannaralia__g errardii non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 6 0 outs ide 6 6 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 6 0 outs ide 6 6 0 0 0 0 0 7 0 outs ide 7 7 0 0 0 0 0 7 0 outs ide 7 7 0 0 0 0 0 7 0 outs ide 7 7 0 0 0 0 0 201 Astera ceae Anisopappus__sm utsii 7 0 outs ide 7 7 0 0 0 0 0 Celastr aceae Lauridia__tetrago na_ non me dici nal non me dici nal 7 0 outs ide 7 7 0 0 0 0 0 Cyathe aceae Cyathea__capensis non me dici nal Indigofera___hom non blei me dici nal Eugenia__woodii non me dici nal Chionanthus__fov non eolatus__Meyer_ me dici nal Chionanthus__peg non lerae me dici nal Psychotria___zom non bamontana_ me dici nal Kotschya__parvifol non ia_ me dici nal Rhus__grandidens non me dici nal 7 0 outs ide 7 7 0 0 0 0 0 7 0 outs ide 7 7 0 0 0 0 0 7 0 outs ide 7 7 0 0 0 0 0 7 0 outs ide 7 7 0 0 0 0 0 7 0 outs ide 7 7 0 0 0 0 0 7 0 outs ide 7 7 0 0 0 0 0 7 0 outs ide 7 7 0 0 0 0 0 8 0 outs ide 8 8 0 0 0 0 0 Fabace ae Myrtac eae Olacac eae Olacac eae Rubiac eae Fabac eae Anacar diacea e 202 Anacar diacea e Rhus__keetii Anacar diacea e Rhus__wilmsii Apocy naceae Ancyloboyrys__ca pensis_ Passifl oracea e Adenia_fruticosa Protea ceae Protea__rubropilo sa Rubiac eae Vangueria__parvif olia_ Rutace ae Toddalia__asiatica Solan aceae Lycium__cinereum Acanth aceae Mackaya__bella_ Oliniac eae Olinia__rochetiana non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 8 0 outs ide 8 8 0 0 0 0 0 8 0 outs ide 8 8 0 0 0 0 0 8 0 outs ide 8 8 0 0 0 0 0 8 0 outs ide 8 8 0 0 0 0 0 8 0 outs ide 8 8 0 0 0 0 0 8 0 outs ide 8 8 0 0 0 0 0 8 0 outs ide 8 8 0 0 0 0 0 8 0 outs ide 8 8 0 0 0 0 0 9 0 outs ide 9 9 0 0 0 0 0 9 0 outs ide 9 9 0 0 0 0 0 203 Sapota ceae Buxus_macowani Conna raceae Cnestis__polyphyll a Ericace ae Erica__natalitia__ Bolus_ Ericace ae Erica__oatesii Lamiac eae Tetradenia__brevi spicata Marat tiacea e Marattia__faxinea Hetero pyxida ceae Heteropyxis__cane scens Strelitz iaceae Strelitzia_caudata Fabace ae Tephrosia__cordat a Anacar diacea e Rhus__pondoensis _ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 9 0 outs ide 9 9 0 0 0 0 0 9 0 outs ide 9 9 0 0 0 0 0 9 0 outs ide 9 9 0 0 0 0 0 9 0 outs ide 9 9 0 0 0 0 0 9 0 outs ide 9 9 0 0 0 0 0 9 0 outs ide 9 9 0 0 0 0 0 9 0 outs ide 9 9 0 0 0 0 0 9 0 outs ide 9 9 0 0 0 0 0 9 0 outs ide 9 9 0 0 0 0 0 10 0 outs ide 10 10 0 0 0 0 0 204 Anacar diacea e Rhus__gracillima_ Anacar diacea e Rhus__magalismo ntana__magalism otana Apiace ae Heteromorpha__p ubescens_ Ebenac Diospyros__austro eae _africana Fabace ae Acacia__galpini Fabace ae Pterolobium__stell atum Lamiac eae Syncolostemon__e riocephalus Strych naceae Strychnos__coccul oides_ Fabace ae Tephrosia__subula ta Anacar diacea e Rhus__engleri non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 11 0 outs ide 11 11 0 0 0 0 0 11 0 outs ide 11 11 0 0 0 0 0 11 0 outs ide 11 11 0 0 0 0 0 11 0 outs ide 11 11 0 0 0 0 0 11 0 outs ide 11 11 0 0 0 0 0 11 0 outs ide 11 11 0 0 0 0 0 11 0 outs ide 11 11 0 0 0 0 0 11 0 outs ide 11 11 0 0 0 0 0 11 0 outs ide 11 11 0 0 0 0 0 12 0 outs ide 12 12 0 0 0 0 0 205 Ericace ae Erica__cafforum_ Stercu liaceae Sterculia__murex Solana ceae Solanum__rubetor um__ Apiace ae Heteromorpha__a rborescens__Cham Astera ceae Brachylaena__rotu ndata Eupho rbiace ae Euphorbia__evansi i Prote aceae Protea__parvula_ Sapota ceae Englerophytum__n atalense__ Solana ceae Solanum__anguivi _ Flacou rtiacea e Dovyalis__lucida non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 12 0 outs ide 12 12 0 0 0 0 0 12 0 outs ide 12 12 0 0 0 0 0 12 0 outs ide 12 12 0 0 0 0 0 13 0 outs ide 13 13 0 0 0 0 0 13 0 outs ide 13 13 0 0 0 0 0 13 0 outs ide 13 13 0 0 0 0 0 13 0 outs ide 13 13 0 0 0 0 0 13 0 outs ide 13 13 0 0 0 0 0 13 0 outs ide 13 13 0 0 0 0 0 13 0 outs ide 13 13 0 0 0 0 0 206 Flacou rtiacea e Dovyalis__rhamno ides Fabace ae Ormocarpum_kirki i Hama melida ceae Trichocladus__gra ndiflorus_ Morac eae Ficus__stuhlmanni i Rosace ae Anthospermum__ welwitschii_ Acanth aceae Sclerochiton_harve yanus Eupho rbiace ae Suregada__african a__Kuntze Rosace ae Cliffortia__strobilif era Rubiac eae Keetia__guenzii_ Achari aceae Rawsonia__lucida _ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 13 0 outs ide 13 13 0 0 0 0 0 14 0 outs ide 14 14 0 0 0 0 0 14 0 outs ide 14 14 0 0 0 0 0 14 0 outs ide 14 14 0 0 0 0 0 14 0 outs ide 14 14 0 0 0 0 0 15 0 outs ide 15 15 0 0 0 0 0 15 0 outs ide 15 15 0 0 0 0 0 15 0 outs ide 15 15 0 0 0 0 0 15 0 outs ide 15 15 0 0 0 0 0 15 0 outs ide 15 15 0 0 0 0 0 207 Fabace ae Apiace ae Astera ceae Astera ceae Celastr aceae Ochna ceae Rosace ae Rubiac eae Anacar diacea e Astera ceae Rhynchosia__clivor non um me dici nal Heteromorpha__in non volucrata_ me dici nal Seriphium__specie