Academia.eduAcademia.edu
International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Review Ar ticle Salacia oblonga W all : A Review on its Pharmacognostic, Phytochemical and Pharmacological Aspects Anshul Chawla, Sarabjeet Singh and Anil Kumar Sharma CT Institute of Pharmaceutical Sciences, Shahpur, Jalandhar-144020, Punjab, India. _____________________________________________________________________________________ ABSTRACT Ethnopharmacological relevance: Salacia oblonga Wall. (Ponkorandi) is a w ild woody plant belonging to Celastraceae family that grows in India, Srilanka, China, Viet nam, M alaysia, Indonesia. It has several traditional uses as anti-microbial, antioxidative, anti-inflammatory, anti-diabet ic, nephroprotect ive, ant i-mutagenic. This paper review s t he ethnopharmacology, pharmacology, pharmacognosy, modern pharmaceut ical uses and phytochemist ry of Salacia oblonga , and highlight s the gaps in our knowledge deserving further research. All th relevant databases were searched for the t erms ‘‘Salacia’’, w it hout limitat ion upto 5 August 2013. Informat ion on Salacia oblonga was collected via electronic search using pubmed, science direct , and local books on et hnopharmacology. Salacia oblonga has played an important role in Indian t radit ional medicine. In light of the modern pharmacological and clinical invest igations, Salacia oblonga is a valuable medicinal plant that has ant imicrobial, ant i-oxidative, ant i-inflammatory, ant i-diabetic, nephroprot ective, ant i-mutagenic properties. Overall, pharmacological propert ies appear to be the most int erest ing studied biological effect s of Salacia oblonga . The lack of a comprehensive phytochemical analysis of Salacia oblonga is an important limit ation that can be noted regarding most of the previous st udies. Keywords: Salacia oblonga , pharmacognosy, phytochemistry, pharmacology. INTRODUCTION Indian traditional system of medicine is based on various systems such as Ayurveda, Siddha, Unani and Homoeopathy. From the last few years the graph of standardization of medicinal plants of potential therapeutic significance has been increased. The evaluation of all medicinal plant is based on phytochemical and pharmacological approaches which lead to drug discovery and it is referred to as “natural product screening” (Foye et al., 2008). According to the World Health Organization, the macroscopic and microscopic description of a medicinal plant is the first step towards the identity and the degree of purity of plant materials and should be carried out at first before any tests are undertaken. Any part of the plant may contain active components like bark, leaves, flowers, roots, fruits, seeds etc (Gordon et al., 2001). Secondary products from the plants are responsible for its action or pharmacological activity. The Genus Salacia consist of 407 species and belongs to family Celastraceae which have almost 108 Generas (Anonymous 1). Family Celastraceae are composed of evergreen or deciduous trees, shrubs, lianas, or less frequently herbaceous annuals and perennials, and generally have small, 4–5 merous bisexual or unisexual flowers occurring on the same or different plants (Loesener et al., 1942; Simmons et al., 2004).Various Species Of Salacia are Salacia accedens, S. acreana, S. accuminatissima, S. adolphi-friderici, S. affinis, S. Africana, S. alata, S. alpestris, S. alternifolia, S. alveolata, S. alwynii, S. amazonica, S. amentacea, S. amplectens, S. amplifolia, S. amygdalina, S. aneityensis, S. angularis, S. angustifolia, S. annettae, S. anomala, S. arborea, S. arborescens, S. articulate, S. attenuate, S. aurantiace, S. brevistaminea, S. brunoniana, S. bailoniana, S. bangalensis, S. bartletti, S. baumii, S. bayakensis, S. beccarii, S. belizensis, S. bequaerti, S. biannulate, S. bipindensis, S. blainii, S. blepharodes, S. blepharophora, S. brachypoda, S. brasiliensis, S. buddinghii, S. bullata, S. bussei, S. beddomei, S. bellingana, S. baumannii, S. caillei, S. callensii, S. caloneura, S. calypso, S. calypsoides, S. camerunensis, S. campanuloidea, S. campestris, S. capilliflora, S. capitulate, S. castaneifolia, S. calalinensis, S. cauliflora, S. celebica, S. cerasifera, S. cerasiformis, S. chesseana, S. chinensis, S. chloratha, S. chlorian, S. cochinchinensis, S. cognate, S. colossi, S. columna, S. conferta, S. confertiflora, S. congestiflora, S. congolensis, S. conrauii, S. corcovadensis, S. cordata, S. coriacea, S. cornifolia, S. coromandeliana, S. coronate, S. corymbosa, S. crampeli, S. Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1215 International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 crassifolia, S. cuspidate, S. cuspidicoma,S. cylindrocarpa, S. cymosa, S. dalzielii, S. debilis, S. decussate, S.demeusei, S.densiflora, S. dentate, S. denudate, S.devredii, S. dewevrei, S. dewildemaniana, S.diandra, S. dicaroellata, S.dichotoma, S. difussiflora, S.dimidia, S. dinhensis, S. Diplasia, S. disepala, S. distincta, S. divaricata, S. divergens, S. doeringii, S. dognyensis, S. dongnaiensis, S. ducis-wuertembergiae, S. duckei, S. dultis, S. dusenii , S. echinulaya, S. eckoka, S. elegans, S. elliotii, S. elliptica, S. elongate, S. emarginata, S. erecta, S. erythrocarpa, S. erythroxyloides, S. euphlebia, S. euryoides, S. eurypetata, S. evonymiflora, S. exsculpta, S. ferrifodine, S. fimbrisepala, S. finlaysonii, S. flavescens, S. floribunda, S. fluminensis, S. forsteniana, S. fredericqii , S. fruticosa, S. gabunensis, S. gagnepainiana, S. gambleana, S. garcinioides, S. germainii, S. gerrardii , S. gigantean, S. gilgiana, S. glabra, S. glaucifolia, S. gleasoniana, S. glomerata, S. godefroyana, S. gracilis, S. grandiflora, S. grandifolis, S. granulate, S. griffithii , S. guianensis, S. guyanensis, S. hainanensis, S. hamputensis, S. hippocrateoides, S. hispida, S. howesii , S. impressifolia , S. induta , S. insignis , S. integrifolia, S. intermedia , S. ituriensis, S. javanensis , S. jenkinsii , S. johannis-albrechti , S. juruana , S. kabweensis , S. kalahiensis , S. kanukuensis, S. khasiana , S. kivuensis , S. klainei , S. klossii , S. korthalsiana , S. kraemeri, S. kraussii , S. krukovii , S. kunstleri , S. lacunose , S. laevigata, S. lanceolata , S. laotica , S. lateritia , S. latifolia , S. laurentii , S. laurifolia , S. lawsonii , S. laxiflora , S. letestui , S. lebrunii , S. ledermannii , S. lehmbachii , S.lentricellosa , S. leonardii , , S. leonensis , S. laptoclada , S. letestuana , S. letouzeyana, S. leucoclada , S. linderi , S. lineolata , S. litseifolia , S. littoralis , S. livingstonii , S. lobbii , S. loloensis, S. lomensis , S. longifolia, S. longipedicellata , S. longipes , S. louisii , S. lovettii , S. lucida, S. luebbertii ,S. maburensis , S. macrantha , S. macrocarpa , S. macrophylla , S. macrophyllus , S. mmacrosperma , S. madagascariensis , S. maingayi , S. malabarica , S. mamba , S. mannii , S. marginata , S. martiana , S. maudouxii , S. mauritioides , S. mayumbensis , S. megasperma , S. megistophylla , S. melitocarpa , S. membranacea , S. memecyloides , S. micrantha , S. miegei , S. miersii , S. mildbraediana , S. minutiflora , S. miqueliana , S. mortehanii , S. mosenii , S. mucronata , S. multiflora , S. myrsinoides , S. myrtifolia , S. naumanni , S. ndakala , S. nectandrifolia , S. neo-caledonica , S. ngaziensis , S. nipensis , S. nitida , S. nitidissima , S. noronhioides , S. oblonga , S.oblongifolia , S. obovata , S. obovotilimba , S. obtusifolia ,S. oleoides , S. oliveriana , opacifolia , S. oppositifolia , S. orientalis , S. ovalifolia , S. ovalis , S. owabiensis, S. pachyphylla , S. pallens , S. pallescens , S. pancheri ,S. paniculata , S. papuana , S. paradoxa , S. parkinsonii , S. parviflora ,S. patens ,S. pedunculata , S. penghiensis , S. perakensis , S. petensis , S. petiolata , S. philippinensis , S. phuquocensis , S. pierlottii , S.pierrei , S. pitteriana , S. pittieriana , S. platyphylla , S. podopetala , S. podostemma , S. poissoniana , S. polyantha , S. polyanthomaniaca , S. polysperma , S. pomifera , S. praecelsa , S. preussii , S. prinoides , S. pronyensis , S. pruinosa , S. pynaertii , S. pyriformioides , S. pyriformis , S. quadrangulata , S. racemosa , S. radula , S. regeliana , S. rehmannii , S. reticulate , S. rhodesiaca , S. richardii , S. riedeliana , S. rivularis , S. rostrata, S. rotundifolia , S. roxburghii , S. rubra , S. rufescens , S. rugosa , S. rugulosa , S. saigonensis , S. salacioides , S. scabra , S. scandens , S. schlechteri , S. scortichinii , S. semlikiensis , S. senegalensis , S. serrata , S. sessiliflora , S. simtata , S. sinensis , S. siputa , S. smaliana , S. socia , S. solimoesensis , S. somalensis , S. sorovia , S. soyauxii , S. spectabilis , S. sphaerocarpa , S. staudtiana , S. stuhlmanniana , S. subalternifolia , S. subicterica , S. subscandens , S. sulfur , S. sylvestris , S. talbotii , S. tenuicula , S. terminalis , S. tessmanniana , S. tessmannii , S. togoica , S. tomiensis , S. tortuosa , S. toussaintii , S. transvaalensis , S. trigonocarpa , S. trinervia , S. triplinervis , S. tshopoensis , S. tuberculata , S. typhina , S. ulei , S. undulate , S. unguiculata , S. uragoensis , S. vahliana , S. velutina , S. venosa , S. vermaeseniana , S. verrucosa , S. villiersii , S. viminea , S. viridiflora , S. viridis , S. vitiensis , S. volkensiana , S. volubilis , S. wardii , S. weberbaueri , S. wendjiensis , S. wenzelii , S. whytei , S. wightiana , S. wrayi , S. wrightii , S. zenkeri , S. zeyherii. (Anonymous 1). Taxonomical classification Kingdom- plantae, Order- celastrales, Family –Celastacea, Genus- Salacia, Species-oblonga Distribution Salacia oblonga are widely distributed in Sri Lanka, India, China, Vietnam, Malaysia, Indonesia and other Asian countries (Lan He et al., 2009). In India it is found in the rain forest of western ghats from Konkan southwards to Kerala (Anonymous 4). Salacia species are widespread in tropical and subtropical regions including North Africa, South America and East Asia, particularly in China (Spivey et al., 2002). Vernacular names Vernacular names are as in latin - Salacia oblonga, English- salacia, India- saptrangi, sanskrit-vairi, pitika, tamilponkoranti, chundan, malayalam- ponkoranti, koranti, kannada- ekanayakam, telugu- anukudu cettu, sinhalesehimbutu, kothalahimbutu ( Kanmani, 2012; Anonymous 2 ) Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1216 International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 Morphology Leaves are ovate or ovate lanceolate. Flower greenish yellow, in short congested cymes, fruit globose, 3cm in diameter, tuberculate, light brown or orange when ripe. Seeds 1-8, angular, imbedded in pulp (Anonymous 4). Fruit orange (Fig 1), Root bark golden color (Fig 2) (Anonymous 3). Fig. 1 Fig. 2 Phytochemical properties Phytochemicals are chemicals produced by plants. Literature survey indicated that diterpenes , eudesmane type sesquiterpenes, friedelane type triterpenes, norfriedelane type triterpene, glycosides, catechin, polyphenols are present in the Salacia oblonga plant. COOH CH3 O O OH OCOCH3 OH O OH O HO 1 2 COOH 3 OH OH OH HO HO 4 Vol. 4 (4) Oct – Dec 2013 HOOC 5 www.ijrpbsonline.com 6 1217 ISSN: 2229-3701 International Journal of Research in Pharmaceutical and Biomedical Sciences OH OH HO OH OH OCH3 HO O HO OH HO O SO3 HO S S OH O SO3 OH OH HO HO OH 7 OH 8 9 HO HO HO OH CH2OH H OH OH OH HO HO HO CH2OH OH H H OH CH2OH OH HO O OH 13 OH OH OH 11 H HO HO H O O HO 10 HO O OH O OH HO OH 12 HO OH O HO HO 14 OH 15 OH HO OH HO HO OH O O OH HO OH O O HO OH O OH O HO O OH OH OH OH OH O HO HO O O O O HO OH HO 16 OH OH 17 H2 C HO CH2OH O H OH OH O HO CH2 OH OH O OH H OH HO H C OH CH2OH 18 Vol. 4 (4) Oct – Dec 2013 S O OH OH 19 www.ijrpbsonline.com 1218 ISSN: 2229-3701 International Journal of Research in Pharmaceutical and Biomedical Sciences O OAcO OAc OAc O OH O O HO O O C O C O O 20 H2C OH 21 22 