Academia.eduAcademia.edu
Journal Pre-proof Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda G. Anywar, E. Kakudidi, R. Byamukama, J. Mukonzo, A. Schubert, H. Oryem-Origa PII: S1876-3820(19)30986-2 DOI: https://doi.org/10.1016/j.eujim.2019.101011 Reference: EUJIM 101011 To appear in: European Journal of Integrative Medicine Received Date: 8 October 2019 Revised Date: 15 November 2019 Accepted Date: 15 November 2019 Please cite this article as: { doi: https://doi.org/ This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Published by Elsevier. Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda Anywar G*1, 4, Kakudidi E1, Byamukama R2, Mukonzo J3, Schubert, A4, Oryem-Origa H1, 1 Department of Plant Sciences, Microbiology & Biotechnology, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda 2 Department of Chemistry, College of Natural Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda 3 Department of Pharmacology & Therapeutics, College of Health Sciences, Makerere University, P.O. Box 7062, Kampala, Uganda 4 Fraunhofer Institute for Cell Therapy & Immunology (IZI), Perlickstraße 104103, Leipzig, Germany Corresponding author: godwinanywar@gmail.com / ganywar@cartafrica.org /ganywar@cns.mak.ac.ug of Abstract ur na lP re -p ro Introduction: People living with HIV/AIDS (PLHIV) widely use medicinal plants for boosting immunity and managing infections. The aim of this study was to document the medicinal plant species used by herbalists to boost the immune system of people living with HIV/AIDS in Uganda. Materials and Methods: Semi-structured questionnaires were administered to 90 herbalists to obtain ethnobotanical information on medicinal plant species used from different parts of Uganda. A detailed literature review of the pharmacology, phytochemistry, toxicology and other traditional used of the documented medicinal plants was also conducted. Results: Seventy-one medicinal plant species from 37 families and 64 genera were identified. Trees contributed 38.0% of the species used and herbs 35.2%. The majority of the herbal medicines were made from leaves (35.6%), bark (24.1%) and roots (20.7%). Zanthoxylum chalybeum Engl. and Psidium guajava L. were the most widely used species with citation frequencies (CF) of 11 each. These were followed by Warburgia ugandensis Sprague, Acacia hockii De Wild. and Bridelia micrantha (Hochst.) Baill (CF = 8 each), Mangifera indica L., Markhamia lutea (Benth.) K. Schum., Aloe vera (L.) Burm.f. and Erythrina abyssinica DC. (CF = 7 each). Most traditional medicine practitioners (TMP) (85.6%) used herbs for boosting immunity for PLHIV, whether or not the patients were on antiretroviral treatment. The patients often disclosed their sero-status to the TMP who considered all PLHIV to be immunocompromised. Conclusion: Herbalists widely prescribe medicinal plant species for boosting or restoring the immunity in PLHIV in Uganda. Key words: Medicinal plants, Ethnobotanical survey, immunomodulation, herbalists, HIV/AIDS, Uganda. Jo 1.0 Introduction A healthy immune system is involved defending the body from attacks but when compromised, it can lead to the development of several chronic illnesses which conventional medicine has not adequately addressed [1,2]. AIDS is the commonest immunosuppressive disease in the world [3]. It is caused by HIV, which attacks and destroys the body’s immune system, particularly CD4 cells (T cells), and leads to a state of immunodeficiency and susceptibility to infections [3,4]. The concept of modulating our immune responses as a cure to various illnesses 1 has stimulated a lot of interest [5,6]. Modulation of the immune system is highly desirable in counteracting conditions of compromised immunity [7], such as AIDS. Immunomodulators are biomolecules of synthetic or biological origin capable of regulating, suppressing and stimulating parts of the immune system [8,9]. Natural immunomodulators are often used to restore compromised immunity by activating the host’s defensive mechanism [10]. Regrettably, most immunostimulants and immunosuppressants in clinical use are either cytotoxic [8,11] or even cause fatalities [12]. Conversely, natural products are generally reconsidered to be safer, more accessible and easy to prepare and apply [13,14]. Several plant species have been frequently used in traditional medicine to treat disorders of the of immune system [6,15], and thus represent a source for potential immunomodulating adjuvants [16]. Different studies have demonstrated novel and significant immunomodulatory activities ro in various plant species [6,17,18]. Immunomodulatory agents can also be used as immune -p stimulators to reduce the side effects of drug-induced immunosuppression [6,7,19,20]. One of the most important uses of herbal medicines in HIV infection is in boosting the immune re system [21]. This has created a demand for traditional medicine that boost immunity or improve health and wellbeing [22], especially by many PLHIV [23–26]. Thus an ur na lP ethnobotanical study was conducted to documented medicinal plant species specifically used for boosting immunity in immunocompromised people living with HIV/AIDS in Uganda 2.0 Methods 2.1 Study area A survey was carried out in the districts of Arua in the Northwest, Dokolo in the North, Mbale and Iganga in the East, Bushenyi in the West, Rakai in the South, Luwero (Figure 1), as part Jo of a larger study conducted by Anywar et al. [23]. Figure 1: Map of Uganda showing study sites. Adopted from Anywar et al. [23]. 2.2 Study design Ninety herbalists were interviewed in an ethnobotanical study carried out in 2017, in the respective districts. Different languages were spoken in the different districts surveyed (Table 1). 2 Table 1: Languages spoken & Number of TMP interviewed by districts Only herbalists who belonged to local association and had been administering herbs for boosting immunity in PLHIV for a minimum of 5 years were included in the study. Semistructured interviews were conducted with regard the criteria the TMP used for assessing ones immune status, the medicinal plant species they used to restore immune function and the methods of preparation. 2.3 Collection of plant specimens Plant voucher specimens were collected from the field with the assistance of the herbalists of following standard guidelines described in Martin [27]. The specimens were taken to the Makerere University Herbarium for identification. Classification of the plant species was done ro using theplantlist database at http://www.theplantlist.org accessed on 4thJanuary-March, 2018 at 18:09 EAT. Plant family names were verified using the Angiosperm Phylogeny Group IV. -p 2.4 Ethical considerations The Higher Degrees Research and Ethics Committee of the School of Biomedical Sciences, re College of Health Sciences, Makerere University and the Uganda National Council of Science and Technology (UNCST) cleared this study, (Ethical clearance No. HS 2233). All the ur na lP herbalists were required to consent in writing prior to participating in the study. 2.5 Data analysis The data obtained was analysed and presented using descriptive statistics. In addition, an extensive literature review was conducted to ascertain the pharmacological, biological and clinical evidence supporting the use of the documented plant species as immunomodulators. In addition, an extensive review of published literature on the immonomodulatory or Jo immmunostimulatory properties of the documented medicinal plant species was conducted. We also searched for other known therapeutic or pharmacological properties and ethnomedicinal uses of the documented plant from various databases and publishers such as Google scholar, web of science and PubMed. The results of the review were analysed to give a comparison on the use of these plant species in our study vis-à-vis what is done elsewhere. Results 3.1 Socio-Demographic characteristics of the traditional medicine practitioners’ 3 The average age of the herbalists was 51.1 years. The majority of the herbalists were men (66.7%) with primary level education (34.4%). About one third of the TMP (30.0%) had no education whereas 5.5% had obtained tertiary level education. Most TMP were Christians (74.5%), Muslims (24.4) and animists (1.1%). The TMP were predominantly subsistence farmers (73.3 %). While the rest were full-time TMP (3.3%), traditional birth attendants (3.3%) and businesses owners (7.8%) run various. The rest did various jobs to supplement their incomes. 3.2 Medicinal plant species used Seventy-one medicinal plant species from 37 families and 64 genera were documented (Table of 2). With the exception of two species Amaranthus and Aloe, the rest were identified to species level. Fabaceae had 11 species, Asteraceae (5) and Pyllanthaceae (4). Acanthaceae, ro Anacardiaceae, Apocynaceae, Bignoniaceae and Rubiaceae had 3 species each. The plant species used were trees (38.0%) and herbs (35.2%), while shrubs contributed (19.7%), climbers -p (5.6%) and scramblers (1.4%). Leaves were the most frequently used plant parts (35.6%), re followed by bark (24.1%) and roots (20.7%). The medicinal species used with the highest frequency of mention were; Psidium guajava L. and Zanthoxylum chalybeum Engl. (11 each), Warburgia ugandensis Sprague, Acacia hockii ur na lP De Wild. and Bridelia micrantha (Hochst.) Baill (8 each), Mangifera indica L., Markhamia lutea (Benth.) K. Schum., Aloe vera and Erythrina abyssinica DC. (7 each). Table 2: Medicinal plants used by TMP to boost the immune system in immunocompromised patients living with HIV/AIDS 3.3 Preparation and administration of traditional herbal medicines by TMP Decoctions (boiling) single plant species was the most commonly used method of preparation used (43.8%). This was followed by teas/infusions (20.0%), decoctions with other herbs Jo (18.8%). A peculiar method of preparation was the use of clay “tablets” locally called “mumbwa” in the Luganda language (Plate 1). The TMP make clay tablets by crushing particular herbs and mixing them with wet clay. The tablets are then moulded and dried (3.8%). The use of clay tablets was only recorded in central and eastern Uganda. Although most of the medicines were prepared with water, occasionally honey and milk were used. Honey served as a medicine, excipient and a sweetener to improve palatability. 3.4 Diagnosis and treatment of PLHIV with herbal 4 The herbalists used one’s HIV sero-status as a proxy for immunosuppression even if the patients were asymptomatic. Most of the TMP (77%) relied on laboratory tests from modern health facilities for confirmatory diagnosis of the patients’ sero-status. The majority of the herbalists (85.6%), reported that some of their patients were taking both ARV and herbal medicines. The patients often disclosed their sero-status to the TMP. Patients took herbal preparations mainly to improve their general wellbeing and quality of life. Improvement in the immune system was inferred from reduced frequency of illness, improved appetite, strength and vitality, as well as remission of some of the opportunistic infections. The herbalists also claimed that there was a reduction in severity of the ARV side effects experienced by patients of such as nausea and fatigue experienced by the patients when they used herbal medicines. Table 3 presents a cross-reference of the medicinal plant species and any known ro immunostimulatory or other relevant pharmacological effects and other ethnomedicinal uses in relation to HIV/AIDS. -p Table 3: Cross reference of medicinal plants species used to boost the immune system in PLHIV in Uganda re 4.0 Discussion 4.1 Medicinal plant species used and knowledge of TMP ur na lP The use of medicinal plants species to boost immunity and stimulate appetite in PLHIV has previously been reported [6,15,371]. Most of the plant species in this study are widely used in different parts of Uganda for treating various diseases [371,372]. They have several pharmacological activities that have been reviewed in table 3. The most frequently used plant species have the following pharmacological, phytochemical and toxicological profiles properties: P. guajava contains meroterpenoids with antitumor activity [278]. It also has antibacterial Jo [279], antiinflamatory [280] and immunomodulatory properties [281]. Z. chalybeum has skimmianine with in vitro antiviral activity against measles virus [341]. W. ugandensis is immunostimulatory [145], antimicrobial [146] and anti-inflammatory [147]. It contains several phytochemicals such as ugandensolide, ugandensidial, muzigadial, polygodial, waburganal and cinnamolide [148,149] A. hockii has antipyretic properties [206] with no available reports on other pharmacological properties and toxicology. However, other Acacia spp have been shown to have anti-HIV activity. They include A. catechu which suppresses HIV-1 infection 5 in vitro [373], A. auriculiformis [374] and A. mellifera [375] with in vitro anti-HIV activity. M. indica has antimicrobial [64], anti-inflammatory and immunomodulatory properties. M. indica extracts are administered as nutritional supplement in AIDS and cancer [65] and contain several phytochemicals such as protocatechic acid, catechin, mangiferin and γ–aminobutyric acid [63]. M. lutea has been shown to have antiviral properties with various phenylpropanoid glycosides such as luteoside A, B & C [137]. B. micrantha has antiviral-against HIV-1 reverse transcriptase [289]. It also has antidiarrhoeal, antiinflammatory, antimalarial, antinociceptive properties [290] and is rich in phenolics [291], alkaloids, flavonoids, steroids, tannins & saponins [292]. A. vera has antiinflamatory properties and stimulates immunity [353,354]. E. abyssinica has anticancer properties due to the presence of compounds such as pterocarpans of [217] and antimicrobial properties due to the presence of compounds alkaloids such as tannins ro alkaloids and flavones [88]. The TMP considered remission of opportunistic and improvement of general wellbeing of -p patients to be as a result of an improved immune system. However, there is a possibility that the herbs may have a direct antiviral effect on HIV. The in vitro antiviral activity of medicinal re plants has been demonstrated in different studies [289,376]. Ten of the plant species documented have proven antiviral activity against a range of viruses including hepatitis B, ur na lP measles and even HIV-1. The plant species with antiviral activity are: A. sativum [44], L. barteri [59], S. pyroides [68,69], E. angustifolia antiviral [117], M. lutea [137], P. granatum [260], B. micrantha (anti-HIV-1 RT [289], R. cordifolia (hepatitis B) [325], and Z. chalybeum (measles) [341]. There is also a likelihood that the reported concurrent use of ARV and herbal medicines by patients leads to a reduction the viral load causing a rebound of the immune system. All these plant species have no reported cases of toxicity and are considered safe from animal Jo studies (Table 3) with the exception of A. vera where cases of toxicity have been reported in both mice and humans in the form of acute hepatitis [355,356,358], B. micrantha with mild toxicity reported in brine shrimp assays [72,293] and Z. chalybeum which is associated with impaired kidney function and neoplasms in experimental animals at high doses [342,343]. 4.2 Methods of preparation of medicinal plant extracts by TMP Medicinal plant products were prepared by boiling them either singly or in combination with 6 other herbs. The practice is common for TMP preparing HIV medications [23,70,79]. The consumption of clay of geophagy apparently is ancient and widely practiced in many parts of the world for religious and medicinal purposes and part of routine diet [377]. Abrahams [378] and Anywar et al. [23] have reported the ingestion of clay for therapeutic purposes in Uganda. In some instances, the moulded clay tablets were smoked. Abrahams [378]made similar findings in his study but also observed that the moulded “tablets” were marked in various distinct ways as a way of labelling them to distinguish them from others. Many soils eaten in Uganda and other parts of Africa are typical tropical red soils, which are normally rich in silica but widely, varying in elemental composition [379]. However, the kinds of of soils observed in this study were typically greyish clay soils. Such soils are high clay content are generally richer in magnesium. In addition, some of the clays are similar in composition to ro kaolin or china clay, which is a natural form of the hydrated aluminium silicate used in certain commercial diarrhoea medications [379]. In fact, clay can is used as a traditional antidiarrheal -p agent to treat acute gastroenteritis [380]. Clay serves as a preservative and binding agent for the herbal medicine [23,378], an adsorbent or detoxifier of herbal medicines [381] or to give re the medicine a distinctive smell desired by the consumer [378]. Red soils have the ability to ur na lP prevent iron deficiency in anaemia [382,383]. However, despite the widespread belief in the benefits of geophagy, especially among pregnant women in Africa, they could have limited bioavailability [382]. According to Minnich et al. [384], soils have the ability to enhance or inhibit the absorption of different elements iron absorption such as iron or potassium depending on their cation exchange capacity. This can affect the recommended dietary allowance of certain minerals in the body. Geophagy has also been associated with some nutritional disorders as well as the risk of ingesting contaminants [385], which may be radioactive substances [386] and exposure to soil-borne or geohelminth Jo infection [387]. 4.3 Treatment of PLHIV with herbal medicines The TMP prescribed herbal remedies in immunocompromised PLHIV to stimulate appetite, boost immunity and helping in regaining strength and recuperating. The patients sought ways to neutralize the side effects of the ARV by taking herbs. This is common practice in many African countries [23,388]. Patients also trusted herbal medicines and considered them effective, more readily available and affordable. Langlois-Klassen et al. [389] reported that 7 PLHIV used herbal medicines because of their familiarity with them and the desire to quickly relieve the symptoms they suffer. Generally, there is increasing use of herbal remedies in PLHIV [23,25], who report improvement in their conditions after treatment [24]. This could partly explain why PLHIV commonly look for an alternative traditional medicine parallel to conventional therapy [24]. It is also widely acknowledged that TMP provide healthcare to a substantial proportion of PLHIV in high HIV burden countries in sub-Saharan Africa [390]. 