non s me dici nal Vernonia__wollast non onii me dici nal Gymnosporia__het non erophylla me dici nal Ochna__confusa non me dici nal Cliffortia__repens non me dici nal Oxyanthus__speci non osus_ me dici nal Rhus__rehmannia non na_ me dici nal Phymaspermum__ non acerosum_ me dici nal 15 0 outs ide 15 15 0 0 0 0 0 16 0 outs ide 16 16 0 0 0 0 0 16 0 outs ide 16 16 0 0 0 0 0 16 0 outs ide 16 16 0 0 0 0 0 16 0 outs ide 16 16 0 0 0 0 0 16 0 outs ide 16 16 0 0 0 0 0 16 0 outs ide 16 16 0 0 0 0 0 16 0 outs ide 16 16 0 0 0 0 0 17 0 outs ide 17 17 0 0 0 0 0 17 0 outs ide 17 17 0 0 0 0 0 208 Fabace ae Lamiac eae Prote aceae Anacar diacea e Ericace ae Rubiac eae Anacar diacea e Anacar diacea e Astera ceae Fabace ae Erythrina__latissi ma non me dici nal Hemzygia__albiflo non ra me dici nal Faurea_galpinii non me dici nal Ozoroa__paniculos non a me dici nal Vaccinum__exul__ non Bolus_ me dici nal Pavetta__cooperi non me dici nal Rhus__tumulicola_ non __meeuseana_ me dici nal Rhus__tumulicola_ non _forma_ me dici nal Tarchonanthus___ non trilobus me dici nal Acacia__mellifera non me dici nal 17 0 outs ide 17 17 0 0 0 0 0 17 0 outs ide 17 17 0 0 0 0 0 17 0 outs ide 17 17 0 0 0 0 0 18 0 outs ide 18 18 0 0 0 0 0 18 0 outs ide 18 18 0 0 0 0 0 18 0 outs ide 18 18 0 0 0 0 0 19 0 outs ide 19 19 0 0 0 0 0 19 0 outs ide 19 19 0 0 0 0 0 19 0 outs ide 19 19 0 0 0 0 0 19 0 outs ide 19 19 0 0 0 0 0 209 Morac eae Ficus__craterosto ma Anacar diacea e Rhus__zeyheri Myrtac eae Eugenia__natalitia Fabace ae Crotalaria___cape nsis Malpig hiacea e Triaspis_glaucoph ylla_ Rubiac eae Burchellia__bubali na_ Flacou rtiacea e Scolopia__zeyheri Thyme laecea e Passerina_montan a Anacar diacea e Rhus__lucida_ Rosace ae Cliffortia__nitididu la non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 19 0 outs ide 19 19 0 0 0 0 0 20 0 outs ide 20 20 0 0 0 0 0 20 0 outs ide 20 20 0 0 0 0 0 21 0 outs ide 21 21 0 0 0 0 0 21 0 outs ide 21 21 0 0 0 0 0 21 0 outs ide 21 21 0 0 0 0 0 21 0 outs ide 21 21 0 0 0 0 0 21 0 outs ide 21 21 0 0 0 0 0 22 0 outs ide 22 22 0 0 0 0 0 22 0 outs ide 22 22 0 0 0 0 0 210 Rubiac eae Pavetta_edentula Solana ceae Bowkeria__cymos a Araliac eae Cussonia__transva alensis_ Escallo niacea Choristylis__rham noides Fabace ae Acacia__davyi_ Rhamn aceae Ziziphus__zeypher ana Rubiac eae Tarenna__supraaxillaris_ Burser aceae Commiphora__har veyi Meliac eae Ekebergia__pterop hylla Fabace ae Indigofera__tristoi des non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 22 0 outs ide 22 22 0 0 0 0 0 22 0 outs ide 22 22 0 0 0 0 0 23 0 outs ide 23 23 0 0 0 0 0 24 0 outs ide 24 24 0 0 0 0 0 24 0 outs ide 24 24 0 0 0 0 0 24 0 outs ide 24 24 0 0 0 0 0 24 0 outs ide 24 24 0 0 0 0 0 26 0 outs ide 26 26 0 0 0 0 0 26 0 outs ide 26 26 0 0 0 0 0 27 0 outs ide 27 27 0 0 0 0 0 211 Rosace ae Cliffortia__linearif olia_ Oliniac eae Olinia__emarginat a Fabace ae Acacia__robusta Astera ceae Seriphium__plumo sum Fabace ae Erythrina__zeyheri Lamiac eae Plectranthus__frut icosus_ Melian thacea e Greyia__radlkoferi Rubiac eae Rothmannia__fisc heri Thyme laecea e Dais_cotinifolia_L. Podoc arpace ae Podocarpus__latif olius_ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 27 0 outs ide 27 27 0 0 0 0 0 28 0 outs ide 28 28 0 0 0 0 0 28 0 outs ide 28 28 0 0 0 0 0 29 0 outs ide 29 29 0 0 0 0 0 29 0 outs ide 29 29 0 0 0 0 0 29 0 outs ide 29 29 0 0 0 0 0 29 0 outs ide 29 29 0 0 0 0 0 29 0 outs ide 29 29 0 0 0 0 0 29 0 outs ide 29 29 0 0 0 0 0 30 0 outs ide 30 30 0 0 0 0 0 212 Fabace ae Aeschynomene__r ehmannii_ Myrica ceae Myrica__pilulifera Ericace ae Erica__drakensber gensis_ Fabace ae Otholobium__wil msii_ Anacar diacea e Rhus__gerrardi_ Rubiac eae Tricalysia__lanceol ata_ Scroph ulariac eae Buddleja_auriculat a_ Astera ceae Lopholaena__corif olia Anacar diacea e Rhus__tumulicola_ _ Rubiac eae Psychotria__capen sis non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 31 0 outs ide 31 31 0 0 0 0 0 31 0 outs ide 31 31 0 0 0 0 0 32 0 outs ide 32 32 0 0 0 0 0 32 0 outs ide 32 32 0 0 0 0 0 34 0 outs ide 34 34 0 0 0 0 0 36 0 outs ide 36 36 0 0 0 0 0 36 0 outs ide 36 36 0 0 0 0 0 37 0 outs ide 37 37 0 0 0 0 0 38 0 outs ide 38 38 0 0 0 0 0 38 0 outs ide 38 38 0 0 0 0 0 213 Anacar diacea e Rubiac eae Buddl ejacea e Celastr aceae Anacar diacea e Anacar diacea e Sapind aceae Apocy naceae Burser aceae Apocy naceae Plumb aginac eae Strych naceae Verbe naceae Rhus__pyroides__ gracilis non me dici nal Cephalanthus__na non talensis_ me dici nal Nuxia__congesta non me dici nal Pterocelastrus___e non chinatus me dici nal Rhus_dentata non me dici nal Rhus__discolor non me dici nal Deinbollia__oblon me gifolia dici nal Tabernaemontana me __ventricosa dici nal Commiphora__vim me inea dici