CH2OH O OH O OH O 23 24 25 O CH2OH OH O O O OH OH HO O HO 26 O HO 27 28 O O O OH CH2OH O O O O OH O O 29 30 31 OH HO HO HO O O OH OH OH O 32 Fig. 3: Chemical structures of the constituents found in the Salacia oblonga Wall; 1 (Kotalagenin-16-acetate), 2 (26-hydroxy-1,3-friedelanedione), 3 (Maytenfolic acid), 4 (3β,22α-dihydroxyolean-12-en-29-oic acid), 5 (19hydroxyferruginol), 6 (Lambertic acid), 7 ((-)-4’-O-methylepigallocatechin), 8 (Salacinol), 9 (Kotalanol), 10 (Glycerol), 11 (Galactinol), 12 (Sucrose), 13 (D-glucose), 14 (Dulcitol), 15 (D-fructose), 16 (Raffinose), 17 (Stachyose), 18 (3-O-α-D-galactopyranosyl-O-β-D-galactopyranosyl-sn-glycerol) (Matsuda et al., 1999) 19 (Neosalacinol) (Minami et al., 2008), 20 (Salasol A), 21 (Salasol B), 22 (Salasones A), 23 (Salasone B), 24 (Salasone C), 25 (Salasone D), 26 (Salasone E), 27 (Salaquinone A) 28 (Salaquinone B) (Thiruvelan, 2010) 29 (25,26-oxidofriedelane-1,3-dione), 30 (7,24-oxidofriedelane-1,3-dione), 31 (15α-hydroxy-24-norfriedel-5-ene1,3-dione) (Anu et al., 2003) and 32 (Mangiferin) (Giron et al., 2009). Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1219 International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 Spectroscopic data of some important compounds Salacinol (Yoshikawa et al., 2002) Colorless prisms M.P: 187–189 ˚C Positive optical rotation [α] D28 +4.9˚ (c=0.35, MeOH). High-resolution positive-ion FAB-MS: calculated for C9H18O 9S 2Na (M+Na)+: 357.0301. Found: 357.0290. IR (KBr) νmax cm-1 : 3417, 1262, 1238, 1073, 1019, 801 1 H-NMR (Pyridine-d5, 500 MHz, δ ppm): 4.33 (2H, br s), 5.10 (1H, br s), 5.12 (1H, dd-like), 4.69 (1H, t-like), 4.51 (1H, dd, J=8.0, 11.6 Hz), 4.54 (1H, dd, J=6.8, 11.6 Hz), 4.62 1H, dd, J=4.2, 13.1 Hz), 4.76 (1H, dd, J=4.9, 13.1 Hz), 4.99 (1H, ddd, J=4.2, 4.9, 7.6 Hz), 5.25 (1H, ddd, J=3.7, 3.9, 7.6 Hz), 4.37 (1H, dd, J=3.9, 11.6 Hz), 4.60 (1H, dd, J=3.7, 11.6 Hz) 1 H-NMR (CD3OD, 500 MHz, δ ppm): 3.83 (2H, br s), 4.60 (1H, br dd, J=ca. 3, 5 Hz), 4.40 (1H, dd, J=1.2, 2.7 Hz), 4.01 (1H, br dd, J=ca. 5, 7 Hz), 3.95 (1H, dd, J=7.1, 10.5 Hz), 4.03 (1H, dd, J=5.2, 10.5 Hz), 3.86 (1H, dd, J=6.4, 13.1 Hz), 3.97 (1H, dd, J=3.6, 13.1 Hz), 4.34 (1H, ddd, J=3.6, 6.4, 7.6 Hz), 4.29 (1H, ddd, J=3.4, 3.5, 7.6 Hz), 3.83 (1H, dd, J=3.4, 12.2 Hz), 3.94 (1H, dd, J=3.5, 12.2 Hz) Positive-ion FAB-MS: m/z 357 (M+Na)+ , 335 (M+H)+, 255 (M-SO3+H)+ Negative-ion FAB-MS: m/z 333 (M-H)13 C-NMR (Pyridine d 5, 125 MHz, δ ppm): 50.7 (C-1), 78.5(C-2), 79.0(C-3), 72.6(C-4), 60.2 (C-5), 52.6 (C-1‫)׳‬, 67.6 (C-2‫)׳‬, 79.4 (C-3‫)׳‬, 62.2 (C-4‫)׳‬ 13 C-NMR (CD3OH, 125 MHz, δ ppm): 51.45(C-1), 79.36(C-2), 79.90 (C-3), 73.50 (C-4), 61.06(C-5), 52.38(C-1‫)׳‬, 67.81 (C-2‫)׳‬, 80.59 (C-3‫)׳‬, 61.88(C-4‫)׳‬ 13 C-NMR (CD3OD, 125 MHz, δ ppm): 51.44(C-1), 79.24(C-2), 79.75(C-3), 73.43(C-4), 60.95(C-5), 52.35(C-1‫)׳‬, 67.69 (C-2‫)׳‬, 80.56 (C-3‫)׳‬, 61.75 (C-4‫)׳‬ Neosalacinol (Minami et al., 2008; Yoshikawa et al., 1997) M.F: C9H18O6S Positive optical rotation [α] D +7.3 ° (c= 2.06, H2O). 1 H-NMR (D2O, 500 MHz, δ ppm): 5.06 (br ddd, 1H, H-2), 4.87 (dd, 1H, J=1.6, 2.5 Hz, H-3), 4.68 (ddd, 1H, J =3.4, 6.2, 8.7 Hz, H-2‫)׳‬, 4.60 (br ddd, 1H, H-4), 4.42 (dd, 1H, J=3.4, 13.0 Hz, H-1‫׳‬b), 4.38 (dd, 1H, J=5.5, 11.9 Hz, H-5b), 4.30 (dd, 1H, J=9.6, 11.9 Hz, H-5a), 4.27 (dd, 1H, J=8.7, 13.0 Hz, H-1‫׳‬a), 4.21 (br d, 2H, H-1a, H-1b), 4.19 (ddd, 1H, J=4.4, 5.0, 6.2 Hz, H-4‫׳‬a), 4.16 (dd, 1H, J=4.4, 11.2, H-4‫׳‬b), 4.10 (dd, 1H, J=5.0, 11.2 Hz, H-4 ‫׳‬a) 13 C-NMR (D2O,125 MHz, δ ppm): 50.9 (C-1), 78.1 (C-2), 78.3 (C-3), 72.5 (C-4), 59.9 (C-5), 51.1 (C-1‫)׳‬, 68.4 (C2‫)׳‬, 74.5 (C-3‫)׳‬, 63.0 (C-4‫)׳‬ HRMS (FAB): m/z 255.0900 [M+H]+ (C9H19O9S 2 requires 255.0902). Magniferin (Dineshkumar et al., 2010) Yellow powder M.P: 271-274 ˚C Rf: 0.50(Standard), 0.51 (Isolated compound) IR (KBr) νmax cm-1: 3361, 2942, 2830, 1655, 1450, 1115, 1023 1 H-NMR (DMSO-d 6, 200 MHz, δ ppm): 13.78 (1H, 1-OH), 10.57 (2H, 6,7-OH), 9.85 (1H, 3-OH), 4.90 (2H, 3’,4’-OH), 4.58 (1H, 6’-OH), 3.73 (1H, 2’-OH), 7.39 (1H, 8-H), 6.88 (1H, 5-H), 6.39 (1H, 4-H) 13 C-NMR (DMSO-d6, 50 MHz, δ ppm): (Ring A): δ 162.26 (1-C), 108.56 (2-C), 164.31 (3-C), 93.74 (4-C), 156.70 (4a-C), 101.79 (8b-C). (Ring B): 151.25 (4b-C), 103.10 (5-C), 154.50 (6-C), 144.21 (7-C), 108.11 (8-C), 112.21 (8aC), 179.57, (C=0). Additional signals due to glucopyranosyl carbons: δ 82.06 (5’-C), 79.48 (3’C), 73.58 (1’-C), 71.14 (4’-C), 70.73 (2’-C), 62.00 (6’-C) MS (m/z, % intensity): m/z 423 [M+H] + Kotalagenin-16-acetate (Matsuda et al., 1999) White powder Positive optical rotation [α] D26 +29.1 ° (c= 0.1, CH3OH) IR (KBr) νmax cm-1:3569, 1718, 1709, 1619, 1273, 1246 High-resolution positive-ion FAB-MS: Calculated for C32H 51O5 (M+H)+:515.3737. Found: 515.3744 Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1220 International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 H-NMR (Pyridine-d5, 500 MHZ, δ ppm): 0.70 (3H, s, H3-24), 0.94 ( 3H, s, H3-29), 0.98 (3H, s, H3-30), 1.09 (3H, s, H3-27), 1.22 (3H, s, H3-28), 1.38 (3H, s, H3-25), 1.04 (3H, d, J=6.7HZ, H3-23), 1.61(1H, dd-like, H-18), 2.02 (3H, s, Ac), 2.41 (1H, s, H-10), 2.58 (1H, d, J=6.7HZ, H-4), 3.26, 3.49 (1H each, both d, J=15.9HZ, H 2-1), 4.05,4.20 (1H each, both d, J=11.5HZ, H2-26), 5.22 (1H, dd-like, H-16) 13 C-NMR (Pyridine-d 5, 125 MHZ, δ ppm): 202.8 (C-1), 60.6 (C-2), 204.0 (C-3), 58.9 (C-4), 38.1 (C-5), 41.5 (C-6), 20.4 (C-7), 52.4 (C-8), 37.1 (C-9), 72.3(C-10), 34.9 (C-11), 29.9 (C-12), 39.7 (C-13), 42.9 (C-14), 31.3 (C-15), 78.1 (C-16), 35.0 (C-17), 45.5 (C-18), 35.7 (C-19), 28.1 (C-20), 31.8 (C-21), 34.9 (C-22), 7.3 (C-23), 15.8 (C-24), 18.2 (C-25), 63.2 (C-26), 20.9 (C-27), 25.9 (C-28), 37.8 (C-29), 30.4 (C-30), 171.3 (C-1‫)׳‬, 21.3 (C-2‫)׳‬ Positive-ion FAB-MS m/z: 515 (M+H)+, 537 (M+Na)+, 559 (M+2Na-H)+ 1 15α-hydroxy-24-nor-friedel-5-ene-1, 3 –dione (Anu et al., 2003) White powder M.P: 284-285 ˚C M.F: C29H44O 3 Rf =0.2 IR (KBr) νmax cm-1: 3535 (OH), 1742, 1701 (1, 3-diketone) FAB MS: (M+l)+ 441, 440 M+, 422(6), 300(32), 27 1(48), 221(76), 203(100), 150(70) 1 H-NMR (CDC13, 300 MHz, δ ppm) : 5.1 (lH, t, H-6), 4.2 (lH, t, H-15), 3.5 (lH, d, H-2a), 3.3 (lH, d, H-2b), 2.7(1H, q, H-4), 2.4 (1H, s, H-10), 1.04 (3H, d, H-23), 1.3 (3H, s, H-25), 1.2 (3H, s, H-26), 1.01 (3H, s, H-27), 1.04 (3H, s, H-28), 0.94 (3H, s , H-29), 0.7 (3H, d, H-30) 13 C-NMR (CDCl3, 75 MHz, δ ppm): 202.0 (C-I), 60.9 (C-2), 203.5 (C-3), 57.5 (C-4), 134.9 (C-5), 125.2 (C-6), 16.7 (C-7), 40.0 (C-8), 39.3 (C-9). 