4.4 Properties and mode of action of medicinal plant species used as immune immunomodulators Of the 71 plant species, one third (22, 31.0%) have direct references in the literature pertaining of to their in vitro or in vivo immunomodulatory properties. Additionally, 17 species (23.9%) have antimicrobial or antimycobacterial properties, 11 (16.2%) have anticancer or antiproliferative ro properties, 17 (23.9%) with antimalarial or antiplasmodium activities and 16 (22.5%) have antiviral or anti-HIV activity. Other ethnobotanical studies cited point to the fact that most of -p the medicinal plants are used in treating various HIV/AIDS opportunistic infections [23,70,79]. Although some of the therapeutic or pharmacologic activities of the medicinal plants re mentioned do not play a direct role as immunomodulators, they may be beneficial in promoting health of PLHIV. For instance, plants with antimicrobial or antimycobacterial properties are ur na lP useful in PLHIV because they are frequently afflicted by opportunistic infections caused by such pathogens or cancers [3]. The plasmodium parasite impairs the immune system’s ability to trigger an efficient immune response [391]. Different mechanisms by which medicinal plant species exert their immunostimulatory effects have been studied. Some medicinal plant extracts may have significant immunostimulatory effect on both the cell-mediated and humoral immune systems in vivo [272] Others medicinal plant species may exert their immunostimulatory effects via different mediators such as the Jo induction of IFN-α and β [392], or the production of IFN-γ & IL-4 [145]. Medicinal plant extracts may also activate the immune system by; (i) triggering the alternating complement pathway and raising the number and distribution of white blood cells, and (ii) stimulating phagocytosis, T-cell production, lymphocytic activity, cytokine production, cellular respiration & enzyme secretion [116]. 4.5 Toxicity and safety of used medicinal plant species We did not find any literature on the toxicity of 15 of the plant species documented. Forty8 three of the species documented were reported to be safe or non-toxic in various studies where they were evaluated for acute and sub-acute oral toxicities mainly in animal models. The remaining 13 plant species: A. boonei, S. hadiensis, K. africana, J. curcas, M. esculenta, P. edulis, B. micrantha, H. acida, S. longipedunculata, C. articulata, Z. chalybeum, U. massaica and A. vera were reported to have varying degrees and types of toxicity, depending on the dose administered, plant part used, extraction solvent and duration of exposure as reported in table 3. For instance, although P. edulis leaves were reported to be toxic in the review [287,288], the locals in this study were using the fruits and roots as medicine. Although the roots of M. esculenta is reported to be toxic [204], the locals were using the leaves as medicine. Besides, they have over the years selected less-toxic varieties but also devised means to detoxify the of roots through prolonged boiling for example. The levels of toxicity reported also vary with dosage. It is not surprising therefore that herbalists try to regulate the doses of the medicinal ro plants they administer. -p 1.2 Potential herb-drug interactions with concurrent use of herbal medicines and ARVs Orthodox medical doctors are concerned about the potential of herb-drug interactions, which re are likely to increase with the increasing availability of ARVs and use of herbs [70]. Some medicinal plant species have been shown to have undesirable or even harmful effects when ur na lP combined with ARV. A case in point is the ARV, Indinavir, which is a protease inhibitor that is a substrate for both P-gp and CYP3A4. Pharmacokinetic interactions between indinavir and herbs such as garlic decrease its bioavailability [393]. This will have the obvious effect of making the drug less effective because the correct dose will not be achieved. However, the specific pharmacokinetic and pharmacodynamic interactions between various herbal medicines or combinations of herbal medicines and ARVs have mostly not been investigated. It is therefore important to be mindful of such potential herb-interactions when using herbs or Jo ARV. 4.8 Conclusion Herbalists widely prescribe medicinal plant species for boosting or restoring the immunity in PLHIV in Uganda. There is scientific evidence to support the use of many of the plant species as immunostimulants, from pharmacological and clinical studies. In addition, these plant species also have other pharmacologically important properties that support the immune function such as; anti-HIV, antimicrobial and anticancer activities and creation of awareness about the possible dangers of geophagy and polypharmacy. We therefore recommend further 9 studies to scientifically validate the immunostimulatory effects of the medicinal plant species used by the TMP. All research done by the authors with financial support from the Consortium for Advanced Research Training in Africa (CARTA) and DAAD: Funding Source All sources of funding should also be acknowledged and you should declare any involvement of study sponsors in the study design; collection, analysis and interpretation of data; the writing of the manuscript; the decision to submit the manuscript for publication. If the study sponsors had no such involvement, this of should be stated Authors: All research done by the authors; ro Financial support: yes; Author statement re -p Re: Author statement on submission of revised manuscript titled “Medicinal plants used by traditional medicine practitioners to boost the immune system in people living with HIV/AIDS in Uganda.” On behalf of my co-authors, I wish to state that all the comments made by the reviewers ur na lP of our manuscript have been duly attended to. A revised version of the manuscript has been uploaded attached, together with other additional documents requested for by the reviewer like the map of the study site. All the revisions have been highlighted in yellow. A corresponding detailed response to the reviewer’s comments has also been uploaded indicating point by point, the reviewer’s comments and the response made and where exactly it is located in the manuscript Conflict of interest: none Jo Conflict of Interest A conflicting interest exists when professional judgement concerning a primary interest (such as patient’s welfare or the validity of research) may be influenced by a secondary interest (such as financial gain or personal rivalry). It may arise for the authors when they have financial interest that may influence their interpretation of their results or those of others. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. 10 Word count: 3092 without references & abstract Acknowledgement This research was supported by the Consortium for Advanced Research Training in Africa (CARTA). CARTA is jointly led by the African Population and Health Research Centre and the University of the Witwatersrand and funded by the Carnegie Corporation of New York (Grant No--B 8606.R02), Sida (Grant No: 54100113), the DELTAS Africa Initiative (Grant No: 107768/Z/15/Z) and Deutscher Akademischer Austauschdienst (DAAD). The DELTAS Africa Initiative is an independent funding scheme of the African Academy of Sciences (AAS)’s Alliance for Accelerating Excellence in Science in Africa (AESA) and supported by the New Partnership for Africa’s Development Planning and Coordinating Agency (NEPAD of Agency) with funding from the Wellcome Trust (UK) and the UK government. The statements made and views expressed are solely the responsibility of the Fellow. ro We also acknowledge and thank the research assistants Kasozi Dauda, Kibuuka Sserwano Moses, Kizito Medi, Onenarach Walter & Opio Henry, for their dedicated work. We are also -p grateful to the TMP who gave their consent to take part in this study and to share their ur na lP re knowledge with us. Jo Reference: [1] M.S. Al-Haddad, F. Hamam, S.M. Al-Shakhshir, General public knowledge, perceptions and practice towards pharmaceutical drug advertisements in the Western region of KSA, Saudi Pharm. J. 22 (2014) 119–126. https://doi.org/http://dx.doi.org/10.1016/j.jsps.2013.03.002. [2] C.-C. Wen, H.-M. Chen, N.-S. Yang, Chapter 6 - Developing Phytocompounds from Medicinal Plants as Immunomodulators, in: S. Lie-Fen, S.Y.L. Allan (Eds.), Adv. Bot. Res., Academic Press, 2012: pp. 197–272. https://doi.org/http://dx.doi.org/10.1016/B978-0-12-394591-4.00004-0. [3] J.C. Gea-Banacloche, Immunomodulation, in: Princ. Mol. Med., Springer, 2006: pp. 893–904. [4] A.J. McMichael, P. Borrow, G.D. Tomaras, N. Goonetilleke, B.F. Haynes, The immune response during acute HIV-1 infection: clues for vaccine development, Nat Rev Immunol. 10 (2010) 11–23. https://doi.org/10.1038/nri2674. [5] K. Mukherjee, R. Biswas, S.K. Chaudhary, P.K. Mukherjee, Chapter 18 - Botanicals as Medicinal Food and Their Effects against Obesity, in: P.K. Mukherjee (Ed.), EvidenceBased Valid. Herb. Med., Elsevier, Boston, 2015: pp. 373–403. https://doi.org/https://doi.org/10.1016/B978-0-12-800874-4.00018-0. [6] M.T. Sultan, M.S. Butt, M.M. Qayyum, H.A. Suleria, Immunity: plants as effective mediators, Crit Rev Food Sci Nutr. 54 (2014) 1298–1308. 11 [12] [13] [14] [15] [16] [17] Jo [18] of [11] ro [10] -p [9] re [8] ur na lP [7] https://doi.org/10.1080/10408398.2011.633249. S. Raj, K.M. Gothandam, Immunomodulatory activity of methanolic extract of Amorphophallus commutatus var. wayanadensis under normal and cyclophosphamide induced immunosuppressive conditions in mice models, Food Chem Toxicol. 81 (2015) 151–159. https://doi.org/10.1016/j.fct.2015.04.026. I. Jantan, W. Ahmad, S.N.A. Bukhari, Plant-derived immunomodulators: An insight on their preclinical evaluation and clinical trials, Front. Plant Sci. 6 (2015). https://doi.org/10.3389/fpls.2015.00655. A. Puri, R. Saxena, R.P. Saxena, K.C. Saxena, V. Srivastava, J.S. Tandon, Immunostimulant activity of Nyctanthes arbortristis L, J Ethnopharmacol. 42 (1994) 31–37. https://doi.org/10.1016/0378-8741(94)90020-5. A. Saxena, S. Dixit, S. Aggarwal, V. Seenu, R. Prashad, S.M. Bhushan, V. Tranikanti, M.C. Misra, A. Srivastava, An ayurvedic herbal compound to reduce toxicity to cancer chemotherapy: a randomized controlled trial, Indian J. Med. Paediatr. Oncol. 29 (2008) 11. G. Leroux-Roels, Unmet needs in modern vaccinology: Adjuvants to improve the immune response, Vaccine. 28, Supple (2010) C25–C36. https://doi.org/http://dx.doi.org/10.1016/j.vaccine.2010.07.021. S. Koo, F.M. Marty, L.R. Baden, Infectious Complications Associated with Immunomodulating Biologic Agents, Infect. Dis. Clin. North Am. 24 (2010) 285–306. https://doi.org/http://dx.doi.org/10.1016/j.idc.2010.01.006. H.C.T. Lotter-Stark, E.P. Rybicki, R.K. Chikwamba, Plant made anti-HIV microbicides—A field of opportunity, Biotechnol. Adv. 30 (2012) 1614–1626. https://doi.org/http://dx.doi.org/10.1016/j.biotechadv.2012.06.002. N. Oršolić, I. Bašić, Immunomodulation by water-soluble derivative of propolis: a factor of antitumor reactivity, J. Ethnopharmacol. 84 (2003) 265–273. https://doi.org/http://dx.doi.org/10.1016/S0378-8741(02)00329-X. T. Fernandez, P. Cerda Zolezzi, E. Risco, V. Martino, P. Lopez, M. Clavin, O. Hnatyszyn, S. Canigueral, S. Hajos, G. Ferraro, E. Alvarez, Immunomodulating properties of Argentine plants with ethnomedicinal use, Phytomedicine. 9 (2002) 546– 552. https://doi.org/10.1078/09447110260573182. J.E. Williams, Review of antiviral and immunomodulating properties of plants of the Peruvian rainforest with a particular emphasis on Una de Gato and Sangre de Grado, Altern Med Rev. 6 (2001) 567–579. A. Puri, R. Sahai, K.L. Singh, R.P. Saxena, J.S. Tandon, K.C. Saxena, Immunostimulant activity of dry fruits and plant materials used in Indian traditional medical system for mothers after child birth and invalids, J. Ethnopharmacol. 71 (2000) 89–92. https://doi.org/http://dx.doi.org/10.1016/S0378-8741(99)00181-6. M. Karunai Raj, C. Balachandran, V. Duraipandiyan, P. Agastian, S. Ignacimuthu, Antimicrobial activity of Ulopterol isolated from Toddalia asiatica (L.) Lam.: A traditional medicinal plant, J. Ethnopharmacol. 140 (2012) 161–165. https://doi.org/http://dx.doi.org/10.1016/j.jep.2012.01.005. G.C. Prendergast, E.M. Jaffee, Cancer immunologists and cancer biologists: why we didn’t talk then but need to now, Cancer Res. 67 (2007) 3500–3504. https://doi.org/10.1158/0008-5472.can-06-4626. K. Sak, Chemotherapy and dietary phytochemical agents. Chemother Res Pract 2012: 282570, (2012). K. Peltzer, N. Friend-du-Preez, S. Ramlagan, H. Fomundam, J. Anderson, L. Chanesta, Antiretrovirals and the use of traditional, complementary and alternative medicine (TCAM) by HIV patients in Kwazulu-Natal, South Africa: a longitudinal study, Afr J [19] [20] [21] 12 [27] [28] [29] [30] [31] Jo [32] of [26] ro [25] -p [24] re [23] ur na lP [22] TraditComplentAltern Med. 8 (2011). D. Davids, T. Blouws, O. Aboyade, D. Gibson, J.T. De Jong, C. Van’t Klooster, G. Hughes, Traditional health practitioners’ perceptions, herbal treatment and management of HIV and related opportunistic infections, J. Ethnobiol. Ethnomed. 10 (2014) 77. https://doi.org/10.1186/1746-4269-10-77. G. Anywar, E. Kakudidi, R. Byamukama, J. Mukonzo, A. Schubert, H. Oryem-Origa, Indigenous traditional knowledge of medicinal plants used by herbalists in treating opportunistic infections among people living with HIV/AIDS in Uganda, J. Ethnopharmacol. 246 (2020) 112205. https://doi.org/https://doi.org/10.1016/j.jep.2019.112205. E. Gurmu Abyot, F.S. Teni, W.T. Tadesse, Pattern of Traditional Medicine Utilization among HIV/AIDS Patients on Antiretroviral Therapy at a University Hospital in Northwestern Ethiopia: A Cross-Sectional Study, Evidence-Based Complement. Altern. Med. 2017 (2017) 6. https://doi.org/10.1155/2017/1724581. K.T. Haile, A.A. Ayele, A.B. Mekuria, C.A. Demeke, B.M. Gebresillassie, D.A. Erku, Traditional herbal medicine use among people living with HIV/AIDS in Gondar, Ethiopia: Do their health care providers know?, Complement. Ther. Med. 35 (2017) 14– 19. https://doi.org/https://doi.org/10.1016/j.ctim.2017.08.019. E. Mills, C. Cooper, D. Seely, I. Kanfer, African herbal medicines in the treatment of HIV: Hypoxis and Sutherlandia. An overview of evidence and pharmacology, Nutr J. 4 (2005). https://doi.org/10.1186/1475-2891-4-19. G.J. Martin, Ethnobotany: A methods manual, Hall, London, 1995. https://doi.org/10.1007/978-1-4615-2496-0. A.M. Mih, A.M. Ngone, L.M. Ndam, Assessment of nutritional composition of wild vegetables consumed by the people of Lebialem Highlands, South Western Cameroon, in: Food Nutr. Sci., 2017: pp. 647–657. V.L. Suryavanshi, P.A. Sathe, M.M. Baing, G.R. Singh, S.N. Lakshmi, Determination of rutin in Amaranthus spinosus Linn. Whole plant powder by HPTLC, Chromatographia. 65 (2007) 767. M. Sigamoney, S. Shaik, P. Govender, S.B.N. Krishna, Sershen, African leafy vegetables as bio-factories for silver nanoparticles: A case study on Amaranthus dubius C Mart. Ex Thell, South African J. Bot. 103 (2016) 230–240. https://doi.org/https://doi.org/10.1016/j.sajb.2015.08.022. F.O. Orech, T. Akenga, J. Ochora, H. Friis, J. Aagaard-Hansen, Potential toxicity of some traditional leafy vegetables consumed in Nyang’oma Division, Western Kenya, African J. Food, Agric. Nutr. Dev. 5 (2005). P. Tugume, E.K. Kakudidi, M. Buyinza, J. Namaalwa, M. Kamatenesi, P. Mucunguzi, J. Kalema, Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda, J. Ethnobiol. Ethnomed. 12 (2016) 1– 28. https://doi.org/10.1186/s13002-015-0077-4. M.M. Adia, G. Anywar, R. Byamukama, M. Kamatenesi-Mugisha, Y. Sekagya, E.K. Kakudidi, B.T. Kiremire, Medicinal plants used in malaria treatment by Prometra herbalists in Uganda, J. Ethnopharmacol. 155 (2014). https://doi.org/10.1016/j.jep.2014.05.060. E.G. Achigan-Dako, O.E.D. Sogbohossou, P. Maundu, Current knowledge on Amaranthus spp.: research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa, Euphytica. 197 (2014) 303–317. https://doi.org/10.1007/s10681-014-1081-9. G. Kumar, L. Karthik, K.V.B. Rao, Phytochemical composition and in vitro antioxidant activity of aqueous extract of Aerva lanata (L.) Juss. ex Schult. Stem (Amaranthaceae), [33] [34] [35] 13 [41] [42] [43] [44] [45] [46] Jo [47] of [40] ro [39] -p [38] re [37] ur na lP [36] Asian Pac. J. Trop. Med. 6 (2013) 180–187. https://doi.org/https://doi.org/10.1016/S1995-7645(13)60020-6. K.G. Nevin, P.L. Vijayammal, Pharmacological and Immunomodulatory Effects of Aerva lanata. in Daltons Lymphoma Ascites–Bearing Mice, Pharm. Biol. 43 (2005) 640–646. https://doi.org/10.1080/13880200500303858. A. Sharma, M. Tanwar, N. Nagar, A.K. Sharma, Analgesic and anti-inflamatory activity of flowers extract of Aerva lanata, Adv. Pharmacol. Toxicol. 12 (2011) 13–18. http://search.ebscohost.com/login.aspx?direct=true&db=aph&AN=67516171&site=eh ost-live. D. Chowdhury, A. Sayeed, A. Islam, M. Shah Alam Bhuiyan, G.R.M. Astaq Mohal Khan, Antimicrobial activity and cytotoxicity of Aerva lanata, Fitoterapia. 73 (2002) 92–94. https://doi.org/https://doi.org/10.1016/S0367-326X(01)00369-0. S. Manokaran, A. Jaswanth, S. Sengottuvelu, J. Nandhakumar, R. Duraisamy, D. Karthikeyan, R. Mallegaswari, Hepatoprotective activity of Aerva lanata Linn. against paracetamol induced hepatotoxicity in rats, Res. J. Pharm. Technol. 1 (2008) 398–400. R.P. Gujjeti, S. Namthabad, E. Mamidala, HIV-1 reverse transcriptase inhibitory activity of Aerva lanata plant extracts, BMC Infect. Dis. 14 (2014) P12. K. Devarai H., S. Oruganti K., S.B. Puttagunta, K. Ramadoss, In vitro anti tubercular activity of leaves of Aerva lanata L, Int. Biol. Biomed. J. 3 (2017) 209–212. http://ibbj.org/article-1-114-en.html. K.S. Omotoso, F.R. Aigbe, O.A. Salako, M.C. Chijioke, O.O. Adeyemi, Toxicological evaluation of the aqueous whole plant extract of Aerva lanata (l.) Juss. ex Schult (Amaranthaceae), J. Ethnopharmacol. 208 (2017) 174–184. https://doi.org/https://doi.org/10.1016/j.jep.2017.06.032. N.D. Weber, D.O. Andersen, J.A. North, B.K. Murray, L.D. Lawson, B.G. Hughes, In vitro virucidal effects of Allium sativum (garlic) extract and compounds, Planta Med. 58 (1992) 417–423. https://doi.org/10.1055/s-2006-961504. N. Benkeblia, Antimicrobial activity of essential oil extracts of various onions (Allium cepa) and garlic (Allium sativum), LWT - Food Sci. Technol. 37 (2004) 263–268. https://doi.org/https://doi.org/10.1016/j.lwt.2003.09.001. J.T. Pinto, S. Lapsia, A. Shah, H. Santiago, G. Kim, Antiproliferative effects of garlicderived and other Allium related compounds, in: Nutr. Cancer Prev. New Insights into Role Phytochem., Springer US, Boston, MA, 2001: pp. 83–106. https://doi.org/10.1007/978-1-4615-1283-7_8. G. Schafer, C.H. Kaschula, The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention, Anticancer Agents Med Chem. 14 (2014) 233–240. F. Borrelli, R. Capasso, A.A. Izzo, Garlic (Allium sativum L.): Adverse effects and drug interactions in humans, Mol. Nutr. Food Res. 51 (2007) 1386–1397. https://doi.org/10.1002/mnfr.200700072. K.D. Rose, P.D. Croissant, C.F. Parliament, M.B. Levin, Spontaneous spinal epidural hematoma with associated platelet dysfunction from excessive garlic ingestion: a case report, Neurosurgery. 26 (1990) 880–882. E. Beck, J. Grunwald, Allium sativum in der stufentherapie der hyperlipidamie: studie mit 1997 patienten belegt wirksamkeit und vertraglichkeit, Medizinische Welt. 44 (1993) 516–520. P. Ssegawa, J.M. Kasenene, Medicinal plant diversity and uses in the Sango bay area, Southern Uganda, J. Ethnopharmacol. 113 (2007) 521–540. https://doi.org/http://dx.doi.org/10.1016/j.jep.2007.07.014. H.P. Koch, L.D. Lawson, Garlic: the science and therapeutic application of Allium [48] [49] [50] [51] 14 [57] [58] [59] [60] [61] [62] Jo [63] of [56] ro [55] -p [54] re [53] ur na lP [52] sativum L. and related species, Lippincott Williams & Wilkins, 1996. J. Namukobe, J.M. Kasenene, B.T. Kiremire, R. Byamukama, M. Kamatenesi-Mugisha, S. Krief, V. Dumontet, J.D. Kabasa, Traditional plants used for medicinal purposes by local communities around the Northern sector of Kibale National Park, Uganda, J. Ethnopharmacol. 