nal Strophanthus__ge me rrardii_ dici nal Plumbago__auricu me lata_ dici nal Strychnos_pungen me s_ dici nal Vitex__rehmannii_ me dici nal 39 0 outs ide 39 39 0 0 0 0 0 40 0 outs ide 40 40 0 0 0 0 0 43 0 outs ide 43 43 0 0 0 0 0 45 0 outs ide 45 45 0 0 0 0 0 52 0 outs ide 52 52 0 0 0 0 0 53 0 outs ide 53 53 0 0 0 0 0 2 1 bot h 1 3 1 0 1 0 0 3 1 bot h 2 4 1 0 1 0 0 3 1 bot h 2 4 1 1 0 0 0 4 1 bot h 3 5 1 0 0 0 1 4 1 bot h 3 5 1 1 0 1 0 10 1 bot h 9 11 1 1 0 0 0 11 1 bot h 10 12 1 0 0 1 0 214 Eupho rbiace ae Strych naceae Celastr aceae Olacac eae Fabace ae Buddl ejacea e Celastr aceae Rhamn aceae Solana ceae Fabace ae Meliac eae Stercul iaceae Tiliace ae Sapind aceae Verbe naceae Astera ceae Solana ceae Clutia___affinis_ me dici nal Strychnos__hennin me gsii_ dici nal Mystroxylon__aet me hiopicum_ dici nal Jasminum__multip me artitum dici nal Acacia__luederitzii me _ dici nal Nuxia__floribunda me _ dici nal Gymnosporia__har me veyana dici nal Rhamnus__prinoid me es_ dici nal Solanum__kweben me se dici nal Acacia__polyacant me ha_ dici nal Turraea__nilotica_ me dici nal Dombeya__cymos me a dici nal Triumfetta__pilosa me dici nal Dodonaea_angusti me folia_L.f dici nal Vitex___obovata me dici nal Brachylaena__tran me svaalensis dici nal Solanum__gigante me um dici nal 15 1 bot h 14 16 1 1 0 0 0 16 1 bot h 15 17 1 1 1 0 0 17 1 bot h 16 18 1 1 1 0 0 19 1 bot h 18 20 1 1 0 0 0 21 1 bot h 20 22 1 0 1 0 0 21 1 bot h 20 22 1 0 0 1 0 25 1 bot h 24 26 1 1 0 0 0 38 1 bot h 37 39 1 0 0 1 0 2 2 bot h 0 4 1 1 0 0 0 3 2 bot h 1 5 1 0 1 0 0 9 2 bot h 7 11 1 1 0 0 0 10 2 bot h 8 12 1 1 0 0 0 27 2 bot h 25 29 1 0 0 1 0 27 2 bot h 25 29 1 1 0 0 0 28 2 bot h 26 30 1 0 0 0 0 30 2 bot h 28 32 1 0 0 0 0 32 2 bot h 30 34 1 0 0 1 0 215 Morac eae Ficus__salicifolia_ Tiliace ae Grewia__sulcata Balanit aceae Balanites___pedici llaris Eupho rbiace ae Eupho rbiace ae Sapota ceae Cleistantus__schle chteri Apocy naceae Acokanthera__rot undata Flacou rtiacea e Myrica ceae Flacourtia__indica Cappar aceae Maerua__decumb ens_ Eupho rbiace ae Eupho rbiace ae Fabace ae Margaritaria__dis coidea_ Malva ceae Abutilon__angulat um Strych naceae Strychnos__usamb arensis_ Morac eae Ficus__glumosa_ Ulmac eae Trema__orientalis Croton__steenkam pianus_ Vitellariopsis__ma rginata_ Morella___serrata _ Margaritaria__dis coidea_nitida_ Elephantorrhiza__ goetzei me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 36 2 bot h 34 38 1 0 0 0 0 48 2 bot h 46 50 0 0 0 0 0 1 3 bot h -2 4 1 1 0 0 0 1 3 bot h -2 4 1 0 1 0 0 1 3 bot h -2 4 1 0 0 1 0 4 3 bot h 1 7 1 1 1 0 0 11 3 bot h 8 14 1 1 0 0 0 21 3 bot h 18 24 1 1 0 1 0 26 3 bot h 23 29 1 0 0 0 0 2 4 bot h -2 6 1 0 0 0 0 3 4 bot h -1 7 1 0 1 0 0 3 4 bot h -1 7 1 0 1 0 0 4 4 bot h 0 8 1 1 0 0 0 6 4 bot h 2 10 1 1 0 0 0 8 4 bot h 4 12 1 0 1 1 0 33 4 bot h 29 37 1 0 0 0 1 39 4 bot h 35 43 1 0 1 1 1 216 Cappar aceae Thilachium__africa num_ Vitace ae Cissus__cactiformi s Ochna ceae Ochna__pulchra_ Vitace ae Rhoicissus__revoili i_ Lamiac eae Tetradenia__ripari a_ Fabace ae Acacia__sieberian a_ Boragi naceae Ehretia__rigida Boragi naceae Cordia__sinensis_ Lamiac eae Karomia_speciosa Fabace ae Eriosema__psorale oides Ebenac Euclea__undulata eae _ Morac eae Maclura_africana_ Boragi naceae Cordia__monoica Boragi naceae Cordia_ovalis Boragi naceae Ehretia__amoena Combr etacea e Fabace ae Terminalia__phan erophlebia Sesbania__sesban me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 1 5 bot h -4 6 1 0 0 1 0 6 5 bot h 1 11 1 0 0 1 0 13 5 bot h 8 18 1 0 1 1 0 15 5 bot h 10 20 1 1 0 0 0 42 5 bot h 37 47 1 0 0 1 0 47 5 bot h 42 52 1 0 1 0 0 49 5 bot h 44 54 1 1 0 0 0 1 6 bot h -5 7 1 1 0 0 0 16 6 bot h 10 22 0 0 0 0 0 39 6 bot h 33 45 1 1 0 1 0 33 8 bot h 25 41 1 1 0 0 0 4 9 bot h -5 13 1 1 0 0 1 13 1 0 bot h 3 23 1 0 0 1 0 13 1 0 bot h 3 23 1 0 1 0 1 30 1 0 bot h 20 40 1 1 1 0 0 27 1 1 bot h 16 38 1 1 1 0 0 23 1 2 bot h 11 35 1 0 1 0 0 217 Fabace ae Albizia__petersian a Anacar diacea e Fabace ae Rhus__guenzii_ Sapin daceae Pappea__capensis Fabace ae Dichrostachys__ci nerea_sp Celastr aceae Gymnosporia__se negalensis Schotia__capitata Ebenac Euclea__schimperi eae _ Fabace ae Acacia__robusta_ Phylla nthace ae Fabace ae Phyllanthus__retic ulatus_ Buddl ejacea e Fabace ae Nuxia__oppositifol ia Strych naceae Strychnos__decuss ata Fabace ae Acacia__tortilis Combr etacea e Celastr aceae Combretum__apic ulatum Morac eae Ficus-_natalensis_ Acacia__gerrardii_ Acacia__nilotica Pterocelastrus_tric uspidatus me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 5 1 3 bot h -8 18 1 1 1 0 0 15 1 3 bot h 2 28 1 0 0 0 1 8 1 4 bot h -6 22 1 0 1 0 0 46 1 4 bot h 32 60 1 0 0 0 1 42 1 5 bot h 27 57 1 0 1 0 0 23 1 7 bot h 6 40 1 1 0 0 0 22 1 8 bot h 4 40 1 1 1 