68.5 (C-10), 35.6(C-1 l), 29.9 (C- 12), 40.2 (C- 13), 39.2 (C-14), 74.1 (C-15), 36.1 (C-16), 29.7 (C-17), 42.3 (C-18), 35.5 (C- 19), 28.2 (C-20), 32.3 (C-21), 39.4 (C-22), 7.3 (C-23), 18.8 (C-25), 17.8 (C-26), 19.1 (C-27), 31.2 (C-28), 31.7 (C-29), 35.3 (C-30) Salasol A (Morikawa et al., 2003) White powder Positive optical rotation [α] D24 +42.3 ° (c=1.00, CHCl3) UV (MeOH) λmax (log ε): 232 (3.4), 275 (2.3) IR (KBr) νmax cm-1: 3539, 3025, 2930, 1752, 1726, 1370, 1279, 1108, 714 1 H-NMR (CDCl3, 500 MHz, δ ppm): 1.24 (3H, d, J=7.4 Hz, H3-15), 1.41 (3H, s, H3-13), 1.44 (3H, s, H3-12), 1.63(3H, s, Ac-1), 2.10(3H, s, Ac- 6), 2.23(3H, s, Ac-14), 1.86 (1H, br d, J= ca. 14 Hz), 2.33 (1H, m, H2-3), 2.20 (1H, dd, J=3.1, 15.2 Hz), 2.51 (1H, ddd, J=3.1, 7.1, 15.2 Hz, H2-8) , 2.23 (1H, m, H-7), 2.35 (1H, m, H-4), 4.40 (1H, ddd-like, H-2), 4.47(1H, d, J=12.7 Hz, H2-14), 5.13 (1H, d, J=12.7 Hz, H2-14), 5.40 (1H, d, J=7.1 Hz, H-9), 5.63 (1H, d, J=3.1 Hz, H-1), 6.00 (1H, br s, H-6), 7.43 (2H, dd, J=7.1, 7.3 Hz), 7.57 (1H, t, J=7.3 Hz), 8.04 (2H, d, J=7.1 Hz), Ph] 13 C-NMR (CDCl3, 125 MHz, δ ppm): 74.5 (C-1), 68.3 (C-2), 32.4 (C-3), 33.2 (C-4), 89.6 (C-5), 78.1 (C-6), 48.7 (C-7), 34.9 (C-8), 69.8 (C-9), 53.4 (C-10), 82.3 (C-11), 30.2 (C-12), 25.9 (C-13), 65.9 (C-14), 18.0 (C-15), 169.3 (1OAc), 169.8 (6-OAc), 170.3 (10-OAc),[ 9-OBz ]129.0 (C-1‫)׳‬, 129.9 (C-2‫׳‬,6‫)׳‬, 128.1 (C-3‫׳‬,5‫)׳‬, 133.2 (C-4‫)׳‬, 165.0 (C-7‫)׳‬ EI-MS (70 eV) m/z: 532 [M+, 27], 490 [100]; HREI-MS: m/z 532.2311 (calculated for C28H36O 10 [M+], 532.2308) Salasol B (Yoshikawa et al., 2002) White powder Positive optical rotation [α] D 26 +159.0° (c=0.10, CHCl3) High-resolution EI-MS: Calculated for C33H 38O10 (M+): 594.2464. Found: 594.2468. UV [MeOH, nm (log ε): 230 (4.2), 273 (3.4). IR (KBr) νmax cm-1: 3475, 3025, 2930, 1744, 1719, 1368, 1271, 1244, 1099, 712. 1H-NMR (CDCl3, 500 MHz, δ ppm) : 1.21 (3H, d, J=7.4 Hz, 15-H3), 1.45 (3H, s, 12-H3), 1.52 (3H, s, 13-H3), 1.99 (1H, br d, J=ca. 15 Hz), 2.46 (1H, ddd-like), 3-H2], 2.07 (3H, s, 6-OAc), 2.19 (3H, s, 14-OAc), 2.27 (1H, ddd-like, 7-H), 2.32 (1H, dd, J=3.1, 16.2 Hz), 2.58 (1H, ddd, J=3.6, 7.4, 16.2 Hz, 8-H2], 2.40 (1H, m, 4-H), 4.50, 5.18 (1H each, both d, J=12.5 Hz, 14-H2), 4.85 (1H, br s, 1-H), 5.52 (1H, d, J=7.4 Hz, 9-H), 5.61 (1H, br s, 2-H), 5.91 (1H, s, 6-H), 7.46, 7.47 (2H each, both dd-like, 3 ‫׳‬, 5‫׳‬-, 3‫״‬, 5‫״‬-H), 7.56 (2H, t-like, 4‫׳‬, 4‫״‬-H), 8.08 (2H, d, J=7.1 Hz, 2‫׳‬, 6‫׳‬-H), 8.09 (2H, d, J=7.3 Hz, 2‫״‬, 6‫״‬-H). Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1221 International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 C-NMR (CDCl3, 125 MHz, δ ppm) : 69.3 (C-1), 73.9 (C-2), 31.2 (C-3), 33.3 (C-4), 89.3 (C-5), 78.3 (C-6), 48.9 (C-7), 34.4 (C-8), 69.4 (C-9), 54.5 (C-10), 82.6 (C-11), 30.3 (C-12), 26.0 (C-13), 65.7 (C-14), 18.2 (C-15), 130.4 (C-1‫)׳‬, 129.6 (C-2‫׳‬,6‫)׳‬, 128.6 (C-3‫׳‬,5‫)׳‬, 133.3 (C-4‫)׳‬, 165.4 (C-7‫)׳‬, 129.6 (C-1‫)״‬, 129.7 (C-2‫״‬,6‫)״‬, 128.6 (C-3‫״‬,5‫)״‬, 133.3 (C-4‫)״‬, 167.0 (C-7‫)״‬, 170.0 (6-AcO), 170.8 (14-Ac0) EI-MS: m/z 594 (M+, 2), 105 (100) 13 Salasone A (Morikawa et al., 2003) White powder Negative optical rotation [α] D26 -31.8° (c=0.40, CHCl3) IR (KBr) νmax cm-1: 3550, 2971, 1717, 1692, 1461, 1389 1 H-NMR (CDCl3, 500 MHz, δ ppm): 0.77 (3H, s, H3-24), 0.88 (3H, s, H3-27), 0.97(3H, s, H3-30), 1.00(3H, s, H325), 1.05(3H, s, H3-29), 1.38 (3H, s, H3-28), 0.90 (3H, d, J=6.9 Hz, H3-23), 1.92 (1H, dd-like, H-18), 2.24, 2.48 (1H each, both d, J=19.2 Hz, H2-16), 2.32 (1H, m, H-4), 4.16, 4.41 (1H each, both d, J=12.1 Hz, H2-26) 13 C-NMR (CDCl3, 125 MHz, δ ppm): 22.2 (C-1), 41.3 (C-2), 212.4 (C-3), 58.1 (C-4), 41.9 (C-5), 40.8 (C-6), 21.4 (C-7), 45.3 (C-8), 37.4 (C-9), 59.2 (C-10), 34.0 (C-11), 30.9 (C-12), 42.4 (C-13), 59.8 (C-14), 211.6 (C-15), 54.3 (C-16), 32.6 (C-17), 44.1 (C-18), 35.7 (C-19), 28.0 (C-20), 32.9 (C-21), 39.3 (C-22), 6.8 (C-23), 15.0 (C-24), 17.6 (C-25), 19.9 (C-26), 60.5 (C-27), 32.5 (C-28), 34.6 (C-29), 31.5 (C-30) EI-MS (70eV) m/z 456 [M+, 13], 426 [100] HREI-MS: m/z 456.3612 (calculated for C30H48O3 [M+], 456.3603) Salasone B (Morikawa et al., 2003) White powder Negative optical rotation [α] D27 -7.6° (c= 0.70, CHCl3) IR (KBr), νmax cm-1: 3459, 2924, 1717, 1678, 1458, 1393 1 H-NMR (CDCl3, 500 MHz, δ ppm): 0.81 (3H, s, H3-24), 0.87 (3H, s, H3- 27), 1.02 (3H, s, H3-29), 1.37 (3H, s, H3-28), 1.44 (3H, s, H3-26), 0.93 (3H, d, J=7.0 Hz, H3-23), 0.97 (6H, s, H3-25, 30), 1.95 (1H, dd-like, H-18), 2.26, 2.70 (1H each, both d, J=18.1, H2-16), 2.31 (1H, m, H-4), 3.71 (1H, ddd, J=3.6, 10.8, 10.8 Hz, H-7) 13 C-NMR (CDCl3, 125 MHz, δ ppm): 21.8 (C-1), 41.0 (C-2), 211.9 (C-3), 58.1 (C-4),42.6 (C-5), 51.5 (C-6), 66.7 (C-7), 49.7 (C-8), 38.5 (C-9), 58.9 (C-10), 34.8 (C-11), 29.4 (C-12), 43.6 (C-13), 54.6 (C-14), 220.0 (C-15), 54.3 (C-16), 34.7 (C-17), 44.2 (C-18), 34.5 (C-19), 27.9 (C-20), 33.9 (C-21), 38.5 (C-22), 6.9 (C-23), 16.0 (C-24), 17.8 (C-25), 20.0 (C-26), 15.0 (C-27), 31.8 (C-28), 33.5 (C-29), 32.8 (C-30) EI-MS (70 eV): m/z 456 [M+, 24], 423 [100] HREI-MS: m/z 456.3595 (calculated for C30H48O 3 [M+], 456.3603) Salasone C (Morikawa et al., 2003) White powder, Negative optical rotation [α] D25 -21.9° (c=0.80, CHCl3) IR (KBr) νmax cm-1: 3453, 2930, 1716, 1458, 1389 1 H-NMR (CDCl3, 500 MHz, δ ppm): 0.73 (3H, s, H3-24), 0.89 (3H, s, H3-25), 1.01 (3H, s, H3-27), 1.04 (3H, s, H330), 1.08 (3H, s, H3-26), 1.33 (3H, s, H3-28), 0.88 (3H, d, J=6.8 Hz, H3-23), 1.28 (1H, br d, J=ca. 16 Hz), 2.17 (1H, dd, J=7.9, 