Academia.eduAcademia.edu
Bot. Rev. (2017) 83:382–436 https://doi.org/10.1007/s12229-017-9194-1 Biology of Amaranths Rezwana Assad 1 & Zafar A. Reshi 1 & Snober Jan 1 & Irfan Rashid 1,2 1 Department of Botany, University of Kashmir, Srinagar, J&K 190 006, India Author for Correspondence; e-mail: ecoirfan@yahoo.co.in Published online: 26 October 2017 # The New York Botanical Garden 2017 2 Abstract Amaranthus, a cosmopolitan genus including endangered species, restricted endemics and widespread weeds, is often difficult to characterize taxonomically and thus has generally been considered by systematists as a Bdifficult^ genus. Species in this genus have high genetic variability, with diversity in growth form, plant height, number of inflorescences, seed colour, protein content, seed yield, resistance to pests and diseases, and adaptation to soil type, pH, climate, rainfall and day-length. The combination of various anatomical characteristics of Amaranthus, such as Kranz anatomy, well developed root system, stomatal conductance, and maintenance of leaf area, results in increased efficiency of using CO2 under a wide range of temperatures, and higher light intensity and moisture stress environments which enables this plant to adapt under diverse geographic and environmental conditions. Buried seeds of Amaranthus constitute an important part of the soil seed bank and position, distribution and dormancy type of these seeds in the soil play an important role in their germination and subsequent emergence, which is further influenced by factors like temperature, soil moisture, and light availability. The current review highlights the positive as well as negative role of the various species of genus Amaranthus. Many species of the genus are medicinally important and bear antiallergic, anticancer, antihypertensive and antioxidant properties, thus being used in the treatment of several aliments. Amaranthus being a rich source of fatty acids, proteins, micronutrients, vitamins and squalene, are used as cereals, dye plants, forages, medicinal plants, ornamentals, and as vegetables. However some of the Amaranthus species are noxious weeds which are known to compete with many economic crops in different parts of the world and cause great yield losses. Thus, further research is warranted to strike a balance between the beneficial and harmful species of this Pseudocereal. Moreover, understanding the weedy behaviour of these plants would provide valuable information for improving our mechanistic models of crop-weed competition and weed population dynamics. Keywords Allelopathy . Biological control . Amaranthus . Pseudocereal . Seed biology . Weed Biology of Amaranths 383 Introduction Amaranthus is a cosmopolitan genus of annual or short-lived perennial plants (Dorling, 2008), including domesticated and endangered species, restricted endemics and widespread weeds (Sauer, 1950), which are commonly referred as ‘Amaranths’ or ‘Pigweeds’ (Bensch et al., 2003). The genus name, Amaranthus comes from the Greek word Bamarantos^, (Αμάραντος) which means Bunfading^, Bimmortal^, Beverlasting^ or Bnon-wilting^, in view of the fact that its flowers last for a long time. It has been reported that genus Amaranthus consists of 87 species, of which 14 are distributed in Australia, 17 in Europe, and 56 in America (Jacobsen et al., 2000). However, due to fewer studies on Amaranthus systematics, the number of species is still tentative. There is some disagreement regarding the number of species in this genus with different reports like 60 species (Uphof, 1968; Singh et al., 1983; National Research Council, 1984; Budin et al., 1996; Wiersema & Leon, 1999), 70 species (Pratt et al., 1999; Costea & DeMason, 2001; Mosyakin & Robertson, 2003), over 75 species (Sauer ,1993), 86 species (USDA, ARS, 1999) and 100 species (Hanf, 1984) [Table 1- Appendix]. Presently, Amaranthus is distributed in many parts of the world, including Central and South America, Africa, China, India, and the United States (Budin et al., 1996). Approximately 25 species of Amaranthus have been reported in Asian region (Das, 2016). In India the species of genus Amaranthus are mainly found in Himalayas - from Kashmir to Bhutan - and in South Indian hills. Morphology Genus Amaranthus is characterized by the following traits: Annual or (rarely) short-lived perennial life history, herbaceous habit with prostrate to erect stem. Leaves are alternate, ovate to linear and have an indented or notched apex and smooth margins. Flowers are imperfect, in compound dichasia packed into inflorescences. The plants of Amaranthus are monoecious (A. albus, A. blitum, A. caudatus, A. hybridus, A. powellii, A. retroflexus and A. spinosus) or dioecious (A. tuberculatus, A. palmeri and A. rudis). The inflorescence is terminal and/or axillary with three to five tepals and stamens. Monoecious species are generally self-pollinated, wind pollinated. Fruit is utricle or pyxidium. Seeds are lenticular and tiny (0.9 to 1.7 mm diameter and 1000-seed weights from 0.6 to 1 g) that are typically dispersed by wind, water, or birds, having extended period of germination with prolific seed production and a base chromosome number of 16 or 17 (Stevens, 1932; Sauer, 1967; Kigel, 1994; Pratt et al., 1999; Franssen et al., 2001b; Costea & Tardif, 2003; Mosyakin & Robertson, 2003; Costea et al., 2004; Steckel, 2004). In addition, this genus has C4 photosynthesis, unlike its closest related genera (Weaver, 1984; Mitich, 1997; Bensch et al., 2003; Sage et al., 2007). Morphological terminology in Amaranthus, as used in different floristic and taxonomic treatments, is rather confusing, especially regarding the terms applied to flowers and inflorescence. Within each Amaranthus species there are several races defined by their common branching pattern, height, inflorescence size and form, days to maturity, seed size and colour, and other morphological characteristics (Espitia-Rangel, 1994; Brenner et al., 2000). 384 R. Assad et al. Taxonomy Genus Amaranthus is often difficult to characterize taxonomically, due to few distinguishing characters among its species, small and difficult-to-see diagnostic parts, broad geographical distribution, large number of hybrid forms, complicating the taxonomy and thus has generally been considered by systematists as a Bdifficult^ genus (Costea & DeMason, 2001). The genus Amaranthus was first reported by Linnaeus (1753). Various species of the genus were at one time recognized as separate genera, particularly the dioecious species and the monoecious species with dehiscent or indehiscent fruits (Linnaeus, 1753; Kunth, 1838). These genera were later placed within Amaranthus by Sauer (1955), and Robertson (1981), and are presently recognized as subgenera. In the most recent taxonomic work, the genus has been divided into three subgenera: Acnida, Amaranthus, and Albersia (Mosyakin & Robertson, 1996; Costea et al., 2001). Subgenus Acnida is generally delimited to include all the dioecious species of Amaranthus, whereas subgenus Amaranthus and subgenus Albersia split the monoecious species using combination of inflorescence position, number of tepals, and fruit dehiscence (Mosyakin & Robertson, 1996). Several authors have suspected that this infrageneric taxonomy may not correspond well to evolutionary history (Eliasson, 1988; Mosyakin & Robertson, 2003) but, despite its wide geographical distribution and close association with human activities, currently there is no well-sampled, well-supported phylogenetic study of this genus. Müller and Borsch (2005) and Sage et al., (2007) placed Amaranthus in the order Caryophyllales, family Amaranthaceae, subfamily Amaranthoideae, tribe Amarantheae, sub-tribe Amaranthinae, genus Amaranthus and according to Sauer (1967) into the section Amaranthus. Origin The centre of origin of Amaranthus is believed to be Central America, with evidence of its cultivation dating back as far as 6700 BC (Myers & Putnam, 1988; Putnam et al., 1989; Sauer, 1993; Kigel, 1994; Mposi, 1999). The Aztec civilization of central Mexico represents the first recorded instance of Amaranthus use, and the crop figured prominently in Aztec culture during the 1400 to 1500 AD. Amaranthus, which the Aztecs called ‘huautli’ was their staple food and was incorporated into their religious ceremonies. Its seeds were ground by Aztec women and mixed with honey, other sweets, and sometimes with human blood (National Research Council, 1984), then molded into various forms (including animals, natural features, and Gods) for consumption at religious ceremonies and other occasions (Brenner et al., 2000). Despite the known Aztec custom of human sacrifice, the association of human blood with the figures is unclear (National Research Counci,l 1984). After the arrival of the Spanish conquistadors in Mexico in the early 1500 AD, Spanish attempted to suppress Aztec culture and religion; so upon their conquest Amaranthus, as a crop almost disappeared in America (Sauer, 1950). However, according to Spanish missionaries, the use of Amaranthus as food and in traditional cultural practices continued at a reduced level until some 50 years after the Spanish Biology of Amaranths 385 conquest, but subsequently declined (Early, 1992). Even today Amaranthus is grown in limited quantity in that area, most of which is popped and mixed with honey to make a confection called, Balegría^ which means Bhappiness^. Sauer (1967) reports the introduction of Amaranthus into Spain in sixteenth century, from where it had spread throughout the Europe. Around 1700 AD, it was known as a minor grain plant in central Europe and Russia and by the early nineteenth century it reached Africa and Asia. Till mid-1990s, South Asia was the world’s only region where Amaranthus production was increasing (Brenner et al., 2000). It was in 1970s that research on this plant began in the US, only after new evidence revealed grain amaranth protein to be of high quality (Senft, 1980; Lehmann, 1996). Today, it has spread around the world in different regions of Europe, Asia and Africa (Myers & Putnam, 1988; Putnam et al., 1989; Mposi, 1999). Thus Amaranthus is a historic as well as a contemporary plant. Habitat Preference Amaranthus has high genetic variability, with diversity in plant form (erect to prostrate), plant height, number of inflorescences (one to several), seed colour, protein content, seed yield, resistance to pests and diseases, and adaptation to soil type, pH, climate, rainfall and day-length (Kulakow, 1990). Although Amaranthus can grow on a wide range of soil types and soil moisture levels, it has been reported to grow well in loamy or sandy-loam or silty-loamy soils with good water holding capacity (Whitehead & Singh, 1993; Ghorbani et al., 1999; Palada & Chang, 2003) with pH range between 4.5 and 8.0 (National Research Council, 1984; Stallknecht & Schulz-Schaeffer, 1993; Palada & Chang, 2003). Amaranthus is extremely adaptable to adverse growing conditions and tolerates drought and low fertility (O’Brien & Price, 1983). Field studies have shown that it grows well on soils varying widely in levels of soil nutrients (National Research Council, 1984; Myers, 1998) and responds well to good soil fertility and organic matter (Schippers, 2000). Agricultural fields are a great habitat for annual plants like Amaranthus, which grow naturally in open or disturbed areas and receive full sunlight (Pratt et al., 1999). Dieleman et al., (2000) pointed out that the distribution of Amaranthus species in agricultural fields is associated with high levels of nitrates and low levels of phosphate and potassium. Phenology Phenology is the study of periodic biological events that take place at different levels, for example in organs, tissue or cells (Alm et al., 1991). The analysis of phenological stages makes it possible to accurately estimate crop-weed competition (Ghersa & Holt, 1995). Thus phenological surveys are of great importance in weed science (Brainard et al., 2005) and can help us in the development of a realistic and practical model for weed control (Elmore, 1996; Swanton et al., 1999). Phenology of various Amaranthus species has been reported by several workers. Forcella et al. (1997) reported that emergence of Amaranthus species begins in early 386 R. Assad et al. April and continues until the end of May. Emergence of A. tuberculatus commences from late May and continues to early August (Hartzler et al., 1999), while as flowering and seed set continue until the first frost. Germination of A. albus and A. blitoides occurs from the middle of May to the beginning of June. The first seeds of A. blitum germinate at the end of June or beginning of July. Flowering of A. albus and A. blitoides begins at the end of June or beginning of July, and of A. blitum at the end of July or early August, continuing until senescence is induced by the first fall frost (Stevens, 1924). Shedding of seeds (A. albus and A. blitoides) and of fruits enclosing the seeds (A. blitum) extends throughout the rest of the growing season, due to the indeterminate growth pattern of inflorescences and the continuous formation of new flowers (Costea & Tardif, 2003). A. retroflexus emerges at the end of May and its senescence stage is from November to February; however its phenological stages are slightly dephased for different latitudes, with shorter developmental stages at higher latitudes (Huang et al., 2000; Iamonico, 2010). A. spinosus emerges in June, flowers in July, fruit develops in August, followed by seed dispersal in September and finally shows senescence in November (Chakravorty & Ghosh, 2012). Physiology Amaranthus is a dicotyledonous, herbaceous mesophyte that utilizes specialized C4 carbon-fixation pathway for photosynthesis in which the first photosynthesis product is a four carbon-compound (National Research Council, 1984; Stallknecht and SchulzSchaeffer, 1993; Myers, 1998; Wang et al., 1999). Amaranthus belongs to the group of NAD-malic enzyme-type of C4 metabolism and it exhibits the typical Kranz anatomy (C4 anatomy) of leaves, cotyledons and bracts (Wang et al., 1993; Costea & Tardif, 2003). Their photosynthetic pathway is characterized by the use of the mitochondrial NAD-ME to decarboxylate malate in the Kranz bundle-sheaths (Long et al., 1994; Long & Berry, 1996). The combination of various anatomical characteristics of Amaranthus, such as C4 metabolism, well developed root system, stomatal conductance, and maintenance of leaf area (Spreeth et al., 2004), results in increased efficiency of using CO2 under a wide range of temperatures (from 25 °C to 40 °C), with higher light intensity and moisture stress environments (Williams & Brenner, 1995) which enables this plant to adapt under diverse geographic and environmental conditions (Kigel, 1994). Plants that use the C4 carbon fixation pathway tend to require less water than the more common C3 carbon-fixation pathway plants (National Research Council, 1984). This is the reason that Amaranthus performs well under adverse temperature and moisture conditions as compared to many C3 plants such as wheat and soybeans (Stallknecht & Schulz-Schaeffer, 1993; Schippers, 2000; Spreeth et al., 2004), indicating that Amaranthus can be grown in areas that are not suitable for other crops (Breene, 1991; Lehmann, 1996; Brenner et al., 2000; Rana et al., 2007). Previous studies showed that C4 weed species like A. palmeri, A. retroflexus and A. rudis respond positively to elevation in temperature (Guo & Al-Khatib, 2003), thus temperature elevation due to climate change could promote the invasion potential of C4 weed species like A. retroflexus by enhancing their growth and seed production (Hyvönen, 2011). Biology of Amaranths 387 Amaranthus has been referred to as drought tolerant (Grubben & van Sloten, 1981; Liu & Stützel, 2002) and this drought tolerance is due to its C4 photosynthetic pathway, a deep and extensive root system, ability to go dormant under extreme drought conditions (O’Brien & Price, 1983) and ability to shut down transpiration through wilting and then recovering easily when moisture is available (Myers, 1996). Plant height, dry matter production, and leaf area expansion of Amaranthus species respond positively to increasing day/night mean temperature (Flint & Patterson, 1983). Flower initiation depends on photoperiod and most of the Amaranthus species flower when day-length is shorter than 12 h (Fuller, 1949; Huang et al., 2000; Palada & Chang, 2003). Plants grown under short-day conditions (8 h) require 14 to 16 days to initiate flowering, whereas plants grown under long-day conditions (16 h) need approximately 45 days (Costea et al., 2004). O’Brien and Price (1983) reported that short days and water stress may promote flowering in this plant. Simbolon and Sutarno (1986) studied responses of Amaranthus species to reduced light intensity and found them to be moderately tolerant to shade. Previous research shows that C4 plants have higher light-saturated photosynthetic rates and are better adapted to high levels of irradiance compared to C3 plants that saturate at relatively lower light intensities (Stoller & Myers, 1989; Regnier & Harrison, 1993). Shading affects the survival and growth of plants by altering their physiological and morphological response to light environment. Weeds like Amaranthus show physiological and morphological adaptations to reduced irradiance and the Badaptive plasticity^ to adjust to a light-limited environment (Stoller & Myers, 1989). Stoller and Myers (1989) reported that A. albus respond to shade by decreasing light saturated photosynthesis, dark respiration rates, and leaf thickness, while increasing chlorophyll content per unit leaf volume and specific leaf area. A. powellii, A. retroflexus and A. tuberculatus respond to shade by reducing biomass and leaf appearance rates and by increasing specific leaf area and stem elongation (McLachlan et al., 1993a, b; Steckel et al., 2003; Brainard et al., 2005). Characterizing these physiological and morphological responses of this genus to shading are likely to provide valuable information for improving our mechanistic models of crop-weed competition and weed population dynamics (Brainard et al., 2005). Chromosome Analysis The genus Amaranthus provides fascinating material for geneticists to work with. Basic genetic studies of this genus were initiated in late 1950s with chromosomal counts (Grant, 1959b; Pal, 1964) and identification of polyploids (Khoshoo and Pal 1972). Chromosome number varies among Amaranthus species (Table 2). In A. albus, A. palmeri and A. retroflexus chromosome counts of 2n = 34 (Grant 1959b; Sharma and Banik, 1965; Weaver & McWilliams, 1980) and 2n = 32 (Heiser & Whitaker, 1948; Mulligan, 1984; Rayburn et al., 2005) have been reported. In A. spinosus, somatic counts of 2n = 34 (Baquar & Olusi 1988; Al-Turki et al., 2000) and the gametic counts of n = 17 (Koul et al., 1976; Behera & Patnaik, 1977; Behera & Patnik, 1982) have been reported. A. palmeri and A. spinosus may share a recent common ancestor (Wassom & Tranel, 2005; Riggins et al., 2010), as they have the same chromosome number (2n = 34), pollen morphological similarities (Grant, 1959b; Franssen et al., 388 R. Assad et al. 2001b; Gaines et al., 2012), and similar genome sizes (Rayburn et al., 2005). Pal et al. (1982) reported that, within the Amaranthus genus, both n = 16 and n = 17 occasionally occur in the same species. The chromosome number of A. blitum and A. powellii is 2n = 34 (Weaver & McWilliams, 1980; Pal & Pandey, 1989; Greizerstein et al., 1997). The chromosome number for A. caudatus, A. hypochondriacus, A. cruentus, and A. hybridus is normally 2n = 32, but occasionally it is 34 (National Research Council, 1989), i.e. these species are diploids with a basic chromosome number of 16 or 17. There are no major chromosomal differences between the genomes of A. hypochondriacus, A. caudatus