136 (2011) 236–245. https://doi.org/http://dx.doi.org/10.1016/j.jep.2011.04.044. D. Prakash, B.N. Singh, G. Upadhyay, Antioxidant and free radical scavenging activities of phenols from onion (Allium cepa), Food Chem. 102 (2007) 1389–1393. https://doi.org/https://doi.org/10.1016/j.foodchem.2006.06.063. V.P. Kumar, K.V.H. Prashanth, Y.P. Venkatesh, Structural analyses and immunomodulatory properties of fructo-oligosaccharides from onion (Allium cepa), Carbohydr. Polym. 117 (2015) 115–122. https://doi.org/https://doi.org/10.1016/j.carbpol.2014.09.039. A.P.S. Votto, B.S. Domingues, M.M. de Souza, F.M.R. da Silva Júnior, S.S. Caldas, D. Filgueira, R.M. Clementin, E.G. Primel, A.L. Vallochi, E.B. Furlong, Toxicity mechanisms of onion (Allium cepa) extracts and compounds in multidrug resistant erythroleukemic cell line, Biol. Res. 43 (2010) 429–437. J.M. Nguta, R. Appiah-Opong, A.K. Nyarko, D. Yeboah-Manu, P.G.A. Addo, Medicinal plants used to treat TB in Ghana, Int. J. Mycobacteriology. 4 (2015) 116–123. https://doi.org/https://doi.org/10.1016/j.ijmyco.2015.02.003. J.R.S. Tabuti, Herbal medicines used in the treatment of malaria in Budiope county, Uganda, J. Ethnopharmacol. 116 (2008) 33–42. https://doi.org/http://dx.doi.org/10.1016/j.jep.2007.10.036. W.M. Kone, D. Soro, B. Dro, K. Yao, K. Kamanzi, Chemical composition, antioxidant, antimicrobial and acetylcholinesterase inhibitory properties of Lannea barteri (Anacardiaceae), Aust. J Basic App Sci. 5 (2011) 1516–1523. N.S. Njinga, M.I. Sule, U.U. Pateh, H.S. Hassan, M.M. Ahmad, S.T. Abdullahi, B.A. Danja, B. Bawa, Phytochemical and antimicrobial activity of Lannea kerstingii Engl and K. Krause (Anacadiaceae), Nitte Univ. J. Heal. Sci. 4 (2014) 4–9. S.A. Adegoke, F.O. Agada, L. Ogundipe, Antibacterial activity of methanol and ethanol leaf extracts of Antidesma venosum and Lannea barteri, Afr. J. Microbiol. Res. 7 (2013) 3442–3447. K. Garba, A.H. Yaro, J. Ya’u, Anticonvulsant effects of ethanol stem bark extract of Lannea barteri (Anacardiaceae) in mice and chicks, J. Ethnopharmacol. 172 (2015) 227–231. https://doi.org/https://doi.org/10.1016/j.jep.2015.06.039. U.I. Nda-Umar, M. Gbate, A.N. Umar, Y.M. Alfa, A. Mann, Phytochemical and acute toxicity studies of methanolic extracts of selected antimalarial plants of Nupeland, north central Nigeria, J. Med. Plants Res. 11 (2017) 351–356. P. Scartezzini, E. Speroni, Review on some plants of Indian traditional medicine with antioxidant activity, J Ethnopharmacol. 71 (2000) 23–43. D. Singh, P. V Arya, A. Sharma, M.P. Dobhal, R.S. Gupta, Modulatory potential of αamyrin against hepatic oxidative stress through antioxidant status in wistar albino rats, J. Ethnopharmacol. 161 (2015) 186–193. https://doi.org/http://dx.doi.org/10.1016/j.jep.2014.12.025. A.J. Núñez-Sellés, Antioxidant therapy: myth or reality?, J. Braz. Chem. Soc. 16 (2005) 699–710. http://www.scielo.br/scielo.php?script=sci_arttext&pid=S010350532005000500004&nrm=iso. Y. Zhang, J. Li, Z. Wu, E. Liu, P. Shi, L. Han, L. Guo, X. Gao, T. Wang, Acute and long-term toxicity of mango leaves extract in mice and rats, Evidence-Based Complement. Altern. Med. 2014 (2014). [64] [65] [66] 15 Jo ur na lP re -p ro of [67] R.A. Reddeman, R. Glávits, J.R. Endres, A.E. Clewell, G. Hirka, A. Vértesi, E. Béres, I.P. Szakonyiné, A Toxicological Evaluation of Mango Leaf Extract (Mangifera indica) Containing 60% Mangiferin, J. Toxicol. 2019 (2019). [68] Y.M. Lin, H. Anderson, M.T. Flavin, Y.H. Pai, E. Mata-Greenwood, T. Pengsuparp, J.M. Pezzuto, R.F. Schinazi, S.H. Hughes, F.C. Chen, In vitro anti-HIV activity of biflavonoids isolated from Rhus succedanea and Garcinia multiflora, J Nat Prod. 60 (1997) 884–888. https://doi.org/10.1021/np9700275. [69] Y.M. Lin, M.T. Flavin, R. Schure, F.C. Chen, R. Sidwell, D.L. Barnard, J.H. Huffman, E.R. Kern, Antiviral activities of biflavonoids, Planta Med. 65 (1999) 120–125. https://doi.org/10.1055/s-1999-13971. [70] M. Lamorde, J.R.S. Tabuti, C. Obua, C. Kukunda-Byobona, H. Lanyero, P. ByakikaKibwika, G.S. Bbosa, A. Lubega, J. Ogwal-Okeng, M. Ryan, P.J. Waako, C. Merry, Medicinal plants used by traditional medicine practitioners for the treatment of HIV/AIDS and related conditions in Uganda, J. Ethnopharmacol. 130 (2010) 43–53. https://doi.org/http://dx.doi.org/10.1016/j.jep.2010.04.004. [71] J.O. Kokwaro, No Title, in: Med. Plants East Africa, Kenya Literature Bureau; Nairobi, Kenya, 1993. [72] M.J. Moshi, E. Innocent, J.J. Magadula, D.F. Otieno, A. Weisheit, P.K. Mbabazi, R.S.O. Nondo, Brine Shrimp of Some Plants used as Traditional Medicine in Kagera Region, Northw West Tanzania, Tanzan. J. Health Res. 12 (2010). https://doi.org/10.4314/thrb.v12i1.56287. [73] K.J. Kwon, S. Bae, K. Kim, I.S. An, K.J. Ahn, S. An, H.J. Cha, Asiaticoside, a component of Centella asiatica, inhibits melanogenesis in B16F10 mouse melanoma, Mol. Med. Rep. 10 (2014) 503–507. [74] I.K. Srivastava, A.B. Vaidya, A mechanism for the synergistic antimalarial action of atovaquone and proguanil, Antimicrob Agents Chemother. 43 (1999). [75] K. Punturee, C.P. Wild, W. Kasinrerk, U. Vinitketkumnuen, Immunomodulatory activities of Centella asiatica and Rhinacanthus nasutus extracts, Asian Pac J Cancer Prev. 6 (2005) 396–400. [76] P.K. Chauhan, V. Singh, Acute and Subacute Toxicity study of the Acetone Leaf extract of Centella asiatica in Experimental Animal Models, Asian Pac. J. Trop. Biomed. 2 (2012) S511–S513. https://doi.org/https://doi.org/10.1016/S2221-1691(12)60263-9. [77] T.D. Babu, G. Kuttan, J. Padikkala, Cytotoxic and anti-tumour properties of certain taxa of Umbelliferae with special reference to Centella asiatica (L.) Urban, J. Ethnopharmacol. 48 (1995) 53–57. https://doi.org/https://doi.org/10.1016/03788741(95)01284-K. [78] M.M. Adia, S.N. Emami, R. Byamukama, I. Faye, A.-K. Borg-Karlson, Antiplasmodial activity and phytochemical analysis of extracts from selected Ugandan medicinal plants, J. Ethnopharmacol. 186 (2016) 14–19. https://doi.org/http://dx.doi.org/10.1016/j.jep.2016.03.047. [79] A. Nyamukuru, J.R.S. Tabuti, M. Lamorde, B. Kato, Y. Sekagya, P.R. Aduma, Medicinal plants and traditional treatment practices used in the management of HIV/AIDS clients in Mpigi District, Uganda, J. Herb. Med. 7 (2017) 51–58. https://doi.org/https://doi.org/10.1016/j.hermed.2016.10.001. [80] E. Elisabetsky, L. Costa-Campos, The Alkaloid Alstonine: A Review of Its Pharmacological Properties, Evid Based Complement Altern. Med. 3 (2006) 39–48. https://doi.org/10.1093/ecam/nek011. [81] M.O. Obiagwu, C.P. Ihekwereme, D.L. Ajaghaku, F.B.C. Okoye, The Useful Medicinal Properties of the Root-Bark Extract of Alstonia boonei (Apocynaceae) May Be Connected to Antioxidant Activity, ISRN Pharmacol. 2014 (2014) 4. 16 [87] [88] [89] [90] [91] [92] [93] Jo [94] of [86] ro [85] -p [84] re [83] ur na lP [82] https://doi.org/10.1155/2014/741478. G. Kweifio-Okai, A.R. Carroll, Antiarthritic effect of lupeol acetate, Phyther. Res. 7 (1993) 213–215. https://doi.org/doi:10.1002/ptr.2650070227. A. Rajic, G. Kweifio-Okai, T. Macrides, R.M. Sandeman, D.S. Chandler, G.M. Polya, Inhibition of serine proteases by anti-inflammatory triterpenoids, Planta Med. 66 (2000) 206–210. https://doi.org/10.1055/s-2000-8657. B.L.N.Y. Nkono, S.D. Sokeng, D.D.P. Désiré, L. Frida, P. Kamtchouing, Subchronic toxicity of aqueous extract of Alstonia boonei de wild. (Apocynaceae) stem bark in normal rats, (2014). J. Olanlokun, O. Olorunsogo, Toxicology of solvent extract and fractions of Alstonia boonei (DC.) Wild stem bark in rats, J. Herbmed Pharmacol. 7 (2018). M.M. Iwu, D.L. Kiayman, Evaluation of the in vitro antimalarial activity of Picralima nitida extracts, J. Ethnopharmacol. 36 (1992) 133–135. A. Paulo, E.T. Gomes, J. Steele, D.C. Warhurst, P.J. Houghton, Antiplasmodial activity of Cryptolepis sanguinolenta alkaloids from leaves and roots, Planta Med. 66 (2000) 30–34. https://doi.org/10.1055/s-2000-11106. L. Bunalema, C. Kirimuhuzya, J.R. Tabuti, P. Waako, J.J. Magadula, N. Otieno, J.A. Orodho, P. Okemo, The efficacy of the crude root bark extracts of Erythrina abyssinica on rifampicin resistant Mycobacterium tuberculosis, Afr Heal. Sci. 11 (2011) 587–593. F.C. Mills-Robertson, S.C.K. Tay, G. Duker-Eshun, W. Walana, K. Badu, In vitro antimicrobial activity of ethanolic fractions of Cryptolepis sanguinolenta, Ann. Clin. Microbiol. Antimicrob. 11 (2012) 16. https://doi.org/10.1186/1476-0711-11-16. D.E. Bierer, D.M. Fort, C.D. Mendez, J. Luo, P.A. Imbach, L.G. Dubenko, S.D. Jolad, R.E. Gerber, J. Litvak, Q. Lu, P. Zhang, M.J. Reed, N. Waldeck, R.C. Bruening, B.K. Noamesi, R.F. Hector, T.J. Carlson, S.R. King, Ethnobotanical-directed discovery of the antihyperglycemic properties of cryptolepine: its isolation from Cryptolepis sanguinolenta, synthesis, and in vitro and in vivo activities, J Med Chem. 41 (1998) 894–901. https://doi.org/10.1021/jm9704816. C. Ansah, H.R. Otsyina, M. Duwiejua, E. Woode, F.A. Aboagye, K.G. Aning, Toxicological assessment of Cryptolepis sanguinolenta for possible use in veterinary medicine, J. Vet. Med. Anim. Heal. 1 (2009) 11–16. C. Ansah, N.J. Gooderham, The popular herbal antimalarial, extract of Cryptolepis sanguinolenta, is potently cytotoxic, Toxicol Sci. 70 (2002) 245–251. https://doi.org/10.1093/toxsci/70.2.245. E.N. Matu, J. van Staden, Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya, J Ethnopharmacol. 87 (2003) 35–41. A.O. Aremu, L. Cheesman, J.F. Finnie, J. Van Staden, Mondia whitei (Apocynaceae): A review of its biological activities, conservation strategies and economic potential, South African J. Bot. 77 (2011) 960–971. https://doi.org/http://dx.doi.org/10.1016/j.sajb.2011.06.010. A. Bouba, Y.N. Njintang, J. Scher, C.M.F. Mbofung, Phenolic compounds and radical scavenging potential of twenty Cameroonian spices, Agric. Biol. J. North Am. 1 (2010) 213–224. O. Joseph, T.J. Kihdze, B. Katusiime, L. Imanirampa, P. Waako, F. Bajunirwe, A.A. Ganafa, Toxicity of four herbs used in erectile dysfunction; Mondia whiteii, Cola acuminata, Urtica massaica and Tarenna graveolensin in male rats, African J. Pharm. Pharmacol. 9 (2015) 756–763. D.P. Kisangau, K.M. Hosea, H.V.M. Lyaruu, C.C. Joseph, Z.H. Mbwambo, P.J. Masimba, C.B. Gwandu, L.N. Bruno, K.P. Devkota, N. Sewald, Screening of traditionally used Tanzanian medicinal plants for antifungal activity, Pharm. Biol. 47 [95] [96] [97] 17 [103] [104] [105] [106] [107] [108] Jo [109] of [102] ro [101] -p [100] re [99] ur na lP [98] (2009) 708–716. https://doi.org/10.1080/13880200902933039. J.F. Ferreira, D.L. Luthria, T. Sasaki, A. Heyerick, Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer, Molecules. 15 (2010) 3135–3170. https://doi.org/10.3390/molecules15053135. K.C.-S.C. Liu, S.-L.L. Yang, M.F. Roberts, B.C. Elford, J.D. Phillipson, Antimalarial activity of Artemisia annua flavonoids from whole plants and cell cultures, Plant Cell Rep. 11 (1992) 637–640. https://doi.org/10.1007/BF00236389. S. Ćavar, M. Maksimović, D. Vidic, A. Parić, Chemical composition and antioxidant and antimicrobial activity of essential oil of Artemisia annua L. from Bosnia, Ind. Crops Prod. 37 (2012) 479–485. https://doi.org/https://doi.org/10.1016/j.indcrop.2011.07.024. T. Efferth, Willmar Schwabe Award 2006: antiplasmodial and antitumor activity of artemisinin--from bench to bedside, Planta Med. 73 (2007) 299–309. https://doi.org/10.1055/s-2007-967138. M. Siddiqui, S.P. Waghmare, S.W. Hajare, R.S.I.S.G. Deshmukh, S.D.C.S.A. Ali, Phytochemical analysis and acute toxicity studies of Artemisia annua in Swiss albino mice, J. Pharmacogn. Phytochem. 7 (2018) 1893–1895. N.S. Radulović, P.J. Randjelović, N.M. Stojanović, P.D. Blagojević, Z.Z. StojanovićRadić, I.R. Ilić, V.B. Djordjević, Toxic essential oils. Part II: Chemical, toxicological, pharmacological and microbiological profiles of Artemisia annua L. volatiles, Food Chem. Toxicol. 58 (2013) 37–49. https://doi.org/https://doi.org/10.1016/j.fct.2013.04.016. T. Gordi, E.-I. Lepist, Artemisinin derivatives: toxic for laboratory animals, safe for humans?, Toxicol. Lett. 147 (2004) 99–107. https://doi.org/https://doi.org/10.1016/j.toxlet.2003.12.009. H. Liu, X. Tian, Y. Zhang, C. Wang, H. Jiang, The discovery of Artemisia annua L. in the Shengjindian cemetery, Xinjiang, China and its implications for early uses of traditional Chinese herbal medicine qinghao, J Ethnopharmacol. 146 (2013) 278–286. https://doi.org/10.1016/j.jep.2012.12.044. X.J. Yao, M.A. Wainberg, M.A. Parniak, Mechanism of inhibition of HIV-1 infection in vitro by purified extract of Prunella vulgaris, Virology. 187 (1992) 56–62. J. Carlotto, L.M. de Souza, C.H. Baggio, M.F. Werner, D. Maria-Ferreira, G.L. Sassaki, M. Iacomini, T.R. Cipriani, Polysaccharides from Arctium lappa L.: Chemical structure and biological activity, Int J Biol Macromol. 91 (2016) 954–960. https://doi.org/10.1016/j.ijbiomac.2016.06.033. H. Namdar Ahmadabad, M. Behnamfar, M. Nezafat Firizi, S. Saghayan, F. Taghasi, A. Abbaspur, Comparison of the Immunomodulatory Properties of Root and Leaves of Arctium Lappa (Burdock) in Vitro, Zahedan J Res Med Sci. 19 (2017). M. Takasugi, S. Kawashima, N. Katsui, A. Shirata, Two polyacetylenic phytoalexins from Arctium lappa, Phytochemistry. 26 (1987) 2957–2958. https://doi.org/https://doi.org/10.1016/S0031-9422(00)84570-7. S. Su, M. Wink, Natural lignans from Arctium lappa as antiaging agents in Caenorhabditis elegans, Phytochemistry. 117 (2015) 340–350. https://doi.org/10.1016/j.phytochem.2015.06.021. J. Cao, C. Li, P. Zhang, X. Cao, T. Huang, Y. Bai, K. Chen, Antidiabetic effect of burdock (Arctium lappa L.) root ethanolic extract on streptozotocin-induced diabetic rats, African J. Biotechnol. 11 (2012) 9079–9085. M. Yaghoubi, T. Rastegar, G. Amin, Safety Assessment of Arctium lappa L. Fruit Extract in Female Wistar Rats: Acute and repeated oral toxicity studies, Res. J. Pharmacogn. 6 (2019) 39–48. European Medicines Agency, Assessment report on Arctium lappa L., radix, 2010. [110] [111] [112] [113] 18 Jo ur na lP re -p ro of [114] S. Jeelani, M.A. Khuroo, Triterpenoids from Arctium lappa, Nat Prod Res. 26 (2012) 654–658. https://doi.org/10.1080/14786419.2010.541886. [115] N.J. Gakunga, K. Mugisha, D. Owiny, P. Waako, Effects of crude aqueous leaf extracts of Citropsis articulata and Mystroxylon aethiopicum on sex hormone levels in male albino rats, Int. J. Pharm. Sci. Invent. 3 (2014) 5–17. [116] N.E. El-Ashmawy, E.A. El-Zamarany, M.L. Salem, H.A. El-Bahrawy, G.M. AlAshmawy, In vitro and in vivo studies of the immunomodulatory effect of Echinacea purpurea on dendritic cells, J. Genet. Eng. Biotechnol. 13 (2015) 185–192. https://doi.org/http://dx.doi.org/10.1016/j.jgeb.2015.05.002. [117] J. Hudson, S. Vimalanathan, Echinacea—A Source of potent antivirals for Respiratory Virus Infections, Pharmaceuticals. 4 (2011) 1019–1031. https://doi.org/10.3390/ph4071019. [118] J.B. Hudson, Applications of the phytomedicine Echinacea purpurea (Purple Coneflower) in infectious diseases, J Biomed Biotechnol. 2012 (2012) 769896. https://doi.org/10.1155/2012/769896. [119] J. Barnes, L.A. Anderson, S. Gibbons, J.D. Phillipson, Echinacea species (Echinacea angustifolia (DC.) Hell., Echinacea pallida (Nutt.) Nutt., Echinacea purpurea (L.) Moench): a review of their chemistry, pharmacology and clinical properties, J Pharm Pharmacol. 57 (2005) 929–954. https://doi.org/10.1211/0022357056127. [120] U. Mengs, C.B. Clare, J.A. Poiley, Toxicity of Echinacea purpurea. Acute, subacute and genotoxicity studies., Arzneimittelforschung. 41 (1991) 1076–1081. [121] S. Ahmed, M.S. Ahmad, M. Yousaf, M. Nur-e-Alam, A.J. Al-Rehaily, Two New Sesquiterpene Alcohols Isolated from Senecio hadiensis Forssk. Grown in Saudi Arabia, Chem. Biodivers. 14 (2017) e1700144. https://doi.org/doi:10.1002/cbdv.201700144. [122] O. Were, M. Benn, R.M. Munavu, Pyrrolizidine Alkaloids from Senecio hadiensis, J. Nat. Prod. 54 (1991) 491–499. https://doi.org/10.1021/np50074a022. [123] T. Chen, N. Mei, P.P. Fu, Genotoxicity of pyrrolizidine alkaloids, J. Appl. Toxicol. An Int. J. 30 (2010) 183–196. [124] H. Wiedenfeld, J. Edgar, Toxicity of pyrrolizidine alkaloids to humans and ruminants, Phytochem. Rev. 10 (2011) 137–151. [125] S. Asiimwe, A. Namutebi, A. Borg-Karlsson, M. Kamatenesi-Mugisha, H. OryemOriga, Documentation and Consensus of Indigenous knowledge on medicinal plants used by the local communities in Western Uganda, J Nat Prod Pl Res. 4 (2014). [126] S.T. Esubalew, A. Belete, E. Lulekal, T. Gabriel, E. Engidawork, K. Asres, Review of Ethnobotanical and Ethnopharmacological Evidences of some Ethiopian Medicinal Plants traditionally used for the Treatment of Cancer, Ethiop. J. Heal. Dev. 31 (2017) 161–187. [127] J.J. Kiplimo, N.A. Koorbanally, H. Chenia, Triterpenoids from Vernonia auriculifera Hiern exhibit antimicrobial activity, African J. Pharm. Pharmacol. 5 (2011) 1150–1156. [128] J.M. Keriko, S. Nakajima, N. Baba, Y. Isozaki, K. Ikeda, J. Iwasa, P.N. Karanja, A plant growth regulator from Vernonia auriculifera (Asteraceae), Zeitschrift Für Naturforsch. C. 50 (1995) 455–458. [129] N.J. Toyang, E.N. Ateh, H. Davis, P. Tane, L.B. Sondengam, J. Bryant, R. Verpoorte, In vivo antiprostate tumor potential of Vernonia guineensis Benth. (Asteraceae) tuber extract (VGDE) and the cytotoxicity of its major compound pentaisovaleryl sucrose, J. Ethnopharmacol. 150 (2013) 724–728. https://doi.org/http://dx.doi.org/10.1016/j.jep.2013.09.028. [130] C.N. Muthaura, G.M. Rukunga, S.C. Chhabra, G.M. Mungai, E.N.M. Njagi, Traditional antimalarial phytotherapy remedies used by the Kwale community of the Kenyan Coast, J. Ethnopharmacol. 114 (2007) 377–386. 19 [136] [137] [138] [139] [140] [141] [142] Jo [143] of [135] ro [134] -p [133] re [132] ur na lP [131] https://doi.org/http://dx.doi.org/10.1016/j.jep.2007.08.033. S.A. Deshmukh, D.K. Gaikwad, A review of the taxonomy, ethnobotany, phytochemistry and pharmacology of Basella alba (Basellaceae), J. Appl. Pharm. Sci. 4 (2014) 153–165. S. Kumar, A.K. Prasad, S. V Iyer, S.K. Vaidya, Systematic pharmacognostical, phytochemical and pharmacological review on an ethno medicinal plant, Basella alba L, J. Pharmacogn. Phyther. 5 (2013) 53–58. O.J. Owolabi, E.K.I. Omogbai, O. Obasuyi, Antifungal and antibacterial activities of the ethanolic and aqueous extract of Kigelia africana (Bignoniaceae) stem bark, African J. Biotechnol. 6 (2007). P.K.M. Nagarathna, K. Reena, S. Reddy, J. Wesley, Evaluation of Immunomodulatory activity of the flavanoid from Kigelia africana, Indian J. Pharm. Biol. Res. 2 (2014) 41. H.M. Farah, A.M. El Hussein, H.E. Khalid, H.M. Osman, Toxicity of Kigelia africana Fruit in Rats, Adv. Res. (2017) 1–9. S.W. Hassan, M.G. Abubakar, R.A. Umar, A.S. Yakubu, H.M. Maishanu, G. Ayeni, Pharmacological and toxicological properties of leaf extracts of Kingelia africana (bignoniaceae), J Pharmacol Toxicol. 6 (2011) 124–132. M.R. Kernan, A. Amarquaye, J.L. Chen, J. Chan, D.F. Sesin, N. Parkinson, Z. Ye, M. Barrett, C. Bales, C.A. Stoddart, B. Sloan, P. Blanc, C. Limbach, S. Mrisho, E.J. Rozhon, Antiviral Phenylpropanoid Glycosides from the Medicinal Plant Markhamia lutea, J. Nat. Prod. 61 (1998) 564–570. https://doi.org/10.1021/np9703914. D. Lacroix, S. Prado, A. Deville, S. Krief, V. Dumontet, J. Kasenene, E. Mouray, C. Bories, B. Bodo, Hydroperoxy-cycloartane triterpenoids from the leaves of Markhamia lutea, a plant ingested by wild chimpanzees, Phytochemistry. 