15.8 Hz, H2-16], 1.96 (1H, m, H-18), 2.23 (1H, m, H-4), 3.23(1H , d, J=11.4 Hz, H2-29), 3.27 (1H , d, J=11.4 Hz, H2-29), 3.74 (1H, d,J=7.9 Hz, H-15) 13 C-NMR (CDCl3, 125 MHz, δ ppm): 22.3 (C-1), 41.4 (C-2), 212.9 (C-3), 58.0 (C-4), 41.9 (C-5), 41.1 (C-6), 19.9 (C-7), 53.4 (C-8), 37.7 (C-9), 59.2 (C-10), 35.6 (C-11), 31.1 (C-12), 40.6 (C-13), 44.0 (C-14), 74.4 (C-15), 48.1 (C16), 30.6 (C-17), 40.8 (C-18), 29.8 (C-19), 33.0 (C-20), 27.1 (C-21), 38.9 (C-22), 6.8 (C-23), 14.5 (C-24), 17.9 (C25), 18.7 (C-26), 14.1 (C-27), 32.6 (C-28), 74.8 (C-29), 25.4 (C-30) EIMS (70 eV): m/z 458 [M+, 8], 109 [100] HREI-MS: m/z 458.3745 (calculated for C30H50O 3 [M+], 458.3760). Salasone D (Kishi et al., 2003) White powder Negative optical rotation [α] D 22 -19.6° (c=0.50, CHCl3) HREI-MS: Calculated for C30H50O3 (M+): 458.3760. Found: 458.3773 IR (KBr) νmax cm-1: 3453, 2930, 1717, 1458, 1391 1 H-NMR (Pyridine-d5, 500 MHz, δ ppm): 0.80 (3H, s, H3-24), 1.00 (3H, s, H3-30), 1.07 (3H, s, H3-29), 1.09 (3H, s, H3-27), 1.31 (3H, s, H3-25), 1.57 (3H, s, 24, H3-28), 0.97 (3H, d, J=56.7 Hz, 23-H3), 1.73 (1H, dd-like, 18-H), Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1222 International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 1.80 (1H, br d, J=ca. 16 Hz), 2.22 (1H, dd, J=7.3, 15.5 Hz, 16-H2) , 2.25 (1H, m, 4-H), 4.22 (1H, d, J=7.3 Hz, 15-H), 4.24 (1H , d, J=11.6 Hz, 26-H2), 4.89 (1H , d, J=11.6 Hz, 26-H2) 13 C-NMR (Pyridine-d 5, 125 MHz, δ ppm): 22.8 (C-1), 42.7 (C-2), 211.9 (C-3), 57.8 (C-4), 42.4 (C-5), 41.7 (C-6), 22.7 (C-7), 54.4 (C-8), 38.0 (C-9), 59.8 (C-10), 37.1 (C-11), 31.6 (C-12), 41.0 (C-13), 46.8 (C-14), 75.5 (C-15), 48.4 (C-16) , 30.9 (C-17), 42.6 (C-18), 32.2 (C-19), 28.4 (C-20), 36.2 (C-21), 39.5 (C-22), 7.2 (C-23), 14.4 (C-24), 16.9 (C-25), 65.8 (C-26), 19.7 (C-27), 32.7 (C-28), 35.7 (C-29), 31.0 (C-30) EI-MS: m/z 458 (M+, 7), 109 (100) Salasone E (Kishi et al., 2003) White powder Negative optical rotation [α]D 23 -18.5° (c=0.50, CHCl3) HREI-MS: Calculated for C30H50O3 (M+): 458.3760. Found: 458.3789. IR (KBr) νmax cm-1: 3453, 2924, 1734, 1458, 1390 1 H-NMR (CDCl3, 500 MHz, δ ppm): 0.81 (3H, s, H3-24), 0.95 (3H, s, H3-29), 0.97 (3H, s, H 3-30), 1.07 (3H, s,H325), 1.11 (3H, s, H 3- 27), 1.17 (3H, s, H3-28), 0.91 (3H, d, J=6.8 Hz, H3-23), 1.42 (1H, m, H-18), 2.31 (1H, q, J=6.8 Hz, H-4), 4.16 (2H, br s, H2-26), 4.29 (1H, ddd, J=2.6, 10.6, 10.6 Hz, H-7) 13 C-NMR (CDCl3, 125 MHz, δ ppm): 35.6 (C-1), 41.1 (C-2), 212.4 (C-3), 58.1 (C-4), 42.5 (C-5), 50.4 (C-6), 69.2 (C-7), 58.2 (C-8), 38.8 (C-9), 59.3 (C-10), 36.0 (C-11), 29.9 (C-12), 40.3 (C-13), 44.2 (C-14), 27.0 (C-15), 35.5 (C16), 30.1 (C-17), 43.3 (C-18), 21.9 (C-19), 28.3 (C-20), 32.4 (C-21), 39.2 (C-22), 6.9 (C-23), 15.9 (C-24), 18.8 (C25), 64.2 (C-26), 20.1 (C-27), 31.2 (C-28), 34.7 (C-29), 31.1 (C-30) EI-MS: m/z 458 (M+, 8), 109 (100) Salaquinone A (Morikawa et al., 2003) Amorphous powder Positive optical rotation [α]D 24 +95.4° (c=0.10, CHCl3) UV (MeOH) λ max (log ε): 249 (3.8), 416 (3.9) IR (KBr) νmax cm-1: 3548, 2852, 1717, 1595,1458, 1437, 1384 1 H-NMR (CDCl3, 500 MHz, δ ppm): 1.05 (3H, s, H3-27), 1.05 (3H, s, H3-28), 1.50 (3H, s, H3-25), 1.71 (3H, s, H326), 2.22 (3H, s, H3-23), 1.15 (3H, d, J=6.6 Hz, H3-30), 2.26 (1H, m, H-18), 2.65 (1H, m, H-20), 2.75, 2.96 (2H, ABq, J=15.8 Hz, H2-16), 4.43 (1H, d, J=2.9 Hz, H-22), 6.49 (1H, s, H-1), 6.97 (1H, d, J =7.2 Hz, H-7), 7.02 (1H, d, J=7.2 Hz, H-6) 13 C-NMR (CDCl3, 125 MHz, δ ppm): 119.2 (C-1), 178.0 (C-2), 145.9 (C-3), 117.5(C-4), 128.0 (C-5), 132.9 (C-6), 124.3 (C-7), 157.1 (C-8), 42.5 (C-9), 163.1 (C-10), 31.7 (C-11), 28.9 (C-12), 43.8 (C-13), 58.0 (C-14), 209.3 (C-15), 47.8 (C-16), 47.8 (C-17), 43.9 (C-18), 30.2 (C-19), 39.9 (C-20), 212.0 (C-21), 78.0 (C-22), 10.3 (C-23), 39.4 (C-25), 21.5 (C-26), 24.4 (C-27), 24.8 (C-28), 15.0 (C-30) EI-MS (70 eV): m/z 450 [M+, 100] HREI-MS: m/z 450.2410 (calculated for C28H34O 5 [M+], 450.2406) Salaquinone B (Kishi et al., 2003) Amorphous powder Positive opyical rotation [α] D 26 +169.4° (c=0.20, CHCl3) HREI-MS: Calculated for C28H36O5 (M+): 452.2563. Found: 452.2547. UV [MeOH, nm (log ε)]: 223 (3.9), 246 (3.7), 416 (3.7). IR (KBr) νmax cm-1: 3432, 2924, 1709, 1595, 1439, 1381 1 H-NMR (CDCl3, 500 MHz, δ ppm): 1.01 (3H, s, H3-27), 1.05 (3H, s, H3-28), 1.27 (3H, s, H3-25), 1.69 (3H, s, H326), 2.16 (3H, s, H3-23), 1.11 (3H, d, J=8.4 Hz, H3-30), 2.22 (1H, m, H-18), 2.64 (1H, m, H-20), 2.75, 2.87 (1H each, both d, J=15.0 Hz, H2-16), 3.00 (1H, br d, J=ca. 20 Hz), 3.41 (dd, J=5.1, 20.1 Hz, H2-6), 4.42 (1H, br s, H-22), 6.31 (1H, d, J=5.1 Hz, H-7), 6.71 (1H, s, H-1) 13 C-NMR (CDCl3, 125 MHz, δ ppm): 107.7 (C-1), 141.6 (C-2), 139.5 (C-3), 120.9 (C-4), 125.7 (C-5), 27.8 (C-6), 126.0 (C-7), 139.0 (C-8), 36.2 (C-9), 140.0 (C-10), 33.0 (C-11), 29.4 (C-12), 43.5 (C-13), 58.0 (C-14), 211.4 (C-15), 47.5 (C-16), 49.4 (C-17), 44.3 (C-18), 30.7 (C-19), 40.0 (C-20), 212.4 (C-21), 77.8 (C-22), 11.6 (C-23), 33.4 (C-25), 25.6 (C-26), 21.4 (C-27), 24.6 (C-28), 14.8 (C-30) EI-MS: m/z 452 (M+, 27), 57 (100) Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1223 International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 Pharmacological activity Anti mutagenic activity Navneet et al., 2009 reported the extract of root bark of Salacia oblonga (SOB) belonging to the family Celastraceae has anti-mutagenic activity. The activity was evaluated by using sperm abnormality test in Wistar rats. The hydroalcoholic extract was evaluated against Mitomycin-C induced testicular toxicity by estimating the sperm shape abnormality and sperm count. The results indicated that prior treatment of SOB had suppressed the changes produced by MMC. SOB at a dose of 1.0 gm/kg bw had shown significant inhibition in the sperm shape abnormality and sperm count in both the time intervals, while the lower dose showed inhibitory effect mainly at 48 hr duration compared to the MMC group. The data from the study suggests that SOB possess anti-mutagenic effect