and A. edulis (Ramesh & Kumar, 2009). Hybridization Amaranthus is a predominantly self-pollinated plant (Murray, 1938), with varying amounts of outcrossing (Hauptli & Jain, 1985; Liu et al., 2012). Hybridization among different species has been widely reported within the genus Amaranthus (Saue,r 1950; Trucco et al., 2005b). The possibilities for interspecific hybridization among most of the Amaranthus species have been documented (Murray, 1938; Sauer, 1950; Pal & Khoshoo, 1973), and some have even referred to the genus as ‘promiscuous’ (Trucco et al., 2005b). The identification of three sources of cytoplasmic male sterility in Amaranthus paves the way for additional hybridization techniques (Peters & Jain, 1985, 1987; Gudu & Gupta, 1988). A. retroflexus occasionally forms natural hybrids with other species of the same genus (Murray, 1938). It has been reported that hybridization between A. palmeri and A. tuberculatus following controlled pollinations yield practically no fertile offspring (Wetzel et al., 1999b; Franssen et al., 2001a; Steinau et al., 2003; Trucco et al., 2007). Hybridization between A. hybridus and A. tuberculatus produce some fertile F1 individuals (Murray, 1940; Trucco et al., 2007; Trucco et al., 2009), although genetic introgression between these species occurs only in one direction, from A. hybridus to A. tuberculatus (Trucco et al., 2005a, b; Trucco et al., 2009). Based on reported interspecific hybridizations in Amaranthus, equal chromosome number is not a prerequisite for hybridization; however, hybrid progeny appears to be more viable and fertile when their parental species have the same chromosome number, as in the case of hybridization between A. hybridus and A. tuberculatus (Trucco et al., 2009). There is a concern that glyphosate resistance owing to EPSPS gene amplification could be introgressed from glyphosate resistant A. palmeri to other weedy Amaranthus species (Culpepper et al., 2006). The potential interspecific transfer of EPSPS gene amplification and glyphosate resistance within the genus Amaranthus has considerable evolutionary and agronomic significance (Gaines et al., 2012). Seed Biology The detailed understanding of seed biology helps in the development of effective integrated weed management systems (Bhowmik, 1997). Kigel (1994) has compiled much of the available information on seed biology of the genus Amaranthus, including research on effects of light (Oladiran & Mumford, 1985; Gutterman et al., 1992; Biology of Amaranths 389 Gallagher & Cardina, 1998a, b), temperature (Baskin & Baskin, 1977; Weaver, 1984; Oladiran & Mumford, 1985; Weaver & Thomas, 1986; Ghorbani et al., 1999), water availability, osmotic potential and salinity (Ghorbani et al., 1999), hormones (Holm & Miller, 1972; Weaver, 1984; Kępczyński et al., 1996), soil types, burial depth (Webb et al., 1987; Oryokot et al., 1997a; Ghorbani et al., 1999), and other environmental parameters (Bibbey, 1935; Siriwardana & Zimdahl, 1984; Habib & Morton, 1987; Wiese & Binning, 1987; Forcella et al., 1997) on seed germination. Seed Dormancy Weed seed dormancy is often induced and regulated by a compliment of genetic, physiological, and environmental factors (Karssen, 1982; Baskin & Baskin, 1998), including day length and plant age (Gutterman & Genotypic, 1997; Castor et al., 2000), harvest date (Ghosh & Bruin, 1997) and temperature (Marayama et al. 1997). During seed development, A. retroflexus seed dormancy is affected by various environmental conditions like parental photoperiod, temperature environments, fertilization of soil, competition with other plants (Kigel et al., 1977; Costea et al., 2004), and shading of the maternal plant or in fact by the aid of natural infrared light (Doroszeweski, 2001). Induction of secondary dormancy (thermodormancy) in seeds due to higher temperatures has been reported in A. retroflexus (Baskin & Baskin, 1977, 1985a, 1990; Egley, 1989), A. caudatus (Kępczyński & Bihun, 2002), A. quitensis (Faccini & Vitta, 2005), and A. palmeri seeds (Jha et al., 2010), indicating that this behaviour of seeds kept in soil is characteristic of the genus Amaranthus. The occurrence of such temporal changes in dormancy of buried Amaranthus seeds has been interpreted as an adaptation to enhance survival when seeds are in the soil, especially when they are deeply buried (Omami et al., 1999). Effect of Temperature The effect of temperature and light on seed germination of Amaranthus species have been studied by previous researchers (Baskin & Baskin, 1977, 1998; Gallagher & Cardina, 1998a, b; Leon & Owen, 2003; Steckel et al., 2004). The high temperature requirement for germination of Amaranthus species was reported by Bibbey (1935), Kadman-Zahavi (1960), McWilliams et al. (1968), Baskin and Baskin (1977), Washitani and Takenaka (1984), Habib and Morton (1987), Gutterman et al. (1992), Ghorbani et al. (1999), and Guo and Al-Khatib (2003) (Table 3). Mature Amaranthus seeds remain dormant during autumn and winter (Baskin & Baskin, 1977, 1987; Jha et al., 2007, 2008c; Norsworthy & Oliveira, 2007), since temperatures during that period are below those required for germination. Following after-ripening during winter, seeds of Amaranthus species, like most summer annuals, require high fluctuating temperatures for germination and do not germinate in the field at lower temperatures until late spring to summer (Baskin & Baskin, 1977, 1987; Karssen, 1982; Benech-Arnold et al., 1990; Bouwmeester & Karssen, 1992; Faccini & Vitta, 2005), while as after-ripening for few more months after winter leads to decline in the minimum temperature requirements, or broadening of thermal range for seed germination (Baskin & Baskin, 1977, 1987; Benech-Arnold et al., 1990; Bouwmeester & Karssen, 1992). Thus, seeds gain the ability to germinate equally well at 390 R. Assad et al. temperatures below the optimum range of 25 to 35 °C (Wright et al., 1999; Guo & AlKhatib, 2003). Temperature fluctuations like alternating temperature regimes have been shown to reduce dormancy, decrease time to onset of germination and increase germination rates in various Amaranthus species, like A. cruentus, A. gangeticus, A. hybridus, A. palmeri, A. paniculatus, A. retroflexus, A. rudis, A. spinosus, and A. viridis (Santelmann & Evetts, 1971; Weaver, 1984; Oladiran & Mumford, 1985; Guo & Al-Khatib, 2003; Leon et al., 2004, 2007; Steckel et al., 2004; Thomas et al,. 2006; Chauhan and Johnson 2009; Jha et al., 2010) because alternating temperatures are most similar to diurnal temperature responses and can break seed coat-imposed physical dormancy of seeds (McKeon & Mott, 1982). Minimum germination temperature for A. palmeri and A. retroflexus was >5 °C, but the optimal temperature for maximum germination has been reported to be from 25 to 40 °C (Evans, 1922; McWilliams et al., 1968; Baskin & Baskin, 1977; Habib & Morton, 1987; Wiese & Binning, 1987; Kępczyński et al., 1996; Ghorbani et al., 1999; Wright et al., 1999; Kępczyński & Bihun, 2002; Guo & Al-Khatib, 2003). Dormant A. retroflexus seeds cannot germinate in darkness at 25 °C and can either germinate partially at 35 °C (Schonbeck & Egley, 1981a, b; Kępczyński et al., 2003b), or fully at 35–40 °C (Kępczyński et al., 1996). Optimum germination of A. caudatus and A. blitum has been reported at 35 °C while as of A. hybridus seeds was reported to be between 32 and 34 °C (Washitani & Takenaka, 1984; Teitz et al., 1990; Gutterman et al., 1992; Kępczyński & Bihun, 2002). Oladiran and Mumford (1985) reported optimum germination between 30 and 35 °C for A. cruentus, A. hybridus, A. paniculatus and A. gangeticus. High temperatures (≥25 °C mean), thermal amplitudes (≥7.5 °C) and high soil moisture favour germination of A. palmeri and other Amaranthus species (Hartzler et al., 1999; Wright et al., 1999; Guo & Al-Khatib, 2003; Steckel et al. 2004; Jha et al., 2008b, c, 2010). A. spinosus seeds respond positively under an alternating temperature regime of 20, 25 and 30 °C and adversely at 35 °C and no germination occurs at 15 °C but, when the temperatures were held constant, significant germination was recorded at 30 °C and 35 °C (Steckel et al., 2004). A. viridis seeds germinated over a range of 20 to 40 °C with 30 °C as the optimum temperature for germination (Thomas et al., 2006), while as no germination was observed at 10 °C (Cristaudo et al., 2007). Effect of Light Kigel (1994) reported that most species of Amaranthus respond to light, but the response level varies among the species (Gallagher & Cardina, 1998a, b; Cristaudo et al., 2007), depending upon the dormancy level of seeds, which is further influenced by factors such as burial and temperature (Gallagher & Cardina, 1998a; Leon & Owen, 2003). Light requirement for germination has been reported in various Amaranthus species like A. blitum, A. caudatus, A. hybridus, A. retroflexus, A. rudis, A. spinosus, and A. viridis (Baskin & Baskin, 1977; Schonbeck & Egley, 1981a, b; Teitz et al., 1990; Gallagher & Cardina, 1998a, b; Leon & Owen, 2003; Cristaudo et al. 2007). Seeds of A. spinosus, A. retroflexus and A. viridis germinate better in light than in darkness, implying that the buried seeds will germinate following soil disturbance (Baskin & Baskin, 1977, 1985b, 1998; Omami & Medd, 1992; Gallagher & Cardina, 1998a, b; Biology of Amaranths 391 Benvenuti et al., 2001; Cristaudo et al., 2007). The ecological significance attributed to the light response in various species of Amaranthus is that light acts as a soil depth Bindicator,^ or depth-sensing mechanism for seeds, allowing greater germination of surface seeds than seeds buried in soil (Ghorbani et al., 1999; Schütz et al., 2002). Phytochrome-regulated seed germination of various Amaranthus species like A. arenicola, A. caudatus, A. hybridus, A. palmeri, A. retroflexus, and A. rudis has been documented (Hendricks et al., 1968; Kendrick & Frankland, 1969; Kendrick et al., 1969; Taylorson & Hendricks, 1969, 1971; Gallagher & Cardina, 1998a, b; Leon & Owen, 2003; Jha et al., 2010). Exposure to red (R) light induces germination in dormant seeds (Jha et al., 2010), and this effect is more pronounced in chilled seeds (moist stratification at 4 °C) compared to non-chilled seeds, suggesting an interaction of low temperatures with phytochrome in dormancy alleviation (Taylorson & Hendricks, 1969; Gallagher & Cardina, 1997, 1998a, b; Leon & Owen, 2003). However, high temperatures (30 °C or above) during summer can reduce the photosensitivity of Amaranthus seeds and overcome the phytochrome mediated red light requirement for enhanced germination in various Amaranthus species like A. hybridus, A. retroflexus, and A. rudis (Gallagher & Cardina, 1998a; Hartzler et al., 1999; Leon & Owen, 2003). On the other hand FR light inhibits germination and induces dormancy (Kendrick & Frankland, 1969; Taylorson & Hendricks, 1971; Gallagher & Cardina, 1998a; Leon & Owen, 2003; Jha et al., 2010). This inhibitory effect of FR light is due to decrease in Pfr/Pr of the phytochrome, thus causing photo dormancy in seeds (Hendricks et al., 1968; Kendrick & Frankland, 1969; Taylorson & Hendricks, 1969, 1971). Effect of Soil Types, Seed Burial Depth and Duration of Seed Burial Percent emergence of A. retroflexus is greater in lighter soils (sandy clay loam, Loamy sand and Sandy loam) than heavier soils (silty clay and sandy clay). Maximum emergence occurs at 0.5 cm depth in the three lighter soils, between 0.5 and 2 cm in the sandy clay, and 3 cm deep in the silty clay (Ghorbani et al., 1999), possibly due to poor gas exchange, poor light, and lower temperature in heavier soils (Gallagher & Cardina, 1998a). Buried weed seeds constitute an important part of the soil seed bank (Baskin & Baskin, 1985b, 1998; Benvenuti et al., 2001) and position, distribution and dormancy level of these seeds in the soil play an important role in their germination and subsequent emergence (Burnside et al., 1981; Benvenuti & Macchia, 1997; BenechArnold et al., 2000), which is further influenced by factors like soil temperature, soil moisture, and light availability. Small-seeded weeds such as Amaranthus species can germinate only from shallow soil-depths of 0.5 to 2.5 cm (Baskin & Baskin, 1977, 1998; Buhler et al., 1996; Oryokot et al., 1997a; Gallagher & Cardina, 1998a, b; Ghorbani et al., 1999; Benech-Arnold et al., 2000; Leon & Owen, 2003). Santelmann and Evetts (1971) examined emergence for several Amaranthus species and found that germination decreases at depths below 1.9 cm. Increase in dormancy of seeds buried at a depth of 5 to 10 cm for 3 to 12 months has been reported in other Amaranthus species (Baskin & Baskin, 1977; Omami et al., 1999). Ghorbani et al. (1999) observed in-situ emergence patterns of A. retroflexus and concluded that the optimal burial depth was between 0.5 and 3 cm, with no emergence at 5 cm. Under field conditions also A. retroflexus seeds showed a decline in germination with an 392 R. Assad et al. increase in burial depth from 0 to 10 cm (Wiese & Davis, 1967; Omami et al., 1999). Benvenuti et al. (2001) also reported a decrease in A. retroflexus seedling emergence with an increase in burial depth and the emergence was found to be less than 10% at a burial depth of 8 cm. Furthermore, the seeds of A. viridis on the soil surface had reduced emergence compared to the seeds placed just below the surface and germination was optimum from shallow soil depths of 0.5 to 2 cm, but some seedlings emerged from as deep as 6 cm (Thomas et al., 2006). Limited soil-to-seed contact, light conditions on the surface, and water availability or lower soil water potential close to the seed are some environmental conditions that may limit germination of seed on the soil surface (Ghorbani et al., 1999). Seedling emergence on the soil surface was lower than germination observed in Petri dishes in the light (Chauhan & Johnson, 2009). This difference could be due to poor soil-seed contact or more limited availability of moisture on the soil surface than on the filter papers (Ghorbani et al., 1999). Seeds of A. spinosus and A. viridis emerge at the same rate from 0.5 cm to 2 cm but, as the burial depth increases, A. spinosus emergence declines more rapidly than that of A. viridis, with no emergence from 4 cm in the former and only 6% emergence in the later, while as no emergence was observed at a depth of 6 cm in either species (Chauhan & Johnson, 2009). Larger seeds with greater carbohydrate reserves have increased ability to emerge from greater burial depths compared to those with lower reserves (Baskin & Baskin, 1998). The greater seed mass of A. viridis (more than twice than that of A. spinosus) could explain its ability to emerge from deeper in the soil than A. spinosus (Chauhan & Johnson, 2009). Small-seeded broadleaf weed species, such as A. retroflexus, A. spinosus, A. viridis and several other Amaranthus species have a similar pattern of emergence due to limited carbohydrate reserves to support germination and seedling emergence, thus limiting the depth from which these seedlings can emerge (Webb et al., 1987; Santelmann & Evetts, 1971; Ghorbani et al., 1999; Thomas et al., 2006; Chauhan & Johnson, 2009) (Table 4). The acquisition of depth-mediated dormancy of weed seeds (Milberg & Andersson, 1997; Benvenuti et al., 2001) is an important strategy that allows longevity and perpetuation of weed seeds in the soil seed bank (Thompson, 1987; Benvenuti et al., 2001), and is known to occur due to lack of light transmittance, decrease in thermal fluctuation, decrease in oxygen, increase in carbon dioxide, and low rates of gaseous diffusion with increasing soil depth (Holm, 1972; Woolley & Stoller, 1978; Baskin & Baskin, 1985b; Drew, 1990; Benvenuti & Macchia, 1997, 1998; Gallagher & Cardina, 1998a; Benvenuti et al., 2001; Benvenuti, 2003). ,Furthermore, temperature fluctuations, which have been reported to have effect on seed dormancy alleviation of Amaranthus species (Baskin & Baskin, 1977, 1985b; Omami et al., 1999; Guo & Al-Khatib, 2003; Leon & Owen, 2003; Steckel et al., 2004; Cristaudo et al., 2007), decrease with increasing soil depth, thus acting as a depth-sensing mechanism for weed seeds (Ghersa et al., 1992; Baskin & Baskin, 1998; Kegode et al., 1998). Gutterman et al. (1992) and Kępczyński et al. (1996) reported that the non-dormant seeds of Amaranthus need at least 10% oxygen for germination. But with an increase in burial depth, there is a decrease in oxygen concentration, leading to hypoxia and germination inhibition in seeds of some weed species (Holm, 1972). Milberg and Andersson (1997) reported that burial in soil induced a light requirement in some weed seeds. Burial induced red-light requirement for germination, Biology of Amaranths 393 resulted in a shift from low fluence response (LFR) to very low fluence response (VLFR) of the phytochrome in A. retroflexus and A. hybridus seeds (Scopel et al., 1991; Smith, 1995; Gallagher & Cardina, 1998a, b), which may also be expected in other species of Amaranthus. Duration of seed burial also plays an important role in dormancy and germination of weed seeds like A. patulus (Baskin & Baskin, 1985b, 1998; Washitani, 1985) (Table 4). Washitani (1985) reported that only a negligible number of buried seeds of A. patulus maintained their germinability after 3 years of burial. Omami et al. (1999) reported cyclic changes in dormancy and germination of A. retroflexus seeds during a 12 month burial period. Seed germination of A. retroflexus and A. palmeri declined after 1 to 3 months of seed burial; peak germination occurred after 9 months and again declined at 12 months after seed burial (Omami et al., 1999; Jha et al., 2010). Buried seeds of A. retroflexus can remain viable for at least 6–10 years (Chepil, 1946a; Weaver & McWilliams, 1980; Burnside et al., 1981, 1996; Costea et al., 2004). In Beal’s experiment in Michigan, 2% of seeds of A. retroflexus germinated after 40 years of burial (Telewski & Zeevaart, 2002). Effect of Shade and Tillage Subtle differences in the soil microclimate may have large affects on seed germination of weeds including Amaranthus species (Mohler, 1993; Buhler et al., 1996; Oryokot et al., 1997a). Effects of shade and tillage on emergence characteristics of Amaranthus species such as A. retroflexus and A. rudis has been previously studied (Anderson & Nielsen, 1996; Oryokot et al., 1997a; Hartzler et al., 1999; Cardina et al., 2002; Leon & Owen, 2006). Effect of Scarification and Stratification Santelmann and Evetts (1971) observed that A. spinosus seeds germinated best when treated with sulfuric acid. Mechanical or chemical scarification with sulphuric acid for 1 to 5 min resulted in germination of the secondary dormant A. caudatus seeds at 25 °C (Kępczyński & Bihun, 2002). Treatment with different concentrations of acetone, ethanol, ethylene, hydrogen peroxide, potassium cyanide, sodium azide, and sulfuric acid were very effective in breaking Amaranthus seed dormancy and promoting germination (Taylorson & Hendricks, 1973; Mahmudzadeh et al., 2003). Soomarin et al. (2010) treated the seeds of A. retroflexus with sulfuric acid and reported that with the increase in the duration of treatment the germination rate of Amaranthus seeds increased from 2% (in control) to 78.5% (in 25-min pre-treatment). Radicle length and weight, however, decreased (Evans, 1922; Mahmudzadeh et al., 2003; Soomarin et al., 2010). Stratification, an effective way of alleviating seed dormancy (Bewley & Black, 1994), releases A. retroflexus and A. rudis seed dormancy gradually over time (Leon & Owen, 2003; Kępczyński & Sznigir, 2012) and increased seed germination percentage but the rate of germination at 35 °C was higher than at 25 °C after every period of stratification (Taylorson & Hendricks, 1969; Kępczyński & Sznigir, 2012). Seeds of A. retroflexus grown under a short-day length had higher germination in response to cold stratification than those grown under long-day lengths (Kigel et al., 1977). 