Academia.eduAcademia.edu
!"#$%$&#'()*+",#$-./,*$0*1(&#./2$23*4.%/(*5'(.3*$/*%678*'/3*)%/894*:&'7.%*:.;<./7.( =+$#,&$3223'.>*1(&#./2'7.'.?*'/3*@)(*@A&#27')2$/(*0$%*52$-.$-%'&", 1<)"$%=(?B*C'%'#3*:7"/.23.%>*:).D.*EF*G<((.##>*!,A$/*EF*!$H>*4%..I*5'II.%>*:'##,*C./3.%($/> 4%.3*G<A(.,>*E$"/*5'%%.))>*J'%,*K266,>*E$"'//.(*!F*L$-.# G.D2.M.3*M$%I=(?B :$<%7.B*:,().A')27*5$)'/,>*L$#F*NO>*P$F*N*=1&%F*9*E</F>*NQQR?>*&&F*NSQ9NTR +<6#2(".3*6,B*American Society of Plant Taxonomists :)'6#.*UG8B*http://www.jstor.org/stable/25063960 . 177.((.3B*VWXQVXNQVN*NVBRN Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org. American Society of Plant Taxonomists is collaborating with JSTOR to digitize, preserve and extend access to Systematic Botany. http://www.jstor.org SystematicBotany (2004), 29(2): pp. 260-274 ? Copyright 2004 by theAmerican Society of Plant Taxonomists of Asplenioid Ferns based on rbcL and trnL-F Chloroplast Phylogeny and its Implications Spacer Sequences (Polypodiidae, Aspleniaceae) for Biogeography Harald Sally Henderson,2 J. Cox,3 Freek Bakker,4 and C. Vogel2 Gibby,6 Johannes Steve J. Russell,2 Cymon Schneider,1-7 Mary Fred Rumsey,4 Barrett,5 John Institute ^lbrecht-von-Haller of Plant Sciences, of G?ttingen, University Untere 2, Karsp?le 37073 G?ttingen, Germany; 2Botany Natural Department, department 4National Herbarium Cromwell Museum, History SW7 Road, 5BD UK; London, of Biology, Duke University, Durham, North Carolina 27708; Netherlands, Branch, University Wageningen Gen. 37, Foulkesweg 6703 BL Wageningen, The Netherlands; of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK; department Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, Scotland; 6Royal 7author for correspondence (hschneid@duke.edu) Communicating Editor: JamesE Smith Molecular have been generated to investigate relationships among species and putative segre Abstract. phylogenies in Asplenium, one of the largest genera in ferns. Of the ?700 described taxa, 71 are included in a phylogenetic analysis as the sister lineage to all other using the chloroplast rbcL gene and trnL-F spacer. Our results support Hymenasplenium are and all other satellite nested within Instead the this asplenioid clade. classical and of genera asplenioid ferns, putative separation into Old and New World clades, asplenioid ferns reveal a separation of the deeper branches into well-recognized clades and the phylogeny indicates tropical and temperate clades. Temperate clades have evolved from tropical, more-basal in the evolution of this widespread for genus. Implications up to six shifts between temperate and tropical preferences of temperate regions after the last glacial and biogeographic aspects, including the re-colonization speciation processes and we present a phylogenetic of asplenioid ferns framework from which the historical biogeography period, are discussed can be inferred for Europe and North America. gates 1992, 1995; Murakami and Moran and Schaal 1994; Murakami et al. 1998), Loxoscaphe (Gastony and Johnson 2001), Pleuro sorus (Salvo et al. 1982), and Thamnopteris (Holttum 1988; Murakami 1993; Murakami The asplenioid ferns, including the genus Asplenium L. and its putative species-rich with about widespread tropical Many make segregates, groups among 700 species. They and fern groups regions have studies of all one of the most leptosporangiate are also one of occur continents, on focused up ferns, the most in temperate and Antarctica. except these ferns (Wagner 1954; Brownsey 1976; Lovis 1977; Werth et al. 1985a,b; 1999a, b; Herrero cation and Vogel et al. 2001), phylogeny of et al. but the genus 1996, 1998a, b, the overall classifi is poorly under c, stood. A few classifications have been proposed but most date back more than 100 years (Presl 1836;Met tenius 1856; Hooker and Baker 1874; Crist 1897; Diels 1902; Christensen 1906). In the second half of the twen tieth century, systematists have tended to accept only a large single genus, Asplenium (Kramer and and Tryon 1982). The satellite genera are regions, e.g., single pounds Viane Murakami small, putatively monophyletic groups that are either closely related toAsplenium or nested within this genus (Lovis 1977). A few of these satellite genera have been studied systematically and/or phylogenetically, including Cet erach (Bir et al. 1985; Pinter et al. 2002), Diellia (Wagner 1952,1953), Hymenasplenium (Murakami and Hatanaka et al. 1999b). There of asplenioid ferns Australia (Brownsey have in some 1998), been several geographic East Africa (Johns 1991), Europe (Reichstein 1984; Viane et al. 1993), North America (Wagner et al. 1993),Malay Pen insula (Holttum 1954), Mesoamerica (Adams 1995), New Zealand (Brownsey 1977), Peru (Tryon and Stolze 1993), South Africa (Burrows 1990), and Venezuela (Morton and Lellinger 1966), but a worldwide revision is still lacking. Several systematic studies have focused on 1990), or several satellite genera (Table 1) together with Asplenium, the latter comprising about 90% of all spe cies in the family (Copeland 1947; Pichi Sermolli 1974; Tryon studies of aspects biosystematic 1974; Murakami floristic character complexes such as secondary (Iwashina et al. 2000), cytology 1998), rhizome anatomy com (Cheng and (Mitsuta et al. 1980), roots (Schneider 1997), spore ornamentation (Vi ane and van Cotthem 1977; Puttock and Quinn 1980; Tryon and Lugar don 1991; Regalado and S?nchez 2002), or vascular tissue in the petiole (Khare and Shankar 1989; Saiki et al. 1989; Umikalsom 1992). Re cently, rbcLnucleotide sequence data and phylogenetic methods 260 were introduced to infer the evolution of as plenioid ferns. Murakami et al. (1998, 1999a) demon strated that Hymenasplenium is the sister taxon of the remaining asplenioid ferns, whereas the simple bladed, 2004] SCHNEIDER ET AL.: ASPLENIUM 261 PHYLOGENY Table 1. Taxonomy of Asplenium and its satellite genera: in chronological order, type species are given in the right column. They are printed in bold, if the type species was included in this study. lAccording to Murakami et al. (1999a).2 The taxonomy of A. nidus Itwas species complex is controversial and our collection from Madagascar may be one segregate (R. J. John, personal communication). the sample However, argued that A. nidus s.str. is restricted to Java (Murakami et al, 1999b; R. J. Johns, personal communication). on the data set of Murakami et al. (1999b) in an unresolved clustered in maximum parsimony analysis of rbcL sequence data based polytomy together with A. nidus samples from Java (result not shown here).3 Salvo et al. (1982) argued that Pleurosorus includes a single species with a disjunct distribution. We are accepting here the segregation of three to four species to avoid confusion. Genera Asplenium Type L. A. marinum A. scolopendrium L. (1753) PhyllitisHill (1756) Syn.: Glossopteris Raf. (1819) (1786) Caenopteris P.J. Bergius Darea Juss. (1789) = sect. Darea Baker (1867) (1790) Onopteris Neck. Ceterach Willd. (1804) Acropteris Link (1833) Camptosorus Link (1833) L. A. Kunze rutifolium (P.J. Bergius) not designated A. A. A. L. adiantum-nigrum ceterach L. (L.) Hoffm. sepentrionale L. rhizophyllum A. brasiliensis Sw. A. (1836) Antigramma C.Presl (1836) Thamnopteris C.Presl J.Sm. (1841) Syn.: Neottopteris = sect. (1902) Neottopteris Diels Dareastrum F?e (1850-52) Hemionitidastrum F?e (1850-52) F?e (1850-52) Neottopteridastrum Pleurosorus F?e (1850-52) Taracchia C.Presl (1851) F?e (1850-52) Syn.: Acropteridastrum (1866) Sphenopteris Mett. = Sect. Sphenopteris C.V. Morton (1853) Loxoscaphe T.Moore A. nidus L.2 A. cristatum Lam. A. hemionitis L. A. serratum L. A. papaverifolius A. praemorsum & Lellinger (Kunze) Sw. F?e3 (1966) (1854) (1857) Lepichroa T.Moore Schaffneria F?e (1857) (1866) Micropodium Mett. Syn. Eremodium Trev. (1875) A. theciferum (Kunth) Mett. A. purdieanum Hook. Diellia falcata Brack. A. cordatum (Thunb.) Sw. Schaffneria nigripes F?e A. vittaeforme Cav. A. sundense Blume (= A. vittaeforme) Diplora Baker (1873) (1873) Micasplenium Keyserl. (1873) Parasplenium Keyserl. Lobium Keyserl. (1873) Diplora integrifolia Baker A. trichomanes L. A. monanthes L. A. pumilum Sw. (1901) Acrasplenium T.Moore (1922) Holodictyum Maxon (1922) Biropteris K?mmerle (1927)1 Hymenasplenium Hayata (1927) Syn. Boniniella Hayata Cheilosorium J.Sm. (1875) (J.Sm.) Ching (1940) Ceterachopsis (1976) Sinephropteris Mickel A. sanderi C.Chr. A. ghiesbreghtii E. Fourn. A. antri-jouis (K?mmerle) Greuter A. unilaterale Lam. Boniniella ikinoi (Makino) Hayata A. cheilosorium Kunze Asplenidictrum Diellia Brack. J.Sm. (1854) genera Hybrid X Asplenosorus Wherry X x x Asplenophyllitis Alston D.E.Mey. Pic.Serm. Ceterophyllitis X Syn. Phyllitopsis A. dalhousiae Hook. A. delavayi (Franch.) Copel. A. ebenoides R.R. Scott = A. (L.) Britton, Sems et Poggenb. platyneuron rhizophyllum L. A. scolopendrium L. X A. sp. A. ruta-muraria L. X A. ceterach L. A. hybridum (Milde) Bange = A. X A. ceterach L. scolopendrium L. (1937) Asplenoceterach (1940) (1957) (1979) Reichst. (1981) epiphytic species classified as sections Neottopteris and Thamnopteris form two or more clades asplenioid ferns with highly divided rakami 1999b). Thus, simple et Brownsey leaf blades nested among leaf blades (Mu are an exam ple of amorphological character thatmay have evolved independently several times within asplenioid ferns (Murakami quence et al. 