1 0 24 1 8 bot h 6 42 1 0 1 0 0 22 1 9 bot h 3 41 1 0 0 1 0 26 1 9 bot h 7 45 1 0 0 0 0 23 2 1 bot h 2 44 1 0 0 0 0 64 2 1 bot h 43 85 1 0 1 0 0 7 2 5 bot h -18 32 1 1 0 0 0 51 2 8 bot h 23 79 1 0 1 0 0 65 4 4 bot h 21 109 1 0 0 1 0 0 0 insi de 0 0 0 0 0 0 0 0 1 insi de -1 1 1 0 1 0 0 218 me dici nal Ebenac Diospyros__loureir me eae iana dici nal Fabace Cordyla__africana me ae _ dici nal Fabace Newtonia__hildebr me ae andtii dici nal Celastr Salacia__kraussii_ me aceae dici nal Rubiac Pavetta__harborii me eae dici nal Salvad Salvadora__persic me oracea a dici e nal Apocy Strophanthus__pe me naceae tersianus dici nal Fabace Albizia___amara me ae dici nal Fabace Xeroderris__stuhl me ae mannii_ dici nal Apocy Strophanthus__ko me naceae mbe dici nal Rubiac Hymenodictyon__ me eae parvifolium dici nal Apocy Holarrhena__pube me naceae scens_ dici nal Apocy Adenium__multiflo me naceae rum dici nal Eupho Androstachys__joh me rbiace nsonii_ dici ae nal Eupho Androstachys__joh me rbiace nsonii_ dici ae nal Fabace Albizia__forbesii_ me ae dici nal Achari aceae Xylotheca__krauss iana 0 2 insi de -2 2 1 1 0 0 0 0 2 insi de -2 2 1 1 1 0 0 0 2 insi de -2 2 1 0 1 0 0 0 2 insi de -2 2 1 0 1 0 0 0 3 insi de -3 3 1 1 0 0 0 0 3 insi de -3 3 1 0 0 1 0 0 3 insi de -3 3 1 1 0 0 0 0 4 insi de -4 4 1 0 0 0 1 0 4 insi de -4 4 1 1 0 0 0 0 4 insi de -4 4 1 1 0 0 0 0 5 insi de -5 5 1 0 0 0 1 0 5 insi de -5 5 1 1 0 0 0 0 6 insi de -6 6 4 0 0 0 0 0 7 insi de -7 7 1 0 1 0 0 0 8 insi de -8 8 1 0 1 0 0 0 8 insi de -8 8 1 0 1 0 1 0 1 7 insi de -17 17 1 0 1 0 0 219 Clusiac eae Garcinia__gerrardi i Eupho rbiace ae Sapota ceae Euphorbia__grand idens Acanth aceae Sclerochiton_ilicifo loius_ Apocy naceae Gonioma__kamass i Sapota ceae Elaeodendron__cr oceum Malpig hiacea e Clusiac eae Triaspis__hyperico ides Stercu liaceae Cola__greenwayi Prote aceae Faurea__macnaug htonii Cappar aceae Cadaba___natalen sis_ Sapota ceae Elaeodendron__ze yheri_ Manilkara__discol or Hypericum__roepe rianum Ebenac Diospyros__natale eae nsis Melia nthace ae Celastr aceae Bersama__lucens Fabace ae Acacia__erioloba Malva ceae Abutilon__sonnera tum Cassine__peragua _ me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 1 0 outs ide 1 1 1 1 1 1 0 1 0 outs ide 1 1 1 0 1 0 0 1 0 outs ide 1 1 1 0 1 0 0 2 0 outs ide 2 2 1 1 0 0 0 2 0 outs ide 2 2 1 0 1 0 0 2 0 outs ide 2 2 1 0 1 1 1 2 0 outs ide 2 2 1 1 0 0 0 3 0 outs ide 3 3 1 0 0 0 0 3 0 outs ide 3 3 1 0 1 0 0 3 0 outs ide 3 3 1 0 1 0 0 4 0 outs ide 4 4 1 0 0 0 0 4 0 outs ide 4 4 1 0 0 0 0 4 0 outs ide 4 4 0 0 0 0 0 4 0 outs ide 4 4 1 0 0 1 0 5 0 outs ide 5 5 1 0 0 1 0 5 0 outs ide 5 5 1 0 1 0 0 5 0 outs ide 5 5 1 0 1 0 0 220 Astera ceae Vernonia__adoens is Astera ceae Gymnanthemum amygdalinum (Delile) Sch. Bip. ex Walp Lamia ceae Leonotis__leonuru s Malpi ghiace ae Laure aceae Celastr aceae Sapota ceae Astera ceae Astera ceae Fabace ae Flacou rtiacea e Fabace ae Sapota ceae Rhizop horace ae Aspara gaceae Laurac eae me dici nal me dici nal 6 0 outs ide 6 6 1 0 1 1 0 6 0 outs ide 6 6 1 0 1 1 0 me dici nal Acridocarpus_nata me litius dici nal Ocotea___kenyens me is dici nal Pterocelastrus__ro me stratus dici nal Manilkara__concol me or dici nal Brachylaena__ilicif me olia dici nal Sapium__ellipticu me m dici nal Bauhinia_tomento me sa dici nal Gerrardina__folios me a_ dici nal Lessertia__microp me hylla dici nal Mimusops__obova me ta dici nal Cassipourea__mal me osana dici nal Dracaena__aletrif me ormis dici nal Cryptocarya__tran me svaalensis dici nal 6 0 outs ide 6 6 1 1 1 0 0 7 0 outs ide 7 7 1 1 1 1 0 7 0 outs ide 7 7 1 0 0 0 0 8 0 outs ide 8 8 1 0 1 0 0 8 0 outs ide 8 8 1 1 0 0 0 9 0 outs ide 9 9 1 0 0 1 0 9 0 outs ide 9 9 1 1 0 0 0 9 0 outs ide 9 9 1 1 1 0 0 9 0 outs ide 9 9 1 0 0 0 0 10 0 outs ide 10 10 1 0 0 0 0 12 0 outs ide 12 12 1 0 0 0 0 12 0 outs ide 12 12 1 0 1 0 0 13 0 outs ide 13 13 1 0 0 0 0 14 0 outs ide 14 14 1 0 1 0 0 221 Ochna ceae Ochna__serrulata Ochna ceae Ochna__oconnori Ochna ceae Ochna__holstii Annon aceae Monanthotaxis__c affra_ Solana ceae Solanum__aculeas trum_ Clusiac eae Hypericum__revol utum_ Araliac eae Schefflera__umbel lifera_ Ebenac Diospyros__galpini eae i Melian thacea e Myrta ceae Greyia__sutherlan dii_ Podoc arpace ae Rhamn aceae Afrocarpus__falcat us Scroph ulariac eae Anacar diacea e Thyme laecea e Anacar diacea e Cappar aceae Buddleja__saligna Syzygium__gerrar dii Scutia__myrtina Protorhus__longif olia_ Peddiea__africana _ Harpephyllum__ca ffrum_ Boscia__foetida__ rehmanniana me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 14 0 outs ide 14 14 1 0 0 0 0 15 0 outs ide 15 15 1 0 1 0 0 15 0 outs ide 15 15 1 0 1 0 0 16 0 outs ide 16 16 1 0 0 0 1 16 0 outs ide 16 16 1 0 0 0 1 17 0 outs ide 17 17 