394 R. Assad et al. Stratification at a constant temperature was less effective in releasing dormancy than autumn–winter burial of seeds due to the reason that in the soil, seeds are exposed not only to fluctuating temperatures, but also to several other factors such as compounds solutions, gases and soil microorganisms, which may affect the dormancy state of Amaranthus seeds (Kępczyński & Sznigir, 2012). Moore (1979) pointed out that chilling at 4 °C increases endogenous GA and decreases ABA concentration, therefore, it is possible that dormancy alleviation in seeds of some species by stratification or partial burial is associated with changes in ABA/GA and ethylene balance and/or sensitivity to these hormones (Cadman et al., 2006; Rodríguez-Gacio et al., 2009). Economic Importance of Genus Amaranthus Composition and Nutritional Value of Amaranthus The role of Amaranthus as an under-exploited plant with promising economic value was recognized by the National Academy of Sciences, USA (NAS, 1975), after which it’s nutritional value has been extensively studied (Becker et al., 1981; Teutonico & Knorr, 1985; Petr et al., 2003). Amaranthus leaves show significant energy value ranging from 27 to 53 kcal/100 g of fresh leaves and high nutrient value ranging from 4 to 6 g of protein, 0.2 to 0.6 g of fat, and 4 to 7 g of carbohydrates per 100 g of fresh leaves (Uusikua et al., 2010) and are known to be rich in micronutrients and vitamins particularly chlorine, copper, iron, manganese, sodium, vitamin A, vitamin C and vitamin B-12 (Mnkeni, 2005). Amaranthus leaves taste much like spinach but, are nutritionally superior as they contain 3 times more vitamin C, calcium and niacin than spinach (Mnkeni, 2005). As compared to lettuce, Amaranthus leaves contain 18 times more vitamin A, 13 times more vitamin C, 20 times more calcium and 7 times more iron (Mnkeni, 2005; Srivastava, 2011). Amaranthus seeds have protein content of about 12.5 to 17.6% (Becker et al., 1981; Teutonico & Knorr, 1985), with significantly higher content of lysine (0.73 to 0.84% of the total protein content) and the sulphur-containing amino acids (methionine and cysteine) than other cereal grains (Becker et al., 1981; Saunders & Becker, 1984; Railey, 1993; Lehmann, 1996; Petr et al., 2003) except soybeans (Petr et al. 2003), thus having potential to improve world food situation as an alternative source of protein (Oliveira & de Carvalho, 1975). Amaranthus seeds have an excellent amino acid profile which, when combined with maize or rice, would approximate the modern standard protein recommended by the FAO/ WHO (FAO, 1973; Senft, 1980; Teutonico & Knorr, 1985; Singhal & Kulkarni, 1988) and is useful in supplementing nutritive food and amelioration of protein deficiency strictly in the vegetarian diet people (Downtown, 1973; Senft, 1980; Railey, 1993). The lipid content of Amaranthus seed is typically 6 to 20% (Lorenz & Hwang, 1985; Garcia et al., 1987a; Budin et al., 1996). Both Amaranthus seeds as well as leaves are a good source of unsaturated fatty acids like palmitic, oleic, linoleic, and linolenic acids (Fernando & Bean, 1984; Jahaniaval et al., 2000; Leon-Camacho et al., 2001). Although Amaranthus seed is not considered a typical oilseed crop, it has been identified as a rich source (2.4 to 8%) of squalene (2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22- Biology of Amaranths 395 tetracosahexaene) and tocotrienols (a form of vitamin E) (Budin et al., 1996; Lehmann, 1996; Sun et al., 1997). Squalene is an expensive terpenoid compound, derived primarily from liver of shark (Cantrophorus squamosus) and whale (Physeter macrocephalus) oils. Due to the concern for marine animal protection, attention has been focused on identifying crop sources of squalene (Sun et al., 1997). Squalene is an important ingredient in cosmetics, pharmaceuticals, and lubricants for computer disks (Sun et al., 1997; Budin et al., 1996). Both squalene and tocotrienols can play an important role in lowering LDL-cholesterol in blood (Railey, 1993; Budin et al., 1996; Lehmann, 1996) and thus acts as protective factors against cardiac infarction which is caused by isoproteronol (Farvin et al., 2006). Amaranthus seeds are a rich source of calcium (1300 to 2850 mg/kg), iron (72 to 174 mg/kg), magnesium (2300 to 3360 mg/kg), sodium (160 to 480 mg/kg) and zinc (36.2 to 40 mg/kg); sterols (0.27–0.32 mg/g); as well as vitamin riboflavin (0.19– 0.23 mg/100 g of flour) and ascorbic acid (4.5 mg/100 g of flour), niacin (1.17 to 1.45 mg/100 g of flour), thiamine (0.07 to 0.1 mg/100 g of flour) and other microelements (Becker et al., 1981; Plate and Areas, 2002). Some Amaranthus species, when grown under conditions of stress, are known to accumulate toxic levels of oxalate and nitrate (Der Marderosian et al., 1980; Saunders & Becker, 1984; Wills et al., 1984) and these nitrates upon consumption may be chemically changed in the digestive tract into poisonous/carcinogenic nitrosamines. Applications of Amaranthus Amaranthus is one of the few highly nutritious multi-purpose crops and is used as vegetable, cereal, medicinal plant, dye plant, forage, fuel and as an ornamental. (Sauer ,1950; Oke 1983; Saunders & Becker, 1984; Railey, 1993; Mlakar et al., 2009; Sheikh & Singh, 2013). The red dye from the leaves of various species of Amaranthus is used to color foods, alcoholic beverages and maize dough (Sauer, 1950). In Mexico, Amaranthus seeds are used chiefly for making alegria candies from popped seeds and molasses (Early, 1977) and for preparing atole, a drink from roasted and powdered seeds mixed with syrup and water (Oke, 1983). In India, A. hypochondriacus, commonly known as Brajgeera^ (the King’s grain), is extensively cultivated as subsidiary food crop from Kashmir to Arunachal Pradesh and is often popped to be used in confections called Bladdoos,^ (Vietmeyer, 1978) which are very similar to Mexican ‘alegria’. In Nepal, Amaranthus seeds are eaten as gruel called Bsattoo^ or milled into a flour to make chappatis (Vietmeyer, 1978; Singhal & Kulkarni, 1988). Amaranthus leaves are used in custards, pastes, soups, stews, salad, boiled and mixed with a groundnut sauce (Oliveira & de Carvalho, 1975; National Research Council, 1984). Various species of Amaranthus (A. blitum, A. caudatus and A. spinosus) are consumed as vegetable in Africa, Caribbean, China, Greece, India, Italy, Nepal and South Pacific Islands (Stallknecht & Schulz-Schaeffer, 1993). Based on utilisation of cultivated Amaranthus for human consumption, species can be divided into grain and vegetable Amaranthus. Grain Amaranthus is not a Btrue cereal^ rather it belongs to a group of cereal-like grain crops or Bpseudo-cereals^ (O’Brien & Price, 1983). Pseudocereals are dicotyledonous species which are not closely related to each other or to the monocotyledonous true cereals (Shewry, 2002). 396 R. Assad et al. The Amaranthus seeds can be ground and included as a flour ingredient in different mixtures for biscuits, bread, cookies, crackers, crepes, dumplings, muffins, noodles, pancakes, puddings, and other confectioneries (National Research Council, 1984; Mlakar et al., 2009; Sanz-Penella et al., 2013) and also the combination of amaranth and wheat flour increases the nutritional value of baked products (Saunders & Becker, 1984; Segura-Nieto et al., 1994; Mlakar et al., 2009). Amaranthus has antiallergic, anticancer, antihypertensive and antioxidant properties (Conforti et al., 2005; Castelano-Sousa & Amaya-Farfán, 2012) and protects against several disorders such as bleeding tendencies, brain stroke, celiac disease, defective vision, diabetes, digestion disorder, functional sterility, haemorrhage, heart diseases, HIV/AIDS, hypertension, kwashiorkor, leucorrhoea, liver disease, marasmus, premature ageing, recurrent colds, respiratory infections, retarded growth, skin diseases, TB and wound healing (Thompson, 2001). Phytoremediation Potential of Genus Amaranthus The uptake of heavy metals by Amaranthus species has been recently studied in soils at refuse dump sites, animal waste dumpsites and other forms of contaminated soils (Adekunle et al., 2009; Adefila et al., 2010; Adefemi et al., 2012; Akubugwo et al., 2012; Shagal et al., 2012). A. caudatus plants grown on dump sites contain higher concentration of heavy metals like Fe, Cu, Pb, Zn, Mn, Cd (Adewuyi et al., 2010). A. hybridus grown on dumpsites possessed higher concentration of heavy metals like Fe, Zn, Cd, Cr, Cu, Ni, Pb, Mn and Hg (Akubugwo et al., 2012). The assessments of the heavy metal content of plants grown on dumpsites provide precious data on the heavy metals phytoaccumulation potential of such plants (Mclntyre & Lewis, 1997). A. retroflexus has been identified as metal accumulator (Bigaliev et al., 2003; Mellem, 2008). A. spinosus is a potential agent for accumulation and translocation of heavy metal like Cu, Zn, Cr, Pb and Cd (Chinmayee et al., 2012). A. tricolor has high cadmium-accumulating ability (Watanabe et al., 2009). A. viridis has a method of concentrating heavy metals especially Pb and Cd in its tissues (Atayese et al., 2009). This suggests that these Amaranthus species can serve as phytoaccumulators of heavy metals and can be used for the purpose of Phytoremediation. Amaranthus as a Weed Genus Amaranthus consists of some of the worst C4 weeds of the world (Holm et al., 1977), and its several species are consistently ranked among the top 10 most troublesome weeds in the southeast United States (Dowler, 1995; Webster, 2009), which have been causing problems for farmers since the mid-1990s. Nine Amaranthus species are listed as Binvasive or noxious weeds^ in the USDA Plants Database, and an additional 20 species are listed as Bagricultural weeds^ in the Global Compendium of Weeds (Randall, 2007; USDA, NRCS, 2010). Several Amaranthus species such as A. retroflexus, A. spinosus and A. viridis (Yan et al., 2001), A. blitum (Costea & Tardif, 2003), A. albus, A. powellii and A. rudis (Ortiz Ribbing & Williams, 2006) and A. palmeri (Kendig, 2009), are known to compete with many economic crops including cereals and vegetables in different parts of the world Biology of Amaranths 397 and cause great yield losses (Holm et al., 1977; Menges, 1988; Monks & Oliver, 1988). The weedy Amaranthus species are referred to as Bopportunists^ (Sauer, 1955) because of the fact that they thrive in disturbed soils and tend to be associated with agricultural practices. They are able to compete with crops for water, nutrients and light, causing severe reductions in yield, quality and harvest efficiency (Vangessel & Renner, 1990) and their high competitiveness may be related to their prolific seed production, prolonged seed viability, seed dormancy, speed and timing of germination, long germination period, aggressive growth at higher temperatures due to its extensive root system, thermostability of the C4 photosynthetic mechanism, high water use efficiency, and high density of infestation (Weaver & McWilliams, 1980; Knezevic & Horak, 1998; Horak & Loughin, 2000; Aguyoh & Masiunas, 2003; Massinga et al., 2003), which is further enhanced due to evolution of herbicide-resistant Amaranthus biotypes (Heap 2014). Besides, their competitiveness varies with species, density, and time of emergence relative to the crop (Klingaman & Oliver, 1994; Knezevic & Horak, 1998). Allelopathic effects may also interact with competition for resources between some Amaranthus species and the crop in which they are growing (Connick et al., 1987; Bradow & Connick, 1988; Menges, 1988). A. blitum is listed by as a serious or principal weed in ten countries, mainly across Europe and Asia (Holm et al., 1979; Takabayashi & Nakayama, 1981; Walter & Dobes, 2004) and occurs in a wide range of field and horticultural crops, grassland, orchards, plantations and vineyards. A. palmeri is the most troublesome weed in southeastern United States (Dowler, 1995; Norsworthy, 2003), and is known to cause severe interference and yield loss in various agronomic crops like Arachis hypogaea (Horak & Loughin, 2000; Burke et al., 2007), Glycine max (Monks & Oliver, 1988; Klingaman and Oliver 1994; Dieleman et al., 1995; Bensch et al., 2003; Norsworthy, 2003), Gossypium hirsutum (Keeley & Thullen, 1989; Dowler, 1995; Morgan et al., 1997; Rowland et al., 1999; Smith et al., 2000; Morgan et al., 2001), Ipomoea batatas (Meyers et al., 2010), Sorghum bicolor (Moore et al., 2004), and Zea mays (Massinga et al., 2001; Massinga & Currie, 2002; Massinga et al., 2003). A. retroflexus, one of the ten weed species of greatest economic importance in Europe (Schroeder et al., 1993) is a common weed of cultivated fields in many agricultural areas of the world (Weaver & McWilliams 1980; Horak & Loughin, 2000), which is capable of infesting and reducing yields of crops such as Beta vulgaris, Brassica napus (Hendrick et al., 1974), Glycine max (Orwick & Schreiber, 1979; Dieleman et al., 1995; Cowan et al., 1998; Bensch et al., 2003), Gossypium hirsutum (Buchanan et al., 1980), Helianthus annus (Heidarian et al., 2012), Phaseolus sp. (Aguyoh & Masiunas, 2003), Solanum tuberosum (Vangessel & Renner, 1990), Zea mays (Knezevic et al., 1994), and other vegetables (Weaver & McWilliams, 1980). A. spinosus has been reported as a weed in 28 crops and 44 countries in India, Southeast Asia and the west and south of Africa (Waterhouse, 1994; Chauhan and Johnson 2009). It occurs as a weed of varying significance in a variety of crops like Ananas comosus, Arachis hypogaea, Celosia argentia, Corchorus olitorius, Glycine max, Gossypium hirsutum, Oryza sativa, Saccharum officinarum, Sorghum bicolor, Zea mays (Ogunyemi et al., 2000; Ogunyemi et al., 2005; Chauhan & Johnson, 2009) and horticultural enterprises (Waterhouse, 1994). A remarkable example of recent weed invasion is that of A. tuberculatus in corn and soybean fields in the central United States over the past two 398 R. Assad et al. decades (Steckel, 2007). A. tuberculatus was first recorded as an agricultural weed in Illinois cornfields in the early 1950s (Sauer, 1957) and has become a weed of major concern since 1990s (Trucco et al. 2009). Yield losses caused by interference from various other species of Amaranthus have been reported for numerous crops (Moolani et al., 1964; Rushing et al., 1985; Bensch et al., 2003; Hartzler et al., 2004). Allelopathy Allelopathic effects of different Amaranthus species on various plants have been reported (Table 5). Dry residues of the aerial part of A. retroflexus reduced the germination of Beta vulgaris, Brassica oleracea, Brassica oleracea var. brotrytis, Capsicum annuum, Carthamus tinctorius, Cucumis sativus, Cucurbita ovifera, Daucus carota, Glycine max, Gossypium hirsutum, Helianthus annus, Hordeum vulgare, Lactuca sativa, Lycopersicon lycopersici, Phaseolus vulgaris, Solanum melongena, Sorghum bicolor and Zea mays (Munger et al., 1983; Qasem, 1995a, b; Alam et al., 2001; Aguyoh & Masiunas, 2003; Costea & Tardif, 2003; Dos Santos et al., 2004; Rezaie & Yarnia, 2009; Souza et al., 2011). Shoot residues of A. retroflexus inhibited radicle and hypocotyl elongation, interfered with photosynthesis, reduced growth, nutrient uptake and productivity of Zea mays (Bhowmik & Doll, 1980, 1982, 1984) and decreased respiration, relative growth rate (RGR), net assimilation rate (NAR), root fresh weight (FWR), nitrogen fixation of nodules, chlorophyll content and biomass production in Glycine max (Bhowmik & Doll, 1980, 1982, 1984; Chaniago et al., 2006); reduced growth and yield in Nicotiana tabacum (Lolas, 1981; Lolas, 1986); affected common bean growth and establishment (Shimi & Termeh, 2004) and decreased safflower yield (Williams et al., 2005) through release of allelochemicals, but, the inhibition was not appreciably affected by temperature or light (Bhowmik & Doll, 1983). Dried shoot residues of A. retroflexus, A. blitoides and A. gracilis reduced germination, coleoptile length, root length, root dry weight, plant height, grain and straw yield of Triticum aestivum (Qasem, 1995b; Shahrokhi et al., 2012) and caused reductions in the productivity of Hordeum vulgare (Qasem, 1994, 1995a). Allelopathic effects of A. palmeri have been reported on seedling emergence of several species (Menges, 1987, 1988). Extracts of A. palmeri inhibited seed germination and growth of Daucus carrota and Allium cepa (Altieri and Doll 1978; Bradow & Connick, 1987; Menges, 1987). Vapours of 2-heptanone and 2-heptanol, isolated from A. palmeri, inhibited the germination of onion, carrot, tomato, and palmer amaranth seeds (Connick et al., 1987). Menges, (1988) reported phytotoxicity of A. palmeri residues on growth of several crop species including Sorghum bicolor, Brassica oleracea var. Capitata, Daucus carrota and Allium cepa. Water-soluble extracts of A. palmeri were more phytotoxic than were extracts of A. retroflexus (Hicks et al., 1986). Allelopathic effects of A. spinosus have been reported (Shrefler et al., 1996). Extract of leaves and inflorescence of A. spinosus drastically reduced the vegetative and reproductive phases of Sinapis alba and T. aestivum (Datta & Bandyopadhayay, 1981). Leached components of A. spinosus showed strong allelopathic effect over the growth and establishment of Parthenium hysterophorus (Chikkalingaiah & Mahadevappa, 1998) and also over the growth of some cultures (Suma, 1998). Burned residues of A. viridis diminished growth and productivity of Pennisetum americanum (Singhal & Sen, 1981). Also the aqueous extracts of A. dubius were found Biology of Amaranths 399 inhibitory to seedling emergence and growth of several plant species (Altieri & Doll, 1978). Dry shoot extracts of A. hybridus negatively affected the total chlorophyll content, number of developed leaves, stem length, and total plant dry matter of dry beans (Amini et al., 2013). Allelochemicals such as aldehydes, alkaloids, apocarotenoids, flavonoids, steroids, xyloids, clerogenic acid and saponins (Anaya et al., 1987; Alm et al., 2002), secreted by aerial organs of Amaranthus plants were found to be released through washing by rain or irrigation water to the soil (Anaya et al., 1987; Al-Khatib, 1995; Khanh et al., 2005). Fischer and Quijano (1985) isolated phytol, chondrillasterol, vanillin, 3-methoxy-4hydroxy nitrobenzene, and 2, 6-dimethoxy-benzoquinone from A. palmeri. Coumarins have been isolated from A. retroflexus (Rezaie & Yarnia, 2009). The principal allelochemicals present in A. spinosus were phenolic acids, alkaloids belonging to the quinolizidine class, steroid, indol and sesquiterpene lactones (Narwall 1994; Qasem 1995a; Velu & Ali, 1995; Suma, 1998). The quantity of phenolic acids in A. spinosus was greatest in plants growing in soils polluted with domestic, industrial and vehicle residues (Suma, 1998) while as the concentration of phenolic acids within the plant was highest in the leaves, followed by stems, inflorescence and the lowest in the roots (Souza et al., 2011). Management Weedy Amaranthus species are difficult to control due to their prolific seed production (200,000 to 600,000 seeds/female plant), small seed size, ability to cross successfully with other Amaranthus species, long germination period, high density of infestation, ability to rapidly evolve herbicide resistance, and difficulty in proper identification (Stevens, 1932; Keeley et al., 1987; Dillon et al., 1989; Horak, 1997; Wetzel et al., 1999a, b; Sellers et al., 2003; Vigueira et al., 2013). Although, proper identification of Amaranthus species can be difficult, it is important due to varying responses to herbicides and weed management practices (Pratt et al., 1999). Shade can have a suppressive effect on weed seed germination, as it dampens the soil thermal amplitude and alters the light quality perceived by seeds lying on the soil surface (Fortin & Pierce, 1990; Batlla et al., 2000; Norsworthy, 2004). Under a canopy, besides reductions in PAR, seeds experience a reduction in the red: far-red (R:FR) ratio as a result of an increase in far-red (FR) transmitted light (Taylorson &Borthwick, 1969; Thompson & Grime, 1983; Sattin et al., 1994; Norsworthy 2004), which is inhibitory to germination of various Amaranthus species like A. hybridus, A. palmeri, A. retroflexus, and A. rudis (Taylorson & Borthwick, 1969; Gallagher & Cardina, 1998a, 1998b; Hartzler et al., 1999; Leon & Owen 2003; Jha et al., 2008c). Shading of the maternal plant in A. retroflexus resulted in reduced seed dormancy under short day (8 h light) and increased seed dormancy under long day (16 h light) conditions (Kigel et al., 1977). Washitani (1985) and Brainard et al. (2005) also reported a leaf canopy effect on increased seed dormancy of A. patulus. The germination percentage of A. powellii seeds was 50% lower for seeds maturing on plants grown under shade than in open sunlight (Brainard et al., 2005). Tillage is a major mechanism for vertical movement of weed seeds in soil (Buhler et al., 1997, 2001). In a no-tillage system, weed seeds are concentrated in the upper 5 cm of the soil profile relative to conventional tillage systems (Cardina et al., 1991; Buhler, 1992; Clements et al., 1996), which allows small-seeded weeds such as pigweeds to emerge more easily from shallow depths (Webb et al., 1987; Buhler et al., 1996; Oryokot 400 R. Assad et al. et al., 1997a; Ghorbani et al., 1999). Stimulation of germination and subsequent emergence following tillage was possibly due to increased soil aeration, improved soil-seed contact, and elevated soil temperatures (Litch and Al-Kaisi 2005; Leon and Owen 2006; Norsworthy and Oliveira 2007). Although high reduction of Amaranthus by the tillage system is promising, yet it is not sufficient. A control of approximately 90% is not satisfactory because in low densities the surviving Amaranthus plants produce more seeds per plant than in high densities (Bürki et al., 1997). Mowing is also not an effective option for control of various Amaranthus species because once mowed they bounces back and start growing prostrate, produces viable seed and complete their life cycle if mowing is not maintained. Therefore, herbicides can be a more effective option to control these species, than mowing. Herbicides are cost-effective and efficient tools for weed control in modern agriculture. 