70 (2009) 1239–1245. https://doi.org/https://doi.org/10.1016/j.phytochem.2009.06.020. R.A. El Dib, A.H. Gaara, S.M. El-Shenawy, J.A.A. Micky, A.A. Mohammed, M.S. Marzouk, Leaf extract of Markhamia platycalyx: polyphenolic profile, acute toxicity, anti-inflammatory, hepatoprotective and in vitro antioxidant activities, Drug Res. (Stuttg). 64 (2014) 680–689. B. Onegi, C. Kraft, I. Kohler, M. Freund, K. Jenett-Siems, K. Siems, G. Beyer, M.F. Melzig, U. Bienzle, E. Eich, Antiplasmodial activity of naphthoquinones and one anthraquinone from Stereospermum kunthianum, Phytochemistry. 60 (2002) 39–44. S.F. van Vuuren, A.M. Viljoen, The in vitro antimicrobial activity of toothbrush sticks used in Ethiopia, South African J. Bot. 72 (2006) 646–648. https://doi.org/https://doi.org/10.1016/j.sajb.2006.03.009. F.P. Ching, E.K.I. Omogbai, S.O. Okpo, R.I. Ozolua, Antiinflammatory Activity of Aqueous Extract of Stereospermum kunthianum (Cham, Sandrine Petit) Stem Bark in Rats, Indian J Pharm Sci. 71 (2009) 106–110. https://doi.org/10.4103/0250-474x.51943. M.S. Aliyu, U.A. Hanwa, M.B. Tijjani, A.B. Aliyu, B. Ya’u, Phytochemical and antibacterial properties of leaf extract of Stereospermum kunthianum (Bignoniaceae), Niger. J. Basic Appl. Sci. 17 (2009) 235–239. F.P. Ching, E.K.I. Omogbai, Effects of sub acute oral administration of aqueous extract of Stereospermum kunthianum (Bignoniaceae) stem bark on body weight and haematological indices of rats, J. Pharm. Bioresour. 7 (2010) 127–131. P. Ngure, Z. Ng’ang’a, A. Kimutai, S. Kepha, S. Mong’are, J. Ingonga, W. Tonui, Immunostimulatory responses to crude extracts of Warburgia ugandensis (Sprague) subsp ugandensis (Canellaceae) by BALB/c mice infected with Leishmania major, Pan Afr Med J. 17 Suppl 1 (2014) 15. https://doi.org/10.11694/pamj.supp.2014.17.1.3638. P.G. Mwitari, P.A. Ayeka, J. Ondicho, E.N. Matu, C.C. Bii, Antimicrobial activity and probable mechanisms of action of medicinal plants of Kenya: Withania somnifera, [144] [145] [146] 20 [152] [153] [154] [155] [156] [157] Jo [158] of [151] ro [150] -p [149] re [148] ur na lP [147] Warbugia ugandensis, Prunus africana and Plectrunthus barbatus, PLoS One. 8 (2013) e65619. https://doi.org/10.1371/journal.pone.0065619. S. Zschocke, T. Rabe, J.L. Taylor, A.K. Jager, J. van Staden, Plant part substitution-a way to conserve endangered medicinal plants?, J Ethnopharmacol. 71 (2000) 281–292. D. Kioy, A.I. Gray, P.G. Waterman, A comparative study of the stem-bark drimane sesquiterpenes and leaf volatile oils of Warburgia ugandensis and W. Stuhlmannii, Phytochemistry. 29 (1990) 3535–3538. https://doi.org/https://doi.org/10.1016/00319422(90)85270-P. A.A. Wube, F. Bucar, S. Gibbons, K. Asres, Sesquiterpenes from Warburgia ugandensis and their antimycobacterial activity, Phytochemistry. 66 (2005) 2309–2315. https://doi.org/10.1016/j.phytochem.2005.07.018. L.W. Karani, F.M. Tolo, S.M. Karanja, C. Khayeka−Wandabwa, Safety of Prunus africana and Warburgia ugandensis in asthma treatment, South African J. Bot. 88 (2013) 183–190. https://doi.org/https://doi.org/10.1016/j.sajb.2013.07.007. J.R. Tabuti, S.S. Dhillion, K.A. Lye, Traditional medicine in Bulamogi county, Uganda: its practitioners, users and viability, J Ethnopharmacol. 85 (2003) 119–129. V. Steenkamp, E. Mathivha, M.C. Gouws, C.E.J. van Rensburg, Studies on antibacterial, antioxidant and fibroblast growth stimulation of wound healing remedies from South Africa, J Ethnopharmacol. 95 (2004) 353–357. https://doi.org/10.1016/j.jep.2004.08.020. T.G. Dekker, T.D. Fourie, E. Matthee, F.O. Snyckers, An oxindole from the roots of Capparis tomentosa, Phytochemistry. 26 (1987) 1845–1846. https://doi.org/https://doi.org/10.1016/S0031-9422(00)82305-5. O.M.M. Ahmed, S.E.I. Adam, The toxicity of Capparis tomentosa in goats, J. Comp. Pathol. 90 (1980) 187–195. https://doi.org/https://doi.org/10.1016/00219975(80)90055-9. O.M. Ahmed, S.E. Adam, G.T. Edds, The toxicity of Capparis tomentosa in sheep and calves., Vet. Hum. Toxicol. 23 (1981) 403–409. K.C. Chinsembu, Ethnobotanical Study of Plants Used in the Management of HIV/AIDS-Related Diseases in Livingstone, Southern Province, Zambia, EvidenceBased Complement. Altern. Med. 2016 (2016) 14. https://doi.org/10.1155/2016/4238625. H. Okatch, B. Ngwenya, K.M. Raletamo, K. Andrae-Marobela, Determination of potentially toxic heavy metals in traditionally used medicinal plants for HIV/AIDS opportunistic infections in Ngamiland District in Northern Botswana, Anal. Chim. Acta. 730 (2012) 42–48. https://doi.org/http://dx.doi.org/10.1016/j.aca.2011.11.067. A.T. El-Alfy, K. Ivey, K. Robinson, S. Ahmed, M. Radwan, D. Slade, I. Khan, M. ElSohly, S. Ross, Antidepressant-like effect of delta9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L, Pharmacol Biochem Behav. 95 (2010) 434–442. https://doi.org/10.1016/j.pbb.2010.03.004. E.M. Rock, C.L. Limebeer, R. Navaratnam, M.A. Sticht, N. Bonner, K. Engeland, R. Downey, H. Morris, M. Jackson, L.A. Parker, A comparison of cannabidiolic acid with other treatments for anticipatory nausea using a rat model of contextually elicited conditioned gaping, Psychopharmacol. 231 (2014) 3207–3215. https://doi.org/10.1007/s00213-014-3498-1. S. Maione, F. Piscitelli, L. Gatta, D. Vita, L. De Petrocellis, E. Palazzo, V. de Novellis, V. Di Marzo, Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action, Br J Pharmacol. 162 (2011) 584–596. https://doi.org/10.1111/j.1476-5381.2010.01063.x. E.S. Raborn, M. Jamerson, F. Marciano-Cabral, G.A. Cabral, Cannabinoid inhibits HIV- [159] [160] [161] 21 [167] [168] [169] [170] [171] [172] Jo [173] of [166] ro [165] -p [164] re [163] ur na lP [162] 1 Tat-stimulated adhesion of human monocyte-like cells to extracellular matrix proteins, Life Sci. 104 (2014) 15–23. https://doi.org/10.1016/j.lfs.2014.04.008. X. Yang, V.L. Hegde, R. Rao, J. Zhang, P.S. Nagarkatti, M. Nagarkatti, Histone modifications are associated with Delta9-tetrahydrocannabinol-mediated alterations in antigen-specific T cell responses, J Biol Chem. 289 (2014) 18707–18718. https://doi.org/10.1074/jbc.M113.545210. R. Ramer, S. Fischer, M. Haustein, K. Manda, B. Hinz, Cannabinoids inhibit angiogenic capacities of endothelial cells via release of tissue inhibitor of matrix metalloproteinases-1 from lung cancer cells, Biochem Pharmacol. 91 (2014) 202–216. https://doi.org/10.1016/j.bcp.2014.06.017. G. Appendino, S. Gibbons, A. Giana, A. Pagani, G. Grassi, M. Stavri, E. Smith, M.M. Rahman, Antibacterial cannabinoids from Cannabis sativa: a structure-activity study, J Nat Prod. 71 (2008) 1427–1430. https://doi.org/10.1021/np8002673. E.B. Russo, Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects, Br J Pharmacol. 163 (2011) 1344–1364. https://doi.org/10.1111/j.1476-5381.2011.01238.x. L. Karila, P. Roux, B. Rolland, A. Benyamina, M. Reynaud, H.-J. Aubin, C. Lancon, Acute and long-term effects of cannabis use: a review, Curr. Pharm. Des. 20 (2014) 4112–4118. D.E. Smith, Acute and chronic toxicity of marijuana, J. Psychedelic Drugs. 2 (1968) 37– 48. K.L. Krishna, M. Paridhavi, J.A. Patel, Review on nutritional, medicinal and pharmacological properties of Papaya (Carica papaya Linn.), (2008). T.T. Nguyen, P.N. Shaw, M.O. Parat, A.K. Hewavitharana, Anticancer activity of Carica papaya: a review, Mol Nutr Food Res. 57 (2013) 153–164. https://doi.org/10.1002/mnfr.201200388. M. Naggayi, N. Mukiibi, E. Iliya, The protective effects of aqueous extract of Carica papaya seeds in paracetamol induced nephrotoxicity in male wistar rats, Afr. Health Sci. 15 (2015) 598–605. https://doi.org/10.4314/ahs.v15i2.37. V. Anjum, P. Arora, S.H. Ansari, A.K. Najmi, S. Ahmad, Antithrombocytopenic and immunomodulatory potential of metabolically characterized aqueous extract of Carica papaya leaves, Pharm Biol. 55 (2017) 2043–2056. https://doi.org/10.1080/13880209.2017.1346690. F. Saeed, M.U. Arshad, I. Pasha, R. Naz, R. Batool, A.A. Khan, M.A. Nasir, B. Shafique, Nutritional and Phyto-Therapeutic Potential of Papaya (Carica papaya Linn.): An Overview, Int. J. Food Prop. 17 (2014) 1637–1653. https://doi.org/10.1080/10942912.2012.709210. A. Afzan, N.R. Abdullah, S.Z. Halim, B.A. Rashid, R.H.R. Semail, N. Abdullah, I. Jantan, H. Muhammad, Z. Ismail, Repeated dose 28-days oral toxicity study of Carica papaya L. leaf extract in Sprague Dawley rats, Molecules. 17 (2012) 4326–4342. Z. Ismail, S.Z. Halim, N.R. Abdullah, A. Afzan, A. Rashid, B. Amini, I. Jantan, Safety evaluation of oral toxicity of Carica papaya Linn. leaves: a subchronic toxicity study in sprague dawley rats, Evidence-Based Complement. Altern. Med. 2014 (2014). C.W. Choi, S.B. Song, J.S. Oh, Y.H. Kim, Antiproliferation effects of selected Tanzania plants, African J. Tradit. Complement. Altern. Med. 12 (2015) 96–102. D.M.W. Anderson, P.C. Bell, The composition of the gum exudates from some combretum species; the botanical nomenclature and systematics of the combretaceae, Carbohydr Res. 57 (1977) 215–221. https://doi.org/https://doi.org/10.1016/S00086215(00)81932-1. M.J. Moshi, D.F. Otieno, P.K. Mbabazi, A. Weisheit, Ethnomedicine of the Kagera [174] [175] [176] [177] 22 [183] [184] [185] [186] [187] [188] [189] Jo [190] of [182] ro [181] -p [180] re [179] ur na lP [178] Region, north western Tanzania. Part 2: The medicinal plants used in Katoro Ward, Bukoba District, J. Ethnobiol. Ethnomed. 6 (2010) 19. https://doi.org/10.1186/17464269-6-19. E. Odongo, N. Mungai, P. Mutai, E. Karumi, J. Mwangi, F. Okalebo, J. Kimondo, J. Omale, J. Simiyu, Antioxidant and anti-inflammatory activities of selected medicinal plants from western Kenya, African J. Pharmacol. Ther. 6 (2017). S.C. Kirui, A.K. Kiprop, F.K. Kiplagat, S.K. Kimno, S.J. Rono, B.K. Kigen, Chemical assessment and antimicrobial activity of solvent extracts from Kalanchoe densiflora, Int. J. Educ. Res. 2 (2014) 1–22. R.H. V Mourão, F.O. Santos, E.M. Franzotti, M.P.N. Moreno, A.R. Antoniolli, Antiinflammatory activity and acute toxicity (LD50) of the juice of Kalanchoe brasiliensis (Comb.) leaves picked before and during blooming, Phyther. Res. An Int. J. Devoted to Pharmacol. Toxicol. Eval. Nat. Prod. Deriv. 13 (1999) 352–354. F.A. Hamill, S. Apio, N.K. Mubira, M. Mosango, R. Bukenya-Ziraba, O.W. Maganyi, Traditional herbal drugs of Southern Uganda, J Ethnopharmacol. 70 (2000). https://doi.org/10.1016/s0378-8741(00)00180-x. B. Abera, Medicinal plants used in traditional medicine by Oromo people, Ghimbi District, Southwest Ethiopia, J Ethnobiol Ethnomed. 10 (2014) 40. https://doi.org/10.1186/1746-4269-10-40. I.M. Villasen̄or, A.L.O. Bartolome, L.C. Daclan, A.J.G. Manatad, Microbiological and pharmacological studies on extracts of Cucurbita maxima, Phyther. Res. 9 (1995) 376– 378. https://doi.org/doi:10.1002/ptr.2650090514. M. Miró, Cucurbitacins and their pharmacological effects, Phyther. Res. 9 (1995) 159– 168. https://doi.org/doi:10.1002/ptr.2650090302. F.U. Caili, S. Huan, L.I. Quanhong, A review on pharmacological activities and utilization technologies of pumpkin, Plant Foods Hum. Nutr. 61 (2006) 70–77. T. Matsuno, Y. Tani, T. Maoka, K. Matsuo, T. Komori, Isolation and structural elucidation of cucurbitaxanthin a and b from pumpkin Cucurbita maxima, Phytochemistry. 25 (1986) 2837–2840. https://doi.org/https://doi.org/10.1016/S00319422(00)83753-X. R.C.B. Cruz, C.D. Meurer, E.J. Silva, C. Schaefer, A.R.S. Santos, A. Bella Cruz, V. Cechinel Filho, Toxicity Evaluation of Cucurbita maxima. Seed Extract in Mice, Pharm. Biol. 44 (2006) 301–303. A. de Queiroz-Neto, M.I. Mataqueiro, A.E. Santana, A.C. Alessi, Toxicologic evaluation of acute and subacute oral administration of Cucurbita maxima seed extracts to rats and swine, J. Ethnopharmacol. 43 (1994) 45–51. O.O. Igbinosa, E.O. Igbinosa, O.A. Aiyegoro, Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn), African J. Pharm. Pharmacol. 3 (2009) 58–62. R.K. Devappa, S.K. Rajesh, V. Kumar, H.P. Makkar, K. Becker, Activities of Jatropha curcas phorbol esters in various bioassays, Ecotoxicol Env. Saf. 78 (2012) 57–62. https://doi.org/10.1016/j.ecoenv.2011.11.002. A.M. Mujumdar, A. V Misar, Anti-inflammatory activity of Jatropha curcas roots in mice and rats, J. Ethnopharmacol. 90 (2004) 11–15. R.K. Devappa, H.P.S. Makkar, K. Becker, Jatropha Diterpenes: a Review, J. Am. Oil Chem. Soc. 88 (2011) 301–322. https://doi.org/doi:10.1007/s11746-010-1720-9. J.-Q. Liu, Y.-F. Yang, C.-F. Wang, Y. Li, M.-H. Qiu, Three new diterpenes from Jatropha curcas, Tetrahedron. 68 (2012) 972–976. https://doi.org/https://doi.org/10.1016/j.tet.2011.12.006. M.J. Luo, W.X. Liu, X.Y. Yang, Y. Xu, F. Yan, P. Huang, F. Chen, Cloning, expression, [191] [192] [193] [194] 23 [200] [201] [202] [203] [204] [205] [206] Jo [207] of [199] ro [198] -p [197] re [196] ur na lP [195] and antitumor activity of recombinant protein of curcin, Russ. J. Plant Physiol. 54 (2007) 202–206. https://doi.org/10.1134/s1021443707020070. C.-Y. Li, R.K. Devappa, J.-X. Liu, J.-M. Lv, H.P.S. Makkar, K. Becker, Toxicity of Jatropha curcas phorbol esters in mice, Food Chem. Toxicol. 48 (2010) 620–625. K.J. Mampane, P.H. Joubert, I.T. Hay, Jatropha curcas: use as a traditional Tswana medicine and its role as a cause of acute poisoning, Phyther. Res. 1 (1987) 50–51. P.H. Joubert, J.M. Brown, I.T. Hay, P.D. Sebata, Acute poisoning with Jatropha curcas (purging nut tree) in children., South African Med. Journal= Suid-Afrikaanse Tydskr. Vir Geneeskd. 65 (1984) 729–730. A. Asase, G.A. Akwetey, D.G. Achel, Ethnopharmacological use of herbal remedied for the treatment of malaria in the Dangne West District of Ghana, J Ethopharmacol. 129 (2010). https://doi.org/10.1016/j.jep.2010.04.001. F. Sandberg, P. Perera-Ivarsson, H.R. El-Seedi, A Swedish collection of medicinal plants from Cameroon, J. Ethnopharmacol. 102 (2005) 336–343. https://doi.org/http://dx.doi.org/10.1016/j.jep.2005.06.032. M.M. Iwu, Handbook of African medicinal plants, CRC Press LLC, USA, 1993. O.O. Adeyemi, O.K. Yemitan, L. Afolabi, Inhibition of chemically induced inflammation and pain by orally and topically administered leaf extract of Manihot esculenta Crantz in rodents, J Ethnopharmacol. 119 (2008) 6–11. https://doi.org/10.1016/j.jep.2008.05.019. E. Rivadeneyra-Dominguez, A. Vazquez-Luna, J.F. Rodriguez-Landa, R. Diaz-Sobac, Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption, Food Chem Toxicol. 59 (2013) 230–235. https://doi.org/10.1016/j.fct.2013.06.004. Y.-M. Pan, T. Zou, Y.-J. Chen, J.-Y. Chen, X. Ding, Y. Zhang, X.-J. Hao, H.-P. He, Two new pentacyclic triterpenoids from the stems of Manihot esculenta, Phytochem. Lett. 12 (2015) 273–276. https://doi.org/https://doi.org/10.1016/j.phytol.2015.04.018. C. Balagopalan, G. Padmaja, S.K. Nanda, S.N. Moorthy, Cassava in food, feed and industry CRC Press, Boca Raton, FL, EU. (1988). V. Kuete, 22 - Physical, Hematological, and Histopathological Signs of Toxicity Induced by African Medicinal Plants, in: V. Kuete (Ed.), Toxicol. Surv. African Med. Plants, Elsevier, 2014: pp. 635–657. https://doi.org/https://doi.org/10.1016/B978-0-12800018-2.00022-4. L.N. Kamau, M.P. Mbaabu, J.M. Mbaria, G.P. Karuri, S.G. Kiama, Knowledge and demand for medicinal plants used in the treatment and management of diabetes in Nyeri County, Kenya, J. Ethnopharmacol. 189 (2016) 218–229. https://doi.org/https://doi.org/10.1016/j.jep.2016.05.021. I.M.S. Eldeen, J. Van Staden, In vitro pharmacological investigation of extracts from some trees used in Sudanese traditional medicine, South African J. Bot. 73 (2007) 435– 440. https://doi.org/https://doi.org/10.1016/j.sajb.2007.03.009. S. Zingue, T. Michel, J. Cisilotto, A.B. Tueche, D.T. Ndinteh, L.J. Mello, D. Njamen, T.B. Creczynski-Pasa, The hydro-ethanolic extract of Acacia seyal (Mimosaceae) stem barks induced death in an ER-negative breast cancer cell line by the intrinsic pathway of apoptosis and inhibited cell migration, J Ethnopharmacol. 223 (2018) 41–50. https://doi.org/10.1016/j.jep.2018.05.021. S. Zingue, A.N. Njuh, A.B. Tueche, J. Tamsa, E.N. Tchoupang, S.D. Kakene, M.T.K. Sipping, D. Njamen, In Vitro Cytotoxicity and In vivo Antimammary tumor effects of the hydroethanolic extract of Acacia seyal (Mimosaceae) Stem Bark, Biomed Res Int. 2018 (2018) 2024602. https://doi.org/10.1155/2018/2024602. B. Bi, H. Yang, Y. Fang, K. Nishinari, G.O. Phillips, Characterization and emulsifying [208] [209] [210] 24 [213] [214] [215] [218] [219] [220] Jo [221] ur na lP [217] re -p [216] of [212] ro [211] properties of beta-lactoglobulin-gum Acacia Seyal conjugates prepared via the Maillard reaction, Food Chem. 214 (2017) 614–621. https://doi.org/10.1016/j.foodchem.2016.07.112. M.H.A. Suleiman, An ethnobotanical survey of medicinal plants used by communities of Northern Kordofan region, Sudan, J. Ethnopharmacol. 176 (2015) 232–242. https://doi.org/https://doi.org/10.1016/j.jep.2015.10.039. E.V.M. Kigondu, G.M. Rukunga, J.M. Keriko, W.K. Tonui, J.W. Gathirwa, P.G. Kirira, B. Irungu, J.M. Ingonga, I.O. Ndiege, Anti-parasitic activity and cytotoxicity of selected medicinal plants from Kenya, J. Ethnopharmacol. 123 (2009) 504–509. https://doi.org/http://dx.doi.org/10.1016/j.jep.2009.02.008. O.P. Note, A.C. Mitaine-Offer, T. Miyamoto, T. Paululat, J.F. Mirjolet, O. Duchamp, D.E. Pegnyemb, M.A. Lacaille-Dubois, Cytotoxic acacic acid glycosides from the roots of Albizia coriaria, J Nat Prod. 72 (2009) 1725–1730. https://doi.org/10.1021/np900126r. R. Byamukama, B. Ganza, J. Namukobe, M. Heydenreich, B. Kiremire, Bioactive compounds in the stem bark of Albizia coriaria (Welw. ex Oliver), Int. J. Biol. Chem. Sci. 9 (2015) 1013. https://doi.org/10.4314/ijbcs.v9i2.37. C.J. Botha, M.L. Penrith, Poisonous plants of veterinary and human importance in southern Africa, J. Ethnopharmacol. 119 (2008) 549–558. https://doi.org/https://doi.org/10.1016/j.jep.2008.07.022. H.R. Randrianarivo, A.R. Razafindrakoto, H.C. Ratsimanohatra, L.J. Randriamampianina, C.F. Rajemiarimoelisoa, L. Ramamonjisoa, D. Ramanitrahasimbola, D.A.D. Rakoto, V.L. Jeannoda, Toxic effects of seed methanolic extracts of endemic Albizia species (Fabaceae) from Madagascar on animals, J. Life Sci. 8 (2014). H.P. Nguyen, J. Hanson, D. Bethell, T.H. Nguyen, T.H. Tran, V.C. Ly, A retrospective analysis of the haemodynamic and metabolic effects of fluid resuscitation in Vietnamese adults with severe falciparum malaria, PLoS One. 6 (2011). D. Lacroix, S. Prado, D. Kamoga, J. Kasenene, J. Namukobe, S. Krief, V. Dumontet, E. Mouray, B. Bodo, F. Brunois, Antiplasmodial and cytotoxic activities of medicinal plants traditionally used in the village of Kiohima, Uganda, J. Ethnopharmacol. 133 (2011) 850–855. https://doi.org/http://dx.doi.org/10.1016/j.jep.2010.11.013. A. Yenesew, M. Induli, S. Derese, J.O. Midiwo, M. Heyden, G.M. Peter, Waters NC: Anti-plasmodia flavonoids from the stem of Erythrina abyssinica, Phytochemistry. 65 (2004). https://doi.org/10.1016/j.phytochem.2004.08.050. G.N. Teke, P.K. Lunga, H.K. Wabo, J.-R. Kuiate, G. Vilarem, G. Giacinti, H. Kikuchi, Y. Oshima, Antimicrobial and antioxidant properties of methanol extract, fractions and compounds from the stem bark of Entada abyssinica Stend ex A. Satabie, BMC Complement Altern Med. 11 (2011) 57. https://doi.org/10.1186/1472-6882-11-57. F. Freiburghaus, A. Steck, H. Pfander, R. Brun, Bioassay-guided isolation of a diastereoisomer of kolavenol from Entada abyssinica active on Trypanosoma brucei rhodesiense, J. Ethnopharmacol. 61 (1998) 179–183. https://doi.org/http://dx.doi.org/10.1016/S0378-8741(98)00035-X. O.A. Olajide, A.R.A. Alada, Studies on the anti-inflammatory properties of Entada abyssinica, Fitoterapia. 