1999a). data were also of some relationships X A. se trnL-F spacer the explore phylogenetic sister of As European species used rbcL and /or to plenium (Vogel et al. 1996; Schulze et al. 2001) and the segregate Ceterach (Pinter et al. 2002; Van den heede et al. 2003). Phylogenetic studies using nucleotide se systematic 262 that the data have also demonstrated quence asplenioid to the derived ferns ferns are sister leptosporangiate (Hasebe et al. 1995; Pryer et al. 1995; Cranfill 2000, These studies communication). personal ous ferns are that asplenioid suggestions reject closely previ relat ed to athyrioid ferns, in particular Athyrium Roth and Diplazium Sw. The objective of this study is to infer the phylogeny of the asplenioid ferns from a sample of 71 selected taxa including of representatives several satellite gen era (Tables 1, 2).We want to 1) contribute to the debate about the taxonomy of this large genus, 2) present a phylogenetic framework from which the historical bio geography of asplenioid ferns can be inferred for Eu and North rope America, 3) study what can inferences be made from the phylogenetic framework in relation to speciation processes (Vogel 1998a, b), and 4) inves tigate ing biogeographic the re-colonization aspects including of temperate issues regions concern after the last glacial period (Vogel et al. 1999a). The study differs a it includes because investigations se For all taxa, we of this group. sample two (rbcL and trnL-F spac regions chloroplast quenced a have whereas studies er), explored single previous from previous broader chloroplast region (Vogel et al. 1996 [trnL-F spacer]; Murakami et al. 1998, 1999a, b [rbcL];Gastony and Johnson, 2001 [rbcL];Schulze et al. 2001 [rbcL]. Materials and Methods taxa from the ?700 extant species of asplenioid sampled 71 of the following satellite genera: ferns, including representatives Acropteris, Camptosorus, Ceterach, Ceterachopsis, Chaeropteris, Hemion We itidastrum, Hymenasplenium, Lepichroa, Loxoscaphe, Micrasplenium, Neottopteridastrum, Onopteris, Parasplenium, Phyllitis, Pleurosorus, taxa Tarachia (Sphenopteris), and Thamnopteris (Table 1). Outgroup and dryopter include members of the athyrioid, dennstaedtioid, studies ioid ferns, deemed appropriate from recent phylogenetic (Hasebe et al. 1995; Pryer et al. 1995; Cranfill 2000). Table 2 gives a complete list of taxa used in this study, the corresponding GenBank accession numbers and the voucher information. Mate rial for DNA extraction was of wild origin or collected from bo tanic gardens or herbaria. The freshly collected material was pre in silica gel and stored until extraction. Total genomic DNA was extracted from leaf samples using the of Rogers and Bendich (1994) based on the commonly method used CTAB method (Doyle and Doyle 1987). Individual pinnae were stripped of scales and sporangia, and ground either using a sand or crushed in 1.5 ml pestle and mortar with acid-washed tubes with liquid nitrogen. Extractions used 500 (xLCTAB buffer, and were incubated at 50 fjLlsarkosyl and 5 jjlI?-mercaptoethanol, 60?C for 1 hr. An equal volume of SEVAC (chloroform/isoamylal shaken and centrifuged cohol, 24:1) was added and the mixture at 13,000 rpm for 3 min. Supernatants were transferred to fresh tubes, combined with a 2/3 volume of cold 100% isopropanol, and incubated for 50-60 min at room temperature. rbcL and trnL-F chloroplast regions were amplified using poly merase chain reactions (PCR) in 25 |xl volumes containing 2.5 mM served botany [Volume and Rollo 1995) and trnL-F region (Taberlet et al. 1991; Vogel et al. 1996). PCR products were purified using Qiaquick spin columns (Qiagen). Cycle sequencing products were generated using Big using the PCR primers in quarter-vol Dye v 2.0 (PE Biosystems) ume reactions and sequenced using an ABI automated sequencer (PE Biosystems). The fragments were assembled using SeqEd v3.01 (GCG) or Se and aligned manually quencher v3.0 (Gene Codes Corporation) 4.0 (Maddison and using Align (Hepperle 2002) and MacClade Maddison 2000). We generated two sequence data sets: rbcL (1325 and trnL-F spacer (about 650 nucleotides). We exclud nucleotides) ed ambiguously aligned regions in the trnL-F spacer region. Max imum parsimony characters (MP) analyses with equally weighted were performed for the rbcL, trnL-F spacer, and combined data in PAUP* 4.0b8 test as implemented sets. A partition homogeneity (Swofford 2000) was performed to estimate incongruent length dif the two single sequence data sets (Farris et al. ferences between 1995). We compared by eye the tree topologies of MP bootstrap (BS) analyses of the individual gene region data sets to detect conflicts between data partitions (Mason-Gamer and Kellogg 1996; characters, maximum Johnson and Soltis 1998). MP with weighted likelihood (ML), and Bayesian inference (BI) were performed ex clusively for the combined data set. MP trees were calculated using PAUP* 4.0b8 (Swofford 2000) with the following options: heuristic search mode with 10,000 ran tree bisection-reconnection dom-addition-sequence replicates, (TBR) branch swapping, MULTrees option on, and collapse zero were treated either as length branches off. Character state changes or a scheme was applied. The weight equally weighted weighting ing scheme was implemented using STMatrix 2.2 to calculate rel ative frequencies of nucleotide substitutions and convert these fre into costs of change (Lutzoni and Zoller 2001). Branch (Felsenstein 1985) support was estimated by bootstrap analyses with full heuristic searches, 1,000 bootstrap replicates, 10 random addition-sequence replicates per bootstrap replicate, TBR branch swapping and MULTrees option on, collapse zero-length branches off, and by saving all trees. ML analyses were carried out with PAUP* 4.0b8 (Swofford 2000) employing heuristic searches with 100 random-addition-sequence replicates, TBR branch swapping and MULTrees options on, col branches, saving all trees, and the optimal lapsing zero-length model substitution model with the implemented. The nucleotide least number of parameters that best fits the data was determined in using a likelihood ratio test and AIC criterion as implemented quencies version 3.04 (Posada and Crandall 1998). Modeltest BI was used to calculate the posterior probability for each node as implemented inMrBayes 2.1 (Huelsenbeck and Ronquist 2001). One out of every 100 trees was sampled for 1,000,000 generations with kappa and DNA substitution parameters estimated during the search. The consensus tree was computed with PAUP* on the last 8,000 sampled "burn-in period." previously for the rbcL region (Gastony the 2,000 trees found in the to reconstruct the distribution of non-terminal nodes. employed This approach generates explicit statements about the distribution of internal nodes by favouring vicariance events and minimizing dispersal and extinctions events data set is available in TreeBASE matrix 200 [iM dNTPs, 1 ng BSA, PCR buffer, 0.625 U Red Hot Taq (ABgene) and 1.5 jxl of DNA template under the thermal cy s at 94?C, 30 s at cling conditions: 2 min at 94?C, 35 cycles of 15 48?C and 90 s at 72?C, followed by 3 min at 72?C. The primers are those published trees excluding and morphological char Selected biogeographical, ecological, acters that were extracted from the literature were optimized onto in the maximum the tree generated likelihood analyses using 4.0 (Maddison and Maddison MacClade 2000) applying ACCT DIVA (Ronquist 1996) was RAN and DELTRAN optimizations. accession MgCl2, used 29 (Ronquist 1997). The combined (study accession number SI049; number M1789). Results Maximum F spacer data of the parsimony analyses sets recovered separately rbcL and many trnL thou 2004] Table following number. SCHNEIDER ET AL.: ASPLENIUM 263 PHYLOGENY 2. List of included material with voucher information and GenBank accession numbers. Voucher details are listed in the sequence: taxon name; collector name and number (herbarium); rbcL genbank accession number; trnL-F GenBank accession French Guiana, et abscissum Willd.; Boudrie 3278 (BM): AY300102; AY300049. Asplenium aegeum Lovis, Reichstein Asplenium Zaffran; Crete, Jermy 9181 (BM); AY300103; AY300050. Asplenium aethiopicum (Burm.f.) Bech.; Kenya, Hemp 22 (BM); AF240654; AF525233. Asplenium affine Baker; Sarawak, Schneider 954 (SAR); AY300104; AY300051. Asplenium anceps Lowe ex Hook. etGrev.; 1111 (BM); AY300105; AY3000052. Boudrie 3254 (BM); AY300106; Madeira, angustum Sw.; French Guiana, Asplenium Vogel aureum Cav.; AY300053. Kessler 12765 (GOET); AY300107; AY300054. Asplenium anisophyllum Kunze; Madagascar, Asplenium 64 (BM); AF240651; AF240667. (BM); AF240642; AF525258. Asplenium auritum Sw.; Belize, Hughes Canary Islands, Vogel Cet-116 cult. BGBO 1-95, Vogel s.n. (BM); AY300108; AY300055. Asplenium bullatum Wall, ex Mett.; Asplenium bourgaei Boiss. ex Milde; China, Chen 0044 (BM); AY300109; AY3000056. caudatum G.Forst.; Borneo, Schneider 1097 (SAR); AY300110; AY300057. cordatum (Thunb.) Sw.; South Asplenium Asplenium AF525235. Africa, Vogel CET-119 (BM); AF240650; (BM); Asplenium cuneifolium Viv. var. cuneifolium; Germany, Vogel CUN-D-6 & Parsons 0233090 AF525265; AF525241. (UC); AY300111; AY300058. Asplenium cuspidatum Lam.; Costa Rica, Grantham AF525254. dalhouisae Hook.; Pakistan, TR 7634 (Gent); AF240641; dareoides Desv.; cult Jessen, Vogel 351 Asplenium Asplenium 123-124 (BM); AF525266; AF525243. (BM); AY300112; AY300059. Asplenium emarginatum PBeauv.; Gabon, Mundy 14 (BM); AY300113; AY300060. erectum Bory ex Willd.; Kenya, Hemp Asplenium ex F?e; cult. NYBG AF525244. 