2,4-D (Szmedra, 1997), Aminocyclopyrachlor (DuPont, 2009), Aminopyralid (Burch et al., 2005), Dicamba (Senseman et al., 2007), Pendimethalin (Malefyt and Duke, 1984), are some of the widely used herbicides for broadleaf weed control in the world. Early to midseason (early May to late June) herbicide applications (Dieleman et al. 1996) with an early crop canopy closure would be a promising strategy to manage different Amaranthus species (Jha et al., 2008a, 2008b). Steckel (2004) reported that Amaranthus species in various row crops can be best managed when a pre-applied herbicide is followed by a post applied herbicide or when a post applied herbicide is followed by another post applied herbicide, which contains a residual product. Although many currently labelled soil-applied herbicides like 2,4-D, Banvel® or Clarity® (dicamba), Cimarron® (metsulfuron), Cimarron Max® (metsulfuron +2,4-D+ dicamba), Distinct® (diflufenzopyr + dicamba), Grazon P + D® (picloram +2,4-D), Milestone® (aminopyralid) or ForeFront R&P® (aminopyralid +2,4-D), Roundup® (glyphosate), Surmount® (picloram + fluroxypyr), and Weedmaster® (dicamba +2,4-D) provided good control of various Amaranthus species, difficulties in control have been reported (Fritz & Hartwig, 1986; Fuerst et al., 1986; Mayo et al., 1995; Grichar, 1997; Steckel, 2004; Green et al. 2006; Boyd, 2008). With proper herbicide selection, 90% control of A. albus, A. palmeri, A. retroflexus, and A. rudis is possible (Sweat et al., 1998). Besides, it may be necessary to make two to three herbicide applications to effectively control them all season long (Ferrell & Sellers, 2007). Herbicide Resistance in Amaranthus Species Sole reliance on herbicides has resulted in evolution of herbicide resistance in weeds (Heap, 2014). Herbicide-resistant biotypes of Amaranthus species have developed in many countries (Barralis & Gasquez, 1987). At least one Amaranthus weed species is reported to be resistant to one or more herbicide groups in twenty-nine U.S. States (Sellers et al., 2003). The presence of herbicide tolerance traits raises questions of how to address management issues at a grower, county, and regional level (Cardina et al., 1999). Evolution of resistance to glyphosate, the world’s most widely used herbicide with effective broad-spectrum weed control, is a significant problem facing world agriculture (Powles, 2008; Webster & Sosnoskie, 2010). Herbicide-resistant biotypes of A. blitum have been reported from North America, Europe and Asia which have developed resistance to different herbicides including ALS inhibitors, Atrazine and Paraquat (Itoh et al., 1992; Manley et al., 1996; Heap, 2014). A. palmeri has developed resistance to several different herbicides, including acetolactate Biology of Amaranths 401 synthase (ALS) inhibitors, dinitroaniline, glyphosate, imidazolinone, sulfonylurea, and triazine (Gossett et al., 1992; Horak & Peterson, 1995; Sprague et al., 1997; Peterson, 1999; Franssen et al. 2001a; Culpepper et al. 2006; Steckel et al., 2008; Vencill et al., 2008; Wise et al. 2009; Price et al., 2011; Heap, 2014). Also A. rudis and A. retroflexus biotypes with resistance to glyphosate, triazine or acetolactate synthase-inhibiting herbicides have been reported (Horak & Peterson, 1995; Peterson, 1999; Price et al., 2011). Prior to the recent occurrence of glyphosate resistance in A. palmeri (Culpepper et al., 2006; Mueller et al., 2006; York et al., 2007; Culpepper et al., 2008; Norsworthy et al. 2008; Steckel et al., 2008; Gaines et al., 2010; Price et al., 2011), glyphosate had been highly effective in controlling this weed (Scott et al., 2002; Norsworthy, 2004, 2005; Bond et al., 2006), which contributed to rapid adoption of glyphosate-resistant soybean and cotton throughout the southern United States. A survey of Georgia growers revealed that the presence of Glyphosate resistant A. palmeri in fields increased management costs by 58%, from $81 ha21 to $129 ha21 (Culpepper & Kichler, 2009). A. tuberculatus have evolved resistance to five different chemical classes of herbicides: Acetolactate synthase (ALS) inhibitors (Horak & Peterson, 1995; Foes et al., 1998; Tranel & Wright, 2002; Patzoldt & Tranel, 2007; Nordby et al., 2010), glyphosate (Legleiter and Bradley 2008; Nandula et al. 2013), p-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors (Hausman et al. 2011), Photosystem II (PSII) inhibitors, also called triazines (Anderson et al., 1996), and Protoporphyrinogen oxidase (PPO) inhibitors (Shoup et al., 2003), furthermore its some populations have developed resistance to multiple herbicide classes (Tranel et al., 2004; Falk et al., 2005; Patzoldt et al., 2005; Mcmullan & Green, 2011; Bell et al., 2013). Simultaneously, ALS resistance appears to have no fitness cost in herbicide-free environments in some Amaranthus species (Sibony & Rubin, 2002; but see Tardif et al., 2006). Biological Control of Amaranthus Species Excessive use of herbicides has resulted in problems, including contamination of surface and groundwater resources (Guzzella et al., 2006; Spalding et al., 2003), and various human health risks (EPA, 2007). The growing public concerns about pesticide residues in our food and environment, and the increasing public pressure for more sustainable crop production methods have led to an increasing interest in integrated weed control strategies for Amaranthus species (Bürki et al., 1997), based on mechanical, physical, or biological control. Numerous weedy Amaranthus species were chosen for biological control research within the framework of COST (European Cooperation in the Field of Scientific and Technical Research)–Action (Müller-Schärer, 1993). Various insects which are being promoted as biological control agents for various Amaranthus species (like A. caudatus, A. hybridus, A. retroflexus, A. spinosus, A. viridis) are: Disonycha glabrata (Garman, 1892; Vogt & Cordo, 1976; Balsbaugh et al., 1981; Tisler, 1990), Chaetocnema tibialis (Cagán et al., 2000), Cassida nigriventris and Coleophora versurella (Khan et al., 1978), Hypolixus truncatulus (Napompeth, 1982, 1989, 1992; Julien, 1992), Hypolixus nubilosus (Kolaib et al., 1986; López et al., 2011; Torres et al., 2011; Kagali et al., 2013), Haplopeodes minutes (Spencer & Steyskal, 1986), Epicauta leopardina (Schuester, 1987), Melanagromyza amaranthi (Spencer & Havranek, 1989), Pellucidus Vittula (Cagán et al., 2000), and Hepertogramma bipunctalis (López et al., 2011; Kagali et al., 2013). 402 R. Assad et al. Erwinia carotovora var. rhapontici (Kataryan, 1975; Mendoza & Rodriguez, 1990), Gliocladium virens (Howell & Stipanovic, 1984) are some examples of bacteria which can be used as bio control agents for various Amaranthus species. Promising pathogens that can be used as potential bioherbicide or mycoherbicide for Amaranthus include: Aposphaeria amaranthi (Mintz & Weidemann, 1992); Microsphaeropsis amaranthi (Ortiz Ribbing & Williams, 2006), Phomopsis amaranthicola (Charudattan, 1994; Ortiz Ribbing & Williams, 2006) and Alternaria alternata (Ghorbani et al., 2000). Allelopathy may also be a useful means of biological weed control, especially when integrated into pest management systems, reducing dependence upon synthetic herbicides. A recent screening for inhibiting activity against A. spinosus identified several plants with herbicidal activity (Rizvi & Rizvi, 1992). Macharia and Peffley (1995) reported the allelopathic effect of Allium fistulosum and A. cepa genotypes on plant growth and seed germination of A. spinosus. Aqueous extracts of tissues of some plants like Artemisia annua, Cirsium arvense, Fagopyrum esculentum, Helianthus annuus, Rumex crispus and Sorghum halepense decreases germination of A. retroflexus (Costea et al., 2004; Haramoto & Gallandt, 2005). Thus these plants can act as biological control agents. The potential conflict of interest between the need for effective biological control of noxious Amaranthus species to prevent major crop losses and reduce herbicide application in systems of sustainable agriculture, on the one hand and the potential economic value of certain Amaranthus species as crops, on the other, needs to be discussed and resolved. The important point is that agents used in the inundative bio control of noxious Amaranthus species should not endanger crop Amaranthus (Bürki et al., 1997). Conclusion The high nutritional value of Amaranthus seeds, functional potential, short lifecycle, rapid growth, adaptability to unfavourable climate and soil condition, drought tolerance and the food use of the entire plant is the reason for increasing research interest in this pseudocereal. This is a food for future crop for many developing countries, particularly in drought-prone areas of Africa and Asia. However, Genus Amaranthus consists of some of the troublesome invasive or noxious weeds of the world which are known to compete with many economic crops in different parts of the world resulting in great yield losses. Hence, extensive research is required to choose between the good and bad Amaranths. References Adefemi, O. S., O. A. Ibigbami & E. E. Awokunmi. 2012. Level of heavy metals in some edible plants collected from selected dumpsites in Ekiti State, Nigeria. Global Advanced Research Journal of Environmental Science and Toxicology 1: 132–136. Adefila, E. O., C. T. Onwordi & I. A. Ogunwande. 2010. Level of heavy metals uptake on vegetables planted on poultry droppings dumpsite. Archives of Applied Science Research 2: 347–353. Adekunle, I. M., O. Olorundare & C. Nwange. 2009. Assessments of lead levels and daily intakes from green leafy vegetables of southwest Nigeria. Nutrition and Food Science 39: 413–422. Adewuyi, G. O., F. A. Dawodu & N. N. Jibiri. 2010. Studies of the concentration levels of heavy metals in vegetable (Amaranthus caudatus) grown in dumpsites within Lagos Metropolis, Nigeria. Pacific Journal of Science and Technology 11: 616–620. Biology of Amaranths 403 Aguyoh, J. N. & J. B. Masiunas. 2003. Interference of redroot pigweed (Amaranthus retroflexus) with snap beans. Weed Science 51: 202–207. Akubugwo, E. I., A. Obasi, G. C. Chinyere, E. Eze, O. Nwokeoji & E. A. Ugbogu. 2012. Phytoaccumulaion effects of Amaranthus hybridus L. grown on buwaya refuse dumpsites in Chikun, Nigeria on heavy metals. Journal of Biodiversity and Environmental Sciences 2: 10–17. Alam, S. M., S. A. Ala, A. R. Azmi, M. A. Khan & R. Ansari. 2001. Allelopathy and it’s role in agriculture. Journal of Biological Sciences 1: 308–315. Al-Khatib, K. 1995. Weed control in wheat. Washington State University Cooperative Extension. pp. 244–364. Alm, D. M., M. E. Mcgiffen & J. D. Hesketh. 1991. Weed phenology. In: Hodges T, ed Predicts crop phonology. Boca Raton: CRC Press 191–218. ———, S. M. Khan, S. M. Mujtaba & A. Shereen. 2002. Influence of aqueous leaf extract of common lambsquarters and NaCl salinity on the germination, growth, and nutrient contents of wheat. Acta Physiologiae Plantarum 24: 359–364. Altieri, M. A. & J. D. Doll. 1978. The potential of allelopathy as a tool for weed management in crop fields. PANS 24: 495–502. Al-Turki, T. A., S. A. Filfilan & S. F. Mehmood. 2000. A cytological study of flowering plants from Saudi Arabia. Willdenowia 30: 339–358. Amini, R., S. Ghanepour & F. Movahedpour. 2013. Morpho-physiological and phenological changes induced by smooth amaranth allelopathic effects in various types of dry bean. International Journal of Agriculture and Crop Sciences 5: 120–124. Anaya, L., L. Ramos, R. H. Cruz, J. G. Fernandez & V. Nava. 1987. Perspectives on allelopathy in mexican traditional agroecosystems: A case study in Taxcala. Journal of Chemical Ecology 13: 2083– 2101. Anderson, R. L. & D. C. Nielsen. 1996. Emergence pattern of five weeds in the central great plains. Weed Technology 10: 744–749. Anderson, D. D., F. W. Roeth & A. R. Martin. 1996. Occurrence and control of triazineresistant common waterhemp (Amaranthus rudis) in field corn (Zea mays). Weed Technology 10: 570–575. Atayese, M. O., A. I. Eigbadon, K. A. Oluwa & J. K. Adesodunl. 2009. Heavy metal contamination of Amaranthus grown along major highways in Lagos, Nigeria. African Crop Science Journal 16: 225–235. Balsbaugh, E. U., R. D. Frye Jr., C. G. Scholl & A. W. Anderson. 1981. Insects for weed control: status in North Dakota. North Dakota Farm Research 39: 3–7. Baquar, S. R. & O. O. Olusi. 1988. Cytomorphological and phylogenetic studies of the genus Amaranthus from Nigeria. Kromosomo 51: 1665–1674. Barralis, G. & J. Gasquez. 1987. Investigations on herbicide resistant weeds. Newsletter of the European Weed Research Society 38: 5–10. Baskin, I. J. & C. C. Baskin. 1977. Role of temperature in the germination ecology of three summer annual weeds. Oecologia 30: 377–382. Baskin, J. M. & C. C. Baskin. 1985a. Seasonal changes in the germination responses of buried Witchgrass (Panicum capillare) seeds. Weed Science 34: 22–24. ——— & ———. 1985b. The annual dormancy cycle in buried weed seeds: A continuum. BioScience 35: 492–498. ——— & ———. 1987. Temperature requirements for after-ripening in buried seeds of four summer annual weeds. Weed Research 27: 385–389. ——— & ———. 1990. The role of light and alternating temperatures on germination of Polygonum aviculare seeds exhumed on various dates. Weed Research 30: 397–402. ——— & ———. 1998. Seeds: Ecology, biogeography, and evolution of dormancy and germination. San Diego: Academic Press pp. 27–200. Batlla, D., B. C. Kruk & R. L. Benech-Arnold. 2000. Very early detection of canopy presence by seeds through perception of subtle modifications in R: FR signals. Functional Ecology 14: 195–202. Becker, R., E. L. Wheeler, K. Lorenz, A. E. Stafford, O. K. Grosjean, A. A. Betschart & R. M. Saunders. 1981. A composition study of amaranth grain. Journal of Food Science 46: 1175–1180. Behera, B. & S. N. Patnaik. 1974. Cytotaxonomic studies in the family amaranthaceae. Cytologia 39: 121– 131. ——— & ———.1977. Genome analysis of Amaranthus dubius Mart. ex Thell. through the study of A. spinosus × A. dubius hybrids. Proceedings of Indian Science Congress Association 64: 144. ——— & ———. 1982. Genome analysis of Amaranthus dubius Mart. ex Thell. through the study of Amaranthus spinosus × A. dubius hybrids. Cytologia 47: 379–389. Bell, M. S., A. G. Hager & P. J. Tranel. 2013. Multiple resistance to herbicides from four site-of-action groups in waterhemp (Amaranthus tuberculatus). Weed Science 61: 460–468. 404 R. Assad et al. Benech-Arnold, R. L., C. M. Ghersa, R. A. Sanchez & P. Insausti. 1990. Temperature effects on dormancy release and germination rate in Sorghum halepense (L.) Pers. seeds: a quantitative analysis. Weed Research 30: 81–89. ———, R. A. Sánchez, F. Forcella, B. C. Kruk & C. M. Ghersa. 2000. Environmental control of dormancy in weed seed banks in soil. Field Crops Research 67: 105–122. Bensch, C. N., M. J. Horak & D. Peterson. 2003. Interference of redroot pigweed (Amaranthus retroflexus), Palmer amaranth (A. palmeri), and common waterhemp (A. rudis) in soybean. Weed Science 51: 37–43. Benvenuti, S. 2003. Soil texture involvement in germination and emergence of buried weed seeds. Agronomy Journal 95:191–198. ——— & M. Macchia. 1997. Germination ecophysiology of bur beggerticks (Bidens tripartite) as affected by light and oxygen. Weed Science 45: 696–700. ——— & ———. 1998. Phytochrome-mediated germination control of Datura stramonium L. seeds after seed burial. Weed Research 38: 199–206. ———, M. Macchia & S. Miele. 2001. Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Science 49: 528–535. Bewley, J. D. & M. Black. 1994. Seeds: physiology of development and germination. Plenum, Berlin. Bhowmik P. C. 1997. Weed biology: importance to weed management. Weed Science 45: 349–356. ——— & J. D. Doll. 1980. Field studies on allelopathic effects of weeds and crop residues. In Proceedings North Central weed Control Conference 35: 82–83. ——— & ———. 1982. Corn and soybean response to allelopathic effects of weed and crop residues. Agronomy Journal 74: 601–606. ——— & ———. 1983. Growth analysis of corn and sorghum response to allelopathic effects of weed residues at various temperatures and photosynthetic photon flux densities. Journal of Chemical Ecology 9: 1263–1280. ——— & ———. 1984. Allelopathic effect of annual weed residues on growth and nutrient uptake of corn and soybean. Agronomy Journal 76: 383–388. Bibbey, R. O. 1935. The influence of environment upon the germination of weed seeds. Scientia Agricola 16: 141–150. Bigaliev, A., K. Boguspaev & E. Znanburshin. 2003. Phytoremediation potential of Amaranthus sp. for heavy metals contaminated soil of oil producing territory. 10th Annual International Petroleum Environmental Conference. Houston, al-Farabi Kazakh. Bonasora, M. G., L. Poggio & E. J. Greizerstein. 2013. Cytogenetic studies in four cultivated Amaranthus (Amaranthaceae) species. Comparative cytogenetics 7: 53. Bond, J. A., L. R. Oliver & D. O. Stephenson. 2006. Response of palmer amaranth (Amaranthus palmeri) accessions to glyphosate, fomesafen, and pyrithiobac. Weed Technology 20: 885–892. Bouwmeester, H. J. & C. M. Karssen. 1992. The dual role of temperature in the regulation of the seasonal changes in dormancy and germination of seeds of Polygonum persicaria L. Oecologia 90: 88–94. Boyd, J. 2008. Pasture weed and brush control. University of Arkansas. Bradow, J. M. & W. J. Connick. 