72 (2001) 492–496. https://doi.org/https://doi.org/10.1016/S0367-326X(01)00273-8. E.E. Haule, M.J. Moshi, R.S.O. Nondo, D.T. Mwangomo, R.L.A. Mahunnah, A study of antimicrobial activity, acute toxicity and cytoprotective effect of a polyherbal extract in a rat ethanol-HCl gastric ulcer model, BMC Res. Notes. 5 (2012) 546. S.N. Rai, H. Birla, W. Zahra, S. Sen Singh, S.P. Singh, Immunomodulation of [222] [223] [224] 25 Jo ur na lP re -p ro of Parkinson’s disease using Mucuna pruriens (Mp), J. Chem. Neuroanat. 85 (2017) 27– 35. https://doi.org/https://doi.org/10.1016/j.jchemneu.2017.06.005. [225] M.B. Obogwu, A.J. Akindele, O.O. Adeyemi, Hepatoprotective and in vivo antioxidant activities of the hydroethanolic leaf extract of Mucuna pruriens (Fabaceae) in antitubercular drugs and alcohol models, Chin. J. Nat. Med. 12 (2014) 273–283. https://doi.org/https://doi.org/10.1016/S1875-5364(14)60054-6. [226] L. Misra, H. Wagner, Alkaloidal constituents of Mucuna pruriens seeds, Phytochemistry. 65 (2004) 2565–2567. https://doi.org/https://doi.org/10.1016/j.phytochem.2004.08.045. [227] N. Duangnin, T. Phitak, P. Pothacharoen, P. Kongtawelert, In vitro and in vivo investigation of natural compounds from seed extract of Mucuna pruriens lacking lDOPA for the treatment of erectile dysfunction, Asian Pac J Trop Med. 10 (2017) 238– 252. https://doi.org/10.1016/j.apjtm.2017.03.001. [228] S. Suresh, E. Prithiviraj, S. Prakash, Dose- and time-dependent effects of ethanolic extract of Mucuna pruriens Linn. seed on sexual behaviour of normal male rats, J. Ethnopharmacol. 122 (2009) 497–501. https://doi.org/https://doi.org/10.1016/j.jep.2009.01.032. [229] S. Golbabapour, M. Hajrezaie, P. Hassandarvish, N. Abdul Majid, A.H.A. Hadi, N. Nordin, M.A. Abdulla, Acute toxicity and gastroprotective role of M. pruriens in ethanol-induced gastric mucosal injuries in rats, Biomed Res. Int. 2013 (2013). [230] A. Abbott, Levodopa: the story so far, Nature. 466 (2010) S6-7. https://doi.org/10.1038/466S6a. [231] F.S. Paula, L.M. Kabeya, A. Kanashiro, A.S. de Figueiredo, A.E. Azzolini, S.A. Uyemura, Y.M. Lucisano-Valim, Modulation of human neutrophil oxidative metabolism and degranulation by extract of Tamarindus indica L. fruit pulp, Food Chem Toxicol. 47 (2009) 163–170. https://doi.org/10.1016/j.fct.2008.10.023. [232] T.T. Sreelekha, T. Vijayakumar, R. Ankanthil, K.K. Vijayan, M.K. Nair, Immunomodulatory effects of a polysaccharide from Tamarindus indica, Anticancer Drugs. 4 (1993) 209–212. [233] F. Martinello, V. Kannen, J.J. Franco, B. Gasparotto, J.Y. Sakita, A. Sugohara, S.B. Garcia, S.A. Uyemura, Chemopreventive effects of a Tamarindus indica fruit extract against colon carcinogenesis depends on the dietary cholesterol levels in hamsters, Food Chem Toxicol. 107 (2017) 261–269. https://doi.org/10.1016/j.fct.2017.07.005. [234] S.S. Bhadoriya, V. Mishra, S. Raut, A. Ganeshpurkar, S.K. Jain, Anti-Inflammatory and Antinociceptive Activities of a Hydroethanolic Extract of Tamarindus indica Leaves, Sci Pharm. 80 (2012) 685–700. https://doi.org/10.3797/scipharm.1110-09. [235] F. Martinello, S.M. Soares, J.J. Franco, A.C. dos Santos, A. Sugohara, S.B. Garcia, C. Curti, S.A. Uyemura, Hypolipemic and antioxidant activities from Tamarindus indica L. pulp fruit extract in hypercholesterolemic hamsters, Food Chem. Toxicol. 44 (2006) 810–818. [236] A. Agnihotri, V. Singh, Effect of Tamarindus indica Linn. and Cassia fistula Linn. stem bark extracts on oxidative stress and diabetic conditions, Acta Pol Pharm. 70 (2013) 1011–1019. [237] J.R.S. Tabuti, V.B. Muwanika, M.Z. Arinaitwe, T. Ticktin, Conservation of priority woody species on farmlands: A case study from Nawaikoke sub-county, Uganda, Appl. Geogr. 31 (2011) 456–462. https://doi.org/http://dx.doi.org/10.1016/j.apgeog.2010.10.006. [238] R.M. Havinga, A. Hartl, J. Putscher, S. Prehsler, C. Buchmann, C.R. Vogl, Tamarindus indica L. (Fabaceae): Patterns of use in traditional African medicine, J. Ethnopharmacol. 127 (2010) 573–588. https://doi.org/https://doi.org/10.1016/j.jep.2009.11.028. [239] G. Anywar, H. Oryem-Origa, M. Kamatenesi Mugisha, Wild plants used as 26 [245] [246] [247] [248] [249] Jo [250] of [244] ro [243] -p [242] re [241] ur na lP [240] nutraceuticals from Nebbi district, Uganda, (2014). B.O. Owuor, J.O. Ochanda, J.O. Kokwaro, A.C. Cheruiyot, R.A. Yeda, C.A. Okudo, H.M. Akala, In vitro antiplasmodial activity of selected Luo and Kuria medicinal plants, J. Ethnopharmacol. 144 (2012) 779–781. https://doi.org/http://dx.doi.org/10.1016/j.jep.2012.09.045. O.D. Otieno, O.B. Awuor, W.G. Wafula, Quality Evaluation of Oil from Seeds of Wild Plant Tylosema fassoglensis in Kenya, J. Food Process. 2015 (2015) 4. https://doi.org/10.1155/2015/971871. M. Holse, S. Husted, Å. Hansen, Chemical composition of marama bean (Tylosema esculentum)—A wild African bean with unexploited potential, J. Food Compos. Anal. 23 (2010) 648–657. https://doi.org/https://doi.org/10.1016/j.jfca.2010.03.006. C. Agyare, A. Asase, M. Lechtenberg, M. Niehues, A. Deters, A. Hensel, An ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana, J. Ethnopharmacol. 125 (2009) 393–403. https://doi.org/http://dx.doi.org/10.1016/j.jep.2009.07.024. B.T. Ngadjui, J.F. Ayafor, B.L. Sondengam, J.D. Connolly, D.S. Rycroft, Hoslundin, hoslundal, and hoslunddiol: three new flavonoids from the twigs of Hoslundia opposita (lamiaceae), Tetrahedron. 47 (1991) 3555–3564. https://doi.org/http://dx.doi.org/10.1016/S0040-4020(01)80869-3. B.T. Ngadjui, J.F. Ayafor, B.L. Sondengam, J.D. Connolly, D.S. Rycroft, F. Tillequin, Oppositin and 5-O-methylhoslundin, pyrone-substituted flavonoids of Hoslundia opposita, Phytochemistry. 32 (1993) 1313–1315. https://doi.org/http://dx.doi.org/10.1016/S0031-9422(00)95112-4. R. Salame, Z. Cheikh-Ali, C. Bories, M. Adiko, E. Poupon, P. Champy, Pyrone and Unusually Furanone-substituted Flavones from the Leaves of Hoslundia opposita, Planta Med. 78 (2012) 1777–1779. C.K. Murithi, D.S. Fidahusein, J.M. Nguta, C.W. Lukhoba, Antimalarial activity and in vivo toxicity of selected medicinal plants naturalised in Kenya, Int J Edu Res. 2 (2014) 395–406. F. Ocheng, F. Bwanga, M. Joloba, A. Softrata, M. Azeem, xfc, K. tsep, A.-K. BorgKarlson, C. Obua, A. Gustafsson, Essential oils from Ugandan aromatic medicinal plants: Chemical composition and growth inhibitory effects on oral pathogens, Evidence-Based Complement. Altern. Med. 2015 (2015) 10. https://doi.org/10.1155/2015/230832. A. Kumar, R. Gupta, R.K. Mishra, A.C. Shukla, A. Dikshit, Pharmaco-phylogenetic investigation of Micromeria biflora Benth and Citrus reticulata Blanco, Natl. Acad. Sci. Lett. 35 (2012) 253–257. M. Chandra, P. Om, R.K. Bachheti, M. Kumar, A.K. Pant, Essential oil composition and pharmacological activities of Micromeria biflora (Buch.-Ham. Ex D. Don) Benth. collected from Uttarakhand region of India, J. Med. Plants Res. 4 (2013) 2538–2544. M.A. Khan, M.A. Khan, M. Hussain, G.M. Ghulam, An ethnobotanical inventory of himalayan region poonch valley azad kashmir (Pakistan), Ethnobot. Res. Appl. 8 (2010) 107–123. F.T. Yamassaki, L.H. Campestrini, S.F. Zawadzki-Baggio, J.B.B. Maurer, Chemical characterization and complement modulating activities of an arabinogalactan-proteinrich fraction from an aqueous extract of avocado leaves, Int J Biol Macromol. 120 (2018) 513–521. https://doi.org/10.1016/j.ijbiomac.2018.08.072. O.O. Adeyemi, S.O. Okpo, O.O. Ogunti, Analgesic and anti-inflammatory effects of the aqueous extract of leaves of Persea americana mill (lauraceae), Fitoterapia. 73 (2002) [251] [252] [253] 27 Jo ur na lP re -p ro of 375–380. [254] I. Castillo-Juarez, V. Gonzalez, H. Jaime-Aguilar, G. Martinez, E. Linares, R. Bye, I. Romero, Anti-Helicobacter pylori activity of plants used in Mexican traditional medicine for gastrointestinal disorders, J Ethnopharmacol. 122 (2009) 402–405. https://doi.org/10.1016/j.jep.2008.12.021. [255] A.T. Mbaveng, H.T. Manekeng, G.S. Nguenang, J.K. Dzotam, V. Kuete, T. Efferth, Cytotoxicity of 18 Cameroonian medicinal plants against drug sensitive and multifactorial drug resistant cancer cells, J. Ethnopharmacol. 222 (2018) 21–33. https://doi.org/https://doi.org/10.1016/j.jep.2018.04.036. [256] M.A. Owolabi, H.A.B. Coker, S.I. Jaja, Bioactivity of the phytoconstituents of the leaves of Persea americana, J. Med. Plants Res. 4 (2010) 1130–1135. [257] R.I. Ozolua, O.N. Anaka, S.O. Okpo, S.E. Idogun, Acute and sub-acute toxicological assessment of the aqueous seed extract of Persea americana Mill (Lauraceae) in rats, Afr J Tradit Complement Altern Med. 6 (2009). [258] E. Padilla-Camberos, M. Martínez-Velázquez, J.M. Flores-Fernández, S. VillanuevaRodríguez, Acute toxicity and genotoxic activity of avocado seed extract (Persea americana Mill., cv Hass), Sci. World J. 2013 (2013). [259] J.R. Tabuti, C.B. Kukunda, P.J. Waako, Medicinal plants used by traditional medicine practitioners in the treatment of tuberculosis and related ailments in Uganda, J Ethnopharmacol. 127 (2010) 130–136. https://doi.org/10.1016/j.jep.2009.09.035. [260] M. Haidari, M. Ali, S. Ward Casscells 3rd, M. Madjid, Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir, Phytomedicine. 16 (2009) 1127–1136. https://doi.org/10.1016/j.phymed.2009.06.002. [261] N.S. Al-Zoreky, Antimicrobial activity of pomegranate (Punica granatum L.) fruit peels, Int J Food Microbiol. 134 (2009) 244–248. https://doi.org/10.1016/j.ijfoodmicro.2009.07.002. [262] E.P. Lansky, R.A. Newman, Punica granatum (pomegranate) and its potential for prevention and treatment of inflammation and cancer, J Ethnopharmacol. 109 (2007) 177–206. https://doi.org/10.1016/j.jep.2006.09.006. [263] S. Rout, R. Banerjee, Free radical scavenging, anti-glycation and tyrosinase inhibition properties of a polysaccharide fraction isolated from the rind from Punica granatum, Bioresour. Technol. 98 (2007) 3159–3163. https://doi.org/https://doi.org/10.1016/j.biortech.2006.10.011. [264] S. Madrigal-Carballo, G. Rodriguez, C.G. Krueger, M. Dreher, J.D. Reed, Pomegranate (Punica granatum) supplements: Authenticity, antioxidant and polyphenol composition, J. Funct. Foods. 1 (2009) 324–329. https://doi.org/https://doi.org/10.1016/j.jff.2009.02.005. [265] A. Vidal, A. Fallarero, B.R. Peña, M.E. Medina, B. Gra, F. Rivera, Y. Gutierrez, P.M. Vuorela, Studies on the toxicity of Punica granatum L.(Punicaceae) whole fruit extracts, J. Ethnopharmacol. 89 (2003) 295–300. [266] L.C. Braga, J.W. Shupp, C. Cummings, M. Jett, J.A. Takahashi, L.S. Carmo, E. Chartone-Souza, A.M. Nascimento, Pomegranate extract inhibits Staphylococcus aureus growth and subsequent enterotoxin production, J Ethnopharmacol. 96 (2005) 335–339. https://doi.org/10.1016/j.jep.2004.08.034. [267] M.M. Cowan, Plant products as antimicrobial agents, Clin Microbiol Rev. 12 (1999) 564–582. [268] S.O. Udegbunam, T.O. Nnaji, R.I. Udegbunam, J.C. Okafor, I. Agbo, Evaluation of herbal ointment formulation of Milicia excelsa (Welw) CC berg for wound healing, African J. Biotechnol. 12 (2013). 28 Jo ur na lP re -p ro of [269] J.L. Ouete, L.P. Sandjo, D.W. Kapche, J.C. Liermann, T. Opatz, I.K. Simo, B.T. Ngadjui, A new flavone from the roots of Milicia excelsa (Moraceae), Z Naturforsch C. 68 (2013) 259–263. [270] J.O. Areola, N.O. Omisore, O.O. Babalola, Antiplasmodial activity of stem-bark extract of Milicia excelsa (welw.) Cc berg against rodent malaria parasites (Plasmodium berghei) in mice, Ife J. Sci. 18 (2016) 905–911. [271] L.A. Akinpelu, M.A. Akanmu, E.M. Obuotor, Antipsychotic effects of ethanol leaf extract and fractions of Milicia excelsa (Moraceae) in mice, J. Pharm. Res. Int. (2018) 1–10. [272] J. Nfambi, G.S. Bbosa, L.F. Sembajwe, J. Gakunga, J.N. Kasolo, Immunomodulatory activity of methanolic leaf extract of Moringa oleifera in Wistar albino rats, J Basic Clin Physiol Pharmacol. 26 (2015) 603–611. https://doi.org/10.1515/jbcpp-2014-0104. [273] J.K. Dzotam, F.K. Touani, V. Kuete, Antibacterial and antibiotic-modifying activities of three food plants (Xanthosoma mafaffa Lam., Moringa oleifera (L.) Schott and Passiflora edulis Sims) against multidrug-resistant (MDR) Gram-negative bacteria, BMC Complement Altern Med. 16 (2016). https://doi.org/10.1186/s12906-016-0990-7. [274] G.A. Asare, B. Gyan, K. Bugyei, S. Adjei, R. Mahama, P. Addo, L. Otu-Nyarko, E.K. Wiredu, A. Nyarko, Toxicity potentials of the nutraceutical Moringa oleifera at suprasupplementation levels, J. Ethnopharmacol. 139 (2012) 265–272. [275] O. Awodele, I.A. Oreagba, S. Odoma, J.A.T. da Silva, V.O. Osunkalu, Toxicological evaluation of the aqueous leaf extract of Moringa oleifera Lam.(Moringaceae), J. Ethnopharmacol. 139 (2012) 330–336. [276] J.N. Kasolo, G.S. Bimenya, L. Ojok, J.W. Ogwal-Okeng, Phytochemicals and acute toxicity of Moringa oleifera roots in mice, J. Pharmacogn. Phyther. 3 (2011) 38–42. [277] J.O. Popoola, O.O. Obembe, Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria, J. Ethnopharmacol. 150 (2013) 682–691. https://doi.org/https://doi.org/10.1016/j.jep.2013.09.043. [278] X.-J. Qin, Q. Yu, H. Yan, A. Khan, M.-Y. Feng, P.-P. Li, X.-J. Hao, L.-K. An, H.-Y. Liu, Meroterpenoids with Antitumor Activities from Guava (Psidium guajava), J. Agric. Food Chem. 65 (2017) 4993–4999. https://doi.org/10.1021/acs.jafc.7b01762. [279] M.A. Bisi-Johnson, C.L. Obi, B.B. Samuel, J.N. Eloff, A.I. Okoh, Antibacterial activity of crude extracts of some South African medicinal plants against multidrug resistant etiological agents of diarrhoea, BMC Complement Altern Med. 17 (2017) 321. https://doi.org/10.1186/s12906-017-1802-4. [280] M. Jang, S.W. Jeong, S.K. Cho, K.S. Ahn, J.H. Lee, D.C. Yang, J.C. Kim, Antiinflammatory effects of an ethanolic extract of guava (Psidium guajava L.) leaves in vitro and in vivo, J Med Food. 17 (2014) 678–685. https://doi.org/10.1089/jmf.2013.2936. [281] M. David, T.J. Abraham, T.S. Nagesh, H. Adikesavalu, Immunomodulatory effect of Guavarine®, aqueous guava leaf extract, on ornamental Koi carp Cyprinus carpio var. koi L. 1758, J. Appl. Aquac. 29 (2017) 322–330. https://doi.org/10.1080/10454438.2017.1363680. [282] P. Jaiarj, P. Khoohaswan, Y. Wongkrajang, P. Peungvicha, P. Suriyawong, M.L.S. Saraya, O. Ruangsomboon, Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract, J. Ethnopharmacol. 67 (1999) 203–212. [283] S. Kannan, B.P. Devi, B. Jayakar, Antibacterial evaluation of the methanolic extract of Passiflora edulis, (2011). [284] Y.J. Zhang, T. Zhou, F. Wang, Y. Zhou, Y. Li, J.J. Zhang, J. Zheng, D.P. Xu, H.B. Li, The Effects of Syzygium samarangense, Passiflora edulis and Solanum muricatum on Alcohol-Induced Liver Injury, Int J Mol Sci. 17 (2016). 29 [290] [291] [292] [293] [294] [295] Jo [296] of [289] ro [288] -p [287] re [286] ur na lP [285] https://doi.org/10.3390/ijms17101616. V. Kuete, J.K. Dzotam, I.K. Voukeng, A.G. Fankam, T. Efferth, Cytotoxicity of methanol extracts of Annona muricata, Passiflora edulis and nine other Cameroonian medicinal plants towards multi-factorial drug-resistant cancer cell lines, Springerplus. 5 (2016). https://doi.org/10.1186/s40064-016-3361-4. T. Ichimura, A. Yamanaka, T. Ichiba, T. Toyokawa, Y. Kamada, T. Tamamura, S. Maruyama, Antihypertensive effect of an extract of Passiflora edulis rind in spontaneously hypertensive rats, Biosci Biotechnol Biochem. 70 (2006) 718–721. https://doi.org/10.1271/bbb.70.718. K. Devaki, U. Beulah, G. Akila, V.K. Gopalakrishnan, Effect of aqueous extract of Passiflora edulis on biochemical and hematological parameters of Wistar albino rats, Toxicol. Int. 19 (2012) 63. E. Maluf, H.M.T. Barros, M.L. Frochtengarten, R. Benti, J.R. Leite, Assessment of the hypnotic/sedative effects and toxicity of Passiflora edulis aqueous extract in rodents and humans, Phyther. Res. 5 (1991) 262–266. P.O. Bessong, C.L. Obi, M.L. Andréola, L.B. Rojas, L. Pouysegu, E. Igumbor, J.J.M. Meyer, S. Quideau, S. Litvak, Evaluation of selected South African medicinal plants for inhibitory properties against human immunodeficiency virus type 1 reverse transcriptase and integrase, J Ethnopharmacol. 99 (2005). https://doi.org/10.1016/j.jep.2005.01.056. T.A. Ngueyem, G. Brusotti, G. Caccialanza, P.V. Finzi, The genus Bridelia: A phytochemical and ethnopharmacological review, J. Ethnopharmacol. 124 (2009) 339– 349. https://doi.org/http://dx.doi.org/10.1016/j.jep.2009.05.019. K.H. Pegel, C.B. Rogers, Mollic acid 3-β-d-glucoside, a novel 1α-hydroxycycloartane saponin from Combretum molle (combretaceae), Tetrahedron Lett. 17 (1976) 4299– 4302. https://doi.org/http://dx.doi.org/10.1016/0040-4039(76)80100-1. B.I. Okeleye, P.O. Bessong, R.N. Ndip, Preliminary phytochemical screening and in vitro anti-Helicobacter pylori activity of extracts of the stem bark of Bridelia micrantha (Hochst., Baill., Euphorbiaceae), Molecules. 16 (2011) 6193–6205. M.J. Moshi, E. Innocent, J.J. Magadula, D.F. Otieno, A. Weisheit, P.K. Mbabazi, R.S.O. Nondo, Brine shrimp toxicity of some plants used as traditional medicines in Kagera region, north western Tanzania, Tanzan. J. Health Res. 12 (2010) 63–67. S.O. Onoja, C.O. Ukwueze, M.I. Ezeja, N. Udeh, Antinociceptive and antioxidant effects of hydromethanolic extract of Bridelia micrantha stem bark, J. Exp. Integr. Med. 4 (2014) 273. D.O. Ochwang’i, C.N. Kimwele, J.A. Oduma, P.K. Gathumbi, S.G. Kiama, T. Efferth, Cytotoxic activity of medicinal plants of the Kakamega County (Kenya) against drugsensitive and multidrug-resistant cancer cells, J. Ethnopharmacol. 215 (2018) 233–240. https://doi.org/https://doi.org/10.1016/j.jep.2018.01.004. A.J. Al-Rehaily, M. Yousaf, M.S. Ahmad, V. Samoylenko, X.-C. Li, I. Muhammad, K.E.H. El Tahir, Chemical and biological study of Flueggea virosa native to Saudi Arabia, Chem. Nat. Compd. 51 (2015) 187–188. J.O.C. Ezeonwumelu, A.N. Omar, A.M. Ajayi, A.G. Okoruwa, J.K. Tanayen, D.M. Kiplagat, O.A. Okpanachi, S. Abba, I. Ezekiel, A.N. Onchweri, Phytochemical screening, acute toxicity, anti-inflammatory and antipyretic studies of aqueous extract of the root of Flueggea virosa (Roxb. ex Willd.) in rats, Int. J. Pharm. Biomed. Sci. 3 (2012) 128. L. Tona, K. Kambu, N. Ngimbi, K. Cimanga, A.J. Vlietinck, Antiamoebic and phytochemical screening of some Congolese medicinal plants, J Ethnopharmacol. 61 (1998) 57–65. A. Mann, J.O. Amupitan, A.O. Oyewale, J.I. Okogun, K. Ibrahim, P. Oladosu, L. [297] [298] [299] 30 [305] [306] [307] [308] [309] [310] Jo [311] of [304] ro [303] -p [302] re [301] ur na lP [300] Lawson, I. Olajide, A. Nnamdi, Evaluation of in vitro antimycobacterial activity of Nigerian plants used for treatment of respiratory diseases, African J. Biotechnol. 7 (2008). M.O. Sofidiya, O.A. Odukoya, A.A. Adedapo, H.O.C. Mbagwu, A.J. Afolayan, O.B. Familoni, Investigation of the anti-inflammatory and antinociceptive activities of Hymenocardia acida Tul. (Hymenocardiaceae), African J. Biotechnol. 9 (2010) 8454– 8459. E. Tuenter, K. Segers, K. Kang, J. Viaene, S. Sung, P. Cos, L. Maes, Y. Heyden, L. Pieters, Antiplasmodial activity, cytotoxicity and structure-activity relationship study of cyclopeptide alkaloids, Molecules. 22 (2017) 224. O.J. Igoli, I.A. Gray, Friedelanone and other triterpenoids from Hymenocardia acida, Int. J. Phys. Sci. 3 (2008) 156–158. A.A. Sowemimo, F.A. Fakoya, I. Awopetu, O.R. Omobuwajo, S.A. Adesanya, Toxicity and mutagenic activity of some selected Nigerian plants, J. Ethnopharmacol. 113 (2007) 427–432. A.I. Alli, J.O. Ehinmidu, Y.K. Ibrahim, Evaluation Of Antmicrobial Properties, Acute Toxicity and Immunostimulatory Potential of Phyllanthus amarus, Niger. J. Chem. Res. 16 (2011) 1–8. L. Van Puyvelde, I. Geiser, P.