against MMC and the activity could be due its antioxidant potential. Inhibition of Cardiac fibrosis Yuhao Li et al., 2004 reported the effect of an aqueous extract of Salacia oblonga on cardiac fibrosis in a genetic model of type 2 diabetes, the obese zucker rat (OZR). The interstitial and perivascular fibrosis in the hearts of the OZR were improved by the extract through chronic administration. The extract showed postprandial glycemic activity, which improves cardiac complications of OZR. Nephroprotective activity Palani et al., 2011 reported that the ethanolic extract of Salacia oblonga has nephroprotective activity. Extract was evaluated on rats and nephrotoxicity was induced by Acetaminophen (APAP). APAP produces liver and kidney necrosis in mammals at high doses which showed that APAP significantly increases the levels of serum urea, creatinine, and reduces levels of uric acid concentration. The extract reduced these by increasing anti-oxidative responses as proved by biochemical and histopathological contents and suggested that the extract of Salacia oblonga possesses nephroprotective activity. Hypolipidemic activity Kalaiarasi et al., 2011 studied the powder extract of Salacia oblanga for hypolipidemic activity. The biochemical changes in normal and Aluminium toxicity induced White Albino Wistar Female Rats was used for evaluation. Oral administration of Salacia extract and Aluminium chloride for twonweeks significantly lowered the serum alkaline Phosphatase, Serum Aspartate aminotransferase, urea, bilirubin and cratinine at 14th day. Postprandial hyperlipidemic activity Huang et al., 2006 found that the aqueous extracts of roots of Salacia oblonga (SOR) belonging to family Celastraceae has postprandial hyperlipidemic activity. The evaluation was done on Zucker diabetic fatty (ZDF) rat. Peroxisome proliferator activated receptor (PPAR)-α, plays an important role in maintaining the homeostasis of lipid metabolism. The extract of SOR lowered plasma triglyceride and total cholesterol (TC) levels, increased plasma high-density lipoprotein levels and reduced the liver contents of triglyceride, non-esterified fatty acids (NEFA) and the ratio of fatty droplets to total tissue. But on fasting the extract had no effect on plasma triglyceride and TC levels in fasted ZDF rats. Extract inhibited the increase in the plasma triglyceride levels after olive oil administration to ZDF. Hepatic steatosis activity Huang et al., 2006 reported that the aqueous extracts of roots of Salacia oblonga (SOR) belonging to family Celastraceae has activity that improves hepatic steatosis by activation of PPAR-α. Evaluation was carried out on Zucker diabetic fatty (ZDF) rat. Extract of SOR enhanced hepatic expression of PPAR-α, mRNA and protein, and carnitine palmitoyltransferase-1 and acyl-CoA oxidase mRNAs in ZDF rats. In vitro, SOR extract and its main component mangiferin activated PPAR-α luciferase activity in human embryonic kidney 293 cells and lipoprotein lipase mRNA expression and enzyme activity in THP-1 differentiated macrophages. These effects were completely inhibited by a selective PPAR-α antagonist MK-886. Thus study suggested SOR extract functions as a PPAR-α activator, which gives mechanism for improvement of hepatic steatosis in diabetes and obesity. Inhibiting diabetic induced renal fibrosis Lan He et al., 2009 reported the aqueous extract of roots of Salacia oblonga (SOR) has used for renal fibrosis which occurs due to diabetes. Extract of SOR was given to Zucker diabetic fatty (ZDF) rats as discovered by van Giesenstaining and diminished renal glomerulosclerosis and interstitial fibrosis. Result showed that SOR attenuates Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1224 International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 diabetic renal fibrosis, at some extent by suppressing anigiotensin II/AT1 signaling and mangiferin is an effective antifibrogenic agent. Anti- hyperglycemic activity Yuhao Li et al., 2004 found that the aqueous extract of Salacia oblonga has anti-hyperglycemic activity. The extract was evaluated by using the obese zucker rat (OZR). Extract resulted the decrease in plasma glucose level in non fasted OZR and extract also showed small activity in the fasted animal which indicates that Salacia oblonga has postprandial glycemic activity because of inhibition of α-glucosidase enzyme. Anti-microbial Activity Rao MJP et al., 2010 reported the plant parts such as root, stem and leafs powdered ethyl acetate extract of Salacia oblonga Wall belonging to the family Celastraceae has anti-microbial activity. The extract was evaluated against pathogenic strains, gram positive bacteria and gram negative bacteria. Extract of Salacia oblonga have shown good activity towards all the pathogenic bacterias. The inhibition of growth of bacteria in the acidic EtOAc extract were measured to assess the antimicrobial activity. Rao TM et al., 2010 found that the plant aerial part (stem and leaves) and roots extracts of Salacia oblonga Wall has anti-microbial activity. The evaluation was carried out by using pathogenic bacteria such as gram positive bacteria Staphylococcus epidermidis, Enterococcus faecalis, Bacillus subtilis and gram negative bacteria Escherichia coli, Salmonella typhi, Klebsiella pneumonia,Enterobacter cloacae, Pseudomonas aeruginosa. Extract was prepared with ethyl acetate (EtOAc) solvent. The root extract of Salacia oblonga against Bacillus subtilis showed the highest zone of inhibition than aerial part. Anti-inflammatory activity Ismail et al., 1997 reported the root bark powder of Salacia oblonga and leaf powder of Azima tetracantha has antiinflammatory activity. The test was carried out on male albino rats using carrageenan-subjected acute inflammation and cotton pellets causes chronic inflammation methods. In the chronic inflammation, these crude drugs were inhibits the transudative, exudative and proliferative components and