1 0 0 1 0 18 0 outs ide 18 18 1 0 0 0 0 18 0 outs ide 18 18 1 0 0 0 0 18 0 outs ide 18 18 1 0 0 0 0 18 0 outs ide 18 18 1 0 1 0 0 19 0 outs ide 19 19 1 0 1 0 0 19 0 outs ide 19 19 1 0 0 0 0 20 0 outs ide 20 20 1 0 0 1 0 21 0 outs ide 21 21 1 0 0 0 0 21 0 outs ide 21 21 1 0 1 0 0 22 0 outs ide 22 22 1 0 1 0 1 22 0 outs ide 22 22 1 0 0 0 1 222 Moni miacea e Fabace ae Xymalos__monosp ora_ Protea ceae Protea__wewitschi i_ Cornac aeae Curtisia__dentata Laurac eae Cryptocarya__woo dii Rutace ae Calodendrum__ca pensis_ Prote aceae Protea__gaguedi_ Astera ceae Vernonia__tigna_ Xanth orrhoe aceae Aloe_castanea Prote aceae Faurea__rochetian a Polyg alacea e Cyathe aceae Polygala__virgata _ Tiliace ae Grewia__flavescen s_ Prote aceae Protea__roupelliae _ Aquifo liaceae Ilex__mitis Combr etacea e Combretum__krau ssii Psoralea__latifolia Cyathea___degrei _ me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 23 0 outs ide 23 23 1 0 1 0 0 23 0 outs ide 23 23 1 1 0 0 0 24 0 outs ide 24 24 1 1 0 0 0 26 0 outs ide 26 26 1 0 1 0 0 26 0 outs ide 26 26 1 0 1 0 0 27 0 outs ide 27 27 1 0 0 1 0 29 0 outs ide 29 29 1 1 0 0 0 31 0 outs ide 31 31 1 1 0 0 0 32 0 outs ide 32 32 1 1 0 0 0 me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 32 0 outs ide 32 32 1 1 0 0 0 33 0 outs ide 33 33 1 1 0 0 0 35 0 outs ide 35 35 1 1 0 0 0 35 0 outs ide 35 35 1 1 0 0 0 35 0 outs ide 35 35 1 1 0 0 0 38 0 outs ide 38 38 1 1 0 0 0 41 0 outs ide 41 41 1 1 0 0 0 223 Anacar diacea e Celastr aceae Searsia__chirinden sis Achari aceae Kiggelaria__africa na Scroph ulariac eae Celastr aceae Buddleja_salviifoli a Astera ceae Senecio_barberton icus Celastr aceae Maytenus_pedunc ularis Eupho rbiace ae Croton__menyhart iI Flacou rtiacea e Araliac eae Dovyalis__zeyheri Apocy naceae Carissa__tetramer a Anacar diacea e Lannea_edulis Gymnosporia_buxi folia Putterlickia_verruc osa Cussonia__natalen sis me dici nal me dici nal me dici nal me dici nal non me dici nal non me dici nal non me dici nal non me dici nal me dici nal non me dici nal non me dici nal non me dici nal 43 0 outs ide 43 43 1 1 0 0 0 47 0 outs ide 47 47 2 0 0 0 0 53 0 outs ide 53 53 0 0 0 0 0 60 0 outs ide 60 60 0 0 0 0 0 6 1 bot h 5 7 1 1 0 0 0 18 1 bot h 17 19 1 0 0 1 0 29 1 bot h 28 30 1 1 0 0 0 14 2 bot h 12 16 1 0 0 1 0 45 2 bot h 43 47 1 0 1 1 0 22 4 bot h 18 26 1 0 1 0 0 3 5 bot h -2 8 1 0 0 0 1 27 6 bot h 21 33 1 1 1 0 0 224 Fabace ae Anacar diacea e Olacac eae Combr etacea e Olacac eae Celastr aceae Celastr aceae Myrta ceae Fabace ae Fabace ae Acacia__senegal_l eiorhachis non me dici nal Rhus__leptodictya non _ me dici nal Schrebera__alata non me dici nal Combretum__moll non e_ me dici nal Olax_dissitiflora_ non me dici nal Hippocratea__long non ipetiolata me dici nal Hippocratea__long non ipetiolata me dici nal Syzygium__guinee non nse me dici nal Xanthocercis__za non mbesiaca_ me dici nal Pterocarpus__rotu non ndifolius me dici nal 17 7 bot h 10 24 1 0 0 0 1 35 7 bot h 28 42 1 1 0 1 0 40 1 0 bot h 30 50 1 0 0 1 0 12 1 1 bot h 1 23 1 0 0 0 0 13 1 1 bot h 2 24 1 0 1 0 0 15 1 2 bot h 3 27 1 1 1 0 0 17 1 2 bot h 5 29 1 1 1 0 0 22 1 4 bot h 8 36 1 0 1 0 0 6 2 3 bot h -17 29 1 1 0 0 0 42 2 9 bot h 13 71 1 0 1 0 0 225 Combr etacea e Combretum_moss ambicense_ Passifl oracea e Adenia_spinosa Rutace ae Zanthoxylum__lep rieurii Boragi naceae Cordia__grandical yx Herna ndiace ae Gyrocarpus_ameri canus Prote aceae Protea__caffra__f alcata Myrta ceae Syzygium__legatii Ochna ceae Ochna__arborea_ Erythr oxylac eae Erythroxylum__del agoense Simaro ubace ae Kirkia__wilmsii_ non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal 5 3 0 bot h -25 35 1 0 0 0 0 0 2 insi de -2 2 1 0 0 0 0 0 3 insi de -3 3 1 1 0 0 0 0 6 insi de -6 6 1 1 0 0 0 0 1 insi de -1 1 1 1 0 0 0 5 0 outs ide 5 5 1 0 0 0 1 7 0 outs ide 7 7 1 0 0 1 1 15 0 outs ide 15 15 1 1 0 0 0 24 0 outs ide 24 24 1 0 0 0 1 29 0 outs ide 29 29 1 1 0 0 0 226 Araliac eae Cussionia__panicul ata Fabace ae Dalbergia__armat a Fabace ae Acacia__ataxacant ha Ebenac Diospyros__villosa eae Eupho rbiace ae Rubiac eae Croton__sylvaticus Pavetta__lanceola ta Ebenac Eucllea__crispa__f eae orm__A Velloz iaceae Xerophyta_retiner vis_ Fabace ae Albizia__anthelmi ntica Ebenac Euclea__crispa_ eae Salvad oracea e Flacou rtiacea e Urtica ceae Azima__tetracant ha Solana ceae Solanum___lichten steinii Tiliace ae Grewia__caffra_ Oncoba__spinosa Obetia__tenax non me dici nal non me dici nal non me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 33 0 outs ide 33 33 1 1 0 0 0 40 0 outs ide 40 40 1 0 0 0 0 55 0 outs ide 55 55 1 1 1 0 0 6 1 bot h 5 7 1 0 0 1 0 6 1 bot h 5 7 1 0 1 0 0 16 2 bot h 14 18 1 0 0 0 0 31 2 bot h 29 33 1 1 0 0 0 52 3 bot h 49 55 1 0 0 1 0 21 4 bot h 17 25 1 0 0 