-C. Rwangabo, B. Sebikali, Rwandese herbal remedies used against gonorrhoea, J. Ethnopharmacol. 8 (1983) 279–286. https://doi.org/https://doi.org/10.1016/0378-8741(83)90065-X. H. Süleyman, L.Ö. Demirezer, A. Kuruüzüm, Z.N. Banoğlu, F. Göçer, G. Özbakir, A. Gepdiremen, Antiinflammatory effect of the aqueous extract from Rumex patientia L. roots, J. Ethnopharmacol. 65 (1999) 141–148. C. Schlage, C. Mabula, R.L.A. Mahunnah, M. Heinrich, Medicinal plants of the Washambaa (Tanzania): documentation andethnopharmacalogical evaluation, Plant Biol. 2 (2000). https://doi.org/10.1055/s-2000-296. N.I. Mongalo, L.J. McGaw, J.F. Finnie, J. Van Staden, Securidaca longipedunculata Fresen (Polygalaceae): A review of its ethnomedicinal uses, phytochemistry, pharmacological properties and toxicology, J. Ethnopharmacol. 165 (2015) 215–226. https://doi.org/http://dx.doi.org/10.1016/j.jep.2015.02.041. C.O. Okoli, P.A. Akah, U. Ezugworie, Anti-inflammatory activity of extracts of root bark of Securidaca longipedunculata Fres (Polygalaceae), African J. Tradit. Complement. Altern. Med. 3 (2006) 54–63. X. Luo, D. Pires, J.A. Ainsa, B. Gracia, S. Mulhovo, A. Duarte, E. Anes, M.J. Ferreira, Antimycobacterial evaluation and preliminary phytochemical investigation of selected medicinal plants traditionally used in Mozambique, J Ethnopharmacol. 137 (2011) 114– 120. https://doi.org/10.1016/j.jep.2011.04.062. L. Apak, D. Olila, The in-vitro antibacterial activity of Annona senegalensis, Securidacca longipendiculata and Steganotaenia araliacea - Ugandan medicinal plants, Afr Heal. Sci. 6 (2006) 31–35. https://doi.org/10.5555/afhs.2006.6.1.31. J.M. Watt, M.G. Breyer-Brandwijk, No Title, in: Med. Poisonous Plants South. East. Africa, S. Livingstone Ltd., Edinburgh and London, 1962. S.A. Junaid, A. Abubakar, A.C. Ofodile, A.O. Olabode, G.O.N. Echeonwu, A.E.J. Okwori, J.A. Adetunji, Evaluation of Securidaca longipenduculata leaf and root extracts for antimicrobial activities, African J. Microbiol. Res. 2 (2008) 322–325. A. Meli Lannang, D. Lontsi, F.N. Ngounou, B.L. Sondengam, A.E. Nkengfack, F.R. van Heerden, J.C.N. Assob, Securidacaxanthone A, a heptaoxygenated xanthone from Securidaca longepedunculata, Fitoterapia. 77 (2006) 199–202. https://doi.org/http://dx.doi.org/10.1016/j.fitote.2006.01.006. [312] [313] [314] 31 Jo ur na lP re -p ro of [315] J. Moshi, Z.H. Mbwambo, R.S.O. Nondo, P.J. Masimba, A. Kamuhabwa, M.C. Kapingu, P. Thomas, M. Richard, Evaluation of ethnomedical claims and Brine shrimp toxicity of some plants used in Tanzania as Traditional medicines, African J. Tradit. Complement. Altern. Med. 3 (2006). https://doi.org/10.4314/ajtcam.v3i3.31166. [316] R.C. Adiele, B.B. Fakae, I.U. Isuzu, Anthelmintic activity of Securidaca longepedunculata (Family: Polygalaceae) root extract in mice, in vitro and in vivo, Asian Pac. J. Trop. Med. 6 (2013) 841–846. https://doi.org/http://dx.doi.org/10.1016/S1995-7645(13)60150-9. [317] V.A. Luyckx, Nephrotoxicity of alternative medicine practice, Adv Chronic Kidney Dis. 19 (2012) 129–141. https://doi.org/10.1053/j.ackd.2012.04.005. [318] O.O. Adeyemi, A.J. Akindele, O.K. Yemitan, F.R. Aigbe, F.I. Fagbo, Anticonvulsant, anxiolytic and sedative activities of the aqueous root extract of Securidaca longepedunculata Fresen, J. Ethnopharmacol. 130 (2010) 191–195. https://doi.org/http://dx.doi.org/10.1016/j.jep.2010.04.028. [319] A. Maroyi, Traditional use of medicinal plants in South Central Zimbabwe: review & perspectives, J Ethnobiol Ethnomed. 9 (2013). https://doi.org/10.1186/1746-4269-9-31. [320] T. Stangeland, H. Wangensteen, E. Katuura, K.A. Lye, B.S. Paulsen, Antioxidant and anti-plasmodial activity of extracts from three Ugandan medicinal plants, J. Med. Plants Res. 4 (2010) 1916–1923. [321] M.S. Traore, M.A. Balde, M.S. Diallo, E.S. Balde, S. Diane, A. Camara, A. Diallo, A. Balde, A. Keita, S.M. Keita, K. Oulare, F.B. Magassouba, I. Diakite, A. Diallo, L. Pieters, A.M. Balde, Ethnobotanical survey on medicinal plants used by Guinean traditional healers in the treatment of malaria, J Ethnopharmacol. 150 (2013) 1145–1153. https://doi.org/10.1016/j.jep.2013.10.048. [322] H.M. Farah, H.E. Khalid, A.M. El Hussein, H.M. Osman, Toxic effect of Gardenia ternifolia Fruit on Rats, European J. Med. Plants. (2018) 1–9. [323] D.G. Fowler, Traditional fever remedies: a list of Zambian plants, Http//Www. Gift. Org/Ritam/News/Traditional_Fever_remedies 1. Pdf). Accessed April. 20 (2006) 2010. [324] S. Basu, A. Ghosh, B. Hazra, Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents, Phyther. Res. 19 (2005) 888–894. https://doi.org/doi:10.1002/ptr.1752. [325] L.-K. Ho, M.-J. Don, H.-C. Chen, S.-F. Yeh, J.-M. Chen, Inhibition of Hepatitis B Surface Antigen Secretion on Human Hepatoma Cells. Components from Rubia cordifolia, J. Nat. Prod. 59 (1996) 330–333. https://doi.org/10.1021/np960200h. [326] S. lodi, V. Sharma, L. Kansal, The protective effect of Rubia cordifolia against lead nitrate-induced immune response impairment and kidney oxidative damage, Indian J. Pharmacol. 43 (2011) 441–444. https://doi.org/10.4103/0253-7613.83118. [327] S.K. Talapatra, A.C. Sarkar, B. Talapatra, Two pentacyclic triterpenes from Rubia cordifolia, Phytochemistry. 20 (1981) 1923–1927. https://doi.org/https://doi.org/10.1016/0031-9422(81)84036-8. [328] G.M.M. Rao, C. V Rao, P. Pushpangadan, A. Shirwaikar, Hepatoprotective effects of rubiadin, a major constituent of Rubia cordifolia Linn, J. Ethnopharmacol. 103 (2006) 484–490. https://doi.org/https://doi.org/10.1016/j.jep.2005.08.073. [329] P.P. Gupta, R.C. Srimal, N. Verma, J.S. Tandon, Biological Activity of Rubia cordifolia and Isolation of an Active Principle, Pharm. Biol. 37 (1999) 46–49. https://doi.org/10.1076/phbi.37.1.46.6322. [330] A. Anantharaman, R.R. Priya, H. Hemachandran, S. Akella, C. Rajasekaran, J. Ganesh, D.P. Fulzele, R. Siva, Toxicity study of dibutyl phthalate of Rubia cordifolia fruits: in vivo and in silico analysis, Environ. Toxicol. 31 (2016) 1059–1067. 32 [337] [338] [339] [340] [341] Jo [342] of [336] ro [335] -p [334] re [333] ur na lP [331] [332] https://doi.org/10.1002/tox.22115. Y.B. Tripathi, A.V. Singh, Role of Rubia cordifolia Linn. in radiation protection, (2007). A. Osama, S. Awadelkarim, A. Ali, Antioxidant activity, acetylcholinesterase inhibitory potential and phytochemical analysis of Sarcocephalus latifolius Sm. bark used in traditional medicine in Sudan, BMC Complement Altern Med. 17 (2017). https://doi.org/10.1186/s12906-017-1772-6. A. Gansane, S. Sanon, L.P. Ouattara, A. Traore, S. Hutter, E. Ollivier, N. Azas, A.S. Traore, I.P. Guissou, S.B. Sirima, I. Nebie, Antiplasmodial activity and toxicity of crude extracts from alternatives parts of plants widely used for the treatment of malaria in Burkina Faso: contribution for their preservation, Parasitol Res. 106 (2010) 335–340. https://doi.org/10.1007/s00436-009-1663-y. N.G.N. Ezeji-Chigbu, A.C. Ene, A.A. Emejulu, Sub-Acute Toxicity Evaluation of Aqueous Stem Bark Extract of Sarcocephalus latifolius, SciFed J. Anal. Biochem. 1 (2018). A. V Iwueke, O.F.C. Nwodo, Antihyperglycaemic effect of aqueous extract of Daniella oliveri and Sarcocephalus latifolius roots on key carbohydrate metabolic enzymes and glycogen in experimental diabetes, Biokemistri. 20 (2008). V.H. Enemor, A.N. Okaka, Sub-acute effects of ethanol extract of Sarcocephalus latifolius root on some physiologically important electrolytes in serum of normal Wistar albino rats, Pak J Biol Sci. 16 (2013) 1811–1814. D. Arome, C. Enegide, S. Ameh, A. Agbafor, E. Mbonne, I. Monica, Absence of anxiolytic activity of Sarcocephalus latifolius fruit extract, J. Pharm. Negat. Results. 5 (2014) 4–7. https://doi.org/10.4103/0976-9234.136772. S.A. Kaboré, M. Hien, D. Ouédraogo, T.R.E. Diallo, K. Hahn, H.B. Nacro, Use of Ecosystem Services of Sarcocephalus latifolius (Sm.) E.A.Bruce and Induced Effect of Human Pressure on the Species in the Southwestern Region of Burkina Faso, 2014. 12 (2014) 10. https://doi.org/10.17348/era.12.0.561-570. P. Vudriko, M.K. Baru, J. Kateregga, J.G. Ndukui, Crude ethanolic leaf extracts of Citropsis articulata: A potential phytomedicine for treatment of male erectile dysfunction associated with testosterone deficiency, Int. J. Basic Clin. Pharmacol. 3 (2014) 120–123. J. Oloro, P.E. Alele, M. Amanya, J.K. Tanayen, J.O.C. Ezeonwumelu, A.G. Agaba, Effects of aqueous root bark extract of Citropsis articulata (Swingle Kellerman) on sexual function in male rats, African J. Pharm. Pharmacol. 9 (2015) 723–729. D. Olila, O. Olwa, J. Opuda-Asibo, Screening extracts of Zanthoxylum chalybeum and Warburgia ugandensis for activity against measles virus (Swartz and Edmonston strains) in vitro, Afr Heal. Sci. 2 (2002) 2–10. M.N. Kiraithe, J.M. Nguta, J.M. Mbaria, S.G. Kiama, Evaluation of the use of Ocimum suave Willd. (Lamiaceae), Plectranthus barbatus Andrews (Lamiaceae) and Zanthoxylum chalybeum Engl. (Rutaceae) as antimalarial remedies in Kenyan folk medicine, J. Ethnopharmacol. 178 (2016) 266–271. https://doi.org/http://dx.doi.org/10.1016/j.jep.2015.12.013. P.O. Engeu, R. Tumusiime, M. Agwaya, G. Mugisha, G.N. Kyeyune, B. Galiwango, P. Waako, Repeat-dose effects of Zanthoxylum chalybeum root bark extract: a traditional medicinal plant used for various diseases in Uganda, (2008). L. Bunalema, G.W. Fotso, P. Waako, J. Tabuti, S.O. Yeboah, Potential of Zanthoxylum leprieurii as a source of active compounds against drug resistant Mycobacterium tuberculosis, BMC Complement Altern Med. 17 (2017) 89. https://doi.org/10.1186/s12906-017-1602-x. A. Nahayo, M.J. Bigendako, K. Fawcett, H. Nkusi, N.J. B., Y. Gu, Chemical Study of [343] [344] [345] 33 [351] [352] [353] [354] [355] [356] Jo [357] of [350] ro [349] -p [348] re [347] ur na lP [346] the Stems of Urtica massaica, a Medicinal Plant Eaten by Mountain Gorillas (Gorilla beringei beringei) in Pare National des Volcans, Rwanda, Reseach Journals Appl. Sci. 3 (2008) 514–520. Y.W. Wabai, M.J.K. Maina, N.E. Mwaniki, Teratogenic potential of Urtica massaica (Mildbr.) and Croton megalocarpus (Hutch) in mice, (2018). E. Katuura, P. Waako, J. Ogwal-Okeng, R. Bukenya-Ziraba, Traditional treatment of malaria in Mbarara District, western Uganda, Afr. J. Ecol. 45 (2007) 48–51. https://doi.org/10.1111/j.1365-2028.2007.00737.x. F. Ocheng, F. Bwanga, M. Joloba, A.-K. Borg-Karlson, A. Gustafsson, C. Obua, Antibacterial activities of extracts from Ugandan medicinal plants used for oral care, J. Ethnopharmacol. 155 (2014) 852–855. https://doi.org/http://dx.doi.org/10.1016/j.jep.2014.06.027. G.N. Silva, F.R. Martins, M.E. Matheus, S.G. Leitao, P.D. Fernandes, Investigation of anti-inflammatory and antinociceptive activities of Lantana trifolia, J Ethnopharmacol. 100 (2005) 254–259. https://doi.org/10.1016/j.jep.2005.02.040. T. Nagao, F. Abe, J. Kinjo, H. Okabe, Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis Briq. and consideration of structureactivity relationship, Biol Pharm Bull. 25 (2002) 875–879. S. Juliao Lde, S.G. Leitao, C. Lotti, A.L. Picinelli, L. Rastrelli, P.D. Fernandes, F. Noel, J.P. Thibaut, G.G. Leitao, Flavones and phenylpropanoids from a sedative extract of Lantana trifolia L, Phytochemistry. 71 (2010) 294–300. https://doi.org/10.1016/j.phytochem.2009.10.007. S. Seyfe, A. Toma, A. Esaiyas, E. Debela, A. Fikru, A. Eyado, Phytochemical screening and In vivo antimalarial activities of crude extracts of Lantana trifolia root and Premna oligotricha leaves in plasmodium berghei infected mice, J. Med. Plants Res. 11 (2017) 763–769. M.M. Budai, A. Varga, S. Milesz, J. Tozser, S. Benko, Aloe vera downregulates LPSinduced inflammatory cytokine production and expression of NLRP3 inflammasome in human macrophages, Mol Immunol. 56 (2013) 471–479. https://doi.org/10.1016/j.molimm.2013.05.005. S.A. Im, K.H. Kim, H.S. Kim, K.H. Lee, E. Shin, S.G. Do, T.H. Jo, Y.I. Park, C.K. Lee, Processed Aloe vera gel ameliorates cyclophosphamide-induced immunotoxicity, Int J Mol Sci. 15 (2014) 19342–19354. https://doi.org/10.3390/ijms151119342. V. Saritha, K.R. Anilakumar, Toxicological evaluation of methanol extract of Aloe vera in rats, Int. J. Pharm. Biomed. Res. 1 (2010) 142–149. A. Lagarto Parra, R. Silva Yhebra, I. Guerra Sardiñas, L. Iglesias Buela, Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts, Phytomedicine. 8 (2001) 395–400. https://doi.org/https://doi.org/10.1078/0944-7113-00044. A.H. Shah, S. Qureshi, M. Tariq, A.M. Ageel, Toxicity studies on six plants used in the traditional Arab system of medicine, Phyther. Res. 3 (1989) 25–29. J. Lee, M.S. Lee, K.W. Nam, Acute toxic hepatitis caused by an Aloe vera preparation in a young patient: a case report with a literature review, Korean J. Gastroenterol. 64 (2014) 54–58. G.S. Bbosa, D.B. Kyegombe, A. Lubega, N. Musisi, J. Ogwal-Okeng, O. Odyek, AntiPlasmodium falciparum activity of Aloe dawei and Justicia betonica, African J. Pharm. Pharmacol. 7 (2013) 2258–2263. A. Gupta, S. Mahajan, R. Sharma, Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus, Biotechnol. Reports. 6 (2015) 51– 55. https://doi.org/https://doi.org/10.1016/j.btre.2015.02.001. [358] [359] [360] 34 Jo ur na lP re -p ro of [361] A. Frank, S. Abu-Lafi, A. Adawi, J.S. Schwed, H. Stark, From medicinal plant extracts to defined chemical compounds targeting the histamine H4 receptor: Curcuma longa in the treatment of inflammation, 66 (2017) 923–929. https://doi.org/10.1007/s00011-0171075-x. [362] H. Itokawa, Q. Shi, T. Akiyama, S.L. Morris-Natschke, K.-H. Lee, Recent advances in the investigation of curcuminoids, Chin. Med. 3 (2008) 11. https://doi.org/10.1186/1749-8546-3-11. [363] G.G.L. Yue, B.C.L. Chan, P.-M. Hon, M.Y.H. Lee, K.-P. Fung, P.-C. Leung, C.B.S. Lau, Evaluation of in vitro anti-proliferative and immunomodulatory activities of compounds isolated from Curcuma longa, Food Chem. Toxicol. 48 (2010) 2011–2020. https://doi.org/https://doi.org/10.1016/j.fct.2010.04.039. [364] J. Lako, V.C. Trenerry, M. Wahlqvist, N. Wattanapenpaiboon, S. Sotheeswaran, R. Premier, Phytochemical flavonols, carotenoids and the antioxidant properties of a wide selection of Fijian fruit, vegetables and other readily available foods, Food Chem. 101 (2007) 1727–1741. https://doi.org/https://doi.org/10.1016/j.foodchem.2006.01.031. [365] G. Singh, I.P.S. Kapoor, P. Singh, C.S. de Heluani, M.P. de Lampasona, C.A.N. Catalan, Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.), Food Chem. Toxicol. 48 (2010) 1026– 1031. https://doi.org/https://doi.org/10.1016/j.fct.2010.01.015. [366] N. Sittisomwong, V. Leelasangaluk, S. Chivapat, A. Wangmad, P. Ragsaman, C. Chuntarachaya, Acute and subchronic toxicity of turmeric, Bull Dept Med Sci. 32 (1990) 101–111. [367] T.N.B. Shankar, N. V Shantha, H.P. Ramesh, I.A.S. Murthy, V.S. Murthy, Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs and monkeys., Indian J. Exp. Biol. 18 (1980) 73–75. [368] V.B. Liju, K. Jeena, R. Kuttan, Acute and subchronic toxicity as well as mutagenic evaluation of essential oil from turmeric (Curcuma longa L), Food Chem. Toxicol. 53 (2013) 52–61. [369] E.A. Sofowora, R. Hardman, Steroids, phthalyl esters and hydrocarbons from Balanites wilsoniana stem bark, Phytochemistry. 12 (1973) 403–406. https://doi.org/https://doi.org/10.1016/0031-9422(73)80028-7. [370] J.S.S. Martin, The Desert Date and Its Relatives: A Revision of the Genus Balanites, Kew Bull. 56 (2001) 1–128. https://doi.org/10.2307/4119431. [371] M. Kamatenesi Mugisha, S. Asiimwe, A. Namutebi, A.-K. Borg-Karlson, E.K. Kakudidi, Ethnobotanical study of indigenous knowledge on medicinal and nutritious plants used to manage opportunistic infections associated with HIV/AIDS in western Uganda, J. Ethnopharmacol. 155 (2014) 194–202. https://doi.org/http://dx.doi.org/10.1016/j.jep.2014.05.012. [372] J.S.R. Tabuti, K.A. Lye, S.S. Dhillion, Traditional herbal drugs of Bulamogi, Uganda: plants, use and administration, J Ethnopharmacol. 88 (2003) 19–44. https://doi.org/10.1016/s0378-8741(03)00161-2. [373] Nutan, M. Modi, C.S. Dezzutti, S. Kulshreshtha, A.K.S. Rawat, S.K. Srivastava, S. Malhotra, A. Verma, U. Ranga, S.K. Gupta, Extracts from Acacia catechu suppress HIV-1 replication by inhibiting the activities of the viral protease and Tat, Virol. J. 10 (2013) 1–17. https://doi.org/10.1186/1743-422x-10-309. [374] P. Mandal, S.P. Sinha Babu, N.C. Mandal, Antimicrobial activity of saponins from Acacia auriculiformis, Fitoterapia. 76 (2005) 462–465. https://doi.org/https://doi.org/10.1016/j.fitote.2005.03.004. [375] J.N. Kanyara, E.N.M. Njagi, Anti-HIV-1 activities in extracts from some medicinal plants as assessed in an in vitro biochemical HIV-1 reverse transcriptase assay, Phyther. 35 Jo ur na lP re -p ro of Res. 19 (2005) 287–290. https://doi.org/10.1002/ptr.1536. [376] M.M. Leteane, B.N. Ngwenya, M. Muzila, A. Namushe, J. Mwinga, R. Musonda, S. Moyo, Y.B. Mengestu, B.M. Abegaz, K. Andrae-Marobela, Old plants newly discovered: Cassia sieberiana D.C. and Cassia abbreviata Oliv. Oliv. root extracts inhibit in vitro HIV-1c replication in peripheral blood mononuclear cells (PBMCs) by different modes of action, J. Ethnopharmacol. 141 (2012) 48–56. https://doi.org/http://dx.doi.org/10.1016/j.jep.2012.01.044. [377] C. Reilly, J. Henry, Geophagia: why do humans consume soil?, Nutr. Bull. 25 (2000) 141–144. https://doi.org/10.1046/j.1467-3010.2000.00032.x. [378] P.W. Abrahams, Geophagy (soil consumption) and iron supplementation in Uganda, Trop. Med. Int. Heal. 2 (1997) 617–623. https://doi.org/doi:10.1046/j.13653156.1997.d01-348.x. [379] B. Smith, S.R.N. Chenery, J.M. Cook, M.T. Styles, J. V Tiberindwa, C. Hampton, J. Freers, M. Rutakinggirwa, L. Sserunjogi, A. Tomkins, Geochemical and environmental factors controlling exposure to cerium and magnesium in Uganda, J. Geochemical Explor. 65 (1998) 1–15. [380] H. Szajewska, P. Dziechciarz, J. Mrukowicz, Meta‐ analysis: smectite in the treatment of acute infectious diarrhoea in children, Aliment. Pharmacol. Ther. 23 (2006) 217–227. [381] T. Johns, Detoxification function of geophagy and domestication of the potato, J Chem Ecol. 12 (1986) 635–646. https://doi.org/10.1007/bf01012098. [382] P.W. Harvey, P.B. Dexter, I. Darnton-Hill, The impact of consuming iron from nonfood sources on iron status in developing countries, Public Heal. Nutr. 3 (2000) 375– 383. [383] S.L. Young, Pica in pregnancy: new ideas about an old condition, Annu. Rev. Nutr. 30 (2010) 403–422. [384] V. Minnich, A. OkÇUoĞLu, Y. Tarcon, A. Arcasoy, Süh. Cin, O. ÖRÜKoĞLu, F. Renda, B. DemiraĞ, Pica in Turkey: II. Effect of clay upon iron absorption, Am. J. Clin. Nutr. 21 (1968) 78–86. [385] S.C. Sheppard, Geophagy: who eats soil and where do possible contaminants go?, Environ. Geol. 33 (1998) 109–114. [386] S.L. Simon, Soil ingestion by humans: a review of history, data, and etiology with application to risk assessment of radioactively contaminated soil, Health Phys. 74 (1998) 647–672. [387] M.S. Wong, D.A.P. Bundy, M.H.N. Golden, Quantitative assessment of geophagous behaviour as a potential source of exposure to geohelminth infection, Trans. R. Soc. Trop. Med. Hyg. 82 (1988) 621–625. https://doi.org/https://doi.org/10.1016/00359203(88)90532-9. [388] K.C. Chinsembu, M. Hedimbi, An ethnobotanical survey of plants used to manage HIV/AIDS opportunistic infections in Katima Mulilo, Caprivi region, Namibia, J. Ethnobiol. Ethnomed. 