393/94A, Asplenium feei Kunze Vogel s.n. (BM); AF525267; Asplenium fissum Kit.; Bulgaria, Holmes 4/4/99 Cav.; Australia, (BM); AY300115; AY300062. Jermy 22816 (BM); AY300114; AY300061. Asplenium flabellifolium AF525239. Belize, Vogel (L.) Bernh.; Germany, Asplenium fontanum Asplenium formosum Willd.; Vogel F-3-92 (BM); AF525268; AZ034 (BM);AY300116;AY300063. 9 (BM); AY300117; AY300064. gemmiferum Schrad.; Kenya, Hemp et Beitel; cult. M. Rickard, Vogel 350 (BM); AY300118; AY300065. Asplenium hemionitis L.; Azores, Asplenium hallbergii Mickel (BM); AF240648; AF240663. Asplenium hispanicum (Cosson) Greuter et B?rdet; Spain, Vogel PLE-1 (BM); AY300119; Vogel HEM-9 hostmanii Hieron.; AY300066. Asplenium French Guiana, Boudrie 3157 (BM); AY300120; AY300067. Asplenium jahandiezii (Litard.) Rouy; France, Vogel Ja-1-83 (BM) ex spores ex herb. M. Boudrie; AY300121; AY300068. Asplenium Asplenium Boudrie 3249 (BM); AF525269; AF525245. Lam.; French Guiana, 17 (BM); AY300122; AY300069. loxoscaphoides Baker; Kenya, Hemp Croix 2010 (BM); AY300124; AY300071. Asplenium mannii Hook.; Malawii, Asplenium marinum L.; United Kingdom, Vogel MAR-5 AF240662. (BM); AF240647; (BM); AY300125; AY300072. Asplenium monanthes L.; Madeira, Vogel Mona-1 Asplenium montanum Willd.; USA, Vogel MONT-2-E 25 (BM); AY300126; AY300073. Asplenium myriophyllum (Sw.) C.Presl; Cuba, Morton juglandifolium Asplenium (UC);AY300127;AY300074. nidus L.; Madagascar, Asplenium AY300128; AY300075. Fischer T-9 (UC); AF525270; AF525246. Asplenium normale D.Don; Kenya, Hemp 5 (BM); Tau obtusatum G.Fbrst.; New Zealand, Asplenium obliquum Willd.; Chile, Chile 921642 (BM); AY300129; AY300076. Asplenium Tuku 24.3.98 (BM); AY300130; AY300077. Asplenium onopteris L.; Madeira, Vogel 1115 (BM); AY300131; AY300078. Asplenium petrachae (Gu?rin) DC subsp. bivalens D.E.Meyer; Majorca, Vogel PET-4 (BM); AF525271; AF525249. Asplenium phyl s.n. (SAR); AY300132; AY300079. Asplenium litidis DDon; Borneo, Schneider (L.) Britton, Sterns et Poggenb.; USA platyneuron s.n. (BM); AY300133; (BM); AF525272; AF525240. Asplenium polydon G.Forst.; New Zealand, Wardlow (Virginia), Vogel PLATY-lb AY300080. Asplenium 116 (BM); AY300134; AY300081. Asplenium praegracile Hieron.; Kenya, Hemp protensum Schrad.; Kenya, Hemp 2 (BM); AY300135; AY300082. richardii (Hook.f.) Hook.f.; New Zea (BM); AY300136; AY300083. Asplenium Asplenium rhizophyllum L.; USA, Vogel RHIZO-1 s.n. (BM); AY300138; AY300085. Asplenium 34550 (F);AY300137; AY300084. land, Wardlow ruprechtii Sa.Kurata; Siberia, Konovitch ruta-muraria L. subsp. ruta-muraria; Austria, Vogel RUT-16 (BM); AF525273; AF525242. Asplenium Asplenium sagittatum (DC.) Bange; Majorca, Vogel SAG-1 (BM); AF240646; AF525261. Asplenium salicifolium L.; French Guiana, Boudrie 3248 (BM); AY300139; AY300086. Asplenium sandersonii Hook.; Kenya, Hemp 12 (BM); AF525274; AF525247. Asplenium AF525262. seelosii Leybold; (BM); AF240645; scolopendrium L.; France, Vogel SCOL-73 Asplenium Italy, Vogel SEE-1 (BM); AY300140; AY300087. Asplenium septentrionale (L.) subsp. caucasicum Hoffm.; Turkey, Vogel SEPT-17 (BM); AF525275; AF525248. serratum L.; French Guiana, Boudrie 3253 (BM); AY300141; AY300088. Asplenium Asplenium simplicifrons FMuell.; cult. PNG 1993 smedsii Pichi Serm.; Kenya, Hemp 13 (BM); AY300143; AY300090. Asplen 2379, Vogel s.n. (BM); AY300142; AY300089. Asplenium ium sphenotomum Hillebr.; Hawaii, Wood 1278 (F); AY300144; AY300091. tenerum G.Forst.; Borneo, Schneider 1140 (SAR); AY300145; AY300092. Asplenium Asplenium theciferum (Kunth) Mett.; Kenya, trichomanes L. subsp. 20 (BM); AY300123; AY300070. trichomanes; Germany, Asplenium Hemp Vogel TT-25 (BM); AF525276; AF525237. 10 (BM); AF240652; AF525232. unilaterale Lam.; Kenya, Hemp et Grev.; China, Fraser-Jenkins varians Wall, ex Hook, 10046-10047 variabile (BM); AY300147; AY300094. Asplenium Asplenium 82 (BM); AY300146; AY300093. Asplenium viride Huds.; Austria, Vogel 1334 (BM); AF240649; AF525238. Hook.; Gabon, Mundy volkensii Hieron.; Kenya, Hemp 18 (BM); AY300148; AY300095. Asplenium Asplenium 10044-10045 (BM); AY300149; AY300096. yunnanense Franch.; China, Fraser-Jenkins distentifolium Tausch ex Opiz; Scotland, Vogel DIST-3 (BM); AY300100; AY300047. sp.; cult. RBGE 19992173, Vogel s.n. (BM); AY300101; AY300048. Hypolepis Paesia scaberula (A.Rich.) Kuhn; cult. RBGE 19764165, Vogel s.n. (BM); AY300098; AY300045. Polystichum vestitum (G.Forst.) C.Presl; cult. RGBE 19901551, Vogel s.n. (BM); AY300099; AY300046. Pteridium aquilinum (L.) Kuhn; Spain, Vogel PTER-1 (BM); AY300097; AY300044. Asplenium Athyrium 264 systematic botany of most sands trees. parsimonious The consensus strict Several topologies. of these were clades supported by high BS values in analyses of both data sets. No was conflict significant detected between two data sets (results not shown) when of approaches and Kellogg al. (1995) the applying the and Mason-Gamer (1996), indicating the combinability of the sets. data of Parsimony equally weighted the combined analysis characters sets with data in four most resulted for some found basal and clades a sister as of Hymenasplenium ferns asplenioid several as the separation such taxon derived to the clades. remaining Low (often below 50%) bootstrap support was found for the deep Satellite litis, and differs only clades (A. in the of some position trichomanes clade and terminal A. nidus clade). BS values are generally high if the clades also have high BS support in the equally weighted MP analysis sults of an overview 3 gives (Fig. 1). Table the MP analyses. of re the sensu base (parameters: A=0.2826, frequencies of C=0.2035, sites proportion and molecular clock not 1.2631, gamma shape a tree with Ln =-19007.32 recovered enforced) (Fig. G=0.2241, T=0.2898, invariable 0.4287, 2). The topology is similar to the ones found in theMP analyses but differs in the recovered relationships for taxa where two MP the to found different analyses inference found posterior support Bayesian pologies. values (p = 0.95) for all clades found inMP analyses with high BS support. Hymenasplenium (clade I in Fig. 2) is unambiguously as supported the sister to the remaining clade asplen ioid ferns (Figs. 1-3). The next strongly supported clade includes of two groups representatives of tropical asplenioid ferns (clade II in Fig. 2). This clade is strong ly supported ferns. Several as other sister to clades the are remaining found with asplenioid sup strong port from BS (Fig. 1) values and a high posterior prob ability: (clade III in Fig. 2) a basal clade including the satellite genus Pleurosorus, A. ruta-muraria, and A. cu neifolium and its relatives; (clade IV in Fig. 2) a clade including the satellite genera Ceterach and Phyllitis; (clade V in Fig. 2) a large clade of tropical ferns in cluding the satellite genera Loxoscaphe, Neottopteridas trum, and Thamnopteris; (clade VI in Fig. 2) a clade consisting of taxa assigned to the satellite genus Tara chia; (clade VII in Fig. 2) a clade including temperate as Ceterach, Camptosorus, are nested Thamnopteris Phyl within lato clade (Fig. 2). Several characters to de used fine satellite genera have evolved independently of asplenioid lineages leaf indumenta, and Presence groups. indication ferns. of these for For relationships. clade VII) is not (Lepichroa, is an characters example, a member of in dif leaves, Simple veins anastomosing although they characterize characters, moplastic per are ho some ambiguous A. cordatum the A. ceterach clade (Ceterach,clade IV), although it shares the dense leaf indumentum most with members of this clade. The rejection of relationships between A. cordatum (Lep ichroa) and A. ceterach (Ceterach) is congruent with the of anastomosing absence Maximum likelihood analysis of the combined data set using the "general time-reversible (GTR)model" and Asplenium as defined inKramer and Viane (1990).Only Hymenasplenium (clade I) is not nested in the Asplenium ferent in two such genera Pleurosorus, sistent taxa Lep and exception of some clades in the MP analyses using equally weighted characters (Fig. 1A). data acters Acropteris, Parasplenium, in Fig. 2) species and A. mar the type species, inum. Asplenium bullatum is sister to the clade that com clades these IV, V, and VI. Relationships prises among are resolved nine major in all clades with the analyses within char genera VIII* er nodes tree of theMP analysis using equally weighted the satellite Hemionitidastrum, Micrasplenium; and (clade VIII in Fig. 2) a clade includ ing both Mediterranean and South American (clade combined ferns. MP of the asplenioid analysis set with characters unequally weighted in a most resulted tree parsimonious single (Fig. IB, tree is very similar Table 3). This to the strict consensus and ichroa, Camptosorus, par trees (Fig. 1A; Table 3). High BS support simonious was et Farris ferns asplenioid trees (not shown) show a few clades nested inwidely unresolved [Volume 29 veins in the leaf blade in the a of the Ceterach clade putative synapomorphy et al. 2002). serratum (see also Pinter (Neot Asplenium re are not and A. topteridastrum) simplicifrons closely former, lated to A. nidus (Thamnopteris) despite leaf blades x = 36 or V). A chromosome is a synapomorphy (clade lower their simple base number of all of asplenioid ferns excluding the hymenasplenioids (clade I in Fig. 2). A second synapomorphy of the asplenioid clade is the presence of asplenioid sclereids in the inner root cortex ing that root inner of six are cortex cells in An lacking Hymenasplenium. an innermost cell layer consist com is a of the clade synapomorphy always with prising A. aethiopicum through A. caudatum (clade VI in Fig. 2). This clade corresponds to the proposed satellite genus these Tarachia ferns (syn. the veins sect. In Sphenopteris). at a very arranged or sometimes These parallel. Asplenium and sori acute to the costae angle ferns mostly have subcoriaceous less scaly leaves. are blades and more or Phylogenetic relationships among taxa of clade V (Fig. 2) are unclear because different topologies were recovered with different analytical methods. The first of these clades consists of tropical ferns including A. nidus, A. serratum, and A. theciferum (Fig. 2). The A. nidus clade comprising A. nidus and A. phyllitidis (Thamnopteris)was found inML analyses as sister to a clade of Australasian taxa A. consisting simplicifrons A. whereas results of MP obliquum, through analyses a clade indicate A. an with relationships comprising SCHNEIDER ET AL.: ASPLENIUM 2004] PHYLOGENY 265 B A ???????mmmmmmmmimm?miimm^miim pteridium 84 f? Paesia L? Hypolepis Polystichum Athyrium 100? /4. abscissum ^- hostmanii 98 fl? ^- erectum 100 ? r"l [?oof? A myriophyllum ^T? ' ,4.marinum | [ A aegaeum j ?op y I I I? A.fissum 97 ,4. anceps 97 | ^L, A trichomanes 66 J1 1001?4 mpnantkes A normale 100? /i. bourgaei ? ? A. jahandiezii | 100 ,4.fontanum | r*| ^- P^trarchae 1^L-T"" mmm\mmm a. platyneuron PI I I r? i4. rhizophyllum ? I? A ruprectnii j 64 |? ^- dareoides I L- A.flabellifolium ? 100 ,4. cordatum 52 I? A hemionitis ? 98 ,4. seelosii L? A septentrionale I 96 A varions y? I? A. yunnanense | ,4. aethiopicum I 76? 88JT1,-- A protensum 100JHl-Avolkensii | ? ?4L ,. praegracile j "M 53 Pteridium Paesia Hypolepis Polystichum Athyrium A. abscissum A. hostmanii A. erectum A. myriophyllum A. marinum A. aegaeum A.fissum A. anceps A. trichomanes A.formosum A. hallbereii A. monantnes A. viride A. normale A. bourgaei A. jahandiezii A. fontanum A. platyneuron A. rhizophyllum A. ruprechtii A. dareoides A.flabellifolium A. petrarchae varians yunnanense cordatum hemionitis seelosii septentrionale aethiopicum protensum volkensii praegracile affine sphenotomum polydon caudatum bullatum angustum serratum emarginatum A. tenerum A. nidus A. phyllitidis A. obliquum A. obtusatum A. richardii A. simplicifrons A. anisophyllum A. feel smedsii gemmiferum sandersonii mannii loxoscaphoides theciferum variabile dalhousiae aureum sagittatum scolopendrium cuneifolium montanum onopteris A. hispanicum A. ruta-muraria A. auritum A. cuspidatum A. juglandifolium A. salicifolium A. unilaterale ^ <#"* , Jffir/?. sphenotomum 1001 54 'j?OjrL-. ^LJ L_ polydon 1^1 ,4. caudatum >4.bullatum 1OOr? A angustum 7 lO^TT--. A serratum f? ??J I A emarginatum Ii mil. v4. tenerum ^J 98 l?' -4-h/?/ms Ii L? A. phyllitidis ^- obliquum oo ?2Qr~ A n r~ I 58 'jiTI-? Ijl I 72 i 96 _I r obtusatum ,4. richardii A simplicifrons /I. anisophyllum 70 L- A smedsii 81r? A gemmiferum ?. sandersonii * ^ II ?STL A mannii I l?0l 1100 f? A loxoscaphoides I? A theciferum ' A variabile W lOpj? y4.dalhousiae 89 ?L- A aureum 100 j y? A sagittatum \ 100"? ^- scolopendrium A cuneifolium 1001 A montanum ii94|?' 97I A onopteris ^L? j 1100 r? A hispanicum L? .4. ruta-muraria 100 ?j? ^- ?wr/iwm 1?0-T" A 100 cuspidatum |i? I f? A. juglandifolium A lOO*?salicifolium '^mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm A. Unilaterale 100 83 91 tree found in MP analyses with equally weighted Fig. 1. Comparison of the single most parsimonious characters (A) and trees found inMP analyses with unequally weighted the consensus tree of four most parsimonious characters (B). The analyses are based on the combined data set. Bootstrap values higher than 50% are noted above or below branches. gustatum through A. tenerum. Similarly, the A. thecifer um clade (Loxoscapheincluding A. loxoscaphoidesand A. theciferum) is either sister to a primarily African clade comprising taxa A. anisophyllum to A. mannii (ML) or is a basal branch of clade V (MP with unequally weighted characters, Fig. IB). The second problematic clade (clade VII) consists mostly of temperate ferns such as A. platyneuron and A. trichomanes (Fig. 2). In 266 [Volume 29 SYSTEMATIC BOTANY Table 3. Comparison characters for separate data of results generated with maximum analysis using equally weighted parsimony sets of rbcL and trnL-F spacer (equally weighted characters for the combined data set. characters) and equally and unequally weighted = = CI Retention Index. Index, RI Consistency Number of informative Tree characters Number of MP settrees Data Combined equally Combined unequally 6286 rbcL 4212 trnL-F spacer 4 weighted weighted this 1A), clade a includes 413 1716 276 1316 0.4103 1 MP analyses using equally weighted polytomy. large 0.3876 3082 4987.28 0.4001 anal port ues. the but either in recovered bootstrap petrachae Asplenium lack sup val strong confidence topologies in posterior is recovered or as a sister a of clade including A. fontanum and A. platyneuron inML sisting to a clade it is sister whereas (Fig. 2), of A. varions and A. analyses con in the MP yunnanense anal characters (Fig. IB).MP ysis using unequally weighted characters recovered using equally weighted as sister to A. (Fig. 1A). Asplen platyneuron are found as sister taxa ium cordatum and A. hemionitis analyses it instead in MP in ML analyses, but analyses. With is not this relationship the exception of these supported differenc and ML) found jor temperate A. scolopendrium are with uniform relatively the few tropical species nested within and clade obtusatum some southern nested within at ogy suggests from regions ate clades, of which ferns and as A. such The temperate less several phyllum clade). Asplenioid of several part southern ferns of northern clades, temperate temperate whereas regions are regions ferns asplenioid either members of are of the clade VII, such as A. dareoides and A. flabellifolium, or are nested satum within and A. a richardii. tropical None subclade comprising clade of the V, such tropical as A. clades obtu are divided into paleotropical and neotropical subclades. One tropical clade is restricted to the New World (A. myriophyllum clade [clade VIII*]) whereas the other that occur species in Af A. taxa terrestrial preferably capable in drier conditions (A. aethiopicum through of growing Other praegracile). nidus clade the basal-most are nested epiphytes V). The (clade clades current within results ferns were of asplenioid the indicate epi phytes. Discussion Phylogenetic Reconstruction and the Problem of Fre quent Reticulate Evolution of Asplenioid Ferns. Retic ulate is well evolution in known ferns asplenioid from Europe (Brownsey 1976; Lovis 1977; Vogel et al. 1996, 1998a, b, c) and North America (Wagner 1954;Werth et al. 1985a, et al. b; Wagner chromosome taxa and were is often number some of taxa were to unable these However, these taxa In view 1993). tried to sample only diploid ploid topol regions by temper is species rich (A. myrio one only of colonizations asplenioid of tropical tropical colonizations extensive exception the A. trichomanes temperate species the A. nidus clade. four least a of 0.6362 comprise same the clade [clade VII]) and five major tropical clades (A. unilaterale clade [clade I],A. auritum clade [clade II],A. nidus clade [clade V], A. aethiopicum clade [clade VI], and the A. myriophyllum clade [clade VIII*]). These clades clades tropical that topologies. three ma (Fig. 3) recovered analysis clades clade III], [clade (A. ruta-muraria trichomanes clade [clade IV], and A. Biogeographic 0.6347 rica and South America (A. auritum clade [clade II]) or in all tropical regions (A. unilaterale clade [clade I],A. nidus clade [clade V], and A. aethiopicum clade [clade VI]). Reconstruction of ancient distributions using DIVA and MacClade 4.0 indicates a Eurasian distri bution for several deeper nodes (Fig. 3). True epiphytes occur in four major clades (I, II,V, VI in Fig. 3). One group of obligate epiphytes forms a single subclade (A. affine through A. caudatum)within the A. aethiopicum clade (clade VI), which is sister to a A. es, the three kinds of analyses (MP using equally weighted characters, MP using unequally weighted characters, four 0.6380 0.6546 689 yses using unequally weighted characters (Fig. IB) and in ML analyses (Fig. 2), the clade is completely re solved 0.3821 689 characters (Fig. In MP CIRI length of this we taxa. Unfortunately could be tropical polyploids. Poly included to represent groups sample taxa are material unlikely the for unknown if we taxa. diploid to introduce conflicts from in chloroplast phylogenies because it has been dem onstrated that the chloroplast is generally inherited mostly maternally in asplenioid ferns (Vogel 1998c) as well as in other derived leptosporangiate ferns (Stein and Barrington 1990; Gastony and Yatskievych 1992). the ma identifies the chloroplast genome region in events. In ad involved parent hybridization A. the exclusion of the two