0 0 51 4 bot h 47 55 1 0 0 1 0 3 5 bot h -2 8 1 1 0 0 0 9 5 bot h 4 14 1 1 0 0 0 22 5 bot h 17 27 1 0 1 0 0 39 6 bot h 33 45 1 0 0 1 0 11 7 bot h 4 18 1 0 0 0 1 227 Sapota ceae Sideroxylon__iner me Fabace ae Acacia__caffra_ Meliac eae Turraea__obtusifol ia_ Myrta ceae Syzygium__cordat um Rhamn aceae Ziziphus_mucronata Fabace ae Acacia__xanthophl oea_ Fabace ae Ormocarpum___tr ichocarpum Olacac eae Ximenia__caffra_ Fabace ae Acacia__nigrescen s Fabace ae Colophospermum_ mopane Fabace ae Philenoptera__viol acea Combr etacea e Annon aceae Combretum__here roense Cappar aceae Capparis__sepiaria _ Strych naceae Strychnos__potato rum Fabace ae Dalbergia__obova ta_ Astera ceae Sapium___integerr imum Uvaria__lucida__B oj__Sweet me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 18 7 bot h 11 25 1 0 1 0 0 77 7 bot h 70 84 1 0 0 1 0 28 1 0 bot h 18 38 1 1 0 1 0 45 1 7 bot h 28 62 1 1 0 1 0 65 1 7 bot h 48 82 1 1 0 0 0 1 2 1 bot h -20 22 1 0 1 0 0 18 2 3 bot h -5 41 1 0 0 0 0 55 2 6 bot h 29 81 1 1 0 0 0 44 2 7 bot h 17 71 1 0 0 0 0 1 2 8 bot h -27 29 1 0 0 0 0 24 3 6 bot h -12 60 1 1 0 1 0 55 4 0 bot h 15 95 1 0 0 0 0 0 2 insi de -2 2 1 1 0 0 0 0 4 insi de -4 4 1 1 0 0 0 0 5 insi de -5 5 1 0 0 1 0 1 0 outs ide 1 1 1 0 0 0 0 2 0 outs ide 2 2 1 1 0 0 0 228 Melia ceae Turraea__floribun da_ Cappar aceae Cadaba_aphylla Apocy naceae Strophanthus__sp eciousus Fabace ae Adenopodia__spic ata Ulmac eae Chaetachne__arist ata Eupho rbiace ae Olacac eae Clutia__pulchella_ Eupho rbiace ae Euphorbia__coope ri_ Tiliace ae Grewia__villosa Fabace ae Acacia__senegal_ _rostrata_ Annon aceae Hexalobus__mono petalus Boragi naceae Ehretia__obtusifoli a_ Fabace ae Calpurnia__sericea _ Olea__capensis_ me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me 3 0 outs ide 3 3 1 1 0 0 0 4 0 outs ide 4 4 1 1 0 0 0 9 0 outs ide 9 9 1 1 0 0 0 24 0 outs ide 24 24 1 1 0 0 0 29 0 outs ide 29 29 1 0 0 0 0 35 0 outs ide 35 35 1 0 0 1 0 33 1 bot h 32 34 2 1 1 0 0 23 3 bot h 20 26 2 1 0 0 0 5 9 bot h -4 14 2 1 0 0 1 24 9 bot h 15 33 2 0 1 0 1 8 1 1 bot h -3 19 2 1 1 0 1 14 1 9 bot h -5 33 2 1 0 0 0 5 0 outs ide 5 5 2 0 0 0 0 229 Cupres saceae Widdringtonia__n odiflora Olacac eae Olea__capensis__ _Macrocarpa_ Astera ceae Vernonia__myrian tha Rubiac eae Pachystigma__ma crocalyx Morac eae Ficus__burkei_ Hetero Heteropyxis__nata pyxida lensis ceae Salica Salix__mucronata ceae Pittos porace ae Fabace ae Pittosporum__virid iflorum Fabace ae Calpurnia__aurea Canna baceae Celtis__africana Apocy naceae Wrightia__natalen sis_ Bignon iaceae Tecomaria___cape nsis Indigofera__arrect a dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 8 0 outs ide 8 8 2 1 0 0 0 9 0 outs ide 9 9 2 1 1 0 0 19 0 outs ide 19 19 2 1 0 0 0 24 0 outs ide 24 24 2 1 0 0 0 39 0 outs ide 39 39 2 1 1 1 1 41 1 bot h 40 42 2 1 0 0 0 43 1 bot h 42 44 2 0 1 1 0 52 1 bot h 51 53 2 0 1 0 0 17 2 bot h 15 19 2 0 0 0 0 26 2 bot h 24 28 2 0 0 0 0 64 2 bot h 62 66 2 0 1 0 0 5 3 bot h 2 8 2 1 1 0 0 19 3 bot h 16 22 2 0 0 0 1 230 Sapota ceae Myrsi naceae Phylla nthace ae Anacar diacea e Ptaer oxylac eae Phylla nthace ae Rubiac eae Phylla nthace ae Fabace ae Eupho rbiace ae Arecac eae Strych naceae Combr etacea e Eupho rbiace ae Fabace ae Fabace ae Phylla nthace ae Englerophytum__ magalismontanum me dici nal Maesa__lanceolat me a_ dici nal Bridelia_mollis_ me dici nal Lannea_discolor me dici nal Ptaeroxylon__obli me quum dici nal Bridelia_mollis me dici nal Gardenia__volkens me ii_ dici nal Bridelia_cathartica me dici nal Mundulea__serice me a dici nal Flueggea__virosa me dici nal Phoenix__reclinata me dici nal Strychnos__spinos me a dici nal Combretum__zeyh me eri dici nal Croton__pseudopu me lchellus_ dici nal Afzelia__quanzens me is_ dici nal Calpurnia_glabrat me a_ dici nal Andrachne__ovalis me dici nal 70 4 bot h 66 74 2 1 1 0 0 42 5 bot h 37 47 2 1 0 0 0 21 6 bot h 15 27 2 1 1 0 1 39 6 bot h 33 45 2 1 1 0 0 20 7 bot h 13 27 2 0 1 1 0 18 8 bot h 10 26 2 1 0 0 1 21 1 0 bot h 11 31 2 1 0 1 0 15 1 2 bot h 3 27 2 1 1 0 0 56 2 3 bot h 33 79 2 0 0 0 0 35 2 4 bot h 11 59 2 1 0 0 0 17 2 6 bot h -9 43 2 0 0 1 1 33 3 1 bot h 2 64 2 0 0 1 1 65 3 9 bot h 26 104 2 0 0 0 0 0 3 insi de -3 3 2 0 0 1 0 0 1 8 insi de -18 18 2 0 0 0 0 7 0 outs ide 7 7 2 0 0 0 0 13 0 outs ide 13 13 2 1 0 0 0 231 Melia nthace ae Vitace ae Bersama__tysonia na Flacou rtiacea e Icacina ceae Trimeria__grandif olia Scrop hularia ceae Prote aceae Halleria__lucida Portul acacea e Portulacaria_afra_ Cappar aceae Maerua__cafra Morac eae Ficus__ingens_ Anacar diacea e Ozoroa__obovata Morac eae Ficus__abutilifolia Rutace ae Zanthoxylum__hu mile Tiliace ae Grewia__hexamita Rhoicissus__tomen tosus Apodytes__dimidi ata_ Protea__caffra_ me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me dici nal non me 13 0 outs ide 13 13 2 1 1 1 0 28 0 outs ide 28 28 2 1 0 0 0 37 0 outs ide 37 37 2 0 0 0 1 42 0 outs ide 42 42 2 0 1 1 0 48 0 outs ide 48 48 2 1 0 0 0 60 0 outs ide 60 60 2 0 1 0 1 6 3 bot h 3 9 3 0 0 1 0 33 3 bot h 30 36 3 1 0 0 0 51 6 bot h 45 57 3 0 1 1 0 1 7 bot h -6 8 3 0 0 1 0 36 1 0 bot h 26 46 3 1 1 0 0 2 1 2 bot h -10 14 3 1 0 0 0 22 1 9 bot h 3 41 3 1 1 0 1 232 Strych naceae Tiliace ae Rubiac eae Astera ceae Rubiac eae Pipera ceae Sapind aceae Gentia naceae Rham naceae Bignon iaceae Celastr aceae Apocy naceae Combr etacea e dici nal Strychnos__madag non ascariensis me dici nal Grewia__microthy non rsa me dici nal Canthium__ciliatu non m me dici nal Helichrysum__kra non ussii_ me dici nal Canthium__inerme non me dici nal Piper__capense me dici nal Hippobromus__pa me uciflorus dici nal Anthocleista___gr me andiflora_ dici nal Helinus__integrifol me ius dici nal Markhamia__zanz me ibarica dici nal Catha_edulis_ me dici nal Acokanthera__opp me ositifolia_ dici nal Combretum__eryt me hrophyllum_ dici nal 54 3 7 bot h 17 91 3 0 0 0 0 0 8 insi de -8 8 3 1 0 0 1 20 0 outs ide 20 20 3 1 0 0 0 31 0 outs ide 31 31 3 1 0 0 0 39 0 outs ide 39 39 3 1 0 0 0 8 1 bot h 7 9 3 1 1 0 0 38 2 bot h 36 40 3 1 0 0 0 11 3 bot h 8 14 3 0 0 0 0 38 3 bot h 35 41 3 1 0 0 0 3 4 bot h -1 7 3 1 0 0 0 18 4 bot h 14 22 3 1 0 1 0 25 4 bot h 21 29 3 0 1 0 0 65 7 bot h 58 72 3 1 0 0 0 233 Rham naceae Berchemia__discol or Fabace ae Faidherbia__albid a Urtica ceae Pouzolzia__mixta_ Verbe naceae Lantana__rugosa_ Morac eae Ficus_sycomorus_ Cappar aceae Maerua__angolen sis Fabace ae Acacia__burkei_ Tiliace ae Grewia__bicolor Fabace ae Bolusanthus_speci osus Fabace ae Dalbergia__melan oxylon Rosace ae Leucosidea__seric ea Apocy naceae Carissa__bispinosa ___bispinosa_ Apocy naceae Landolphia__kirkii _ Annon aceae Artabotrys__brach ypetalus_ Tiliace ae Trichilia__dregean a me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal non me dici nal non me dici nal non me dici nal non me 6 8 bot h -2 14 3 1 1 0 1 9 9 bot h 0 18 3 0 0 0 0 27 1 0 bot h 17 37 3 1 0 1 0 43 1 0 bot h 33 53 3 1 0 1 0 25 2 0 bot h 5 45 3 1 0 1 1 35 2 1 bot h 14 56 3 0 1 1 0 40 2 1 bot h 19 61 3 0 0 0 0 28 2 5 bot h 3 53 3 1 0 0 0 25 2 8 bot h -3 53 3 0 0 0 0 18 3 4 bot h -16 52 3 0 0 0 0 35 0 outs ide 35 35 3 0 0 1 0 27 3 bot h 24 30 4 1 0 0 1 0 3 insi de -3 3 4 0 0 0 1 0 6 insi de -6 6 4 1 0 0 0 8 0 outs ide 8 8 4 0 1 0 0 234 Ebenac Euclea__linearis__ eae Rubiac eae Vangueria__mada gascariensis Prote aceae Faurea__saligna Fabace ae Cassia_abbreviata Ranun culace ae Passifl oracea e Apocy naceae Clematis__brachia ta_ Morac eae Ficus__sur__Forss k. Phylla nthace ae Fabace ae Bridelia_micrantha Rham naceae Berchemia__zeyhe ri Adenia_gummifer a Carissa__bispinosa ___Zambesiensis Erythrina__lysiste mon Ebenac Diospyros__whyte eae ana Apocy naceae Rauvolfia__caffra Ptaero xylace ae Ptaeroxylon__obli quum_ dici nal non me dici nal non me dici nal non me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 16 0 outs ide 16 16 4 1 0 0 1 19 0 outs ide 19 19 4 1 0 0 0 60 0 outs ide 60 60 4 1 1 0 0 19 1 bot h 18 20 4 0 0 0 0 42 1 bot h 41 43 4 1 1 0 1 18 2 bot h 16 20 4 1 1 0 0 36 2 bot h 34 38 4 1 0 0 1 50 2 bot h 48 52 4 1 0 1 1 18 3 bot h 15 21 4 1 0 1 1 55 3 bot h 52 58 4 0 0 0 0 46 4 bot h 42 50 4 0 1 0 0 69 4 bot h 65 73 4 0 1 0 0 20 6 bot h 14 26 4 1 1 0 0 20 9 bot h 11 29 4 0 0 1 0 235 Tiliace ae Grewia__flavescen s me dici nal Eupho Croton__megalob me rbiace otrys dici ae nal Combr Combretum__imb me etacea erbe dici e nal Fabace Cassia_abbreviata me ae dici nal Xanth Aloe_arborescens me orrhoe dici aceae nal Arecac Hyphaene__coriac non eae ea me dici nal Sapota Mimusops__zeyhe non ceae ri_ me dici nal Anacar Ozoroa__paniculos non diacea a e me dici nal Anacar Ozoroa__sphaeroc me diacea arpa dici e nal Ebenac Diospyros__lycioid me eae es_ dici nal Apocy Carissa__edulis_ me naceae dici nal Vitace Rhoicissus__triden me ae tata dici nal Rutace Clausena_anisata_ me ae dici nal Eupho Antidesma__venos me rbiace um_ dici ae nal Eupho Antidesma__venos me rbiace um_ dici ae nal 33 1 3 bot h 20 46 4 1 0 0 1 6 1 5 bot h -9 21 4 0 1 0 1 24 4 1 bot h -17 65 4 0 0 0 0 0 2 0 insi de -20 20 4 0 0 0 0 46 0 outs ide 46 46 4 1 0 1 0 2 1 0 bot h -8 12 5 1 1 0 0 46 1 3 bot h 33 59 5 0 1 0 1 1 0 outs ide 1 1 5 1 2 0 0 11 1 bot h 10 12 5 0 1 0 0 24 1 bot h 23 25 5 1 1 0 0 16 2 bot h 14 18 5 1 0 0 1 50 2 bot h 48 52 5 1 0 0 0 37 3 bot h 34 40 5 0 0 1 0 24 4 bot h 20 28 5 1 0 0 0 20 7 bot h 13 27 5 1 0 1 0 236 Xanth orrhoe aceae Bomba caceae Aloe_marlothii Fabace ae Erythrina__humea na Balanit aceae Balanites__maugh amii Cappar aceae Boscia__albitrunca Olacac eae