6 (2010) 1–9. https://doi.org/10.1186/1746-4269-6-25. [389] D. Langlois-Klassen, W. Kipp, G.S. Jhangri, T. Rubaale, Use of Traditional Herbal Medicine by AIDS Patients in Kabarole District, Western Uganda, Am. J. Trop. Med. Hyg. 77 (2007) 757–763. http://www.ajtmh.org/content/77/4/757.abstract. [390] J.N. Wanyama, S. Tsui, C. Kwok, R.K. Wanyenze, J.A. Denison, O. Koole, E. van Praag, B. Castelnuovo, F. Wabwire-Mangen, G.P. Kwesigabo, R. Colebunders, Persons living with HIV infection on antiretroviral therapy also consulting traditional healers: a study in three African countries, Int. J. STD AIDS. 28 (2017) 1018–1027. https://doi.org/10.1177/0956462416685890. [391] O.R. Millington, C. Di Lorenzo, R.S. Phillips, P. Garside, J.M. Brewer, Suppression of adaptive immunity to heterologous antigens during Plasmodium infection through 36 Jo ur na lP re -p ro of hemozoin-induced failure of dendritic cell function, J. Biol. 5 (2006) 5. https://doi.org/10.1186/jbiol34. [392] N. Beuscher, C. Bodinet, D. Neumann-Haefelin, A. Marston, K. Hostettmann, Antiviral activity of African medicinal plants, J Ethnopharmacol. 42 (1994) 101–109. [393] S. Staines S., Herbal medicines: adverse effects and drug-herb interactions, J Malta Coll Pharm Pr. 17 (2011) 38–42. 37 of ro -p re Jo ur na lP Figure 1: Map of Uganda showing study sites. Adopted from Anywar et al. [23]. 38 of ro -p re ur na lP Jo Plate 1: Various clay tablets consumed by people living with HIV/AIDS in Uganda 39 Table 2: Languages spoken & Number of TMP interviewed by districts Districts & Location 1. Arua 2. Dokolo 3. Mbale 4. Iganga 5. Bushenyi 6. Rakai 7. Luwero 8. Kaabong Language spoken Lgbara Luo (Langi) Lugisu Lusoga Runyankore Luganda Luganda Ik No. of TMP interviewed 11 10 10 15 13 6 13 12 Table 2: Medicinal plants used by TMP to boost the immune system in people living with HIV/AIDS in Uganda 8. Searsia pyroides (Burch.) Moffett (AG381) H L Jo Asteraceae 14.Artemisia annua L. (AG392) 15.Arctium lappa L. (AG428) 16.Conyza pyrrhopappa Sch.Bip. ex A.Rich. (AG397) 17.Echinacea angustifolia DC. (AG419) 18.Senecio hadiensis Forssk (AG451) 19.Vernonia amygdalina Delile (AG405) Basellaceae 20.Basella alba L. (AG393) Bignoniaceae 21.Kigelia africana (Lam.) Benth. (AG401) 22.Markhamia lutea (Benth.) K.Schum. (AG367) 23.Stereospermum kunthianum Cham. (AG394) Canellaceae 24.Warburgia ugandensis Sprague (AG383) Fr Method of Preparation of Doodo [Lug] H H Sd L 2 1 Boil & eat large amounts regularly Boil with porridge/pop seeds Infusion made & drunk. H H Blb Blb 5 3 Crushed & mixed in honey Crushed & mixed in honey Mukontambaale [Lus], Kibumbu [Gis] Muyembe [Lug, Lus, Gis], Mengu [Lgb], Mahembe [Lan] Kakwansokwanso [Lug] T T B B, L 4 7 Sh L, B 1 Boiled & drunk Boil powder singly/with other herbs & drink Boiled & drunk Kutukumwe [Ru] H L 1 Boiled & drunk Mugajjangalabi [Lug] Kafulu [Gis, Lus, Lug] T H B R 4 4 Boiled & drunk Boiled & drunk Mulondo [Lug, Lus], Orono [Lan] Cl R 3 Pound, mix with water & drunk Kajjolyenjovu [Lug], Mugorora [Ru] T B, R 3 Boil with other herbs (drink)/clay tablets (chew Artemesia* Burdock* Kafugankande [Lug], Muhe [Ru], Yagyag [Lgb] Echinacea* Mugina/mubiri [Lug], Mululuza [Lug], Mubiriizi [Ru] H H H 2 1 5 Drink hot water infusion Boil & drink Boil with other herbs & drink H H Sh L R L, B, R R, L L L 1 1 4 Make tea Boil, squeeze out juice & drink Make tea Nderema [Lug] H L 5 Pound, mix in water & drink Mussa [Lug], Mufungedha/ Omwisa/Mussa [Lus], Ibologo [Lgb] Kufunga/Mwisa [Gis], Omwisya [Ru] Lusoola [Bisu], Sambya [Lgb] Kinyasira [Ru], T Fr 11 Boil & drink T T R B 7 1 Boil with other herbs & drink Boil & drink Abasi/Omuya [Lug], Balwegiira [Lus], Mwiha [Ru], Abac [Lang] T B 8 Boil & drink Amaranth*/Doodo [Lug] Mwenza [Ru] Katunguluchumu [Lug], Tungl [Lan] Katungulu [Lug] ur na lP Apiaceae 9. Centella asiatica (L.) Urb. (AG388) Apocynaceae 10.Alstonia boonei De Wild. (AG390) 11.Cryptolepis sanguinolenta (Lindl.) Schltr. (AG480) 12.Mondia whytei (Hook.f.) Skeels (AG373) Asparagaceae 13.Dracaena steudneri Engl. (AG385) PU Capparaceae 40 1 ro 2. Amaranthus sp. (AG362) 3. Aerva lanata (L.) Juss. (AG369) Amaryllidaceae 4. Allium sativum L. (AG391) 5. Allium cepa L. (AG370) Anacardiaceae 6. Lannea barteri (Oliv.) Engl. (AG377) 7. Mangifera indica L. (AG401) Hb -p Acanthaceae 1. Amaranthus dubius Mart. ex Thell. (AG361) Local Names in respective languages re Family, Scientific Name (Voucher No.) 31.Cucurbita maxima Duchesne (AG406) Euphorbiaceae 32.Jatropha curcas L. (AG429) 33.Manihot esculenta Crantz (AG426) Fabaceae 34.Acacia hockii De Wild. (AG428) 35.Acacia amythethophylla A.Rich. (AG406) 36.Acacia polyacantha subsp. campylacantha (A.Rich.) Brena (AG486) 37.Acacia seyal (L.) Willd. (AG570) 38.Albizia coriaria Oliv (AG366) 39.Erythrina abyssinica DC. (AG418) Boil with millet porridge & drink Njagga [Lug], Endaaye [Lus] H L 1 Boil with B. micrantha & drink Paapali/Mupaapali [Lug, Lus, Gis], Apapalo [Lan], Paipai [Lug] T Fr 2 Boil & drink Mbaluka [Ru] Sh B 7 Boil & drink Odugu [Lan] T Ap 4 Boil & drink Kiyondo-ekyeru [Lug], Kisanaasana [Lus] H L 4 Boil & drink Local Names in respective languages Nsujju [Lug] Hb PU Fr Method of Preparation Sc Fr 2 Eat/ Boil with other herbs Kiroowa [Lug] Muwogo [Lug] T Sh Sd L Kaasana [Lug], Okuto atino [Lang] T B Sh Sh R R Muwologoma [Lug] Kibere [Lug], Morigo [Lgb] Jo 46.Micromeria biflora (Buch.-Ham. ex D.Don) Benth. (AG416) Lauraceae 47.Persea americana Mill. (AG421) Lythraceae 48.Punica granatum L. (AG423) Moraceae 49.Milicia excelsa (Welw.) C.C.Berg (AG431) Moringaceae 50.Moringa oleifera Lam (AG408) Myrtaceae 51.Psidium guajava L. (AG419) Passifloraceae 52.Passiflora edulis Sims (AG365) Phyllanthaceae 53.Bridelia micrantha (AG452) 54.Flueggea virosa (Roxb. ex Willd.) Royle (AG430) 55.Hymenocardia acida Tul. (AG411) 56.Phyllanthus ovalifolus Forssk. (AG376) Polygalaceae 2 1 Drink cold-water infusion & Boil & drink 8 2 2 Boil & drink/mix with other herbs Boil/Make clay tablets Boil & drink Naibeere [Lus] Mugavu [Lug], Musiita [Lus], Kiluku [Lgb] Jjirikiti [Lug], Murinzi/ Muko [Ru], Oluo [Lgb], Muyirikiti [Lus] Mwolola [Lug] Kibundabunzi [Ru] Sh L,B, Fr T B, L 4 3 Boil & drink Boil & drink T B 7 Boil & drink T Sh B L 1 1 Pound, boil & drink Boil & drink Mukuna [Lug] Nkooge [Lug] Eti [Lgb] Kiyugeyuge [Lus], Nazaka [Lgb] H T Cl Sd B, L B, R 1 3 3 Tea from roasted seed powder Boil & drink Boil singly/with other herbs/ add powder milk &drink Kamunye [Lug], Nfoodo Esitimwe [Ru] Shagamanungi [Ru] H L 1 Boil & drink H L 1 Boil & drink Ovakedo [Lug], Vadeko [Lus, Gis] T Sd, B 2 Boil & drink Mukoma mawanga [Lus] Sh R, Fr 1 Boil & drink Muvule [Lug, Lgb] T L 2 Boil & drink Molinga* T L, R 4 Boil & drink /add in sauce/stew Mupeera [Lug], Ipeera [Ru] T F 11 Eat fresh Katunda [Lug, Lus] Cl R, Fr 4 Chew/Juice/ boil & drink Katazamiti [Lug] Lukandwa [Lug] Nabbaluka/ [Lug] Mutulika [Lug] T Sh T Sh L, B Tw R L 8 2 1 4 Boil for about 2.5 hrs & drink Boil with M. indica & drink Boil & drink Boil & drink ur na lP 40.Entada abyssinica A.Rich (AG387) 41.Kotschya aeschynomenoides (Bak.) De Wild. & Devign (AG359) 42.Mucuna pruriens (L.) DC. (AG409) 43.Tamarindus indica L. (AG403) 44.Tylosema fassoglensis (Schweinf.) Torre & Hillc. (AG414) Lamiaceae 45.Hoslundia opposita Vahl (AG413) 1 of Cucurbitaceae Family, Scientific Name (Voucher No.) R ro Celastraceae 28.Cassine aethiopica Thunb. (AG374) Combretaceae 29.Combretum collinum sub sp. elgonense (Exell) Okafa (AG416) Crassulaceae 30.Kalanchoe densiflora Rolfe (AG427) Sh -p Cannabaceae 26.Cannabis sativa L. (AG410) Caricaceae 27.Carica papaya L. (AG378) Mukolokombi [Lug], Mukorokombi [Ru], Ogadaman [Lan] re 25.Capparis tomentosa Lam. (AG379) 41 [Lus], 57.Rumex usambarensis (Dammer) Dammer (AG368) 58.Securida longipedunculata Fresen. (AG363) Rubiaceae 59.Fleroya rubrostipulata (K.Schu) Y.F.Deng (AG404) 60.Gardenia ternifolia subsp. jovis-tonantis (Welw.) Verdc. (AG453) 61.Rubia cordifolia L. (AG454) 62.Sarcocephalus latifolius (Sm.) E.A.Bruce (AG415) Rutaceae 63.Citropsis articulata (Willd. ex Spreng.) Swingle & M.Kellerm (AG439) 64.Zanthoxylum chalybeum Engl. (AG632) Urticaceae 65.Urtica massaica Mildbr. (AG389) Family, Scientific Name (Voucher No.) Mufumbi-egyesha [Ru] H L Mukondwe [Lug] T R 1 Boil with millet porridge & drink Boil & drink /make clay tablets Muziko [Ru] T B 3 Boil & drink/ tea Mulema /Mulemanjovu [Lug] T B 6 Boil & drink Kasalabakessi [Lus] Mutaamataamu [Lus] Cl Sh Ap R 2 1 Boil /make tea. Add powder to in sauce/stew Mubolo [Lug] Sh B 3 Boil & drink Entale ya ddungu [Lug] T B, R 11 Boil with other herbs/singly Kicuragyenyi [Ru] Local Names in respective languages H Hb L PU 1 Fr Eat as a vegetable/add to food Method of Preparation Jo ur na lP re -p ro of Verbenaceae 66.Lantana trifolia L. (AG375) Kayukiyuki [Lug] H L 1 Boil with other herbs & drink Xanthorrhoeaceae 67.Aloe vera (L.) Burm.f. (AG398) Kigagi [Lug], Tikorotot [Ik] H L 7 Boil with other herbs/singly 68.Aloe dawei A.Berger (AG380) Kigagi [Lug] H L 1 Boil & drink 69.Aloe sp. (AG399) 1 1 Zingiberaceae 70.Curcuma longa L. (AG383) Ocaoayom [Lan] H Rh 1 Pound, soak in water & drink Zygophyllaceae 71.Balanites wilsoniana Dawe & Sprague (AG400) Naggwalimu [Lug] T L 1 Boil with other herbs & drink Key: Habit (Hb): Cl – Climber, H–Herb, Sc–Scrambler, Sh–Shrub, T–Tree, Part Used (PU): Tw– Sd–Seed, B–Bark, Twigs, L=Leaves, F–Fruit, Fr–Fronds, Rt–Root, Pl–Peel, Ap –All aerial parts:. Blb–Bulb, Rh–Rhizome; Fr – Frequency of mention, * No local name. Western name adopted Languages: [Gis] –Lugishu, [Lus] –Lusoga, [Lug] –Luganda, [Lgb] –Lugbara, [Lan] – Langi, [Ik] –Ik, [Ru] –Runyankore. NB: Water is used for preparing all the herbal medicines unless otherwise stated 42 Jo ur na lP re -p ro o f Table 3: Cross reference of medicinal plants species used to boost the immune system in PLHIV in Uganda Family & Scientific name Relevant pharmacological activity, Toxicity phytochemistry Acanthaceae 1. Amaranthus dubius Mart. Antifungal & antibacterial [28]. Alkaloids, No reports. However, A. hybridus is not toxic against brine ex Thell. flavonoids, steroids, tannins [29], rutin [30]. shrimp (LC50 6233.6 μg/ml) [31]. 2. Amaranthus sp. No reports No reports 3. Aerva lanata (L.) Juss. Immunomodulatory [35], anti-inflammatory [36] The aqueous extract is relatively safe on acute oral exposure, antimicrobial [37] antidiarrheal [38] LD50 = 22.62 g/kg body weight (bw), moderately toxic on hepatoprotective [39], anti-HIV, [40]. Phenolics, acute intraperitoneal (i.p) administration (LD50 = e.g. gallic acid, apigetrin, rutin & myricetin, 0.432 g/kg bw), but relatively safe during prolonged phytosterols, antimycobacterial [41]. exposure in albino mice [42]. Amaryllidaceae 4. Allium sativum L. In vitro viricidal effects & antiviral activity. A. sativum generally safe [47] but some side effects of Diallyl thio-sulfinate (allicin), allyl methyl excessive ingestion in humans include gastrointestinal thiosulfinate, methyl allyl thiosulfinate, ajoene, discomfort, nausea, bloating, headache, dizziness, profuse alliin, deoxyalliin, diallyl disulfide, & diallyl sweating, life-threatening haemorrhage when used with trisulfide [43], antimicrobial [44] antiproliferative anticoagulants [47–49]. [45], immunomodulatory [46]. 5. Allium cepa L. Quercetin, phenolics [53]. Antimicrobial [44] The crude extract is cytotoxic against tumoral Lucena MDR immunomodulatory [54]. human erythroleukemic & K562 cell lines [55]. Anacardiaceae 6. Lannea barteri (Oliv.) Tannins, flavonoids, steroids, quinones, saponins Orally administered methanol extracts were non-toxic (LD50 Engl. & alkaloids [58,59]. Antiviral [59], antibacterial > 2500 mg/kg bw) in acute toxicity tests in Swiss albino [60], anticonvulsant [61]. mice [62]. The i.p administered ethanol extract (LD50 = 565.7) was toxic to the same mice [61]. 7. Mangifera indica L. Protocatechic acid, catechin, mangiferin, alanine, Leaf extracts are non-toxic in ICR mice in acute & long-term glycine, γ–aminobutyric acid [63], triterpenoid & toxicity studies up to 18.4 g/kg bw [66] & not genotoxic or flavonoids. Antimicrobial [64]. Anti- clastogenic in vivo in mammalian micronucleus test up to inflammatory & immunomodulatory. Nutritional 2000 mg/kg bw [67]. supplement in AIDS & cancer [65]. 8. Searsia pyroides (Burch.) Antiviral bioflavonoids e.g. agathisflavone, No reports Moffett amentoflavone, hinokiflavone, rhusflavanone & succedaneaflavone [68,69]. Apiaceae 43 Relevant reported traditional uses Anaemia [32]. Malaria [33]. Widely consumed nutritious vegetable [34]. Inappetence, cough, nausea, flu [23]. Inflammation, skin diseases, dysentery & diarrhoea [35]. Febrile convulsions [50], infections [51], cough [52]. TB [56], malaria [57]. Diarrhoea, wounds, gastritis [58] fever [23]. Cough, convulsions [32,50], malaria [33], dysentery, stomach ache, anaemia, diarrhoea, skin infections [23]. Malaria [33], HIV/AIDS [70], diarrhoea, wounds [71], dysentery [72], skin rash [32] stomach ache [50]. 11. Cryptolepis sanguinolenta (Lindl.) Schltr. 12. Mondia whytei (Hook.f.) Skeels Asparagaceae 13. Dracaena steudneri Engl. 15. Arctium lappa L. 16. Conyza pyrrhopappa Sch.Bip. ex A.Rich. f Relevant reported traditional uses Ulcers [32], malaria [78], HIV/AIDS [70,79], dermatitis [50], skin infections [23]. Toxic to rats at high doses [84].Various fractions of A. boonei extracts were both hepatotoxic & nephrotoxic in rats at 400 mg/kg bw [85]. The aqueous root extract is generally safe in Sprague Dawley rats (LD50 > 3000 mg/kg bw) [91]. Malaria [23,32,86]. Aqueous extracts were non-toxic in acute & sub-chronic toxicity studies on Wistar rats at single dose exposure up to the limit 5000 mg/kg after 90 days [96]. Loss of appetite [23,32], fever, malaria, infections [23,90]. Antifungal [97]. No reports Cough, syphilis, skin infections, TB, cough [23,32], malaria [33]. Immunomodulatory with flavonoids, phenolics, artemisinin [98], antiplasmodial [99], antimicrobial [100], anticancer [101]. The hydro-ethanolic extract was not toxic in Swiss mice up to 5000 mg/kg bw [102]. The essential oils have low relative toxicity in mice when administered i.p (LD50 = 1400 & 1832mg/kg for different samples [103]. Artemisinin is relatively safe & nontoxic in humans (LD50 > 5000 mg/kg [104]. The ethanolic root & fruit extracts are not toxic to SpragueDawley albino rats [111] & Wistar rats (LD50 > 5000 mg/kg) in oral acute & sub-acute toxicity tests [112]. Very few side effects from root preparations can occur in humans [113]. No reports Malaria [33], wounds, intermittent fevers [105]. Alstonine [80], alkaloids, saponins, flavonoids, tannins, glycosides, resins, steroids & triterpenes [81]. Anti-inflammatory [82] & antiarthritic [83]. Antiplasmodial containing with cryptolepine, cryptoheptine, like [87], antimycobacterial with tannins & flavonoids [88], antimicrobial with polyuronides, anthocyanosides & triterpenes [89], anti-inflammatory [90]. Antiinflamatory & antibacterial [93]. 2-hydroxy4-methoxybenzaldehyde [94] phenolics, flavonoids & tannins [95]. Jo ur Asteraceae 14. Artemisia annua L. re -p ro o Apocynaceae 10. Alstonia boonei De Wild. Toxicity The acetone extract was non-toxic in Swiss mice (LD50 < 4000mg/kg bw) [76]. Crude extracts were non-toxic to normal human lymphocytes [77]. lP 9. Centella asiatica (L.) Urb. Relevant pharmacological activity, phytochemistry Asiatic acid, asiaticoside & madecassic acid [73]. Tannins, essential oils, phytosterols, mucilages, resins, flavonoids, an alkaloid (hydrochotine), vallerine, fatty acids (linoleic acids, linoleic, oleic, palmitic and stearic acids) [74] Immunomodulatory [75]. na Family & Scientific name Anti-HIV-1, Wedelolactone, orobol [106], antiinflammatory [107], immunomodulatory [108]. Phytoalexins [109], lignans; arctigenin, matairesinol, arctiin, lappaol A, C & F [110]. Saponins, tannins, alkaloids, steroid glycosides, flavonoid, anthrasenosides, triterpenes [115]. 44 Malaria [92], fever, malaria, infections [90]. Arthritis & cancer in Traditional Chinese Medicine [110], infections [114]. Malaria [33], diarrhoea, headache [23]. 18. Senecio hadiensis Forssk 19. Vernonia auriculifera Hiern Basellaceae 20. Basella alba L. Antimicrobial, sesquiterpene amine farnesylamine, lupenyl acetate, oleanolic acid, βamyrin acetate, amyrin, friedelanone, friedelin acetate, α-amyrin & β-sitosterol [127], 8desacylvernodalol [128]. na Wound healing, anti-viral, anti-ulcer, antiinflammatory & hepatoprotective [131]. Alkaloids, phenols, flavonoids [132]. Antibacterial & antifungal immunomodulatory [134]. Jo ur Bignoniaceae 21. Kigelia africana (Lam.) Benth. [133], 22. Markhamia lutea (Benth.) K. Schum. Antiviral with phenylpropanoid glycosides e.g. luteoside A, B & C [137]. Anti-parasitic [138]. 23. Stereospermum kunthianum Cham. Antiplasmodial, anticonvulsant with naphthoquinones & anthraquinone [140]. Antimicrobial [141]. Antiinflamatory [142] Sterols/ triterpenes, coumarins [143]. Relevant pharmacological activity, phytochemistry Family & Scientific name f Toxicity re -p ro o 17. Echinacea angustifolia DC. Relevant pharmacological activity, phytochemistry Immunostimulatory [116], antiviral [117], antifungal & antibacterial [118]. Alkamides; caffeic acid esters, particularlyechinacoside; cynarin; polysaccharides; polyacetylenes [119]. Anti-inflammatory with sesquiterpenoids & presilphiperfolan [121]. Pyrrolizidine alkaloids [122]. lP Family & Scientific name Relevant reported traditional uses Single oral/i.v doses many times the human therapeutic doses of the juice were non-toxic to rats & mice after 4 weeks, with no mutagenicity/carcinogenicity reported in hamster embryo cells [120]. The pyrrolizidine alkaloids (PA) [122] in Senecio genus are acutely toxic, genotoxic & teratogenic to vertebrates & invertebrates [123]. Ingestion of PA in humans in herbal products is associated with acute & chronic liver toxicity [124]. No information is available on the possible irritant or toxic properties [129]. Colds, influenza infections [118]. No reports Stomach ache, constipation [32]. Low doses of aqueous fruit extract are safe but may have some hepatorenal toxic effects in Wistar albino rats at higher doses (500 mg/kg bw) [135]. Aqueous leaf extracts also potentially toxic to liver & kidney, LD50 > 3000 mg/kg bw [136]. No reports. However, 80% aqueous methanol leaf extract of M. platycalyx is non-toxic in Swiss albino mice [139]. HIV/AIDS [23,70], syphilis, stomach ache [50]. Sub-acute oral administration of aqueous bark extract was not toxic to rats after 28 days [144]. Toxicity Canellaceae 45 [117], respiratory HIV/AIDS OI [125], cancer [126], fatigue, stomach ache [23]. Fever [130], cancer [126], syphilis, fatigue [23]. Ear & eye infections [32], malaria [32,33], skin infections, anaemia, inappetence, stomach ache [23]. Bronchitis, pneumonia, coughs, gastritis, wounds, rheumatic arthritis, ulcers, dysentery & venereal diseases, febrile convulsions [142], malaria & fevers [23]. Relevant reported traditional uses Caricaceae 27. Carica papaya L. HIV/AIDS, coughs, TB, fevers, diarrhoea, skin rashes, sores, thrush & STI, herpes zoster, simplex [156,157], diarrhoea [23]. Antidepressant [158], anti-nausea [159], antinociceptive [160], anti-inflammatory & anti-HIV1 [161], immunomodulatory [162], anticancer [163], antibacterial [164]. Phytocannabinoids e.g. delta8-tetrahydrocannabinol, cannabigerol, cannabinol [165]. Frequent and prolonged use of cannabis produces both mental & physical impairment, mood disorders, exacerbation of psychotic disorders in vulnerable people, cannabis use disorders, withdrawal syndrome, neurocognitive impairments, cardiovascular & respiratory diseases [166,167]. Body weakness [32], cough, TB, pain, asthma, diarrhoea [23]. Antifungal, antimalarial [168], anticancer [169], Sub-acute oral toxicity tests of the leaf extracts in Sprague nephroprotective [170], immonomodulatory Dawley rats at up to 2 g/kg, (14 times the levels used in [168,171]. Polysaccharides, glycosides, saponins, traditional medicine in Malaysia is safe [173,174]. flavonoids & phytosterols [172]. Cough, low immunity, measles erectile dysfunction [32], abdominal pain [50], malaria [33], skin infections, ulcers, cough, anaemia [23]. Combretaceae 29. Combretum collinum sub sp. elgonense (Exell) Okafa Crassulaceae 30. Kalanchoe densiflora Rolfe f Leaf extracts were toxic to Nubian goats, sheep & calves when ingested given daily at doses ranging from 0·05 to 5g/kg/day. The main signs of poisoning were inappetence, muscular weakness, incoordination of movement, pain in the sacral region, dragging of the hind limbs, pallor of the visible mucous membranes & recumbency [154,155]. Jo ur Celastraceae 28. Cassine aethiopica Thunb. Antibacterial, wound healing [152]. Oxindole (3hydroxy-3-methyl4methoxyoxindole) [153]. re -p ro o Cannabaceae 26. Cannabis sativa L. Extracts are safe to use with no mortality at all dose levels (LD50 > 5000 mg/kg bw) in BALB/c mice [150]. lP Capparaceae 25. Capparis tomentosa Lam. Immunostimulatory [145], antimicrobial [146], anti-inflammatory [147]. Ugandensolide, ugandensidial, muzigadial, polygodial, waburganal, cinnamolide, mukaadial, muzigadiolide [148,149]. na 24. Warburgia ugandensis Sprague TB & HIV/AIDS [79,151], flu, cough [32], malaria [23,32,50]. No reports No reports Headaches [175], inappetence, syphilis, sexual dysfunctions [23]. Glucuronic, galacturonic & 4-Omethylglucuronic acid, galactose, arabinose, rhamnose, mannose, xylose & gum [176]. No reports Diarrhoea, pyomyositis & gonorrhoea [151], dysentery [177]. Anti-inflammatory [178], antibacterial, tannins, saponins, terpenoids, flavonoids and cardiac glycosides [179]. No reports but K. brasiliensis extracts had no acute toxicity on mice at 5 g/kg i.p [180]. Stomach & earache [23,181], wounds [182], fevers, cough, fatigue, ulcers, anaemia [23]. 