species, dition, hallbergii to be did not known and A. monanthes, apomictic Thus, ternal change the recovered topology (results not shown). Classification of Asplenioid Ferns. The results pre sented here support Hymenasplenium as the sister lin 2004] SCHNEIDER ET AL.: ASPLENIUM Pteridium Paesia 0.96 1.001 1.00 1.00 0.721 0.58 0.9d 0.82 0.83 1.00 1.00 VI 0.73 .00 B 1.00 IV 1.00 III l.OOl 1.00 A II I 267 PHYLOGENY Hypolepis Polystichum Athyrium A. abscissum A. hostmanii A. erectum A. myriophyllum A. marinum ^ A. aegaeum A.fissum A. anceps A. trichomanes A.formosum A. hallbergii A. monantfies A. vi ride A. normale A. bourgaei A.jahandiezii A.fontanum A. platyneuron A.petrarchae A. hemionitis A. rhizophyllus A. ruprechtii A. cor datum A. varions A. vunnanense A.'seelosh A. septentrionale A.dareoides A.flabellifolium A. aethiopicum A.protensum A. volkensii A. praegracile A. affine A. sphenotomum A. poly don A. caiidatum A. buUatum A. angustatum A. serration A. emarginatum A. tenerum A. anisophyllum A.feei A. smedsii A. gemiferum A. sandersonii A. mannii A. loxscaphoides A. theciferwn A. nidus A.phyllitidis A. obliquum A. obtusa turn A. richard i A. simplicifrons A. varia hi le A. dalhousiae A. aureum A. sagittatum A. sc?lopendrium A. cuneifolium A. montanum A. onopteris A. hispanicum A. ruta-muraria A. auritum A. cuspidatum A. juglandifblium A.salicifolium A. unilaterale Type of Asplenium Micrasplenium Par asplenium Hem ionitidastrum Camptosorus Lepichroa I Acropteris Tar achia Neottopteridastrum I Loxoscaphe Thamnopteris Ceterach Phyllitis Onopteris Pleurosorus I Hymenasplenium Fig. 2. Classification to the right of species names of asplenioid ferns based on the ML tree. Satellite genera are indicated a vertical in the right column line. Arrow of the type species Asplenium marinum. Confidence indicates position values inference are given above or below branches. Selected characters: A = asplenioid generated using Bayesian synapomorphic = basic chromosome in inner cortex; C = innermost cell layer number of x = 36 and roots with asplenioid sclereids sorus; B thick inner cell walls six asplenioid of inner cortex with and sorus in a very acute angle to costa. sclereids with extremely Roman numbers I to VIII indicate major clades that are discussed in the text. with 268 [Volume 29 SYSTEMATIC BOTANY A. A. A. A. A, A. abscissum hostmanii erectum myriophyllum marinum aegaeum AJlSSWL \ anceps A. trichomams A. formosum A. hallbergii A. monanthes A, viride A. normale A. frourgaei A.jahandiezii A. fontanum A. platymuron A. petrarchae A. heminnitis A. rhiznphvllum A. ruprechtii A. cor datum A, variam A yunm yunnamm<? A seelosn 'seelo A. septentrionale A. dareoides 1 = EUROPE 2 = ASIA 3 = OCEANIA 4 = AFRICA 5 = SOUTH AMERICA 6 = NORTH AMERICA A.flabdlifolium 4/5 2/4 4/5 1 2/4 2/4 4 A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. A. aethiopicum protensum vol kens ii praegracile affine sphenotomum poly don caudatum bullatum I epiphytes angustum serratum I epiphytes emarginatum tenerum anisophyllum feei smedsii gemmiferum sandersonii mannii loxscaphoides theciferum nidus V A rkhardii ???1 III II epiphytes phyllitidis A, ohliquum A. obtusatum 2/3 IV I epiphytes A simplicifrons A. varlabile A. dalhousjae A. aureum A. A. A. A. A. A. A. A. A. A. A. A. I epiphytes sagittatum srolopendrium cuneifolium montanum onopteris hispanicum ruta-murarin auritum cuspidatum juglandifolium salicifolium unilaterale epiphytes epiphytes I and ecology plotted onto the ML tree in Fig. 2. Temperate Fig. 3. Biogeography groups species are underlined. Epiphytic are indicated. Ancestral areas as reconstructed above the branches. Open distribution using DIVA are indicated with numbers = = of temperate of tropical regions by temperate circles colonization taxa, solid circles regions putative colonization putative in the text. I to VIII indicate major clades that are discussed by tropical taxa. Roman numbers SCHNEIDER ET AL.: ASPLENIUM 2004] to all other eage ellite the stud confirm et al. (1998, 1999a). All the other sat so genera and ferns asplenioid ies of Murakami are nested far studied within as this plenioid clade; there is no support for these at the generic level without redefinition of Asplenium. The weak support for several deeper clades and the limited taxon note. deserve Close of a new the proposal prohibit sampling classi identified in our study fication here, but two groups the A. between relationships auri tum group (A. auritum and A. cuspidatum) and the A. salicifolium group (A. juglandifolium and A. salicifolium) have not been previously suggested although the lin eage (clade II) iswell supported here. Furthermore, the monophyletic lineage (clade VI) including the A. ae A. and thiopicum affine subgroups has been hypothe sized on based root anatomical features (Schneider 1997) and leaf characters (Presl 1836;Mettenius 1856; Morton and Lellinger 1966) and gains new support our molecular from in a are commissure submarginal for unique the Thamnopteris clade (A. nidus and A. phyllitis in clade V). This second character distinguishes Thamnopteris from other such as ferns. asplenioid s.s. Asplenium Other groups as de proposed and Darea (Euasplenium) fined in older classifications (Hooker and Baker 1874; Diels 1902) are unlikely to be natural units. This was already suspected by Kramer and Viane (1990). Darea might be a natural unit if the group ismore rigorously defined as indicated in phylogenetic studies (Gastony and Johnson 2001). The small number of taxa included in previous studies limited of taxonomic the range con clusion. Gastony and Johnson (2001) had only 27 taxa six are of which two based putative on a dicates that defined in of Hymenasplenium and representatives is members of Darea. The present study and in much taxonomic larger sampling a Darea taxon as is probably paraphyletic classification of comprehensive asplenioid ferns (Hooker and Baker 1874; Diels other and Loxoscaphe, Neottopteridastrum, within the Darea nested clade. are Thamnopteris Some as anastomosed such features, 1902), because as such segregates veins, have taxo nomical utility, despite having evolved independently in several tion of based clades. on their servation tosorus Three in clade These features in combination clades rarity in of allow with asplenioid clades; particular and the Ceterach versions the the other ferns examples clade. classification identifica characters, con and their are the Camp Asplenium. ium in a In the second, slightly plenium (including Boniniella) segregated at generic lev el. The third version additional accepts reduced all are accepted sense, accord genera ing to the topology recovered with a phylogenetic ap of these to Several be named could lineages to that are nested satellite genera correspond existing sev within create these This clades. approach might proach. eral ill-defined genera (Gastony and Johnson 2001). As an A. to ruta-muraria could be transferred example, it is the sister to this segregate because Pleurosorus, ge nus. new names this version for requires Accepting occurrence several clades. of hybrids be However, tween members of different such as the clades, major formation of hybrids A. montanum between and A. rhi zophyllus (Wagner 1954;Werth et al. 1985a, b) and hy brids A. between and A. aegeum are hybrids known between and clade asplenium ruta-muraria second option The present studies vious (Brown this third version. So far, no sey 1976), conflict with the of members remaining the Hymen ferns. asplenioid support the that segregates Hymenasplenium. are with those of pre congruent on smaller based taxonomic sampling results and exclusively on rbcL (Murakami et al. 1999a, b; Gas tony and Johnson 2001). Murakami (1999a, b) sampled heavily within Hymenasplenium and Thamnopteris. Sub these sequently, also groups the dominate of sampling Gastony and Johnson (2001), because this study is based on the data set of Murakami (1999a, b). Both studies lack of representatives several clades major such as clade II (A. auritum toA. salicifolium) and clade VIII (A. abscissum to A. fissum) (Figs. 2, 3). Our study includes only one of Hymenasplenium, representative which was more thoroughly sampled in Murakami (1999a, b). The monophyly of this group iswell estab lished (Murakami pled more et al. Murakami 1999a). thoroughly within sam also the Thamnopteris group, our a more includes col study comprehensive of Darea and Tarachia. All studies that Hy agree is sister to all other ferns (Mu menasplenium asplenioid whereas lection rakami et al. 1998, 1999a; Gastony and Johnson 2001). A mainly paleotropical clade including Thamnopteris and as was found Loxoscaphe the taxa were included Gastony and Johnson as sister Loxoscaphe clade (A. anisophyllum 2001). to a in all so studies (Murakami In our study, nearly to A. mannii) far, as long et al. 1999a, we recovered exclusively that was b; African not sam pled in previous studies. This clade includes taxawith highly divided leaves growing as epiphytes such as A. and A. mannii. all studies found ev Finally, for a temperate clade of asplenioid ferns com such as A. trichomane and A. rhizophyl prising species our a wider lum. covered range of Although sampling sandersonii of asplenioid ferns are compatible with the phylogeny presented here and with the results of the previous studies by Murakami et al. (1998, 1999a) and