Ximenia__america na_ Laure aceae Ocotea__bullata Rutace ae Vepris__lanceolat a Fabace ae Bauhinia_galpinii Fabace ae Albizia__brevifolia _ Anacar diacea e Lannea_schweinfu thii Phylla nthace ae Stercul iaceae Bridelia_micrantha Eupho rbiace ae Chryso balana ceae Synadenium__cup ulare_ Adansonia_digitat a Dombeya__rotund ifolia Parinari__curatelli folia_ me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal non me dici nal non me dici nal non me dici nal me dici nal me dici nal me dici nal me dici nal 65 7 bot h 58 72 5 1 0 1 0 2 8 bot h -6 10 5 0 0 0 0 15 1 0 bot h 5 25 5 0 0 0 0 20 1 1 bot h 9 31 5 1 0 0 0 52 1 3 bot h 39 65 5 1 1 1 0 29 2 3 bot h 6 52 5 1 0 0 0 4 0 outs ide 4 4 5 0 1 0 0 16 0 outs ide 16 16 5 1 0 0 1 39 2 bot h 37 41 6 0 0 0 0 5 1 2 bot h -7 17 6 0 0 0 0 9 2 3 bot h -14 32 6 1 1 0 0 20 1 bot h 19 21 6 1 1 0 1 65 1 bot h 64 66 6 1 0 1 0 8 2 bot h 6 10 6 1 0 0 0 14 2 bot h 12 16 6 0 1 0 1 237 Chryso balana ceae Apiace ae Parinari__curatelli folia Ochna ceae Ochna__natalitia Eupho rbiace ae Phyll antha ceae Euph orbiac eae Labiat ae Euphorbia__ingen s_ Solan aceae Solanum_pandurif orme Anaca rdiace ae Sclerocarya__birre a Astera ceae Brachylaena__disc olor Anaca rdiace ae Rhus_lancea Fabac eae Burkea_africana Tiliac eae Grewia__occidenta lis Heteromorpha__a rborescens Bridelia_cathartica Pseudolachnostylis __maprouneaefolia Clerodendrum__gl abrum me dici nal me dici nal me dici nal me dici nal med icin al med icin al med icin al med icin al non med icin al non me dici nal non me dici nal me dici nal me dici nal 14 2 bot h 12 16 6 1 1 0 1 75 2 bot h 73 77 6 1 0 0 0 39 5 bot h 34 44 6 1 0 0 0 43 7 bot h 36 50 6 1 1 0 0 17 8 both 9 25 6 0 0 1 0 6 1 0 both -4 16 6 0 1 1 0 50 1 0 both 40 60 6 1 1 1 0 53 1 2 both 41 65 6 1 1 0 0 54 3 6 both 18 90 7 0 1 0 0 2 0 outs ide 2 2 7 1 0 1 0 7 0 outs ide 7 7 7 0 0 1 0 24 2 both 22 26 7 0 0 0 0 48 2 both 46 50 7 1 0 0 0 238 Melia ceae Ekebergia__capens is_ Fabace ae Elephantorrhiza__ burkii Eupho rbiace ae Fabace ae Euphorbia__tirucal li_ Eupho rbiace ae Fabace ae Croton__gratissim us Santal aceae Osyris__lanceolata Vitace ae Rhoicissus digitata Rosac eae Prunus__africana Rutace ae Zanthoxylum__Car pense Bignon iaceae Celtis__africana Anacar diacea e Ozoroa__engleri_ Apocy naceae Tabernaemontana __elegans_ Polyga laceae Securidaca__longi pedunculata Araliac eae Cussonia__spicata _ Albizia__versicolor Schotia brachypetala me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal non me dici nal me dici nal me dici nal me dici nal me dici nal non me dici nal non me dici nal me dici nal me dici nal 30 4 both 26 34 7 0 1 0 0 21 5 bot h 16 26 7 0 0 0 0 22 8 bot h 14 30 7 1 0 1 0 25 1 0 bot h 15 35 7 0 0 0 0 31 1 0 bot h 21 41 7 0 0 1 0 41 2 8 bot h 13 69 7 0 1 1 0 35 0 outs ide 35 35 8 1 1 0 0 6 0 outs ide 6 6 8 1 0 0 0 20 0 outs ide 20 20 8 0 1 0 0 54 0 outs ide 54 54 8 1 0 1 0 9 8 bot h 1 17 9 0 1 1 1 4 5 bot h -1 9 10 1 0 1 0 4 6 bot h -2 10 10 1 0 0 0 3 1 bot h 2 4 10 1 1 0 0 36 1 bot h 35 37 10 1 1 0 0 239 Cappar aceae Capparis__toment osa Ebenac Diospyros__mespil eae iformis Rutace ae Zanthoxylum__dav yi Burser aceae Commiphora_negl ecta Fabace ae Piliostigma__thon ningii_ Fabac eae Acacia__karroo_ Fabac eae Senna__petersiana Ebena ceae Euclea_divinorum Canel laceae Warburgia__salut aris Fabac eae Pterocarpus__ang olensis_ Clusia ceae Garcinia__livingst onei_ Comb retace ae Aster aceae Combretum__moll e_ Comb retace ae Fabac eae Terminalia__serice a Spirostachys__afri cana__Sond Dichrostachys__ci nerea_ me dici nal me dici nal me dici nal non me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 18 1 7 bot h 1 35 10 1 0 0 0 24 3 5 bot h -11 59 10 1 1 0 1 16 0 outs ide 16 16 10 1 1 0 0 7 4 bot h 3 11 0 0 0 0 0 17 3 bot h 14 20 11 1 1 0 0 85 3 both 82 88 11 1 1 0 0 25 1 6 both 9 41 11 1 0 0 0 33 3 7 both -4 70 11 1 1 0 0 10 1 both 9 11 12 0 1 1 0 36 7 both 29 43 12 1 1 0 0 5 8 both -3 13 12 1 1 1 1 71 6 both 65 77 13 0 0 0 0 34 2 0 both 14 54 13 0 1 0 0 59 3 3 both 26 92 13 0 1 1 0 68 3 3 both 35 101 13 0 0 0 0 240 Verbe nacea e Tiliac eae Lippia_javanica Sapot aceae Elaeodendron__tra nsvaalense Ebena ceae Teclea__natalensis Burse raceae Commiphora__afri cana Fabac eae Albizia__adianthif olia_ Fabac eae Elephantorrhiza__ elephantina_ Anno nacea e Fabac eae Annona__senegale nsis Trichilia__emetica _ Peltophorum__afri canum_ me dici nal me dici nal med icin al me dici nal me dici nal me dici nal me dici nal me dici nal me dici nal 57 4 both 53 61 15 1 0 1 0 20 8 both 12 28 15 1 1 0 0 24 9 both 15 33 15 1 1 0 0 62 9 both 53 71 15 1 0 1 0 15 1 5 both 0 30 15 0 0 0 0 2 2 both 0 4 16 0 1 1 0 41 4 both 37 45 17 0 0 0 0 28 9 both 19 37 21 1 1 0 1 69 3 5 both 34 104 22 1 1 0 0 241