46 33. Manihot esculenta Crantz Fabaceae 34. Acacia hockii De Wild. 38. Albizia coriaria Oliv f Relevant reported traditional uses Antimicrobial, antidiarrheal [183] cucurbitacins [184]. Flavonoids, saponins, tannins. Immunomodulatory & antitumour [185]. Cucurbitaxanthin a & b [186]. The seeds are non-toxic to mice after oral administration (LD50 > 5000 mg/kg bw [187] & pigs in oral acute & subacute tests [188]. Malaria [33], fatigue [23]. Anti-HIV [189], immunomodulatory [190], antiinflammatory [191], anticancer [192]. Jatrophalactone, Jatrophalone, Jatrophadiketone [193], Curcusone B [192], curcin [194], phorbol esters [195]. Anti-inflammatory [201]. Cyanogenic glycoside (i.e. linamarin & lotaustralin) [202], pentacyclic triterpenoids maesculentins A & B [203]. Known to be toxic. Aacute poisoning due to accidental ingestion of the seeds caused nausea, vomiting & abdominal cramps [196,197]. The purified phorbol esters isolated from the oil are highly toxic to Swiss Hauschka mice (LD50 = 27.34 mg/kg bw [195]. Has potentially toxic levels of cyanogenic glucosides, constituting linamarin (95% of total cyanogen content) and lotaustralin (5%) [204]. Malaria [198], arthritis [199], gonorrhoea, dysentery [200], fatigue [23]. Antipyretic [206]. No reports No reports TB & HIV/AIDS [23,70,79], oedema [32], anaemia [50]. Diarrhoea [23]. No reports Fatigue, gonorrhoea, skin infections [23]. The ethanol extract was cytotoxic to the non-tumour cell lines, (HUVEC), CC50 = 204 μg/ml) and MRC-5, CC50 = 575 μg/ml [209]. Albizia spp. contain a toxic compound, 4′Methoxypyridoxine that is a vitamin B6 antagonist [215]. Methanol seed extracts of 9 Albizia spp. have varying degrees of acute toxicity via the i.p & oral routes of administration in OF-1 Albino mice with various disorders e.g. nervous system disturbances, hepatic functional impairment. A. greveana (LD50 = 1.13-2 mg/kg) & A. tulearensis (LD50 = 2.9-3.2 mg/kg) were the most toxic [216]. Rheumatoid arthritis [211], fever, blood tonic, skin infections, diarrhoea, fatigue [23]. Skin rash [32,33], cough [52], malaria [33], HIV/AIDS [70,79], cancer, heart diseases, allergy, nausea, headaches, skin lesions, fatigue [23]. No reports No reports Antibacterial [207], antitumour anti-inflammatory [208,209], phenols, flavonoids [208], gum, arabinogalactan-protein [210]. Antiplasmodial [212]. Oleanane-type saponins, A and B, with anticancer [213]. Oriariosides saponin & gummiferaoside. Lupeol, Lupenone, Betulinic & Acacic acid lactone, (+) – Catechin and Benzyl alcohol [214]. Jo ur 35. Acacia amythethophylla A.Rich. 36. Acacia polyacantha subsp. campylacantha (A.Rich.) Brena 37. Acacia seyal (L.) Willd. Toxicity re -p ro o Euphorbiaceae 32. Jatropha curcas L. activity, lP Cucurbitaceae 31. Cucurbita maxima Duchesne Relevant pharmacological phytochemistry na Family & Scientific name 47 Fever [52], headache and pain [205], fatigue [23]. 39. Erythrina abyssinica DC. f Relevant pharmacological activity, Toxicity phytochemistry Anticancer, pterocarpans [217]. Antimalarial The root bark is relatively safe (LD50 = 776.2 mg/kg bw) in [218], anti-mycobacterial, alkaloids, tannins the acute toxicity tests on mice [88]. flavones [88]. Flavonoids [219]. re -p ro o Family & Scientific name 40. Entada abyssinica A.Rich Antimicrobial [220]. A diterpene kolavenol, trypanocidal [221], anti-inflammatory [222]. No toxicity in mice fed on 80% ethanol extract of E. abyssinica aerial parts up to 2000 mg/kg bw in Theiller’s original albino mice [223]. 41. Kotschya aeschynomenoides (Bak.) De Wild. & Devign 42. Mucuna pruriens (L.) DC. No reports No reports Antiadhesive against Helicobacter pylori [243]. 6-furanoflavones, hoslunfuranine, 5Omethylhoslunfuranine, hosloppin, hoslundin, oppositin [244–246]. Antibacterial [249], anti-inflammatory, analgesic & antipyretic. Essential oils sesquiterpenoids; Crude extract not toxic in Swiss albino mice at a dose of 2000 mg/kg bw [247]. na lP The ethanol seed extract had no mortality. Male albino Wistar rats showed normal behaviour at doses of 250 and 2500 mg/kg bw [228] after ingestion of the extract. The ethanolic leaf extract was nontoxic in Sprague Dawley rats (LD50 < 5 g/kg) [229]. Jo ur 43. Tamarindus indica L. Anti-inflammatory. Slows progression of Parkinson’s disease, immunomodulatory [224], hepatoprotective [225]. Tetrahydroisoquinoline alkaloids [226], L-DOPA & ursolic acid. Catechols, γ-Sitosterol, caprolactam, vanillin lactoside, protocatechuic acid [227]. Anti-bacterial, anti-inflammatory [231], immunomodulatory [232], chemoprotective [233]. Phenolics, proanthocyanidins, arabinose, triterpenes, apigenin, luteolin [234]. Antiplasmodial [240], essential oils [241]. Phytoestrogens, lignans secoisolariciresinol, lariciresinol & pinoresinol [242] 44. Tylosema fassoglensis (Schweinf.) Torre & Hillc. Lamiaceae 45. Hoslundia opposita Vahl 46. Micromeria biflora (BuchHam. ex D.Don) Benth. Relevant reported traditional uses Yellow fever, convulsions, anaemia, nausea [32], OI [70,79], malaria [33], TB, syphilis [50], mental illness, chest pain, skin, infections/ lesions, ulcers, cancer, stomach aches, diarrhoea, STI, fevers [23]. Weakness, oral sores [32], cough, fever/malaria, skin infections, wounds [32,50], HIV/AIDS OI [23,70], OI, cancer, mental illness, syphilis [23]. Diarrhoea [23]. Parkinson’s disease [230], mental illness, fatigue [23]. T. indica extracts are generally safe [235]. The alcohol Convulsions, stomachache [32,237], extract of stem bark showed no signs of toxicity up to of wound healing, malaria, fever [238] diarrhoea [23,238], cough, liver diseases 2000 mg/kg/p.o [233,236] [23], dysentery [238,239]. No reports Syphilis & jaundice [23,151], diarrhoea, fatigue, fever, convulsions, wasting [23]. Considered non-toxic. Both hydro-alcoholic extracts & essential oil did not cause any behavioural changes or deaths in acute & sub-acute toxicity tests in mice [250]. 48 Malaria [32,33], skin infections [23,32], diarrhoea, yellow fever [52], HIV/AIDS [79], oral disease [248], ulcers, anaemia & fatigue [23]. Kidney stones [251]. Moraceae 49. Milicia excelsa (Welw.) C.C.Berg Myrtaceae 51. Psidium guajava L. Passifloraceae 52. Passiflora edulis Sims f Immunomodulatory effects [252]. Antiinflammatory [253], antibacterial against H. plylori [254], antiproliferative properties [255], quercetin, rutin, luteolin, apigenin [256]. Seed extract not toxic (LD50 > 10 g/kg) in acute & sub-acute oral studies in rats [257]. Leaf extracts not toxic in oral & i.p toxicity studies in mice (LD50 > 10 g/kg) [253]. Not genotoxic [258] Cough [32], diarrhoea [125], HIV/AIDS OI [79], TB [23,259]. Antiviral [260], antimicrobial [261], immunomodulatory, antiiflamatory [262]. Phenolics [263], gallotannins, ellagitannins, ellagic acid & anthocyanins [264]. The fruit extract was not toxic in chick embryo model at doses < 0.1 mg/g in both male & female OF-1 mice (LD50 = 731 mg/kg) i.p [265]. Diarrhoea, inflammation, infections, dysentery, stomach ache, for healing wounds [266,267]. Wound-healing, antibacterial [268]. Atalantoflavone, neocyclomorusin, 6geranylnorartocarpetin, cudraxanthone & betulinic acid [269], tannins, saponins, flavonoid, terpenoids, cardiac glycosides [270]. Ethanol extract is not toxic (LD50 > 5000 mg/kg) in mice [271]. Skin rash, burns [23,32], malaria [33], wounds, diarrhoea OI [23]. Immunostimulatory [272], antibacterial with alkaloids, polyphenols, flavonoids, anthraquinones, coumarins, tannins, triterpenes, sterols, saponins [273]. Leaves are genotoxic at supra-supplementation levels of 3000 mg/kg bw but are safe at levels ≤ 1000 mg/kg bw in rats [274]. Aqueous leaf extract is relatively safe when administered orally (LD50 = 1585 mg/kg) in male Wistar albino mice [275]. In Swiss albino mice the LD50 of ethanol extract was 17.8 g/kg & 15.9 g/kg for the aqueous extract& thus non-toxic [276]. Malaria, fatigue, inappetence, cough [23,239], HIV/AIDs infections, chronic anaemia & cancer [277]. Meroterpenoids with antitumor activity [278]. Antibacterial [279] & antiinflamatory [280], immunomodulatory [281]. The aqueous leaf extracts were not-toxic to rats/mice (LD50 > 5 g/kg, p.o.), 100 times the recommended dose for the treatment of diarrhoea [282]. Cough, diarrhoea [50], epilepsy, skin rashes [23]. Antibacterial [273,283], hepatoprotective [284], anticancer [285], antifungal, anti-inflammatory [286]. Ionone-I & II, passifloric acid methyl ester Orally administered leaf extracts are not toxic in Wistar albino rats up to 2000 mg/kg bw [287]. Acute human toxicity of aqueous leaf extracts showed that 9 volunteers Weakness [32], skin rash [50], fatigue, diarrhoea [23]. Jo ur Moringaceae 50. Moringa oleifera Lam re -p ro o Lythraceae 48. Punica granatum L. Relevant reported traditional uses lP Lauraceae 47. Persea americana Mill. Toxicity na Family & Scientific name caryophyllene oxide, epi-α-cadinol, β-eudesmol, oplapanone, α-Terpeneol [250]. Relevant pharmacological activity, phytochemistry 49 54. Flueggea virosa (Roxb. ex Willd.) Royle 55. Hymenocardia acida Tul. 58. Securida longipedunculata Fresen. Family & Scientific name Rubiaceae 59. Fleroya rubrostipulata (K. Schum) Y.F.Deng f presented with enhanced values of serum amylase the day after ingestion indicating pancreatic tissue toxicity. However, it had no hypnotic-sedative effects to humans & animals [288]. Toxicity The dichloromethane (LC50 = 32.0 μg/ml) [293] & ethanol (LC50 = 30 µg/ml) root extracts [72] were mildly toxic to brine shrimp. Oral administration of the stem bark extract in male Wistar rats was well-tolerated without any deaths or clinical signs of toxicity after 48 hours at 2000 mg/kg [294]. Antiplasmodial with alkaloids: securinine & Orally administered extracts caused no death in rats up viroallosecurinine [296]. 10,000mg/kg bw in acute toxicity tests [297]. Antiamoeabic: tannins, steroids, alkaloids, H. acida extracts were toxic to brine shrimp (LD50 = saponins [298], antimycobacterial [299], 24.12µg/ml) & mutagenic in vivo [303]. antiinflamatory & antinociceptive [300], antiplasmodial [301], friedelanone & other triterpenoids [302]. No reports No reports, but other species e.g. P. amarus are non-toxic Antiviral-against HIV-1 RT [289], antidiarrhoeal, antiinflammatory, antimalarial, antinociceptive [290]. Phenolics [291], alkaloids, flavonoids, steroids, tannins & saponins [292]. Antibacterial [305]. Antifungal [97]. Jo ur 56. Phyllanthus ovalifolus Forssk. Polygalaceae 57. Rumex usambarensis (Da mmer) Dammer activity, lP Phyllanthaceae 53. Bridelia micrantha (Hochst.) Baill Relevant pharmacological phytochemistry na Family & Scientific name triterpenes, re -p ro o [283]. Polyphenols, flavonoids, sterols, saponins [285]. Antiplasmodial [308], anti-inflammatory [309], antimycobacterial [310], antibacterial [311]. Methylsalicylate [312]. Alkaloids, cardiac glycosides, flavonoids, saponins, tannins, volatile oils, terpenoids & steroids [313], securidacaxanthone [314]. Relevant pharmacological activity, phytochemistry Antiplasmodial [320]. (LD50 = 774.6mg/kg bw)[304]. Relevant reported traditional uses Cancer [295], malaria [52], HIV/AIDS [79], pain, cough, chest pain [23]. Measles [50], OI [23]. Sinuses [32], diarrhoea [298], skin infections, fatigue [23]. Cough [50], mental illness, aches & OI [23]. No reports. Toxicological studies of other Rumex spp & their isolated compounds are limited. Most reports show no toxicity/mortality at the effective doses [306]. The root extract is relatively toxic to brine shrimp (LC50 = 74.18 & 77.1 μg/ml) respectively [315,316] Extracts from S. longepedunculata contain salicylates which can cause ischemic renal damage [317]. LD50 = 1.74 g/kg & 0.02 g/kg in oral & i.p. respectively for acute toxicity of the root extract in albino mice [318]. Toxicity Malaria, diarrhoea [307], gonorrhoea [305], sore throat, allergies [23]. No reports Malaria, [50], stomach aches, TB & respiratory infections [23]. 50 Malaria, fever, gonorrhoea [319], cough, fever, TB [308], ulcers, diarrhoea, fatigue, OI [23]. Relevant reported traditional uses Antiplasmodial [321] The aqueous fruit extract of G. ternifolia was safe in Wistar albino rats at low doses [322]. f 60. Gardenia ternifolia subsp. Rutaceae 63. Citropsis articulata (Willd. ex Spreng.) Swingle & M. Kellerm 64. Zanthoxylum chalybeum Engl. Cough, TB [32], haemorrhoids [50], inappetence, fatigue [23]. The aqueous stem bark and root extracts are relatively safe at lower doses in sub-acute toxicity tests in Wistar albino rats up to 500 mg/body [334] and Sprague-Dawley rats when administered orally (LD50 >5000 mg/kg bw) [335]. The ethanol extracts of the roots & fruit are also safe in Wistar albino rats [336,337]. stomach ache, malaria, diarrhoea, pain, cough, fever, headache [338], swelling, vomiting, inappetence STI [23]. Antimalarial & antiplasmodial; omubioside, katimborine coumarins, alkaloids, trigonelline & limonoid (obacunyl acetate) [218]. Saponin, tannins, glycosides [339]. Skimmianine with in vitro antiviral activity against measles virus [341] Fagaramide [78]. The crude aqueous leaf extract was nontoxic in Swiss albino mice (LD50 = 18,985 mg/kg bw) [115]. However, the aqueous root bark was slightly toxic (LD50 = 9486.83 mg/kg bw) in male Wistar rats [340]. The root extract is not toxic at 2000 mg/kg/ bw in Swiss albino mice [342]. Long term administration of low doses of the root bark extract is safe in experimental animals at 4000 mg/kg. High doses may be associated with impaired renal function & intestinal neoplasms [343]. Diarrhoea, fatigue, inappetence [23]. Antibacterial [305], anthocyanins, flavonoids, saponins, sterols & tannins [345]. Aqueous extracts are generally safe in acute toxicity & subchronic studies in male Wistar rats at single dose exposure up to the limit of 5000 mg/kg. Low level renal toxicity observed after exposures for 90 days [96]. U. massaica is teratogenic in Swiss albino mice [346]. Gonorrhoea [305]. Antiplasmodial [347], antibacterial [348]. Antiinflammatory [349], Antiproliferative, flavone glycosides [350]. Eupatorin, apigenin, cirsilineol [351]. The ethanol root extract was safe in mice (LD50 > 5000 mg/kg bw), with no signs of morbidity & significant behavioural & physical changes in rats [352], but are mildly toxic to brine shrimp (LC50 = 32.3 μg/ml) [293]. No acute toxic effect was detected at relatively high doses Malaria, yellow fever, diarrhoea, cough, fever [50,52] OI [23]. Jo ur Urticaceae 65. Urtica massaica Mildbr. The crude ethanolic extracts of the fruits in Swiss albino mice are not toxic (LD50 > 1000 mg/kg bw) [330]. The LD50 of the alcoholic root extract of R. cordifolia is 1200 mg/kg bw [331]. lP 62. Sarcocephalus latifolius (Sm.) E.A. Bruce Verbenaceae 66. Lantana trifolia L. Malaria [323], [259], fatigue, fever [23]. Antibacterial [324], hepatoprotective [325], antiviral (hepatitis B) [325], immunomodulatory [326]. Rubicoumaric & rubifolic acid [327], rubiadin [328], aphthohydroquinones, mollugin, furomollugin, rubilactone [325,329]. Phenolic, flavonoids, caffeic acid [332]. Antiplasmodial [333]. na 61. Rubia cordifolia L. re -p ro o jovis-tonantis (Welw.) Verdc. 51 TB [344], HIV/AIDS [79,259], oral disease [248], cancer, stomach aches, cough [32], mental illness [23]. 68. Aloe dawei A.Berger 69. Aloe sp. Zingiberaceae 70. Curcuma longa L. ameliorates Relevant reported traditional uses The methanol extract (at 1, 2, 4, 8 16g/kg bw) did not produce significant toxic effect in Wistar rats during acute & sub-acute tests rats [355]. The aqueous leaf extract is toxic (LD50 = 120.65) in Swiss albino mice [356]. The percentage lethality was significant in mice chronically treated with A. vera extracts [357]. In a medical case report, a 21-year-old female patient was diagnosed with A. vera-induced toxic hepatitis after admission with acute hepatitis after taking an A. vera preparation for 4 weeks [358]. No reports Stomach ache, malaria, wasting [23,32]. No reports No reports Antimicrobial, curcuminoids [360], antiinflammatory [361], anti-HIV [362], immunomodulatory [363]. Fisetin, quercetin & myricetin [364]. α & β-turmerone, α–santalene, aromatic-curcumene, oleoresins [365]. Turmeric powder/ its alcoholic extract is not toxic at 10 g/kg bw (LD50 > 15g/kg bw) in Swiss albino mice [366] or Guinea pigs & monkeys (300mg/kg/ 2.5g/kg) [367].The essential oil is safe when given orally up to 0.5 g/kg bw in Wistar rats & is not mutagenic/genotoxic [368]. Cough [32], hernia, chest pain [23]. Sterols; diosgenin 3-glucoside; phthalyl esters hydrocarbons [369]. No reports Back pain [370], OI [23]. Anti-plasmodial, steroids, triterpenoids, anthraquinolones, alkaloids & saponins [359]. No reports Jo ur Zygophyllaceae 71. Balanites wilsoniana Dawe & Sprague Antiinflamatory [353], immunotoxicity in rats [354]. activity, lP Xanthorrhoeaceae 67. Aloe vera (L.) Burm.f. Relevant pharmacological phytochemistry na Family & Scientific name re -p ro o f (500 mg/kg) of the ethanol leaf extract in male Swiss albino mice [349]. Toxicity yamogenin; Malaria, skin infections, fever [23,33] Key: OI = Opportunistic infection, STI = Sexually Transmitted Infection, p.o= per os, LD50 = Median lethal dose, bw=Body weight. All toxicity tests were acute unless where otherwise 52