1987. Allelochemicals of palmer amaranth (Amaranthus palmeri S. Wats.). Journal of Chemical Ecology 13: 185–202. ——— & ———. 1988. Seed germination inhibition by volatile alcohols and other compounds associated with Amaranthus palmeri residues. Journal of Chemical Ecology 14: 1633–1648. Brainard, D. C., R. R. Bellinder & A. DiTommaso. 2005. Effects of canopy shade on the morphology, phenology, and seed characteristics of Powell amaranth (Amaranthus powelli). Weed Science 53: 175–186. Breene, W. M. 1991. Food uses of grain amaranth. Cereal Foods World 36: 426–430. Brenner, D. M., D. D. Baltensperger, P. A. Kulakow, J. W. Lehmann, R. L. Myers, M. M. Slabbert & B. B. Sleugh. 2000. Genetic resources and breeding of Amaranthus. Plant Breeding Reviews 19: 227–285. Buchanan, G. A., R. H. Crowley, J. E. Street & J. A. McGuire. 1980. Competition of sicklepod (Cassia obtusifolia) and redroot pigweed (Amaranthus retroflexus) with cotton (Gossypium hirsutum). Weed Science 28: 258–262. Budin, J. T., W. M. Breen & D. H. Patnum. 1996. Some compositional properties of seeds and oils of eight Amaranthus species. Journal of the American Oil Chemists’ Society 73: 475–481. Buhler, D. D. 1992. Population dynamics and control of annual weeds in corn (Zea mays) as influenced by tillage. Weed Science 40: 241–248. ———, T. C. Mester & K. A. Kohler. 1996. The effect of maize residues and tillage on emergence of Setaria faberi, Abutilon theophrasti, Amaranthus retroflexus, and Chenopodium album. Weed Research 36: 153–165. ———, R. G. Hartzler & F. Forcella. 1997. Implications of weed seedbank dynamics to weed management. Weed Science 45: 329–336. ———, K. A. Kohler & R. L. Thompson. 2001. Weed seed bank dynamics during five-year crop rotation. Weed Technology 15: 170–176. Biology of Amaranths 405 Burch, P., R. Masters, E. S. Hagood, K. Bradley, W. W. Witt, K. Moore & J. Breuninger. 2005. Aminopyralid: A new herbicide for integrated renovation programs. Burke, I. C., M. Schroeder, W. E. Thomas & J. W. Wilcut. 2007. Palmer amaranth interference and seed production in peanut. Weed Technology 21: 367–371. Bürki, H. M., D. Schroeder, J. Lawrie, L. Cagan, M. Vrablova, M. E. Aydam, F. Szentkiralyi, R. Ghorbani, B. Jüttersonke & H. U. Ammon. 1997. Biological control of pigweeds (Amaranthus retroflexus L., A. Powellii S. Watson and A. bouchonii Thell.) with phytophagous insects, fungal pathogens and crop management. Integrated Pest Management Reviews 2: 51–59. Burnside, O. C., C. R. Fernster, L. L. Evertts & R. F. Mumm. 1981. Germination of exhumed weed seed in Nebraska. Weed Science 29: 577–586. ———, R. G. Wilson, S. Weisberg & K. G. Hubbard. 1996. Seed longetivity of 41 weed species buried 17 years in eastern and western Nebraska. Weed Science 44: 74–86. Cadman, C. S. C., P. E. Toorop, H. W. M. Hilhorst & W. E. Finch-Savage. 2006. Gene expression profiles of Arabidopsis cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. The Plant Journal 46: 805–822. Cagán, L., M. Vráblová & P. Tóth. 2000. Flea beetles (Chrysomelidae: Alticinae) species occurring on Amaranthus spp. in slovakia. Journal of Central European Agriculture 1: 14–25. Cardina, J., E. Regnier & K. Harrison. 1991. Long-term tillage effects on seed banks in three Ohio soils. Weed Science 39: 186–194. ———, T. M. Webster, C. P. Herms & E. E. Regnier. 1999. Development of weed IPM: Levels of integration for weed management. Journal of crop production 2: 239–267. ———, C. P. Herms & D. J. Doohan. 2002. Crop rotation and tillage system effects on weed seedbanks. Weed Science 50: 448–460. Castelano-Sousa, V. M. & J. Amaya-Farfán. 2012. State of knowledge on amaranth grain: a comprehensive review. Journal of Food Science 77: 93–104. Castor, R. D., A. A. M. Lammeren, S. P. C. Groot, G. Bino & W. M. Hilhorest. 2000. Cell division and subsequent radical protrusion in tomato seeds are inhibited by osmotic stress but DNA synthesis and formation of micro tubular cytoskeleton are not. Plant Physiology 122: 327–335. Chakravorty, A. & P. D. Ghosh. 2012. Phenology of some broad leaved kharif weeds of alluvium zone of West Bengal. International Journal of Scientific and Research Publications 2. Chaniago, I., A. Taji & R. Jessop. 2006. Weed interference in soybean (Glycine max). The Australian Society of Agronomy. Proceedings of the Australian Agronomy Conference. Charudattan, R. 1994. Status report of the University of Florida, Plant Pathology Department, Gainesville, FL, USA. International Bioherbicide Group IBG News 3: 8–9. Chauhan, B. S. & D. E. Johnson. 2009. Germination ecology of spiny (Amaranthus spinosus) and slender amaranth (A. viridis): troublesome weeds of direct-seeded rice. Weed Science 57: 379–385. Chepil, W. S. 1946. Germination of weed seeds: I. Longevity, periodicity of germination, and vitality of seeds in cultivated soil. Scientific Agriculture 26: 307–346. Chikkalingaiah, G. E. & M. Mahadevappa. 1998. Effect of different plant species and plant leachates on Parthenium hysterophorus L. weed. Crop Research 15: 106–164. Chinmayee, M. D., B. Mahesh, S. Pradesh, I. Mini & T. S. Swapna. 2012. The assessment of phytoremediation potential of invasive weed Amaranthus spinosus L. Applied Biochemistry and Biotechnology 167: 1550–1559. Clements, D. R., D. L. Benoit, S. D. Murphy & C. J. Swanton. 1996. Tillage effects of weed seed return and seedbank composition. Weed Science 44: 314–322. Conforti, F., G. Statti, M. R. Loizzo, G. Sacchetti, F. Poli & F. Menichini. 2005. In vitro antioxidant effect and inhibition of α-amylase of two varieties of Amaranthus caudatus seeds. Biological and Pharmaceutical Bulletin 28: 1098–1102. Connick, W. J., J. M. Bradow, M. G. Legendre, S. L. Vail & R. M. Menges. 1987. Identification of volatile allelochemicals from Amaranthus palmeri S. Wats. Journal of Chemical Ecology 13: 463–472. Costea, M. & D. DeMason. 2001. Stem morphology and anatomy in Amaranthus L. (Amaranthaceae) Taxonomic significance. Journal of the Torrey Botanical Society 128: 254–281. ——— & F. J. Tardif. 2003. The biology of Canadian weeds. 126. Amaranthus albus L., A. blitoides S. Watson and A. blitum L. Canadian Journal of Plant Science 83: 1039–1066. ———, A. Sanders & G. Waines. 2001. Preliminary results toward a revision of the Amaranthus hybridus complex (Amaranthaceae). SIDA 19: 931–974. ———, S. E. Weaver & F. J. Tardif. 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Canadian Journal of Plant Science 84: 631–668. Covas, G. & J. H. Hunziker. 1954. Estudics cariológicos en. Antófitas. Revista Invest Agriculture 8: 249–253. 406 R. Assad et al. ——— & B. Schnack. 1946. Número de cromosomas en antófitas de la región de Cuyo (República Argentina). Revista Argent. Agron 13: 153–166. Cowan, P., S. E. Weaver & C. J. Swanton. 1998. Interference between pigweed (Amaranthus spp.), barnyardgrass (Echinochloa crus-galli), and soybean (Glycine max). Weed Science 46: 533–539. Cristaudo, A., F. Gresta, F. Luciani & A. Restuccia. 2007. Effects of after-harvest period and environmental factors on seed dormancy of Amaranthus species. Weed Research 47: 327–334. Culpepper, A. S. & J. M. Kichler. 2009. University of Georgia herbicide programs for controlling glyphosate-resistant palmer amaranth in 2009 cotton. University of Georgia Collge of Agricultural and Environmental Sciences, Circular, 924 pp. 2. Culpepper, A. S., T. L. Grey, W. K. Vencill, J. M. Kichler, T. M. Webster, S. M. Brown & A. C. York. 2006. Glyphosate-resistant palmer amaranth (Amaranthus palmeri) confirmed in Georgia. Weed Science 54: 620–626. ———, J. R. Whitaker, A. W. MacRae & A. C. York. 2008. Weed science: distribution of glyphosateresistant palmer amaranth (Amaranthus palmeri) in Georgia and North Carolina during 2005 and 2006. Journal of Cotton Science 12: 306–310. Das, S. 2016. Amaranths: The Crop of Great Prospect. In Amaranthus: A Promising Crop of Future (pp. 13– 48). Springer Singapore. Datta, S. C. & A. K. Bandyopadhayay. 1981. Allelopathic influences of three weeds on two crops. In: I Asian Pacific Weed Science Society Conference. APWSS: Tokyo. pp. 391–399. Der Marderosian, A. D., J. Beutler, W. Pfendner, J. Chambers, R. Yoder, E. Weinsteiger & J. Senft. 1980. Nitrate and oxalate content of vegetable amaranth. In Proceedings of the Second Amaranth Conference pp. 31. Rodale Press, Emmaus, PA. Dieleman, A., A. S. Hamill, S. F. Weise & C. J. Swanton. 1995. Empirical models of pigweed (Amaranthus spp.) interference in soybean (Glycine max). Weed Science 3: 612–618. ———, ———, G. C. Fox & C. J. Swanton. 1996. Decision rules for post emergence control of pigweed (Amaranthus spp.) in soybean (Glycine max). Weed Science 44: 126–132. ———, D. A. Mortensen, D. D. Buhler & R. B. Ferguson. 2000. Identifying associations among site properties and weed species abundance. II. Hypothesis generation. Weed Science 48: 576–587. Dillon, T. L., E. L. Baldwin & C. M. Becton. 1989. Palmer amaranth control in sandy soil in northeast Arkansas. Proceedings of the Southern Weed Science Society 42: 113. Dorling, K. 2008. RHS AZ Encyclopedia of garden plants. United Kingdom 1136. Doroszeweski, A. 2001. Natural for red irradiation and wed seed persistence in the soil. In: Ellis, R.H. and Black, M. (eds), Basic and applied aspects of seed biology. Kluwer Academic Publishers. pp. 297–302. Dos Santos, C. C., D. F. De Oliviera, L. W. R. Alves & D. A. S. De Furtado. 2004. Effect of organic extracts associated with surfactant Tween 80 on seed germination and seedling growth of lettuce. Ciência e Agrotecnologia 28: 296–299. Dowler, C. C. 1995. Weed survey-southern states: broadleaf crops sub-section. Southern Weed Science Society 48: 298–302. Downtown, W. J. S. 1973. Amaranthus edulis: a high lysine grain amaranth. World Crops 25: 20–21. Drew, M. C. 1990. Sensing soil oxygen. Plant Cell Environment 13: 681–693. DuPont Crop Protection. 2009. DPX-MAT 28 Herbicide Technical Bulletin. Early, D. K. 1977. Cultivation and uses of amaranth in contemporary Mexico. In: Proceedings of the First Amaranth Seminar: 39. Rodale Press: 39–60. Early, D. 1992. The renaissance of amaranth. pp. 15–33. In N. Foster and L. S. Cordell (eds.). Chiles to chocolates: Foods the Americas gave the world. University of Arizona Press, Tucson. Egley, G. H. 1989. Some effects of nitrate-treated soil upon the sensitivity of buried redroot pigweed (A. retroflexus L.) seeds to ethylene, temperature, light and carbon dioxide. Plant Cell and Environment 12: 581–588. Eliasson, U. H. 1988. Floral morphology and taxonomic relations among the genera of Amaranthaceae in the New World and the Hawaiian Islands. Botanical Journal of the Linnaean Society 96: 235–283. Elmore, C. L. 1996. A reintroduction to integrated weed management. Weed Science 44: 409–412. EPA (Environmental Protection Agency). 2007. Research addresses potential risks of atrazine and related pesticides. Office of Research and Development. Espitia-Rangel, E. 1994. Breeding of grain amaranth. Amaranth: biology, chemistry, and technology. CRC press, Boca Raton, USA 23–38. Evans, C. R. 1922. Effect of temperature on germination of Amaranthus retroflexus. Botanical Gazette 73: 213–225. Faccini, D. & J. I. Vitta. 2005. Germination characteristics of A. quitensis as affected by seed production date and duration of burial. Weed Research 45: 371–378. Biology of Amaranths 407 Falk, J. S., D. E. Shoup, K. Al-Khatib & D. E. Peterson. 2005. Survey of common waterhemp (Amaranthus rudis) response to protox- and ALS-inhibiting herbicides in northeast Kansas. Weed Technology 19: 838–846. FAO. 1973. Energy and protein requirements. In: FAO Nutrition Meetings Report Series (No. 52). Farvin, K. S., R. Anandan, S. H. S. Kumar, K. S. Shiny, S. Mathew, T. V. Sankar & P. V. Nair. 2006. Cardio protective effect of squalene on lipid profile in isoprenaline-induced myocardial infarction in rats. Journal of Medicinal Food 9: 531–536. Fernando, T. & G. Bean. 1984. Fatty acids and sterols of Amaranthus tricolor L. Food Chemistry 15: 233–237. Ferrell, J. & B. Sellers. 2007. Spiny amaranth (spiny pigweed) control in pastures. University of Florida. Fischer, N. H. & L. Quijano. 1985. Allelopathic agents from common weeds: Amarantbus palmeri, Ambrosia artemisiifolia, and related weeds. In ACS Symposium series American Chemical Society. Flint, E. P. & D. T. Patterson. 1983. Interference and temperature effects on growth in soybean and associated C3 and C4 weeds. Weed Science 31: 191–195. Foes, M. J., P. J. Tranel, L. M. Wax & E. W. Stoller. 1998. A biotype of common waterhemp (Amaranthus rudis) resistant to triazine and ALS herbicides. Weed Science 46: 514–520. Forcella, F., R. G. Wilson & J. Dekker. 1997. Weed seed bank emergence across the corn belt. Weed Science 45:67–76. Fortin, M. C. & F. J. Pierce. 1990. Development and growth effects of crop residues on corn. Agronomy Journal 82: 710–715. Franssen, A. S., D. Z. Skinner, K. Al-Khatib & M. J. Horak. 2001a. Pollen morphological differences in Amaranthus species and interspecific hybrids. Weed Science 49:732–737. ———, ———, ———, ——— & P. A. Kulakow. 2001b. Interspecific hybridization and gene flow of ALS resistance in Amaranthus species. Weed Science 49: 598–606. Fritz, T. J. & N. L. Hartwig. 1986. Spiny amaranth control in pastures. Proceedings of the Northeastern Weed Science Society 40: 20–23. Fuerst, E. P., M. Barrett & D. Penner. 1986. Control of triazine-resistant common lambsquarters (Chenopodium album) and two pigweed species (Amaranthus spp.) in corn (Zea mays). Weed Science 34: 440–443. Fuller, H. J. 1949. Photoperiodic responses of Chenopodium quinoa Willd. and Amaranthus caudatus L. American Journal of Botany 36: 175–180. Gaines, T. A., W. Zhang, D. Wang, B. Bukun, S. T. Chisholm & D. L. Shaner. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proceedings of the National Academy of Sciences 107: 1029–1034. ———, S. M. Ward, B. Bukun, C. Preston, J. E. Leach & P. Westra. 2012. Interspecific hybridization transfers a previously unknown glyphosate resistance mechanism in Amaranthus species. Evolutionary Applications, Blackwell Publishing Ltd. pp. 529–538. Gallagher, R. S. & J. Cardina. 1997. Soil water thresholds for photo induction of redroot pigweed germination. Weed Science 45: 414–418. ——— & ———. 1998a. Phytochrome-mediated Amaranthus germination I: Effect of seed burial and germination temperature. Weed Science 46: 48–52. ——— & ———. 1998b. Phytochrome-mediated Amaranthus germination II: Development of very low fluence sensitivity. Weed Science 46: 53–58. Garcia, L. A., M. A. Alfaro & R. Bressani. 1987. Digestibility and nutritional value of crude-oil from three amaranth species. Journal of the American Oil Chemists’ Society 64: 371–375. Garman, H. 1892. The pigweed flea beetle. Second. Ann. Rep. Kentucky Agr. Exp. Sta. 1889: 27–30. Ghersa, C. M. & J. S. Holt. 1995. Using phenology prediction in weed management: a review. Weed Research 35: 461–470. ———, R. L. Benech-Arnold & M. A. Martinez-Ghersa. 1992. The role of fluctuating temperatures in germination and establishment of Sorghum halepense. Regulation of germination at increasing depths. Functional Ecology 6: 460–468. Ghorbani, R., W. Seel & C. Leifert. 1999. Effects of environmental factors on germination and emergence of Amaranthus retroflexus. Weed Science 47: 505–510. ———, ———, A. Litterick & C. Leifert. 2000. Evaluation of Alternaria alternate for biological control of Amaranthus retroflexus. Weed Science 48: 474–480. Ghosh, B. K. & N. K. Bruin. 1997. Dormancy and viability of grain amaranth seeds. Indian Journal of Plant Physiology 2: 15–17. Gossett, B. J., E. C. Murdock & J. E. Toler. 1992. Resistance of palmer amaranth (Amaranthus palmeri) to the dinitroaniline herbicides. Weed Technology 6: 587–591. Grant, W. F. 1959a. Cytogenetic studies in Amaranthus. II. Natural interspecific hybridization between A. dubius and A. spinosus. Canadian Journal of Botany 37: 1063–1070. 408 R. Assad et al. ———. 1959b. Cytogenetic studies in Amaranthus. III. Chromosome numbers and phylogenetic aspects. Canadian Journal of Genetics and Cytology 1: 313–328. Green, J. D., W. W. Witt & J. R. Martin. 2006. Weed management in grass pastures, hayfields and other farmstead sites. University of Kentucky. Ext. Pub. AGR-172. Greizerstein, E. J. & L. Poggio. 1992. Cytogenetic studies in six inter-specific hybrids of Amaranthus (Amaranthaceae). Darwiniana 31: 159–165. ———. 1995. Meiotic studies of spontaneous hybrids of Amaranthus: genome analysis. Plant Breeding 114: 448–450. ———, C. A. Naranjo & L. Poggio. 1997. Karyological studies in five wild species of Amaranthus. Cytologia 62: 115–120. Grichar, W. J. 1997. Control of palmer amaranth (Amaranthus palmeri) in peanut (Arachis hypogaea) with post emergence herbicides. Weed Technology 11: 739–743. Grubben, G. J. H. & D. H. van Sloten. 1981. Genetic resources of amaranths. Intl. Board for Plant Genetic Resources, Food and Agric. Org., Rome. Gudu, S. & V. K. Gupta. 1988. Male-sterility in the grain amaranth (Amaranthus hypochondriacus ex-Nepal) variety Jumla. Euphytica 37: 23–26. Guo, P. & K. Al-Khatib. 2003. Temperature effects on germination and growth of redroot pigweed (Amaranthus retroflexus), palmer amaranth (Amaranthus palmeri), and common waterhemp (A. rudis). Weed Science 51: 869–875. Gutterman, Y. & G. Genotypic. 1997. Phenotypic and opportunistic germination strategies of some common desert annuals compared with other seed dispersal and germination strategies In: Ellis, R.H. and Black, M. (eds), Basic and applied aspects of seed biology. Kluwer Academic Publishers. pp. 611–622. ———, F. Corbineau & D. Come. 1992. Interrelated effects of temperature, light and oxygen on Amaranthus caudatus L. seed germination. Weed Research 32: 111–117. Guzzella, L., F. Pozzoni & G. Giuliano. 2006. Herbicide contamination of surficial groundwater in Northern Italy. Environmental Pollution 142: 344–353. Habib, S. A. & H. L. Morton. 1987. The combined effect of temperature and water potential on side oats grama and redroot pigweed seeds germination. Iraqi Journal of Agricultural Science 5: 15–24. Hanf, M. 1984. Ackerunkra¨uter Europas mit ihren Keimlingen, pp. 166–70. Ludwigshafen: BASFAG. Haramoto, E. R. & E. R. Gallandt. 2005. Brassica cover cropping: II. Effects on growth and interference of green bean (Phaseolus vulgaris) and redroot pigweed (Amaranthus retroflexus). Weed Science 53:702–708. Hartzler, R. G., D. G. Buhler & D. E. Stoltenberg. 1999. Emergence characteristics of four annual weed species. Weed Science 47: 578–584. ———, B. A. Battles & D. Nordby. 2004. Effect of common waterhemp (Amaranthus rudis) emergence date on growth and fecundity in soybean. Weed Science 52: 242–245. Hauptli, H. & S. Jain. 1985. Genetic variation in outcrossing rate and correlated floral traits in a population of grain amaranth (Amaranthus cruentus L.). Genetica 66: 21–27. Hausman, N. E., S. Singh, P. J. Tranel, D. E. Riechers, S. S. Kaundun, N. D. Polge, D. A. Thomas & A. G. Hager. 2011. Resistance to HPPD-inhibiting herbicides in a population of waterhemp (Amaranthus tuberculatus) from Illinois, United States. Pest Management Science 67: 258–261. Heap, I. 2014. The international survey of herbicide resistant weeds. In Western Society of Weed Science (USA). Web page http://www.weedscience.org/in.asp (Accessed October 2, 2014). Heidarian, H., M. R. Hadi, H. S. Mahmoodabadi & M. N. Kalateh. 2012. Competitive effects of redroot pigweed (Amaranthus retroflexus) on three sunflowers (Helianthus annus) cultivars. International Journal of Agronomy and Plant Production 3: 84–88. Heiser Jr., C. B. & T. W. Whitaker. 1948. Chromosome number, polyploidy, and growth habit in California weeds. American Journal of Botany 179–186. Hendrick, L. W., W. F. Meggitt & D. Penner. 1974. Basis for selectivity of phenmedipham and desmedipham on wild mustard, redroot pigweed, and sugar beets. Weed Science 22: 179–184. Hendricks, S. B., V. K. Toole & H. A. Borthwick. 