Gastony and John son (2001). In the first, all asplenioid ferns are classified as 269 Thus, the absence of hybridization would data. Simple leaves have evolved independently in several clades of asplenioid ferns, but simple blades with veins merging PHYLOGENY excluding as Asplen Hymenas idence taxonomic diversity, further sampling is needed to un ravel the phylogeny of this diverse group of ferns. Biogeographic and Ecological Aspects. Asplenioid ferns include several species of wide distribution, in systematic 270 several particular A. pendrium, and manes, Northern temperate A Hemisphere. such species A. septentrionale, A. viride, which as A. scolo A. tricho ruta-muraria, are few of trichomanes) have distributions in widespread these species the (e.g., A. taxa such as A. tropical a distribution but an pantropical Southern Some Hemisphere. s.l. have aethiopicum African /Australian or African/American distribution occurs more frequently (Moran and Smith 2001; Parris occur in the A. 2001). Remarkable hispan disjunctions icum aggregate southern (Pleurosorus?Iberian Europe, New and A. dal South America, Australia, Zealand) southwest and housiae Yemen, U.S.A., (West Himalaya, northwest that indicate Species pairs are found among temperate Mexico). geographical history tions have many species in general, diploid and, as events commonly are events of ferns. for a evidence of correspondence lation has et al. 2002). Schneider 2002; been found between separation of Old World ferns. asplenioid the phyloge Hymenasplenium African include and deeper far, no branches and New World several Instead, are So a and such in as A. anisophyllum IA. feei and relatives as suggested by Moran and Smith (2001). Instead of the separation into Old and New World clades, ferns asplenioid show a separation of the deeper branches into tropical and temperate clades. A primarily temperate clade is also found within the polygrammoid ferns but this is nested within a higher clade including mainly neotropical groups (Wolf et al. 2001). Other fern lineages that have been studied so far using phyloge netic methods Temperate or at least mostly, exclusively, are rare or from these missing are ferns tropical. analyses (Conant et al. 1995; Crane et al. 1995; Pryer et al. 2001; Schneider et al. 2002). Other studies included nearly ex clusively temperate taxa (Hauk 1995; Gastony and lin gerer 1997) or their sampling was focused on North America (Gastony and Rollo 1995;Haufler and Ranker 1995). Our results indicate two tropical clades as basal from which two temperate clades are derived. in the evolu preferences Flora" "Boreotropical the hy Ter the Early during tiary (Wolfe 1975,1997; Tiffney 2001; Davis et al. 2002), the Early Eocene, the warmest in an overall of cooling period in particular during riod in the Cenozoic (Tiffney 2001). Evidence formigration + Eurasian of North taxa between pantropical pe cli Eurasia of studies phylogenetic several groups angiosperm that display disjunctions in their current distribution (Azuma et al. 2001; Donoghue et al. 2001; Fritsch et al. 2001; Lavin et al. 2001;Manos and Stanford 2001; Vin nersten and Bremer 2001; Xiang and Soltis 2001) includ "Gondwana et al. 2002). (Davis disjunctions" Evi dence for this biogeographical hypothesis has not pre viously been inferred for ferns. Not only do asplenioid and other derived fern groups as such blech athyrioid, to those of angiosperms but also the fossil indi record after the K/T boundary (Collinson 2001; Skog 2001). Current distri bution of these derived ferns is likely to have been same the by environmental as such changes, cooling and the existence of land bridges and island the current distribution shaped the their differences between despite that groups, sperms, of angio reproduc tive systems (Vogel et al. 1999a;Wolf et al. 2001). corre groups species of a shaped clades such as major and some sister clades pantropical South American tropical cates that these ferns have diversified proposed netic split of deeper nodes into clades with distribu tions of Old and New World tropics (Conant et al. 1995; Pryer et al. 2001; Wolf et al. 2001; Smith and Cranfill trichomanes noid, and dryopteridoid ferns show distributions similar for ferns in general by Wolf et al. (2001). Phylogenetic studies of fern lineages have repeatedly found and temperate pothesis ing (Brownsey as significance, tween in shared 2001; Parris 2001; Moran and Smith 2001) but rather that vicariance the A. and North America during the Tertiary have been found restricted distribu very taxa have smaller ranges favored within monanthes] tion of asplenioid ferns. This pattern fits with American than polyploid taxa (Vogel et al. 1999a). These patterns indicate that the current distribution of asplenioid ferns cannot be explained exclusively by dispersal and extinction to A. group [A. anceps to A. viride]) and tropical to temperate (A. obliquum group [A. obliquum to A. richardii]within the clade V) are found, indicating at least six shifts be mates Asplenium rhizophyllum in eastern North America is sis ter to A. ruprechtii (Camptosorus sibiricus) in Siberia. However, 29 [Volume [A. formoum into the that extend botany Other switches from temperate to tropical (A.formosum group The clades temperate northern but hemisphere temperate regions of the comprise species mainly some include of also species the southern of as such hemisphere A. flabellifolium and A. dareoides. Some temperate fern species, distributed, areas. curs A especially whereas notable in Iberian A. are disjunction southern Europe, ferns asplenioid South America, Aus (Salvo et al. 1982). Other tem tralia and New Zealand perate are widely extremely to very small restricted oc is Pleurosorus, which trichomanes, others of the southern hemisphere are part of a tropical fern clade (A. richardii and A. obli quum), indicating independent colonization of these re gions by tropical asplenioid ferns once and by temper clade ferns at least twice (A. hispanicum asplenioid In A. estimation of the trichomanes future, clade). us to compare we times will, allow divergence hope, in time. The to these events of methods application to reconstruct times estimate and biogeo divergence ate and graphical events will be of particular current distributions with clearly interest for the separate occurrences such as the A. hispanicum clade (Pleurosorus) and A. dalhousiae (Ceterach).These wide distributions are ex plained distance either dispersal as recent of long examples relatively or as relictual distributions caused SCHNEIDER ET AL.: ASPLENIUM 2004] by extinction and structure population areas. The and dispersal characters such as -. the of studies Detailed of and breeding system Several additional support. the correlation between species may provide ies have demonstrated distance taxa. these of position isolated is suggested by the basal phyloge latter hypothesis netic in small survival these stud long polyploidy, and breeding system for some widely distributed as plenioid fern species (Crist and Farrar 1983; Ranker et al. 1994; Schneller 1996; Schneller and Holderegger 1996; Suter et al. 2000; Trewick et al. 2002). Perspectives. limited sample genome. plast are unresolved The of results taxa and Several parts are based on a presented two of the chloro regions of the recovered topology Further studies supported. of taxa, together sampling or weakly a wider using data of the chloroplast with from other regions sequence or of other (A data genomes. genome components plant set with more than 100 species and four chloroplast ge are nome needed regions is currently under Nuclear construction.) genes would not only improve the quality of our phy logenetic inferring assessments reticulate but would evolution. be A critical further for studies challenge to fu ture studies will be the study of the historical bioge ography of the genus incorporating fossil evidence and estimates employing vicariance between times of divergence and dispersal We thank the keepers and curators of Acknowledgements. the herbaria and living collections of the Chelsea Physic Garden, the Natural History Museum, London (BM), and the Royal Botanic to use living collections Garden Edinburgh (RBGE) for permission and some fragments of herbarium vouchers for DNA extraction, and several friends and colleagues, Michel Boudrie, Patrick Brown sey, Ray Cranfill, Claudia and Andreas Hemp, Jacquie Ujetz, Nick for providing field, Mundy, Alison Paul, and Alastair Wardlaw laboratory and herbarium assistance and/or supplying material. We are very grateful to Alan R. Smith, Ray Cranfill, Alison Shaw, reviewer for very helpful com Tom Ranker, and an anonymous ments on an earlier draft of the manuscript. This research was and the Natural History supported by N.E.R.C. grant GR3/12073 Museum Research Fund. Literature Cited Adams, C. D. 1995. Aspleniaceae. Pp. 290-32 in Flora Mesoameri -and cana, vol. 1, Psilotaceae a Salviniaceae, ed. G. Davidse, [vol. eds. R. C. Moran and R. Riba]. Mexico D.F.: Ciudad Universitaria: Universidad Nacional Aut?noma de M?xico. V. Rico-Gray, and L. B. Thien. Azuma, H., J.G. Garc?a-Franco, the bioge -and 2001. Molecular of the Magnoliaceae: phylogeny American ography of tropical and temperate disjunctions. Journal of Botany 88: 2275-2285. and J.D. Lovis. 