lower the lipid peroxide content of exudate and liver, gamma-glutamyl transpeptidase activity in the exudate of chronic inflammation. The increased acid and alkaline phosphatase activity and decreased serum albumin in cotton pellet granulomatous were normalized with these drugs. These drugs showed their activity by anti-proliferative, anti-oxidative and lysosomal membrane stabilization. Acute-glycemic Activity Williams et al., 2007 described that the herbal extract of Salacia oblonga has anti-glycemic activity by clinical testing. Diabetes was induced in healthy adults by high carbohydrate meal. Sixty-six patients were evaluated for diabetes in this study. Result showed that Salacia oblonga extract significantly lowered the postprandial positive area under the glucose curve and the adjusted peak glucose response. The herbal extract significantly decreased the postprandial insulin response, lowering both the positive area under the insulin curve and the adjusted peak insulin response. Hypoglycemic activity Krishnakumar et al., 1999 was evaluated the effect of the petroleum ether extract of the root bark of Salacia oblonga Wall. (SOB) belonging to family Celastraceae for hypoglycemic activity in streptozotocin (STZ) diabetic rats. SOB significantly inhibited the streptozotocin-induced hyperglycemia and hypoinsulinaemia which indicated that the SOB extract possesses anti-diabetic activity. Postprandial glycemia Collene et al., 2005 found that the extract of Salacia oblonga has postprandial glycemic activity by clinical randomized crossover study of 43 healthy subjects. Subjects were fed the following meals on separate days after overnight fasting: control (C; 480 mL of a study beverage containing 82 g of carbohydrate, 20 g of protein, and 14 g of fat), Control + 1000 mg of S. oblonga extract (S). Postprandially, fingerstick capillary plasma glucose levels were measured for 180 min. Results showed that the baseline-adjusted peak glucose response was not different across meals. The changes in plasma glucose areas under the curve (0 to 120 min and 0 to 180 min, respectively) compared with C were -9% and -11% for AA (P > 0.05 each), -27% and -24% for S (P =0.035 and 0.137). Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1225 International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 Anti-Hypertriglyceridemia Wang et al., 2012 reported that the aqueous root extract of Salacia oblonga has anti-hypertriglyceridemic activity. The study was carried out by using laying hens which is a unlike animal model having higher triglyceride synthesis rate in the liver. . Laying hens shows much rapid triglyceride concentration in liver, plasma, skeletal muscle and heart than preadolescent pullets The SOR water extract were subjected to Laying hens and preadolescent pullets with the layer ratio containing 0%, 0.5% or 1% for 4 weeks. Treatment with 1% SOR water extract inhibited the increase of body weight without disturbing the intake of foods. This treatment inhibited the increase in triglyceride concentration in the adipose tissues. Anti-oxidant activity Krishnakumar et al., 1999 was evaluated the effect of the petroleum ether extract of the root bark of Salacia oblonga Wall. (SOB) belonging to family Celastraceae for anti-lipid peroxidative activity in the cardiac tissue of streptozotocin (STZ) diabetic rats. SOB significantly inhibited the hyperglycaemia and hypoinsulinaemia induced by streptozotocin . SOB results a significant decrease in peroxidation products viz. thiobarbituric acid reactive substances, conjugated dienes and hydroperoxides. The antioxidant activity of enzymes such as superoxide dismutase, catalase, GSHPxase and GSSGRase was showed to be increased in the heart tissue of STZ diabetic rats treated with SOB. These results indicated that the SOB extract possesses anti-oxidative activity in streptozotocindiabetic rats. Anti-diabetic activity Nakata et al., 2011 reported that the mixture of extract of Salacia oblonga and IP-PA1 (SI tea) has decreased plasma glucose and lipids levels. The SI tea was investigated in the KK-Ay/TaJcl type II diabetic model mice. SI tea significantly decreased plasma glucose levels in KK-Ay/TaJcl. Table 1: Phyto-Constituents reported in Salacia oblonga Wall Active constituents Salacinol, Kotalanol, Neosalacinol Mangiferin Kotalagenin-16-acetate, 25,26-oxido friedelane-1,3-dione 7,24-oxido friedelane-1,3-dione 15α-hydroxy-24-nor-friedel-5-ene-1,3-dione Plant part roots roots roots Class Pharmacological Activity Five membered α-glucosidase inhibitors sugar analogue Glycosides Anti-diabetic, Anti-hypertensive, Hypolipidemic friedelane-type α-glucosidase inhibitors triterpene REFERENCES 1. Anu SJ, Rao JM (2003). New norfriedelene-l,3-dione from the root bark of Salacia oblonga. Indian Journal of Chemistry 42(B): 1180-1182. 2. Anonymous 1. Salacia (Celastraceae) syn:Annulodiscus, Johnia. Species names. Available at: www.plantsystematics.Org/taxpage/0/genus/Salacia.html. 3. Anonymous 2. Vernacular names. Planet ayurveda. Available at: www.planetayurveda.com/saptrangipowder.htm. 4. Anonymous 3. Images. Available at: http://images.search.conduit.com/search?q=salacia%20oblonga. 5. Anonymous 4. FL. Br. Ind, I, 628; Talbot, 1, 287. 6. Collene AL, Hertzler SR, Williams JA, Wolf BW (2005). Effects of a nutritional supplement containing Salacia oblonga extract and insulinogenic amino acids on postprandial glycemia, insulinemia, and breath hydrogen responses in healthy adults. Nutrition 21: 848–854. 7. Dineshkumar B, Mitra A, Manjunatha M (2010). Studies on the anti-diabetic and hypolipidemic potentials of mangiferin (Xanthone Glucoside) in streptozotocin-induced Type 1 and Type 2 diabetic model rats. International Journal of Advances in Pharmaceutical Sciences 1: 75-85. 8. Foye WO, Lemke TL, Williams DA (2008). Foye’s Principles of Medicinal Chemistry, 6 th edn: Lippincott Williams, Wilkins, Philadelphia. 44. Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1226 International Journal of Research in Pharmaceutical and Biomedical Sciences 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. ISSN: 2229-3701 Giron MD, Sevillano N, Salto R, Haidour A, Manzano M, Jimenez ML, Rueda R, Pedrosa JML (2009). Salacia oblonga extract increases glucose transporter 4-mediated glucose uptake in L6 rat myotubes: Role of mangiferin. Clinical Nutrition 1-10 (in press). Gordon MC, David JN (2001). Natural product drug discovery in the next Millennium. Pharmaceutical Biology 39: 8-17. Huang TH, Peng G, Li GQ, Yamahara J, Roufogalis BD, Li Y (2006). Salacia oblonga root improves postprandial hyperlipidemia and hepatic steatosis in Zucker diabetic fatty rats: Activation of PPAR-α. Toxicology and Applied Pharmacology 210: 225 – 235. Ismail TS, Gopalakrishnan S, Begum VH, Elango V (1997). Anti-inflammatory activity of Salacia oblonga Wall. and Azima tetracantha Lam. J Ethnopharmacol. 56(2): 145-152. Kalaiarasi JMV, Rja M, Dass JA (2011). The influence of aluminium chloride and extract of Salacia oblonga on biochemical parameters in wister albino rat. International Journal of Current Research 3(12): 91-94. Kanmani (2012). A Butterfly and Biotechnology. Salacia oblonga (Ponkoranti) Diabetes. Vernacular names. Available at: http://butterflyandbiotech.blogspot.in/search/label/salacia%20oblonga. Kishi A, Morikawa T, Matsuda H, Yoshikawa M (2003). Structures of new friedelane and norfriedelanetype triterpenes and polyacylated eudesmane-type sesquiterpene from Salacia chinensis LINN. (S. prinoides DC Hippocrateaceae) and radical scavenging activities of principal constituents. Chem. Pharm. Bull. 51(9): 1051-1055. Krishnakumar K, Augusti KT, Vijayammal PL (1999). Hypoglycaemic and anti-oxidant activity of Salacia oblonga Wall. extract in streptozotocin-induced diabetic rats. Indian J Physiol Pharmacol. 43(4): 510-514. Lan He, Qi Y, Rong X, Jiang J, Yang Q, Yamahara J, Murray M, Li Y (2009). The Ayurvedic medi-cine Salacia oblonga attenuates diabetic renal fibrosis in rats: suppression of angiotensin II/AT1 signaling. Evidence-Based Complementary and Alternative Medicine 01-13. Li Y, Peng G, Li Q, Wen S, Huang TH, Roufogalis BD, Yamahara J (2004). Salacia oblonga improves cardiac fibrosis and inhibits postprandial hyperglycemia in obese zucker rats. Life Sciences 75: 1735–1746. Loesener T (1942). Celastraceae, In: Engler A, Harms H, Mattfeld J, Die. Naturlichen Pflanzenfamilien. Duncker, Humlot, Berlin. 20b: 87–197. Matsuda H, Murakami T, Yashiro K, Yamahara J, Yoshikawa M (1999). Antidiabetic principles of naturalmedicines. IV.1 Aldose reductase and α-glucosidase inhibitors from the roots of Salacia oblonga WALL.(Celastraceae) : Structure of new friedelane-type triterpene, Kotalagenin-16-acetate. Chem. Pharm. Bull. 47(12): 1725-1729. Minami Y, Kuriyama C, Ikeda K, Kato A, Takebayashi K, Adachi I, Fleet GWJ, Kettawan A, Okamoto T, Asano N (2008). Effect of five-membered sugar mimics on mammalian glycogen-degrading enzymes and various glucosidases. Bioorganic & Medicinal Chemistry 16: 2734–2740. Morikawa T, Kishi A, Pongpiriyadacha Y, Matsuda H, Yoshikawa M (2003). Structures of New Friedelane-Type Triterpenes and Eudesmane-Type Sesquiterpene and Aldose Reductase Inhibitors from Salacia chinensis. American Chemical Society and American Society of Pharmacognosy. Nakata K, Taniguchi Y, Yoshioka N, Yoshida A, Inagawa H, Nakamoto T, Yoshimura H, Miyake S, Kohchi C, Kuroki M, Soma G (2011). A mixture of Salacia oblonga extract and IP-PA1 reduces fasting plasma glucose (FPG) and low-density lipoprotein (LDL) cholesterol levels. Nutr. Res. Pract. 5(5): 435– 442. Navneet KS, Biswas A, Rabbani SI, Devi K, Khanam S (2009). Hyrdoalcoholic Root Bark Extract of Salacia oblonga Prevented Mitomycin-C Induced Sperm Abnormality in Wistar Rats. Pharmacognosy magazine 5(19): 254-259. Palani SS, Raja SS, Kumar S, Nirmal SN, Kumar B, Senthil BS (2011). Nephroprotective and antioxidant activities of Salacia oblonga on acetaminophen-induced toxicity in rats. Natural product research 25(19): 1876-1880. Rao MJP, Giri A (2010). Antimicrobial activity of the extract of Salacia oblonga Wall. Recent Research in Science and Technology 2(10): 01-04. Rao TM, Murty PP (2010). In-vitro Antibacterial Activity of Salacia oblonga Wall. Recent Research in Science and Technology 2(6). Simmons MP (2004a). The Families and Genera of Flowering Plants. Celastraceae, in: Kubitzki K edn: Springer, Berlin. 29–64. Spivey AC, Weston M, Woodhead S (2002). Celastraceae sesquiterpenoids: biological activity and synthesis. Chem. Soc. Rev. 31(1): 43-59. Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1227 International Journal of Research in Pharmaceutical and Biomedical Sciences ISSN: 2229-3701 30. Thiruvelan (2010). Natural Diabetic Herbs. Healthy-ojas.com. Bio-active constituents of Salacia oblonga. Available at: http://healthy-ojas.com/diabetes/natural-diabetes-herbs.html. 31. Wang J, Rong X, Li W, Yamahara J, Li Y (2012). Salacia oblonga ameliorates hypertriglyceridemia and excessive ectopic fat accumulation in laying hens. Journal of Ethnopharmacology 142(1): 221-227. 32. Williams JA, Choe YS, Noss MJ, Baumgartner CJ, Mustad VA (2007). Extract of Salacia oblonga lowers acute glycemia in patients with type 2 diabetes. Am J Clin Nutr. 86(1): 124-130. 33. Yoshikawa M, Morikawa T, Matsuda H, Tanabe G, Muraoka O (2002). Absolute Stereostructure of Potent α-Glucosidase Inhibitor, Salacinol, with Unique Thiosugar Sulfonium Sulfate Inner Salt Structure from Salacia reticulata. Bioorganic & Medicinal Chemistry 10: 1547–1554. 34. Yoshikawa M, Murakami T, Shimada H, Matsuda H, Yamahara J, Tanabe G, Muraoka O (1997). Salacinol, potent antidiabetic principle with unique thiosugar sulfonium sulfate structure from the Ayurvedic traditional medicine Salacia reticulata in Sri Lanka and India.Tetrahedron Letters 38(48): 8367-8370. Vol. 4 (4) Oct – Dec 2013 www.ijrpbsonline.com 1228