1968. Opposing actions of light in seed germination of Poa pratensis and Amaranthus arenicola. Plant Physiology 43: 2023–2028. Hicks, S. K., P. H. Munger, J. R. Abernathy & C. W. Wendt. 1986. Effect of amaranth allelopathic compounds on crops. In Proceedings of Southern Weed Science Society 411. Holm, R. E. 1972. Volatile metabolites controlling germination in buried weed seeds. Plant Physiology 50: 293–297. ——— & M. R. Miller. 1972. Weed seed germination responses to chemical and physical treatments. Weed Science 20: 150–153. Holm, L. G., D. L. Plunkett, J. V. Pancho & J. P. Herberger. 1977. The world’s worst weeds-distribution and biology. University Press of Hawaii 606. Biology of Amaranths 409 ———, J. V. Pancho, J. P. Herberger & D. L. Plucknett. 1979. A geographical atlas of world weeds. New York, USA: John Wiley and Sons. Horak, M. J. 1997. The changing nature of palmer amaranth: a case study. Proceedings of the North Central Weed Science Society 52: 161. ——— & T. M. Loughin. 2000. Growth analysis of four Amaranthus species. Weed Science 48: 347–355. ——— & D. E. Peterson. 1995. Biotypes of palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) are resistant to imazethapyr and thifensulfuron. Weed Technology 9: 192–195. Howell, C. R. & R. D. Stipanovic. 1984. Phytotoxicity to crop plants and herbicidal effects on weeds of viridiol produced by Gliocladium virens. Phytopathology 74: 1346–1349. Huang, J. Z., A. Shrestha, M. Tollenaar, W. Deen, H. Rahimian & C. J. Swanton. 2000. Effects of photoperiod on the phenological development of redroot pigweed (Amaranthus retroflexus L.). Canadian Journal of Plant Science 80: 929–938. Hyvönen, T. 2011. Impact of temperature and germination time on the success of a C4 weed in a C3 crop: Amaranthus retroflexus and spring barley. Agriculture and Food Science 20: 183–190. Iamonico, D. 2010. Biology, life-strategy and invasiveness of Amaranthus retroflexus L. (Amaranthaceae) in central Italy: preliminary remarks. Botanica Serbica 34: 137–145. Itoh, K., M. Azmi & A. Ahmad. 1992. Paraquat resistance in Solanum nigrum, Crassocephalum crepidioides, Amaranthus lividus and Conyza sumatrensis in Malaysia. 1st International Weed Control Congress, Melbourne, Australia 2: 224–228. Jacobsen, S. E., A. Mujica & L. Guarino. 2000. The genetic resources of the Andean grain crop amaranth (Amaranthus caudatus L., A. cruentus L. and A. hipochondriacus L.). Proceedings of International Conference on Science and Technology for Managing Plant Genetic Diversity in the twenty-first Century, Kuala Lumpur, Malaysia, 12–16 June. Jahaniaval, F., Y. Kakuda & M. F. Marcone. 2000. Fatty acid and triacylglycerol composition of seed oils of five Amaranthus accessions and their comparison to other oils. Journal of the American Oil Chemists’ Society 77: 847–852. Jha, P., J. K. Norsworthy & M. S. Malik. 2007. Effects of tillage and soybean canopy formation on temporal emergence of palmer amaranth from a natural seed bank. Weed Science Society 60. ———, ———, M. B. Riley & W. Bridges Jr. 2008a. Acclimation of palmer amaranth (Amaranthus palmeri) to shading. Weed Science 56: 729–734. ———, ———, ———, & ———. 2008b. Influence of glyphosate timing and row width on palmer amaranth (Amaranthus palmeri) and pusley (Richardia spp.) demographics in glyphosate-resistant soybean. Weed Science 56: 408–415. ———, ———, ——— & ———. 2008c. Temperature and light requirements for germination of palmer amaranth over a 12-month period. Weed Science 58: 426–432. ———, ———, ——— & ———. 2010. Annual changes in temperature and light requirements for germination of palmer amaranth (A. palmeri) seeds retrieved from soil. Weed Science 58: 426–432. Julien, M. H. 1992. Biological control of weeds. A world catalogue of agents and their target weeds. 3rd edition. pp. 186. Kadman-Zahavi, A. 1960. Effect of short and continuous illuminations on the germination of Amaranthus retroflexus seeds. Bulletin of the Research Council of Israel 9: 1–20. Kagali, R. N., E. N. Kioko, Z. Osiemo, S. Muya & C. Wachera. 2013. Insect abundance and diversity on cultivated Amaranthus spp. (Amaranthacea) in Meru County, Kenya. American International Journal of Contemporary Research 3: 110–116. Karssen, C. M. 1982. Seasonal patterns of dormancy in weed seeds. In: Khan, A.A. (ed) The physiology and biochemistry of seed development, dormancy and germination. Amsterdam: Elsevier Biomedical Press pp. 243–270. Kataryan, B. T. 1975. The search for bacterial cultures with herbicidal activity. Doklady Akademii Nauk Armyanskoi SSR 61: 110–112. Keeley, P. E. & R. J. Thullen. 1989. Growth and competition of black nightshade (Solanum nigrum) and palmer amaranth (Amaranthus palmeri) with cotton (Gossypium hirsutum). Weed Science 37: 326–334. ———, C. H. Carter & R. J. Thullen. 1987. Influence of planting date on growth of palmer amaranth (Amaranthus palmeri). Weed Science 35: 199–204. Kegode, G. O., R. B. Pearce & T. B. Bailey. 1998. Influence of fluctuating temperatures on emergence of shattercane (Sorghum bicolor) and giant foxtail (Setaria faberi). Weed Science 46: 330–335. Kendig, J. A. 2009. Palmer amaranth (Amaranthus palmeri) management. Available at http://ncc.confex. com/ncc/2006/techprogram/P4499.html. Kendrick, R. E., & B. Frankland. 1969. Photocontrol of germination in Amaranthus caudatus. Planta 85: 326–339. 410 R. Assad et al. ———, C. J. P. Spruit & B. Frankland. 1969. Phytochrome in seeds of Amaranthus caudatus. Planta 88: 293–302. ——— & M. Bihun. 2002. Induction of secondary dormancy in A. caudatus seeds. Plant Growth Regulation 38: 135–140. ——— & P. Sznigir. 2012. Response of Amaranthus retroflexus L. seeds to gibberellic acid, ethylene and abscisic acid depending on duration of stratification and burial. Plant Growth Regulation 70: 15–26. ———, E. Corbineau & D. Come. 1996. Responsiveness of Amaranthus retroflexus seeds to ethephon, 1aminocyclopropane 1-carboxylic acid and gibberellic acid in relation to temperature and dormancy. Plant Growth Regulation 20: 259–265. ———, E. Kępczyńska & M. Bihun. 2003. The involvement of ethylene in the release of primary dormancy in A. retroflexus seeds. Plant Growth Regulation 38: 57–62. Khan, A. G., G. M. Baloch & M. A. Ghani. 1978. Natural enemies of Abutilon, Amaranthus, Rumex and Sorghum. Commonwealth Institute of Biological Control. Report of work carried out January 1977 42–43. Khanh, T. D., I. M. Chung, T. D. Xuan & S. Tawata. 2005. The exploitation of crop allelopathy in sustainable agricultural production. Journal of Agronomy and Crop Science 191: 172–184. Khoshoo, T. N. & M. Pal. 1972. Cytogenetic patterns in Amaranthus. Chromosomes Today 3: 259–267. Kigel, J. 1994. Development and ecophysiology of Amaranths. Amaranth: Biology, chemistry, and technology 39–73. ———, M. Ofir & D. Koller. 1977. Control of the germination responses of Amaranthus retroflexus L. seeds by their parental photothermal environment. Journal of Experimental Botany 28: 1125–1136. Klingaman, T. E. & L. R. Oliver. 1994. Palmer amaranth (Amaranthus palmeri) interference in soybeans (Glycine max). Weed Science 42: 523–527. Knezevic, S. Z. & M. J. Horak. 1998. Influence of emergence time and density on redroot pigweed (Amaranthus retroflexus). Weed Science 46: 665–672. ———, S. F. Weise & C. J. Swanton. 1994. Interference of redroot pigweed (Amaranthus retroflexus) in corn (Zea mays). Weed Science 42: 568–573. Kolaib, M. O., M. F. W. Younes & E. T. E. Darwish. 1986. Hypolixus nubilosus as a factor in biological control of Amaranthus weeds in Egypt. Annals of Agricultural Science 31: 767–776. Koul, A. K., A. K. Wakhlu & J. L. Karihaloo. 1976. Chromosome numbers of some flowering plants of Jammu (Western Himalyas) II. Chromosome Information Service 20: 32–33. Kulakow, P. A. 1990. Simply inherited genetic variation in grain amaranth. In: Janick, J. and Simon, J.E. (eds.) Advances in New Crops. Timber Press, Portland, OR, USA. Kunth, K. S. 1838. Flora Berolinensis, Duncker and Humblot, Berlin, Germany 2: 144–145. Lanta, V., P. Havránek & V. Ondrej. 2003. Morphometry analysis and seed germination of Amaranthus cruentus, A. retroflexus and their hybrid (A. x turicensis). Plant Soil and Environment 49: 364–369. Legleiter, T. R. & K. W. Bradley. 2008. Glyphosate and multiple herbicide resistance in common waterhemp (Amaranthus rudis) populations from Missouri. Weed Science 56: 582–587. Lehmann, J. W. 1996. Case history of grain Amaranthus and alternative crop. Cereal Foods World 41: 399– 411. Leon, R. G. & M. D. K. Owen. 2003. Regulation of weed seed dormancy through light and temperature interactions. Weed Science 51: 752–758. ——— & ———. 2006. Tillage systems and seed dormancy effects on common waterhemp (Amaranthus tuberculatus) seedling emergence. Weed Science 54: 1037–1044. ———, A. D. Knapp & M. D. K. Owen. 2004. Effect of temperature on the germination of common waterhemp (Amaranthus tuberculatus), giant foxtail (Setaria faberi), and velevetleaf (Abutilon theophrasti). Weed Science 52: 67–73. ———, D. C. Basshami & M. D. K. Owen. 2007. Thermal and hormonal regulation of the dormancygermination transition in Amaranthus tuberculatus seeds. Weed Research 47: 335–344. Leon-Camacho, M., D. L. Garcia-Gonzalez & R. Aparicio. 2001. A detailed study of amaranth (Amaranthus cruentus L.) oil fatty profile. European Food Research and Technology 213: 349–355. Linnaeus, C. 1753. Species Plantarum, Laurentius Salvius, Stockholm, Sweden 2: pp. 989. Litch, M. A. & M. Al-Kaisi. 2005. Strip-tillage on seedbed soil temperature and other soil physical properties. Soil and Tillage Research 80: 233–249. Liu, F. & H. Stützel. 2002. Leaf water retention of vegetable amaranth (Amaranthus spp.) in response to soil drying. European Journal of Agronomy 16: 137–150. Liu, J., A. S. Davis & P. J. Tranel. 2012. Pollen biology and dispersal dynamics in waterhemp (Amaranthus tuberculatus). Weed Science 60: 416–422. Lolas, P. H. 1981. Weeds population interference in barley and tobacco. ln Panhellmic Congress of Geotechnical Research. Absract. 24 institution kapnou, Drama, Greece. Biology of Amaranths 411 Lolas, P. C. 1986. Weed community interference in barley and tobacco (Nicotiana tabacum L.). Weed Research 26: 1–8. Long, J. J. & J. O. Berry. 1996. Tissue-specific and light-mediated expression of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. Plant Physiology 112: 473–482. ———, J. L. Wang & J. O. Berry. 1994. Cloning and analysis of the C4 photosynthetic NAD-dependent malic enzyme of amaranth mitochondria. Journal of Biological Chemistry 269: 2827–2833. López, J. F. O., A. A. Garcia, M. A. D. Huato, M. H. Lara, F. J. Saenz-de-cabezon, I. Perez-Moreno & V. Marco-Mancebon. 2011. Insect occurrence and losses due to phytophagous species in the amaranth (Amaranthus hypocondriacus L.) in Puebla, Mexico. African Journal of Agricultural Research 6: 5924–5929. Lorenz, K. & Y. S. Hwang. 1985. Lipids in amaranths. Nutrition Reports International 31: 83–89. Macharia, C. & E. B. Peffley. 1995. Suppression of Amaranthus spinosus and Kochia scoparia: evidence of competition or allelopathy in Allium fistulosum. Crop Protection 14: 155–158. Madhusoodanan, K. J. & M. A. Nazeer. 1983. Comparative morphology of the somatic karyotypes of vegetable amaranths and its phylogenetic significance. Cytologia 48: 237–244. Mahmudzadeh, A., M. Nojavan & Z. Bagheri. 2003. Study of effect of different treatments on dormancy breaking and germination stimulation of seeds of wild amaranth. Scientific Journal of Agriculture 26: 13–25. Malefyt, T. & W. B. Duke. 1984. Pendimethalin phytotoxicity to velvetleaf (Abutilon theophrasti) and powell amaranth (Amaranthus powellii). Weed Science 32: 520–524. Manley, B. S., H. P. Wilson & T. E. Hines. 1996. Smooth pigweed (Amaranthus hybridus) and livid amaranth (A. lividus) response to several imidazolinone and sulfonylurea herbicides. Weed Technology 10: 835–841. Marayama, A., M. Yoshiyama & Y. Eashi. 1997. Possible participation of beta cyanoalanine synthase in increasing the amino acid pod of cocklebur seeds in response to ethylene during the per-germination period. Australian Journal of Plant Physiology 24: 751–757. Massinga, R. A. & R. S. Currie. 2002. Impact of palmer amaranth (Amaranthus palmeri) on corn (Zea mays) grain yield and yield and quality of forage. Weed Technology 16: 532–536. ———, ———, M. J. Horak & J. Boyer. 2001. Interference of palmer amaranth in corn. Weed Science 49: 202–208. ———, ———, & T. P. Trooien. 2003. Water use and light interception under palmer amaranth (Amaranthus palmeri) and corn competition. Weed Science 51: 523–531. Mayo, C. M., M. J. Horak, D. E. Peterson & J. E. Boyer. 1995. Differential control of four Amaranthus species by six post emergence herbicides in soybean (Glycine max). Weed Technology 9: 141–147. McKeon, G. M. & J. J. Mott. 1982. The effect of temperature on the field softening of hard seed of Stylosanthes humilus and S. hamata in a dry monsoonal climate. Australian Journal of Agricultural Research 33: 75–85. McLachlan, S. M., C. J. Swanton, S. F. Weise & M. Tollenaar. 1993a. Effect of corn induced shading and temperature on rate of leaf appearance in redroot pigweed (Amaranthus retroflexus L.). Weed Science 41: 590–593. ———, M. Tollenaar, C. J. Swanton & S. F. Weise. 1993b. Effect of corn induced shading on dry matter accumulation, distribution, and architecture of redroot pigweed (Amaranthus retroflexus). Weed Science 41: 568–573. Mclntyre, T. & G. M. Lewis. 1997. The advancements of phytoremediation as innovative environmental technology for stabilization, remediation and restoration of contaminated sites. Journal of Soil Contamination 6: 227–231. Mcmullan, P. M. & J. M. Green. 2011. Identification of a tall waterhemp (Amaranthus tuberculatus) biotype resistant to HPPD-inhibiting herbicides, atrazine, and thifensulfuron in Iowa. Weed Technology 25: 514–518. McWilliams, E. L., R. Q. Landers & J. P. Mahlstede. 1968. Variation in seed weight and germination in population of Amaranthus retroflexus L. Ecology 49: 290–296. Mellem, J. J. 2008. Phytoremediation of heavy metals in Amaranthus dubius. (Doctoral dissertation). Mendoza, G. L. & M. M. Rodriguez. 1990. Aislamiento, identification y patogenicidad de bacterias en quelite Amaranthus hybridus L. y su posibilidad en el control biologico. Revista Chapingo 15: 66–69. Menges, R. M. 1987. Allelopathic effects of palmer amaranth (Amaranthus palmeri) and other plant residues in soil. Weed Science 35: 339–347. ———. 1988. Allelopathic effects of palmer amaranthus (Amaranthus palmeri) on seedling growth. Weed Science 36: 325–328. Meyers, S. L., K. M. Jennings, J. R. Schultheis & D. W. Monks. 2010. Interference of palmer amaranth (Amaranthus palmeri) in sweet potato. Weed Science 58: 199–203. Milan, P. R. 2008. Chromosome behaviour and fertility in induced polyploids of grain amaranths. Caryologia 61: 199–205. 412 R. Assad et al. Milberg, P. & L. Andersson. 1997. Seasonal variation in dormancy and light sensitivity in buried seeds of eight annual weed species. Canadian Journal of Botany 75: 1998–2004. Mintz, A. S. & G. J. Weidemann. 1992. Evaluation of Aposphaeria amaranthi as a potential bioherbicide for Amaranthus. In Biological Control of Weeds, Eighth International Symposium pp. 68. Mitich, L. W. 1997. Redroot pigweed (Amaranthus retroflexus). Weed Technology 11: 199–202. Mlakar, S. G., M. Turinek, M. Jakop, M. Bavec & F. Bavec. 2009. Nutrition value and use of grain amaranth: potential future application in bread making. Agricultura 6: 43–53. Mnkeni, A. P. 2005. The underutilized plant with high nutritional quality and economic potential. Agricultural and Rural Development Research Institute, Newsletter, University of Fort Hare. July to December 2005. Mohler, C. L. 1993. A model of the effects of tillage on emergence of weed seedlings. Ecological Applications 3: 53–73. Monks, D. M. & L. R. Oliver. 1988. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Science 36: 770–774. Moolani, M. K., E. L. Knake & F. W. Slife. 1964. Competition of smooth pigweed with corn and soybeans. Weeds 12: 126–128. Moore, T. C. 1979. Biochemistry and physiology of plant hormones. New York: Springer-Verlag. pp. 199–201. Moore, J. W., D. S. Murray & R. B. Westerman. 2004. Palmer amaranth (Amaranthus palmeri) effects on the harvest and yield of grain sorghum (Sorghum bicolor). Weed Technology 18: 23–29. Morgan, G. D., P. A. Baumann & J. M. Chandler. 1997. The effect of palmer amaranth competition on cotton growth and yield. Southern Weed Science Society 50: 149–150. ———, ——— & ———. 2001. Competitive impact of palmer amaranth (Amaranthus palmeri) on cotton (Gossypium hirsutum) development and yield. Weed Technology 15: 408–412. Mosyakin, S. L. & K. R. Robertson. 1996. New infrageneric taxa and combinations in Amaranthus L. (Amaranthaceae). Annales Botanici Fennici 33: 275–281. ——— & ———. 2003. Amaranthus. In: Flora of North America, Oxford University Press, New York 1: 410–435. Mposi, M. S. 1999. Vegetable amaranth improvement for South Africa. The Australian New Crops Newsletter, Issue No. 11. Mueller, T. C., L. E. Steckel, J. S. McElroy & T. C. Teuton. 2006. An update on herbicide resistance in Tennessee. Proceedings of the Southern Weed Science Society 59: 133. Müller, K. & T. Borsch. 2005. Phylogenetics of amaranthaceae based on matK/trnK sequence data: Evidence from parsimony, likelihood, and Bayesian analyses. Annals of the Missouri Botanical Garden 92: 66–102. Müller-Schärer, H. 1993. Biological control of weeds in crops: a proposal of a new COST action. In: Maitrise des adventises par voie non chimique. IFOAM Conference, Dijon 181–185. Mulligan, G. A. 1984. Chromosome numbers of some plants native and naturalized in Canada. Naturaliste Canadien 111: 447–449. Munger, P. H., J. R. Abernathy & J. R. Gipson. 1983. The influence of selected plant residues on cotton (Abstract). In Proceedings of the Southern Weed Science Society 36th Annual Meeting, pp. 37. Murray, M. J. 1938. Interspecific and intergeneric crosses in the family Amaranthaceae. Ph.D. Thesis. Cornell University, Ithaca, New York. ——— 1940. The genetics of sex determination in the family Amaranthaceae. Genetics 25: 409–431. Myers, R. L. 1996. Amaranth: New crop opportunity. pp. 207–220. In: J. Janick (ed.), Progress in new crops. ASHS Press, Alexandria, VA. ———. 1998. Nitrogen fertilizer effect on grain amaranth. Agronomy Journal 90: 597–602. ——— & ——— 1988. Growing grain amaranth as a specialty crop. Communication and Educational Technology Services, University of Minnesota Extension. Nandula, V. K., J. D. Ray, D. N. Ribeiro, Z. Pan & K. N. Reddy. 2013. Glyphosate resistance in tall waterhemp (Amaranthus tuberculatus) from Mississippi is due to both altered target-site and non targetsite mechanisms. Weed Science 61: 374–383. Napompeth, B. 1982. Biological control research and development in Thailand. In Proceedings of the International Conference on Plant Protection Tropics, Kuala Lumpur, Malaysia, pp. 301–323. ———. 1989. Biological control of insect pests and weeds in Thailand. Biological control of pests. BIOTROP Special Publication 36: 51–68. ———. 1992. Brief overview of biological control activities in Thailand. Biological Control in South and East Asia. Kyushu University Press, Japan, pp. 51–68. Narwall, S. S. 1994. Allelopathy in crop production. Scientific Publishers: Jodhpur. pp. 288. National Academy of Sciences. 1975. Underexploited tropical plants with promising economic value. National Academy of Sciences, Washington, DC. Biology of Amaranths 413 National Research Council. 1984. Amaranth: Modern prospects for an ancient crop. National Academy Press. Washington DC. National Research Council. 1989. Lost Crops of the Incas. National Academy Press. Washington, DC. Nordby, D., R. Hartzler & K. Bradley. 2010. Biology and management of waterhemp. The Glyphosate, Weeds, and Crops Series, by the Glyphosate, Weeds, and Crops Group (http://www. glyphosateweedscrops.org/). Published by Purdue Extension, Purdue University, Lafayette, Indiana, USA. Norsworthy, J. K. 2003. Use of soybean production surveys to determine weed management needs of South Carolina farmers. Weed Technology 17: 195–201. ———. 