1985. Asplenium Bir, S. S., C. R. Fraser-Jenkins, for the status of Cet panjabense sp. nov. and its significance erach and Ceterachopsis. Fern Gazette 13: 53-64. P. J. 1976. A biosystematic Brownsey, investigation of the Asplen ium lepidum complex. Botanical Journal of the Linnean Society 72: 235-267. -. -. 1977. A taxonomic revision of the New Zealand species of Asplenium. New Zealand Journal of Botany 15: 39-86. 1998. Aspleniaceae. Pp. 295-327 in Flora of Australia, vol, 271 48, Ferns, Gymnosperms, and Allied Groups, ed. P.M. McCarthy. Melbourne: ABRS/CSIRO. 2001. New Zealand's pteridophyte of ancient flora?plants lineage but recent arrival? Brittonia 53: 284-303. Burrows, J. E. 1990. Southern African ferns and fern allies. Sandton: Frandsen Publishers. 1998. Cytotaxonomic Cheng, X. and N. Murakami. study of ge nus Hymenasplenium in Xishuangbana, South (Aspleniaceae) western China. Journal of Plant Research 111: 495-500. Crist, H. 1897. Die Farnkr?uter der Erde. Jena: G. Fischer Press. 1983. Genetic load and long dis Crist, K. C. and D. R. Farrar. tance dispersal in Asplenium platyneuron. Canadian Journal of Botany 61: 1809-1814. C. 1906. Index Filicium. Hafniae: H. Hagerup. Christensen, M. E. 2001. Biogeography of Mesozoic Collinson, leptosporan giate ferns related to extant ferns. Brittonia 53: 236-269. D. S., L. A. Raubeson, D. K. Attwood, and D. B. Stein. Conant, to 1995 [1996]. The relationships of Papuasian Cyatheaceae New World tree ferns. American Fern Journal 85: 328-340. et E. B. 1947. Genera Filicum. (Annales Cryptogamici Copeland, Chronica vol. 5). Waltham, Massachusetts: Phytophaologici Bot?nica. and J. F.Wendel. 1995 [1996]. Phy Crane, E. H., D. R. Farrar, leads to logeny of the Vittariaceae: Convergent simplication a polyphyletic Vittaria. American Fern Journal 85: 283-305. R. 2000. Has ecological specialization driven a funda Cranfill, mental phylogenetic split in the Polypodiales? American Jour nal of Botany 87(6, supplement): 93. 2002. C. C, C. D. Bell, S. Mathews, and M. Donoghue. evi Laurasian migration explains Gondwana disjunctions: dence from Malphigiaceae. Proceedings of theNational Academy Davis, to discriminate events. PHYLOGENY Diels, of Science USA 99: 6833-6837. L. 1902. Asplenium. Pp. 222-245 in Die nat?rlichen Pflanzen familien, I. Teil, Abt. 4, eds. A. Engler and K. Prantl. Leipzig: W Engelmann. M. J.,C. D. Bell, and J.Li. 2001. Phylogenetic patterns Donoghue, in northern hemisphere plant geography. International Journal of Plant Sciences 162(Suppl): S41-S52. Doyle, 1987. A rapid DNA isolation proce J. J. and J. L. Doyle. dure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15. and C. Bult. 1995. Test J. S., M. K?LLERSJ0, A. G. Kluge, ing significance for incongruence. Cladistics 10: 315-319. an ap limits on phylogenies: Felsenstein, J. 1985. Confidence proach using bootstrap. Evolution 39: 783-791. Farris, P.W, C. M. Morton, T Chen, and C. Meldrum. 2001. of the Styracaceae. International Phylogeny and biogeography Journal of Plant Sciences 162(Suppl.): S95-S116. G. J. and W P. Johnson. 2001. Phylogenetic placements Gastony, of Loxoscaphe thecifera (Aspleniaceae) and Actinopteris radiata (Pteridaceae) based on analyses of rbcL nucleotide sequences. Fritsch, American Fern Journal 91: 197-213. D. R. Rollo. 1995. Phylogeny and generic circumscrip tion of cheilanthoid in ferns (Pteridaceae: Cheilanthoideae) ferred from rbcL nucleotide sequences. American Fern Journal 85: 341-360. 1997. Molecular systematics and a ferns (Dryopteridaceae: taxonomy of the onocleoid Onocleae). American Journal of Botany 84: 840-849. and G. Yatskievych. 1992. Maternal inheritance of the M. C. Ungerer. revised genomes in cheilanthoid ferns. chloroplast and mitochondrial American Journal of Botany 79: 716-722. K. M. Pryer, K. Ueda, M. Ito, R. Sano, Hasebe, W, P. G. Wolf, G. J.Gastony, N. Murakami, J.Yokoyama, J.R. Manhart, and W D. Hauk. 1995 [1996]. E. H. Crane, C. H. Haufler, Fern phylogeny based on rbcL nucleotide sequences. American Fern Journal 85: 134-181. C. H. and T. A. Ranker. 1995. rbcL sequences provide Haufler, 272 systematic botany sister species of the fern among insights phylogenetic genusPolypodium. American Fern Journal 85: 361-374. assessment of relationships among Hauk, W. D. 1995. A molecular cryptic species of Botrychium subgenus Botrychium (Ophiog -1995. lossaceae). American Fern Journal 85: 375-394. D. 2002. Multicilor Sequence Alignment Editor, http:// Hepperle, -and dominix0.tripod.com. and C. Prada. 2001. Isoenzyme varia A., S. Pajar?n, Herrero, tion and genetic relationships among taxa in the Asplenium obovatum group (Aspleniaceae, Pteridophyta). American Jour-and nal of Botany 88: 2040-2050. -. R. E. 1954. Flora ofMalaya 2. Singapore: Singapore Gov Holttum, ernment Printing office. -and 1974. Asplenium Linn. Thamnopteris Presl. Gardens' Bulletin Singapore 27: 143-154. Hooker, W. J. and J. B. Baker. 1874. Synopsis Filicum, 23e. London: R. Hardwicke. -, 2001. MrBayes: Bayesian in Huelsenbeck, J. P. and F. Ronquist. ference of phylogeny. Bioinformatics 17: 754-755. A. Herrero, and S.-, T., J. A. Lopez-Saez, Iwashina, J. Kitajima, Matsumoto. from Asplenium fore 2000. Flavonol glycosides ziense and its five related taxa and A. incisum. Biochemical Sys tematics and Ecology 28: 665-671. Johns, R. J. 1991. Pteridophytes of tropical East Africa, a preliminary -, check-list of the species. Kew: Royal Botanic Gardens. 1998. Assessing Johnson, L. A. and D. E. Soltis. congruence: em data. Pp. 297-348, inMolec pirical examples from molecular ular systematics of plants II, DNA sequencing, eds. D. E. Soltis, P. S. Soltis, and J. J. Doyle. Boston: Kluwer Academic Pub lishers. P. K. and R. Shankar structure 1989. On the petiolar Khare, of some Asplenium species. Canadian Journal of Botany 67: 95-103. 1990. Aspleniaceae. K. U. and R. Viane. Pp. 52-57 in The families and genera of vascular plants. Vol. I.. Pteridophytes and gymnosperms, ed. K. Kubitzki [vol. eds. K. U. Kramer and P. Kramer, S. Green]. Heidelberg: Springer-Verlag. A. Richman, M. J. Lavin, M., M. F.Wojciechowski, J. Rotella, A. B. and Matos. 2001. Identifying Tertiary ra Sanderson, to diations of Fabaceae in the Greater Antilles; alternatives cladistic vicariance analysis. International Journal of Plant Sci ences 162(Suppl.): S53-S76. Lovis, J. D. 1977. Evolutionary patterns and processes Advances in Botanical Research 4: 229^15. in ferns. F. and S. Zoller. 2001. STMatrix 2.2. Computer program Lutzoni, are distributed by the authors (Department of and manual Biology, Duke University, Box 90338, Durham, North Caro lina 27708, USA). D R. and E. P. Maddison. 2000. MacClade 4.0. Sun Maddison, -,-, Inc. derland: Sinauer Associates Manos, P. S. and A. M. Stanford. 2001. The historical biogeog raphy of Fagaceae: tracking the Tertiary history of temperate Interna and subtropical forests of the northern hemisphere. tional Journal of Plant Sciences 162(Suppl.): S77-S93. R. and E. Kellogg. 1996. Testing for phylogenetic Mason-Gamer, conflict among molecular data sets in the tribe Triticeae (Gra mineae). Systematic Biology 45: 524-545. G. 1856. Filices Lechlerianae, chilenses as peruanae. Leip Mettenius, zig: W. Engelmann. 1980. Stelar structure of Mitsuta, S., M. Kato, and K. Iwatsuki. Botanical Magazine (Tokyo) 93: 275-290. the Aspleniaceae. R. C. and A. R. Smith. 2001. Phytogeographic relation Moran, and African-Madgascan ships between neotropical pterido phytes. Brittonia 53: 304-531. C. V. and D. B. Lellinger. 1966. The Polypodiaceae sub Morton, in Venezuela. Memoirs of theNew York family Asplenioideae Botanical Garden 15: 1^9. Murakami, N. 1992. Stelar structure of Asplenium obtusifolium and [Volume 29 its allied species in the New World tropics, with comparison to the Asian members of Asplenium sect. Hymenasplenium. Bo tanicalMagazine (Tokyo) 105: 135-147. Systematics nus Hymenasplenium 108: 257-268. and evolutionary (Aspleniaceae). S. I. Hatanaka. Asplenium biology of the fern ge Journal of Plant Research 1988. Chemotaxonomic section Hymenasplenium (Tokyo) 101: 353-372. studies (Aspleniaceae). of Botanical Magazine. R. C. Moran. 1993. Monograph of the neotropical sect. Hymenasplenium species of Asplenium (Aspleniaceae). Annals of theMissouri Botanical Garden 80: 1-38. B. A. Schaal. 1994. Chloropast DNA variation and the phylogeny of Asplenium sect. Hymenasplenium (Aspleni aceae) in the New World 245-251. tropics. Journal of Plant Research 107: S. Nogami, M. Watanabe, and K. Iwatusiki. 1999a. Phy se inferred from rbcL nucleotide logeny of Aspleniaceae quences. American Fern Journal 89: 232-243. X. Cheng, H. Iwasaki, R. Imaichi, and K. J. Yokoyama, Iwatsuki. 1998. Molecular of Hymenasplen alpha-taxonomy ium obliquissimum complex (Aspleniaceae) based on rbcL se quence comparisons. Plant Species Biology 13: 51-56. M. Watanabe, Y. Uatabe, and S. Seriawa. J.Yokoyama, 1999b. Molecular taxonomic study and revision of the three Japanese species of Asplenium sect. Thamnopteris. Journal of Plant Research 112: 15-25. B. S. 2001. Circum-Antarctic continental distribution terns in pteridophyte species. Brittonia 53: 270-283. Pichi Sermolli, R. E. G. 1974. Tentamen pteridophytorum Parris, pat taxo nomic redigeni. Webbia 31: 313-572. Pinter, J. Barrett, C. Cox, M. Gibby, S. Henderson, M. Morgan-Richards, F. Rumsey, S. Russell, S. Trewick, ordinem I., F. Bakker, H. Schneider, and J. C. Vogel. 