2004. Soybean canopy formation effects on pitted morning glory (Ipomoea lacunosa), common cocklebur (Xanthium strumarium), and sickle pod (Senna obtusifolia) emergence. Weed Science 52: 954–960. ——— 2005. Optimizing glyphosate timing in a mixed stand of glyphosate resistant conventional, drill seeded soybean. Weed Technology 19: 942–946. ——— & M. J. Oliveira. 2007. Tillage and soybean canopy effects on common cocklebur (Xanthium strumarium) emergence. Weed Science 55: 474–480. ———, G. M. Griffith, R. C. Scott, K. L. Smith & L. R. Oliver. 2008. Confirmation and control of glyphosate-resistant palmer amaranth (Amaranthus palmeri) in Arkansas. Weed Technology 22: 108–113. O’Brien, G. K. & M. L. Price. 1983. Amaranth: Grain and vegetable type. Educational Concerns for Hunger Organization (ECHO) Technical Note. ECHO, North Fort Myers, FL. Ogunyemi, S., R. O. Awodoyin & N. A. Otu. 2000. Chemical control of Ageratum conyzoides, Amaranthus spinosus and Cyperus rotundus in soybeans [Glycine max (L.) Merril.]. Journal of Tropical Forest Resources 16: 143–151. ———, S. E. Ibrahim, O. O. Koleowo & R. O. Awodoyin. 2005. Competitive impact of Amaranthus spinosus in Celosia argentia and Corchorus olitorius production in Southwestern Nigeria. African Crop Science Conference Proceedings 6: 53–57. Oke, O. L. 1983. Amaranth. In: Handbook of tropical foods. Marcel Dekker, New York, 1. Oladiran, J. A. & P. M. Mumford. 1985. The stimulation of seed germination by temperature and light in agronomic Amaranthus species. Biochemie und Physiologie der Pflanzen 180: 45–54. Oliveira, J. S. & M. F. de Carvalho. 1975. Nutritional value of some edible leaves used in Mozambique. Economic Botany 29: 255–263. Omami, E. N. & R. W. Medd. 1992. Germination and after-ripening responses in Amaranthus retroflexus seed. Proceedings of the 1st International Weed Control Congress 2: 372–374. ———, A. M. Haigh, R. W. Medd & H. I. Nicol. 1999. Changes in germinability, dormancy and viability of A. retroflexus as affected by depth and duration of burial. Weed Research 39: 345–354. Ortiz Ribbing, L. M. & M. Williams. 2006. Potential of Phomopsis amaranthicola and Microsphaeropsis amaranthi as bioherbicides for several weedy Amaranthus species. Crop Protection 25: 39–46. Orwick, P. L. & M. M. Schreiber. 1979. Interference of redroot pigweed (Amaranthus retroflexus) and robust foxtail (Setaria viridis var. robusta-alba or var. robusta-purpurea) in soybeans (Glycine max). Weed Science 27: 665–674. Oryokot, J. O. E., S. D. Murphy & C. J. Swanton. 1997. Effect of tillage and corn on pigweed (Amaranthus spp.) seedling emergence and density. Weed Science 45: 120–126. Pal, M. 1964. Chromosone numbers in some Indian angiosperms. Proceedings: Plant Sciences 60: 347–350. ———. 1971. A polyhaploid plant of Amaranthus dubius. Indian Journal of Genetics and Plant Breeding 31: 397–402. ———. 1972. Intraspecific aneuploidy in Amaranthus graecizans. Current Science 41: 262–263. ——— & T. N. Khoshoo. 1973. Evolution and improvement of cultivated amaranths. VI. Cytogenic relationships in grain types. Theoretical and Applied Genetics 43: 242–251. ——— & T. N. Khoshoo. 1974. Grain amaranths. Evolutionary studies in world crops. Cambridge University Press, Cambridge, 129. ——— & R. M. Pandey. 1989. Cytogenetics and evolution of grain amaranths. Aspects of Plant Science 11: 323– 336. ———, R. M. Pandey & T. N. Kashoo. 1982. Evolution and improvement of cultivated amaranths. IX. Cytogenetic relationship between the two basic chromosome numbers. Journal of Heredity 73: 353–356. ———, D. Ohri & G. V. Subrahmanyam. 2000. A new basic chromosome number for Amaranthus (Amaranthaceae). Cytologia 65: 13–16. Palada, M. C. & L. C. Chang. 2003. Suggested cultural practices for vegetable amaranth: International Cooperators’ Guide. Patzoldt, W. L. & P. J. Tranel. 2007. Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Science 55: 421–428. 414 R. Assad et al. ———, ——— & A. G. Hager. 2005. A waterhemp (Amaranthus tuberculatus) biotype with multiple resistance across three herbicide sites of action. Weed Science 53: 30–36. Peters, I. & S. Jain. 1985. Genetic-variation of sex expression cultivated Amaranthus spp.—solution to many puzzles. American journal of Botany 72: 878. ——— & ———. 1987. Genetics of grain amaranths III. 3. Gene-cytoplasmic male-sterility. Journal of Heredity 78: 251–256. Peterson, D. E. 1999. The impact of herbicide resistant weeds in Kansas. Weed Technology 13: 632–635. Petr, J., I. Michalik, H. Tlaskalova, I. Capouchova, O. Famera, D. Urminska, L. Tukova & H. Knoblochova. 2003. Extension of the spectra of plant products for the diet in celiac disease. Czech journal of food sciences 21: 59–70. Plate, A. Y. A. & J. A. G. Areas. 2002. Cholesterol-lowering effect of extruded amaranth (Amaranthus caudatus L.) in hypercholesterolemic rabbits. Food Chemistry 76: 1–6. Powles, S. B. 2008. Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Management Science 64: 360–365. Pratt, D. B., M. D. K. Owen, L. G. Clark & A. Gardner. 1999. Identification of the weedy pigweeds and waterhemps of Iowa. Iowa State University, University Extension. Price, A. J., K. S. Balkcom, S. A. Culpepper, J. A. Kelton, R. L. Nichols & H. Schomberg. 2011. Glyphosate-resistant palmer amaranth: A threat to conservation tillage. Journal of Soil and Water Conservation 66: 265–275. Putnam, D. H., E. S. Oplinger & E. M. Schulte. 1989. Amaranth: Altenative field crops manual. Centre for Alternative Plant & Animal Products, Minnesota Extension Service, University of Minnesota, St. Paul, MN 55108. Qasem, J. R. 1994. Allelopathic effects of pigweed (Amaranthus spp.) on barley (Hordeum vulgare). Dirasat 21: 101–120. ———. 1995a. Allelopathic effects of Amaranthus retroflexus and Chenopodium murale on vegetable crops. Allelopathy Journal 2: 49–66. ———. 1995b. Allelopathic effects of three Amaranthus spp. (pigweed) on wheat (Triticum durum). Weed Research 35: 41–49. Railey, K. 1993. Amaranth: A healthy grain for vegetarian recipes. Health & Beyond Online. Ramesh, B. & P. Kumar. 2009. Meiotic chromosome analysis in inter-specific f1 hybrids of grain amaranths. Journal of Biological Sciences 1: 105–112. Rana, J. C., K. Pradheep, S. K. Yadav, V. D. Verma & P. C. Sharma. 2007. Durga: A new variety of grain amaranth for cultivation in hill regions. Indian Farming 57: 27–28. Randall, R. P. 2007. The global compendium of weeds (http://www.hear.org/gcw/). AgWest and the Hawaiian Ecosystems at Risk (HEAR) project. Rayburn, A. L., R. McCloskey, T. C. Tatum, G. A. Bollero, M. R. Jeschke & P. J. Tranel. 2005. Genome size analysis of weedy Amaranthus species. Crop Science 45: 2557–2562. Regnier, E. E. & S. K. Harrison. 1993. Compensatory responses of common cocklebur (Xanthium strumarium) and velvetleaf (Abutilon theophrasti) to partial shading. Weed Science 41: 541–547. Rezaie, F. & M. Yarnia. 2009. Allelopathic effects of Chenopodium album, Amaranthus retroflexus and Cynodon dactylon on germination and growth of safflower. Journal of Food, Agriculture and Environment 7: 516–521. Riggins, C. W., Y. H. Peng, C. N. Stewart & P. J. Tranel. 2010. Characterization of de novo transcriptome for waterhemp (Amaranthus tuberculatus) using GS-FLX 454 pyrosequencing and its application for studies of herbicide target-site genes. Pest Management Science 66: 1042–1052. Rizvi, S. J. H. & V. Rizvi. 1992. Allelopathy: Basic and applied aspects. First Edition. Chapman and Hall. Robertson, K. 1981. The genera of Amaranthaceae in the Southeastern United States. Journal of the Arnold Arboretum 62: 267–314. Rodríguez-Gacio, M. C., M. A. Matilla-Vázquez & A. J. Matilla. 2009. Seed dormancy and ABA signaling: the breakthrough goes on. Plant Signaling and Behavior 4: 1035–1049. Rowland, M. W., D. S. Murray & L. M. Verhalen. 1999. Full-season palmer amaranth (Amaranthus palmeri) interference with cotton (Gossypium hirsutum). Weed Science 47: 305–309. Rushing, D. W., D. S. Murray & L. M. Verhalen. 1985. Weed interference with cotton (Gossypium hirsutum). II. Tumble pigweed (Amaranthus albus). Weed Science 33: 815–818. Sage, R. F., T. L. Sage, R. W. Pearcy & T. Borsch. 2007. The taxonomic distribution of C4 photosynthesis in Amaranthaceae sensu stricto. American Journal of Botany 94: 1992–2003. Santelmann, P. W. & L. Evetts. 1971. Germination and herbicide susceptibility of six pigweed species. Weed Science 19: 51–54. Biology of Amaranths 415 Sanz-Penella, J. M., M. Wronkowska, M. Soral-Smietana & M. Haros. 2013. Effect of whole amaranth flour on bread properties and nutritive value. Food Science and Technology 50: 679–685. Sattin, M., M. C. Zuin & I. Sartorato. 1994. Light quality beneath field-grown maize, soybean, and wheat canopies-red: far red variations. Physiologia Plantarum. 91: 322–328. Sauer, J. D. 1950. The grain amaranths: a survey of their history and classification. Annals of the Missouri Botanical Garden 37: 561–632. ———. 1955. Revision of the dioecious amaranths. Madrono 13: 5–46. ———. 1957. Recent migration and evolution of the dioecious amaranths. Evolution 11: 11–31. ———. 1967. The grain amaranths and their relatives: a revised taxonomic and geographic survey. Annals of the Missouri Botanical Garden 103–137. ———. 1993. Amaranthaceaes: Amaranth family. In Historical Geography of Crop Plants: a Select Roster; CRC Press: Boca Raton, FL; pp. 9–14. Saunders, R. M. & R. Becker. 1984. Amaranthus: A potential food and feed resource. Advances in Cereal Science and Technology 6: 357–396. Schippers, R. R. 2000. African indigenous vegetables: An overview of the cultivated species. Chatham UK. Natural Resource Institute/ACP-EU Technical Centre for Agricultural Resources and Rural Cooperation. Schonbeck, M. W. & G. H. Egley. 1981a. Phase-sequence of redroot pigweed seed germination responses to ethylene and other stimuli.I. Plant Physiology 68: 175–179. ——— & ———. 1981b. Changes in sensitivity of A. retroflexus L seeds to ethylene during preincubation. II. Effects of alternating temperature and burial in soil. Plant Cell and Environment 4: 237–242. Schroeder, D., H. Müller-Schärer & C. S. A. Stinson. 1993. A European weed survey in 10 major crop systems to identify targets for biological control. Weed Research 33: 449–458. Schuester, M. 1987. Blister beetle in Paraguay–a potential biological control agent. Tropical Pest Management 33: 241. Schütz, W., P. Milberg & B. B. Lamont. 2002. Seed dormancy, after-ripening and light requirements of four annual Asteraceae in south-western Australia. Annals of Botany 90: 707–714. Scopel, A. L., C. L. Ballare & R. A. Sanchez. 1991. Induction of extreme light sensitivity in buried weed seeds and its role in the perception of soil cultivations. Plant Cell Environment 14: 501–508. Scott, G. H., S. D. Askew & J. W. Wilcut. 2002. Glyphosate systems for weed control in glyphosate-tolerant cotton (Gossypium hirsutum). Weed Technology 16: 191–198. Segura-Nieto, M., A. P. Barba de la Rosa & O. Peredes-López. 1994. Biochemistry of amaranth proteins. Amaranth: Biology, chemistry and technology 75–106. Sellers, B. A., R. J. Smeda, W. G. Johnson, J. A. Kendig & M. R. Ellersieck. 2003. Comparative growth of six Amaranthus species in Missouri. Weed Science 51: 329–333. Senft, J. P. 1980. Protein quality of amaranth grain. pp. 43–47. In: Proceedings of the Second Amaranth Conference. Rodale Research Report (3). Senseman, S. A., H. G. Hancock, R. D. Wauchope, K. L. Armburst, T. J. Peters, J. H. Massey, D. H. Johnson, J. Reynolds, F. Lichtner, G. E. MacDonald, D. W. Rushing, D. Kitner, H. S. McLean & W. Vencill. 2007. Herbicide handbook 9th edition. Weed Science Society of America Lawrence, KS. pp. 458. Shagal, M. H., H. M. Maina, R. B. Donatus & K. Tadzabia. 2012. Bioaccumulation of trace metals concentration in some vegetables grown near refuse and effluent dumpsites along Rumude-Doubeli byepass in Yola North, Adamawa State. Global Advanced Research Journal of Environmental Science and Toxicology 1: 18–22. Shahrokhi, S., M. Darvishzadeh, M. Mehrpooyan & M. Farboodi. 2012. Comparison of allelopathic effects of Amaranthus retroflexus L. different organs extracts on germination and initial growth of Alvand and Zarrin wheat cultivars. International journal of Agronomy and Plant Production 3: 489–494. Sharma, A. K. & M. Banik. 1965. Cytological investigation of different genera of Amaranthaceae with a view to trace their interrelationships. Bulletin of the Botanical Society of Bengal 19: 40–50. Sheidai, M. & Z. Mohammadzadeh. 2008. Cytogenetic study of Amaranthus L. species in Iran. Cytologia 73: 1–7. Sheikh, S. M. & O. Singh. 2013. Pseudocereals and millets: the lost crops of Kashmir. Genetic Resources and Crop Evolution 60: 1191–1199. Shewry, P. R. 2002. The major seed storage proteins of spelt wheat, sorghum, millets and pseudocereals. In: Belton P, Taylor J (eds.), Pseudocereals and less common cereals, grain properties and utilization potential. Springer-Verlag: 1–24. Shimi, P. & F. Termeh. 2004. Weeds of Iran. Agriculture Research, Education and Extension Organization. Tehran, Iran. pp. 36. Shoup, D. E., K. Al-Khatib & D. E. Peterson. 2003. Common waterhemp (Amaranthus rudis) resistance to protoporphyrinogen oxidase-inhibiting herbicides. Weed Science 51: 145–150. 416 R. Assad et al. Shrefler, J. W., W. M. Stall & J. A. Dusky. 1996. Spiny amaranth (Amaranthus spinosus L.), a serious competitor to crisphead lettuce (Lactuca sativa L.). Horticulture Science 31: 347–348. Sibony, M. & B. Rubin. 2002. The ecological fitness of ALS-resistant Amaranthus retroflexus and multipleresistant Amaranthus blitoides. Weed Research 43: 40–47. Simbolon, H. & H. Sutarno. 1986. Response of Amaranthus species to various light intensities. Buletin Penelitian Hortikultura 13: 33–42. Singh, U. O., A. M. O. Wadhwani & B.M. Johri. 1983. Dictionary of economic plants of India. Dictionary of economic plants in India., (ed. 2). Singhal, R. S. & P. R. Kulkarni. 1988. Review: Amaranths - an underutilized resource. International Journal of Food Science & Technology 23: 125–139. Singhal, B. K. & D. N. Sen. 1981. Allelopathic potential of pigweed (Amaranthus viridis Linn.) on rain fed crops of Indian desert. Geobios 21: 213–221. Siriwardana, G. D. & R. L. Zimdahl. 1984. Competition between barn-yardgrass (Echinochloa crus-galli) and redroot pigweed (Amaranthus retroflexus). Weed Science 32: 218–222. Smith, H. 1995. Physiological and ecological function within the phytochrome family. Annual review of plant biology 46: 289–315. Smith, D. T., R. V. Baker & G. L. Steele. 2000. Palmer amaranth (Amaranthus palmeri) impacts on yield, harvesting, and ginning in dryland cotton (Gossypium hirsutum). Weed Technology 14: 122–126. Song, B., X. Zhang, F. Li & P. Wan. 2002. Chromosome numbers of 14 species in Amaranthus from China. Acta Phytotaxonomica Sinica 40: 428–432. Soomarin, S. J., S. Alipoor & R. Z. Mahmoodabad. 2010. Evaluation of sulfuric acid application in breaking dormancy of goosefoot and red-root amaranth seeds. Plant Ecophysiology 2: 127–131. Souza, M. C. D., L. B. D. Carvalho, P. L. D. C. A. Alves & P. R. F. Giancotti. 2011. Allelopathy in pigweed (a review). Communications in Plant Sciences 1: 5–12. Spalding, R. F., D. G. Watts, D. D. Snow, D. A. Cassada, M. E. Exner & J. S. Schepers. 2003. Herbicide loading to shallow ground water beneath Nabraska’s management systems evaluation area. Journal of environmental quality 32: 84–91. Spencer, K. A. & D. Havranek. 1989. A new species of Agromyzidae (Diptera) from Venezuela. Florida Entomologist 72: 441–444. ——— & G. C. Steyskal. 1986. Manual of the Agromyzidae (Diptera) of the United States. United States Department of Agriculture. Agriculture Handbook, USDA 638. Sprague, L. C., E. W. Stroller, L. M. Wax & M. J. Horak. 1997. Palmer amaranth (Amaranthus palmeri) and common waterhemp (Amaranthus rudis) resistance to selected ALS-inhibiting herbicides. Weed Science 45: 192–197. Spreeth, M. H., M. M. Slabbert, J. A. De Ronde, E. Van Den Heever & A. Ndou. 2004. Screening of cowpea, bambara groundnut and Amaranthus germplasm for drought tolerance and testing of selected plant material in participation with targeted communities. WRC Report No. 944/1/04. Srivastava, R. 2011. Nutritional quality of some cultivated and wild species of Amaranthus L. International Journal of Phamaceutical Science and Research 2: 3152–3156. Srivastava, R. & B. K. Roy. 2012. Cytogenetic studies: karyotypic and evolutionary aspects of some cultivated and wild species of Amaranthus L. International Journal of Innovations in Bio-Sciences 2: 154–156. Stallknecht, G. F. & J. R. Schulz-Schaeffer. 1993. Amaranth rediscovered. New crops. Wiley, New York: 211– 218. Steckel, L. E. 2004. Pigweeds in Tennessee. Univeristy of Tennesse. ———. 2007. The dioecious Amaranthus spp.: here to stay. Weed Technology 21: 567–570. ———, C. L. Sprague, A. G. Hager, F. W. Simmons & G. A. Bollero. 2003. Effects of shading on common waterhemp (Amaranthus rudis) growth and development. Weed Science 51: 898–903. ———, C. L. Sprague, E. W. Stoller & L. M. Wax. 2004. Temperature effects on germination of nine Amaranthus species. Weed Science 52: 217–221. ———, C. L. Main, A. T. Ellis & T. C. Mueller. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technology 22: 119–123. Steinau, A. N., D. Z. Skinner & M. Steinau. 2003. Mechanism of extreme genetic recombination in weedy Amaranthus hybrids. Weed Science 51: 696–701. Stevens, O. A. 1924. Some effects of the first fall freeze. American Midland Naturalist 9: 14–17. ———. 1932. The number and weight of seeds produced by weeds. American Journal of Botany 19: 784–794. Stoller, E. W. & R. A. Myers. 1989. Response of soybeans (Glycine max) and four broadleaf weeds to reduced irradiance. Weed Science 37: 570–574. Biology of Amaranths 417 Suma, S. 1998. A brief study on the environmental physiology of Amaranthus spinosus L. Thesis, Doctorate, Bangalore University, Bangalore. Sun, H., D. Wiesenborn, K. Tostenson, J. Gillespie & P. Rayas-Duarte. 1997. Fractionation of squalene from amaranth seed oil. Journal of the American Oil Chemists’ Society 74: 413–418. Swanton, C. J., J. Z. Huang, W. Deen, M. Tollenaar, A. Shrestha & H. Rahimian. 1999. Effects of temperature and photoperiod on the phenological development of Setaria viridis. Weed Science 47: 446–453. Sweat, J. K., M. J. Horak, D. E. Peterson, R. W. Lloyd & J. E. Boyer. 1998. Herbicide efficacy on four Amaranthus species in soybean (Glycine max). Weed Technology 12: 315–321. Szmedra, P. 1997. Banning 2, 4-D and the phenoxy herbicides: potential economic impact. Weed Science 45: 592–598. Takabayashi, M. & K. Nakayama. 1981. The seasonal change in seed dormancy of main upland weeds. Weed Research 26: 249–253. Takagi, F. 1933. Uber die Chromosomen-Zahlen bei einigen Amaranthus. Arten. Botanical Magazine 47: 556–557. Tardif, F. J., I. Rajcan & M. Costea. 2006. A mutation in the herbicide target site acetohydroxyacid synthase produces morphological and structural alterations and reduces fitness in Amaranthus powellii. New Phytologist 169: 251–264. Taylorson, R. B. & H. A. Borthwick. 1969. Light filtration by foliar canopies: significance for lightcontrolled weed seed germination. Weed Science 17: 48–51. ——— & S. B. Hendricks. 1969. Action of phytochrome during prechilling of Amaranthus retroflexus L. seeds. Plant Physiology 44: 821–825. ——— & S. B. Hendricks. 1971. Changes in phytochrome expressed by germination of Amaranthus retroflexus L. seeds. Plant Physiology 47: 619–622. ——— & S. B. Hendricks. 1973. Promotion of seed germination by cyanide. Plant Physiology 52: 23–27. Teitz, A. Y., S. F. Gorski & M. B. McDonald. 1990. The dormancy of livid amaranth Amaranthus lividus L. seeds. Seed Science and Technology 18: 781–989. Telewski, F. W. & J. A. D. Zeevaart. 