2002. Phylogenetic and bio in four highly disjunct polyploid relationships in the subgenera Ceterach and Phyllitis in Asplen complexes ium (Aspleniaceae) with special emphasis on the evolution and historical biogeography Ceterach. Or of Macaronesian systematic ganisms, Diversity & Evolution 2: 299-311. 1998. Modeltest: Posada, D and K. A. Crandall. testing the model of DNA substitution. Bioinformatics 14: 817-818. Presl, C. B. 1836. Tentamen Pteridographiae, seu Genera Filicacearum praesertim juxta venarum decursum et distributionem exp?sita. Pragae: Hofdruckerei Haase S?hne. Pryer, K. M., A. R. Smith, and J. Skog. 1995 [1996]. Phylogenetic of extant ferns based on evidence from mor relationships phology 282. and rbcL sequences. American Fern Journal 85: 202 and J-Y Dubuisson. 2001. rbcL data J. S. Hunt, two monophyletic groups of filmy ferns (Filocop sida: Hymenophyllaceae). American Journal of Botany 88: reveal 1118-1130. C. F. and C. J.Quinn. 1980. Perispore morphology Puttock, the taxonomy of the Australian Aspleniaceae. Australian nal of Botany 28: 305-322. T. A., S. K. Floyd, and P. G. Trapp. Ranker, onizations of Asplenium adiantum-nigrum Evolution 48: 1364-1370. Archipelago. and Jour 1994. Multiple col the Hawaiian onto T. 1984. Aspleniaceae. Reichstein, Pp. 211-275 in Illustrierte Flora von Mitteleuropa, 3rd ed., vol. I, ?d. K. U. Kramer. Hamburg: Paul Parey. as a tax L. and C. S?nchez. 2002. Spore morphology Regalado, onomic tool in the delimitation of three Asplenium L. species complexes 107-113. (Aspleniaceae: Pteridophyta) in Cuba. Grana 41: 1994. Extraction of total cellular Rogers, S. O. and A. J. Bendich. DNA from plants, algae and fungi. Pp. 1-8 in Plant molecular 2004] SCHNEIDER ET AL.: ASPLENIUM biology manual, 2nd ed., eds. S. Gelvin and R. A. Schilperoot. Dordrecht: Kluwer Academic Publishers. F. 1996. DIVA version 1.1. Computer program and man -and Ronquist, of System ual available by the web server of the Department atic -. Zoology of the Uppsala (http:// University www.ebc.uu.se/systzoo/research/diva/diva.html). 1997. Dispersal-vicariance analysis: a new approach to the of historical Systematic Biology biogeography. quantification 46: 195-203. Saiki, Y., M. Matsumoto, terns in the petioles and M. Mitsuda. 1989. Vascular Asplenium H. Schneider, plications 160-168. analysis of Asplenium subgenus Ceterach (Pteri based on plastid and nuclear ribo dophyta: Aspleniaceae) somal ITSDNA sequences. American Journal of Botany 90:481 Phylogenetic major 1703. J. S. Holmes, J.A. Russell, J.A. Barrett, 1998a. The origin, status and distribution of Asplenium presolanense stat.nov. (Aspleniaceae, Pteridophyta). Bot?nica Helvetica 108: 269-288. and M. Gibby. S. J. Russell, S. A. Barrett, and M. Gibby. 1996. A non coding region of chloroplast DNA as a tool to investigate in European Asplenium. Pp. 313-327 in reticulate evolution Pteridology in perspective, eds. J.M. Camus, R. J. Johns, and M. Gibby. Kew: Royal Botanic Gardens. F. J. Rumsey, J.A. Barrett, and M. Gibby. 1998b. formation in the rock fern Asplenium x alternifolium Bot?nica Acta 111: 241-246. (Aspleniaceae, Pteridophyta). -,-, 1990. Recurring hybrid for Stein, D B. and D S. Barrington. mation in a population of Polystichum x potteri: evidence from chloroplast DNA comparisons. Annals of theMissouri Botanical Garden 77: 334-339. and J. C. Vogel. 2000. Investigations Suter, M., J. J. Schneller, into the genetic variation, population structure, and breeding systems of the fern Asplenium trichomanes subsp. quadrivalens. International Journal of Plant Sciences 161: 233-244. D. L. 2000. PAUP*: phylogenetic Swofford, analysis using parsi On hybrid maternal and R. G. Stolze. 1993. Pteridophyta of Peru. Part 1998c. Evidence for in the genus As Bot?nica Acta 111: 247 DNA affini in Bot 1953. An Asplenium prototype of the genus Diellia. Bulletin of the Torrey Botanical Club 80: 76-94. 1954. Reticulate evolution in the Appalachian aspleniums. Evolution 8: 103-118. -, roplast DNA. Plant Molecular Biology 17: 1105-1109. 2001. The use of geological Tiffney, B. H. and S.R. Manchester. and paleontological evidence in evaluating plant phylogeo R. M. and-. -,-,-,-, transmission of chloroplast plenium (Aspleniaceae, Pteridophyta). 249. W H. 1952. The fern genus Diellia, its structure, Wagner, ties, and taxonomy. University of California Publications any lio: 1-111. version 4. Sunderland: Sinauer -. (*and other methods), mony Inc. Associates, and J.Bouvet. 1991. Universal -. Taberlet, P., L. Gielly, G. Pautou, for of three regions of chlo primers non-coding amplification Tryon, J. S. Holmes, W Bujnoch, C. Stark, J.A. and M. Gibby. 1999b. Genetic structure, reproduc Barrett, tive biology and ecology of isolated populations of Asplenium csikii (Aspleniaceae, Pteridophyta). Heredity 83: 604-612. -,-,-, relationships American Fern cpDNA. Molecular Ecology 11: 2003-2012. A. F and B. Lugardon. 1991. Spores of pteridophytes. New York: Springer-Verlag. of 2001. Age and biogeography Journal of Botany 88: 1695 in Liliales. American ciety 66: 23-37. -,-,-, lationships between Asplenium bourgaei (Boiss.) Milde and A. characters jahandiezii (Litard) Bory inferred formorphological and rbcL sequences. Plant Biology 3: 364-371. -, of Mesozoic ferns Skog, J. E. 2001. Biogeography leptosporangiate related to extant ferns. Brittonia 53: 236-269. Tryon A. and K. Bremer. clades VOGEL, J.C., F. J. RUMSEY, J. J. SCHNELLER, J.A. BARRETT, and M. Gibby. 1999a. Where are the glacial refugia in Europe? Evi dence from pteridophytes. Biological Journal of the Linnean So netic variability within populations of Asplenium L. Pp. 571-580 in Pteridology in perspective, eds. J.M. Camus, M. Gibby, and R. J. Johns. Kew: Royal Botanic Gardens. re and M. Wenk. 2001. Phylogenetic Schulze, G., J. Treutlein, in the northern hemisphere Tertiary. In graphic hypotheses ternational Journal of Plant Sciences 162(Suppl): S3-S17. I. Pinter, S. Henderson, Trewick, S. A., M. Morgan-Richards, F J.Rumsey, J.A. Barrett, M. Gibby, and J.C. S. J.Russell, and Pleistocene re Vogel. 2002. Polyploidy, phylogeography ceterach: evidence from fugia of the rock fern Asplenium characters A. C. Jermy, and J. D. Lovis. 1993. Asplenium. Pp. 18-23 in Flora Europaea, led., Vol. 1, eds. T. G. Tutin, N. A. Burges, A. Q Chater, J.R. Edmondson, V. H. Heywood, D. M. Moore, D. H. Valentine, and D A. Webb. Cambridge: Cambridge Uni versity Press. and ge ruta-muraria 2002. Infrafamilial van and Cotthem. 1977. Spore morphology of some Kenyan Asplenium species. Beri chte der Deutschen Botanischen Gesellschaft 90: 219-239. Vinnersten, logical Journal of the Linnean Society 59: 281-295. events R. Holderegger. 1996. Colonization (Thelypteridaceae). R. and W stomatal -, subgenus Pleurosorus. Candollea 37: 457-484. and the im 1997. Root anatomy of Aspleniaceae for systematics of this fern family. Fern Gazette 15: Smith, A. R. and R. B. Cranfill. of the thelypteroid ferns Journal 92: 131-149. Fieldiana, Botany 32: 495. Systematics and Evolution 234: 121-136. in the fern Asplen Schneller, J. J. 1996. Outbreeding depression ium ruta-muraria L.: evidence from enzyme electrophoresis data, meiotic irregularities and reduced spore viability. Bio -and 21. Polypodiaceae. 1982. Ferns and allied plants with special reference to tropical America. New York: Springer-Verlag. Y 1992. Anatomical studies of theMalaysian Asplen Umikalsom, iaceae and Athyriaceae. Botanical Journal of the Linnean Society 110: 111-119. Van den heede, C. J., R. L. L. Viane, and M. W Chase. 2003. Viane, T. A. Ranker, A. R. Smith, R. Cranfill, C. H. Haufler, and T. Hildebrand. 2002. Gymnogrammitis dareiformis is a po an apparent fern (Polypodiaceae)?resolving lygrammoid and molecular data. Plant conflict between morphological -, V. 18. Aspleniaceae1-190. A. F. Tryon. pat of Asplenium. Pp. 173-178 in Proceedings of the international symposium systematic of pteridophytes, eds. K. H. Shing and K. U. Kramer. Beijing: Chinese Science and Technology Press. Salvo, A. E., C. Prada, and T. Diaz. 1982. Revision of the genus PHYLOGENY 273 R. C. Moran, and C. R. Werth. 1993. Aspleniaceae. Pp. in Flora of North America and Mexico, vol. 2, pterido phytes and gymnosperms, eds. Flora of North America Editorial Committee. Oxford: Oxford University Press. 228-245 Werth, and W H. Eshbaugh. C. R., S. I. Guttman, 1985a. Elec trophoretic evidence of reticulate evolution in the Appala chian Asplenium complex. Systematic Botany 10: 184-192. and-. 1985b. Recurring origins of allotetra -,-, ploid species in Asplenium. Science 228: 731-734. P. G., H. Schneider, 2001. Geographic and T. A. Ranker. distributions of homosporous ferns: does dispersal obscure evidence of vicariance? Journal of Biogeography 28: 263-270. Wolfe, J.A. 1975. Some aspects of plant geography of the north Wolf, 274 -. systematic ern hemisphere during the late Cretaceous and Tertiary. An nals of theMissouri Botanical Garden 62: 264-279. 1997. Relations of environmental change to angiosperm and Tertiary. Pp. 269 evolution during the Late Cretaceous 290 in Evolution and diversification of land plants, eds. K. Iwatuki and P. H. Raven. Tokyo: Springer-Verlag. botany [Volume 29 anal 2001. Dispersal-vicariance XiANG, Q.-Y. and D. E. Soltis. yses of intercontinental disjuncts: historical biogeograph in the Northern Hemi ical implications for angiosperms sphere. International Journal of Plant Sciences 162(SuppL): S29-S39.