2002. The 120-years period for Dr. Beal’s seed viability experiment. American journal of Botany 89: 264–270. Teutonico, R. A. & D. Knorr. 1985. Amaranth: Composition, properties, and applications of a rediscovered food crop. Food technology 39: 49–60. Thomas, W. E., I. C. Burke, J. F. Spears & J. W. Wilcut. 2006. Influence of environmental factors on slender amaranth (Amaranthus viridis) germination. Weed Science 54: 316–320. Thompson, K. 1987. Seeds and seedbank. New Phytologist 106: 23–34. Thompson, T. 2001. Case problem: Question regarding the acceptability of buckwheat, amaranth, quinoa, and outs from a patient with celiac disease. Journal of the American Dietetic Association 101: 586–587. Thompson, K. & J. P. Grime. 1983. A comparative study of germination in response to diurnally-fluctuating temperatures. Journal of Applied Ecology 20: 141–156. Tisler, A. M. 1990. Feeding in the pigweed flea beetle. Disonycha glabrata Fab. (Coleoptera: Chrysomelidae), on Amaranthus retroflexus. Virginia Journal of Science 41: 243–245. Torres, P. C. B., A. A. Garcia, R. P. Aviles, L. R. Hernandez & J. F. L. Olguin. 2011. Entomofaunastic study in of the cultivation of Amaranth (Amaranthus hypochondriacus L.) in Puebla, Mexico, Revesta Mexicana de Ciencias agricolas 2: 359–371. Tranel, P. J. & T. R. Wright. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Science 50: 700–712. ———, W. Jiang, W. L. Patzoldt & T. R. Wright. 2004. Intraspecific variability of the acetolactate synthase gene. Weed Science 52: 236–241. Trucco, F., M. R. Jeschke, A. L. Rayburn & P. J. Tranel. 2005a. Amaranthus hybridus can be pollinated frequently by A. tuberculatus under field conditions. Heredity 94: 64–70. ———, M. R. Jeschke, A. L. Rayburn & P. J. Tranel. 2005b. Promiscuity in weedy amaranths: high frequency of female tall waterhemp (Amaranthus tuberculatus) × smooth pigweed (A. hybridus) hybridization under field conditions. Weed Science 53: 46–54. ———, D. Zheng, A. J. Woodyard, J. R. Walter, T. C. Tatum, A. L. Rayburn & P. J. Tranel. 2007. Nonhybrid progeny from crosses of dioecious amaranths: implications for gene-flow research. Weed Science 55: 119–122. ———, T. Tatum, A. L. Rayburn & P. J. Tranel. 2009. Out of the swamp: Unidirectional hybridization with weedy species may explain the prevalence of Amaranthus tuberculatus as a weed. New Phytologist 184: 819–827. Uphof, J. C. 1968. Dictionary of economic plants. Cramer: New York, pp. 545. USDA, ARS. 1999. National Genetic Resources Program. Germplasm Resources. 418 R. Assad et al. USDA, NRCS. 2010. The plants database (http://plants.usda.gov). National plant data center, Baton Rouge: 70,874–4490. Uusikua, N. P., A. Oelofsea, K. G. Duodub, M. J. Besterc & M. Faberd. 2010. Nutritional value of leafy vegetables of sub-Saharan Africa and their potential contribution to human health: A review. In: Journal of Food Composition and Analysis 23: 499–509. Vangessel, M. J. & K. A. Renner. 1990. Redroot pigweed (Amaranthus retroflexus) and barnyard grass (Echinochloa crus-galli) interference in potatoes (Solanum tuberosum). Weed Science 38: 338–343. Velu, G. & A. M. Ali. 1995. Allelopathic effect of pigweed and horse purslane on Boerhaavia diffusa. Crop Research 10: 103–106. Vencill, W. K., T. L. Grey, A. S. Culpepper, C. Gaines & R. Westra. 2008. Herbicide-resistance in the Amaranthaceae. Journal of Plant Diseases and Protection 41–44. Vietmeyer, N. 1978. Poor people’s crops. US Agency for International Development (USA) 1: 12. Vigueira, C. C., K. M. Olsen & A. L. Caicedo. 2013. The red queen in the corn: Agricultural weeds as models of rapid adaptive evolution. Heredity 110: 303–311. Vogt, G. B. & H. A. Cordo. 1976. Recent South American field studies of prospective biocontrol agents of weeds. In Proceedings of the Research Planning Conference on the Aquatic Plant Control Program, Charleston pp. 36–55. Walter, J. & C. Dobes. 2004. Morphological characters, geographic distribution and ecology of neophytic Amaranthus blitum L. subsp. emarginatus in Austria. Annals of the Natural History Museum, Vienna, 105(B). Vienna, Austria: Annals of the Natural History Museum 645–672. Wang, J. L., J. J. Long, T. E. Hotchkiss & J. O. Berry. 1993. C4 photosynthetic gene expression in lightand dark-grown amaranth cotyledons. Plant Physiology 102: 1085–1093. Wang, Y., Y. L. Meng, H. Ishikawa, T. Hibino, Y. Tanaka, N. Nii & T. Takabe. 1999. Photosynthetic adaptation to salt stress in three-color leaves of a C4 plant Amaranthus tricolor. Plant and Cell Physiology 40: 668–674. Ward, D. E. & R. W. Spellenberg. 1986. Chromosome counts of angiosperms of western North America. Phytologia 61: 119–125. Washitani, I. 1985. Field fate of Amaranthus patulus seeds subjected to leaf-canopy inhibition of germination. Oecologia 66: 338–342. ——— & A. Takenaka. 1984. Germination responses of a non-dormant seed population of Amaranthus patulus Bertol. to constant temperatures in the sub-optimal range. Plant Cell and Environment 47: 353–358. Wassom, J. J. & P. J. Tranel. 2005. Amplified fragment length polymorphism-based genetic relationships among weedy Amaranthus species. Journal of Heredity 96: 410–416. Watanabe, T., Y. Murata & M. Osaki. 2009. Amaranthus tricolor has the potential for phytoremediation of cadmium-contaminated soils. Communications in soil science and plant analysis 40: 3158–3169. Waterhouse, D. F. 1994. Biological control of weeds: Southeast Asian Prospects. Australian Centre for International Agricultural Research 125. Weaver, S. E. 1984. Differential growth and competitive ability of Amaranthus retroflexus, A. powellii and A. hybridus. Canadian Journal of Plant Science 64: 715–724. ——— & E. L. McWilliams. 1980. The biology of Canadian weeds. 44. Amaranthus retroflexus L, Amaranthus powelli S. Wats and Amaranthus hybridus L. Canadian Journal of Plant Science 60: 1215–1234. ——— & A. G. Thomas. 1986. Germination responses to temperature of atrazine-resistant and -susceptible biotypes of two pigweed (Amaranthus) species. Weed Science 34: 865–870. Webb, D. M., C. W. Smith & J. Schulz-Schaeffer. 1987. Amaranth seedling emergence as affected by seeding depth and temperature on a thermogradient plate. Agronomy Journal 79: 23–26. Webster, T. M. 2009. Weed survey–Southern states. Proceedings of the Southern Weed Science Society 62: 509–524. ——— & L. M. Sosnoskie. 2010. Loss of glyphosate efficacy: A changing weed spectrum in Georgia cotton. Weed Science 58: 73–79. Wetzel, D. K., M. J. Horak & D. Z. Skinner. 1999a. Use of PCR-based molecular markers to identify weedy Amaranthus species. Weed Science 47: 518–523. ———, ———, ——— & P. A. Kulakow. 1999b. Transferal of herbicide resistance traits from Amaranthus palmeri to Amaranthus rudis. Weed Science 47: 538–543. Whitehead, W. F. & B. P. Singh. 1993. Population density and soil pH effects on vegetable amaranth production. In: Janick, J. and Simon, J.E. (eds.), New crops. Wiley, New York: 562–564. Wiersema, J. H. & B. Leon. 1999. World economic plants CRC Press: Boca Raton. pp. 32–34. Wiese, A. M. & L. K. Binning. 1987. Calculating the threshold temperature of development for weeds. Weed Science 35: 177–179. Biology of Amaranths 419 Wiese, A. E. & R. G. Davis. 1967. Weed emergence from two soils at various moistures, temperatures, and depths. Weeds 15: 118–121. Williams, J. T. & D. Brenner. 1995. Grain amaranth (Amaranthus species). Cereals and pseudocereals. Williams, R., L. Peal & P. Bartholomew. 2005. Seed hydration/dehydration in an allelochemical (coumarin) alters germination and seedling growth. Allelopathy Journal 15: 183–196. Wills, R. B. H., A. W. K. Wong, F. M. Scriven & H. Greenfield. 1984. Nutrient composition of Chinese vegetables. Journal of Agricultural and Food Chemistry 32: 413–416. Wise, A. M., T. L. Grey, E. P. Prostko, W. K. Vencill & T. M. Webster. 2009. Establishing the geographic distribution level of acetolactate synthase resistance of palmer amaranth (Amaranthus palmeri) accessions in Georgia. Weed Technology 23: 214–220. Woolley, J. T. & E. Stoller. 1978. Light penetration and light-induced seed germination in soil. Plant Physiology 61: 597–600. Wright S. W., H. D. Coble, C. D. Raper & T. W. Rufty. 1999. Comparative responses of soybean (Glycine max), sickle pod (Senna obtusifolia), and palmer amaranth (Amaranthus palmeri) to root zone and aerial temperature. Weed Science 47: 167–174. Yan, X., L. Zhenyu, W. P. Gregg & L. Dianmo. 2001. Invasive species in China–an overview. Biodiversity and Conservation 10: 1317–1341. York, A. C., J. R. Whitaker, A. S. Culpepper & C. L. Main. 2007. Glyphosate-resistant palmer amaranth in the south eastern United States. Proceedings of the Southern Weed Science Society 60: 225. Appendix Table 1 Accepted plant names of the species for the genus Amaranthus with their synonyms Name Synonyms Amaranthus acanthobracteatus Henr. Amaranthus acanthochiton Sauer • Acanthochiton wrightii Torr. Amaranthus × adulterinus Thell. Amaranthus albus L. • Amaranthus albus var. albus • Amaranthus albus var. monosepalus Thell. • Amaranthus albus var. parviflorus Moq. • Amaranthus albus var. puberulus Thell. • Amaranthus albus var. pubescens (Uline & W.L.Bray) Fernald • Amaranthus albus var. rubicundus Thell. • Amaranthus gracilentus H.W.Kung • Amaranthus graecizans Cutanda • Amaranthus graecizans var. pubescens Uline & W.L.Bray • Amaranthus littoralis Hornem. • Amaranthus pubescens (Uline & W.L.Bray) Rydb. • Galliaria albida Bubani • Glomeraria alba (L.) Cav. Amaranthus anderssonii J.T.Howell • Scleropus urceolatus Andersson Amaranthus arenicola I.M.Johnst. Amaranthus asplundii Thell. • Amaranthus affinis Thell. • Amaranthus buchtienianus Thell. Amaranthus atropurpureus Roxb. Amaranthus aureus F.Dietr. Amaranthus australis (A.Gray) Sauer • Acnida alabamensis Standl. 420 R. Assad et al. Table 1 (continued) Name Synonyms • Acnida australis A.Gray • Acnida cannabina var. australis (A.Gray) Uline & W.L.Bray • Acnida cuspidate Bertero ex Spreng. Amaranthus bahiensis Mart. Amaranthus bigelowii Uline & W.L.Bray • Amaranthus bigelowii var. emarginatus (Torr.) Uline & W.L.Bray • Sarratia berlandieri var. emarginate Torr. Amaranthus blitoides S.Watson • Amaranthus blitoides var. crassius Jeps. • Amaranthus blitoides var. densifolius Uline & W.L.Bray • Amaranthus blitoides var. halophilus Aellen • Amaranthus blitoides var. reverchonii Uline & W.L.Bray • Amaranthus reverchonii (Uline & W.L.Bray) Kov. • Galliaria blitoides Nieuwl. Amaranthus blitum L. • Albersia arenaria Schur • Albersia ascendens Fourr. • Albersia blitum Kunth • Albersia livida Kunth • Amaranthus adscendens auct. • Amaranthus albus Rodschied ex F.Dietr. • Amaranthus alius K.Krause • Amaranthus ascendens Loisel. • Amaranthus berchtoldii Seidl ex Opiz • Amaranthus blitonius St.Lag. • Amaranthus blitum var. ascendens (Loisel.) DC. • Amaranthus blitum var. blitum • Amaranthus blitum var. polygonoides Moq. • Amaranthus blitum subsp. polygonoides (Zoll. ex Moq.) Carretero • Amaranthus diffusus Dulac. • Amaranthus gangeticus Wall. [Invalid] • Amaranthus graecizans var. blitum (L.) Kuntze • Amaranthus lividus Hook.f. [Illegitimate] • Amaranthus lividus subsp.ascendens (Loisel.) Wacht. • Amaranthus lividus subsp. ascendens (Loisel.) Heukels • Amaranthus lividus var. ascendens (Loisel.) Thell. • Amaranthus lividus var. ascendens (Loisel.) Hayw. & Druce • Amaranthus lividus subsp. lividus • Amaranthus lividus var. polygonoides (Moq.) Thell. • Amaranthus lividus subsp. polygonoides (Moq.) Probst • Amaranthus minor Gray • Amaranthus mucronatus Poir. • Amaranthus oleraceus Rodschied • Amaranthus pallidus M.Bieb. Biology of Amaranths 421 Table 1 (continued) Name Synonyms • Amaranthus polygonoides Zoll. Ex Moq. [Invalid] • Amaranthus prostratus T.Bastard [Illegitimate] • Amaranthus ruderalis Koch ex Moq. • Amaranthus tenuiflorus Fisch. ex Moq. • Amaranthus tenuifolius Roxb. • Amaranthus viridis All. [Illegitimate] • Blitum maius Scop. • Euxolus alius (E.H.L.Krause) E.H.L.Krause • Euxolus ascendens (Loisel.) H.Hara • Euxolus viridis var. ascendens (Loisel.) Moq. • Glomeraria blitum (L.) Cav. • Pyxidium graecizans Moq. Amaranthus blitum subsp. emarginatus (Salzm. Ex Uline • Albersia emarginate (A.Braun & C.D.Bouché) & Bary) Carretero, Muñoz Garm. & Pedrol Asch. ex Hausskn. • Amaranthus ascendens var. polygonoides (Moq.) Thell. • Amaranthus ascendens subsp. polygonoides (Moq.) Thell. ex Priszter • Amaranthus blitum var. emarginatus (Moq. ex Uline & W.L.Bray) Lambinon • Amaranthus emarginatus Salzm. ex Uline & Bray • Amaranthus emarginatus Salzm. ex Moq. • Amaranthus lividus subsp. ascendens Heukels. • Euxolus emarginatus A.Braun & C.D.Bouché • Euxolus viridis var. polygonoides Moq. Amaranthus blitum subsp. oleraceus (L.) Costea • Albersia blitum var. oleraceus (L.) Hook.f. • Albersia oleracea (L.) Kunth • Amaranthus ascendens var. oleraceus (L.) Thell. ex Priszter • Amaranthus blitum var. oleraceus (L.) Hook.f. • Amaranthus circinnatus Poir. • Amaranthus lividus L. • Amaranthus lividus subsp. oleraceus (L.) Soó • Amaranthus lividus var. oleraceus (L.) Thell. • Amaranthus obtusiflorus (Mart.) Kov. • Amaranthus officinalis Gromov ex Trautv. • Amaranthus oleraceus L. • Amaranthus olitorius Besser • Blitum lividum (L.) Moench • Blitum oleraceum (L.) Moench • Glomeraria livida (L.) Cav. • Glomeraria oleracea (L.) Cav. • Pentrius oleraceus Raf. Amaranthus blitum var. pseudogracilis (Thell.) Lambinon • Amaranthus emarginatus subsp. pseudogracilis (Thell.) Hügin • Amaranthus lividus f. pseudogracilis Thell. • Amaranthus pseudogracilis (Thell.) G.H.Loos Amaranthus brandegeei Standl. Amaranthus brasiliensis Moq. Amaranthus brownii Christoph. & Caum Amaranthus × budensis Priszter 422 R. Assad et al. Table 1 (continued) Name Synonyms Amaranthus californicus (Moq.) S.Watson • Amaranthus albomarginatus Uline & W.L.Bray • Mengea californica Moq. Amaranthus campestris Willd. Amaranthus cannabinus (L.) Sauer • Acnida cannabina L. • Acnida cannabina var. concatenate Moq. • Acnida cannabina var. cuspidate (Bertero ex Spreng.) Moq. • Acnida cannabina var. lanceolate Moq. • Acnida cannabina var. salicifolia Moq. • Acnida elliotii Raf. • Acnida obtusifolia Raf. • Acnida rhyssocarpa Spreng. • Acnida ruscocarpa Willd. • Acnida salicifolia Raf. • Amaranthus macrocaulos Poir. Amaranthus capensis Thell. • Amaranthus capensis subsp. capensis • Amaranthus capensis subsp. uncinatus (Thell.) Brenan • Amaranthus dinteri var. uncinatus Thell. Amaranthus caracasanus Kunth • Amaranthus coracanus Mart. Amaranthus cardenasianus Hunz. Amaranthus caturus Roxb. Amaranthus caudatus L. • Amaranthus abyssinicus L.H.Bailey • Amaranthus alopecurus Hochst. ex A.Br. & C.D.Bouché • Amaranthus cararu Moq. • Amaranthus caudatus var. albiflorus Moq. • Amaranthus caudatus var. alopecurus Moq. • Amaranthus caudatus subsp. mantegazzianus (Pass.) Hanelt • Amaranthus caudatus var. maximus (Mill.) Moq. • Amaranthus caudatus subsp. saueri V.Jehlík • Amaranthus dussii Sprenger • Amaranthus edulis Speg. • Amaranthus edulis var. spadiceus Hunz. • Amaranthus hybridus var. leucocarpus (S.Watson) Hunz. • Amaranthus leucocarpus S.Watson • Amaranthus leucospermus S.Watson • Amaranthus mantegazzianus Pass. • Amaranthus maximus Mill. • Amaranthus pendulinus Moq. • Amaranthus pendulus Moq. • Euxolus arvensis Rojas Acosta Amaranthus celosioides Kunth • Amaranthus hybridus var. pergaminensis Covas Amaranthus centralis J.Palmer & Mowatt Amaranthus chihuahensis S.Watson Amaranthus clementii Domin Amaranthus cochleitepalus Domin Amaranthus commutatus A.Kern. Biology of Amaranths 423 Table 1 (continued) Name Synonyms Amaranthus congestus C.C.Towns. Amaranthus crassipes Schltdl. • Amaranthus crassipes var. crassipes Amaranthus crassipes var. warnockii (I.M.Johnst.) Henrickson • Amaranthus warnockii I.M.Johnst. Amaranthus crispus (Lesp. & Thévenau) A.Terracc. • Albersia crispa Asch. Ex Hausskn. • Amaranthus cristulatus Speg. • Celosia crispus Lesp. & Thev. • Euxolus crispus Lesp. & Thévenau Amaranthus cruentus L. • Amaranthus anacardana Hook.f. • Amaranthus arardhanus Sweet • Amaranthus carneus Moq. • Amaranthus chlorostachys Moq. • Amaranthus esculentus Besser ex Moq. • Amaranthus farinaceous Roxb. ex Moq. • Amaranthus guadeloupensis Voss • Amaranthus guadelupensis Moq. • Amaranthus hybridus subsp. cruentus (L.) Thell. • Amaranthus hybridus var. paniculatus (L.) Uline & W.L.Bray • Amaranthus hybridus var. patulus (Bertol.) Thell. • Amaranthus hybridus subsp. patulus (Bertol.) Carretero • Amaranthus incarnates Moq. • Amaranthus montevidensis Moq. • Amaranthus paniculatus L. • Amaranthus paniculatus var. cruentus (L.) Moq. • Amaranthus paniculatus var. longispicatus Moq. • Amaranthus paniculatus var. monstrosus Moq. • Amaranthus paniculatus var. sanguineus (L.) Moq. • Amaranthus paniculatus var. speciosus L.H.Bailey • Amaranthus paniculatus var. strictus (Willd.) Moq. • Amaranthus purgans Moq. • Amaranthus rubescens Moq. • Amaranthus sanguineus L. • Amaranthus sanguinolentus Schrad. Ex Moq. • Amaranthus speciosus Sims • Amaranthus spicatus Wirzén • Amaranthus strictus Willd. • Amaranthus violaceus Moq. Amaranthus cuspidifolius Domin Amaranthus deflexus L. • Albersia deflexa (L.) Fourr. • Albersia prostrate (Bastard) Kunth • Amarantellus argentines Speg. • Amaranthus deflexus var. rufescens (Godr.) Thell. • Amaranthus deflexus f. rufescens (Godr.) Thell. & Probst • Amaranthus minor (Moq.) Sennen • Amaranthus perennis Bellardi ex Colla 424 R. Assad et al. Table 1 (continued) Name Synonyms • Amaranthus prostrates Balb. • Euxolus deflexus var. ascendens Moq. • Euxolus deflexus var. major Moq. • Euxolus deflexus var. minor Moq. • Euxolus deflexus var. rufescens Godr. • Galliaria prostrate (Bastard) Bubani • Glomeraria deflexa (L.) Cav. Amaranthus dinteri Schinz • Amaranthus dinteri subsp. brevipetiolatus Brenan • Amaranthus dinteri subsp. dinteri Amaranthus dubius Mart. ex Thell. • Amaranthus dubius var. flexuosus Thell. • Amaranthus dubius var. leptostachys Thell. • Amaranthus dubius var. xanthostachys Thell. • Amaranthus tristis Willd. • Amaranthus tristis var. flexuosus Moq. • Amaranthus tristis var. xanthostachys Moq. Amaranthus fimbriatus (Torr.) Benth. • Amblogyna fimbriata (Torr.) A.Gray • Sarratia berlandieri var. denticulate Torr. • Sarratia berlandieri var. fimbriata Torr. Amaranthus floridanus (S.Watson) Sauer • Acnida floridana S.Watson Amaranthus furcatus J.T.Howell Amaranthus globosa L. Amaranthus graecizans L. • Amaranthus angustifolius Lam. • Amaranthus angustifolius M.Bieb. ex Willd. • Amaranthus angustifolius subsp. aschersonianus Thell. • Amaranthus aschersonianus (Thell.) Chiov. • Amaranthus blitum Moq. • Amaranthus blitum var. graecizans (L.) Moq. • Amaranthus blitum var. nanus Moq. • Amaranthus graecizans subsp. aschersonianus (Thell.) Costea, D.M. Brenner & Tardif • Amaranthus graecizans subsp. graecizans • Amaranthus graecizans var. pachytepalus Aellen • Amaranthus graecizans subsp. thellungianus (Nevski ex Vassilcz.) Gusev • Amaranthus hierichuntinus Vis. • Amaranthus roxburgianus var. aschersonianus (Thell.) N.C.Nair • Amaranthus thellungianus Nevski ex Vassilcz. • Blitum graecizans (L.) Moench • Galliaria graecizans (L.) Nieuwl. • Glomeraria graecizans (L.) Cav. Amaranthus graecizans subsp. silvestris (Vill.) Brenan • Amaranthus angustifolius var. silvestris (Villiers) Thell. • Amaranthus angustifolius subsp. silvestris (Vill.) Wacht. • Amaranthus graecizans var. silvestris (Vill.) Asch. & Schweinf. • Amaranthus silvestris Vill. Amaranthus grandiflorus (J.M.Black) J.M.Black Biology of Amaranths 425 Table 1 (continued) Name Synonyms • Amaranthus mitchellii var. grandiflorus J.M.Black Amaranthus greggii S.Watson • Amaranthus annectens S.F.Blake • Amaranthus greggii var. muelleri Uline & W.L.Bray • Amaranthus muelleri (Uline & W.L.Bray) Kov. • Amaranthus myrianthus Standl. Amaranthus haughtii Standl. Amaranthus hunzikeri N.Bayón Amaranthus hybridus L. • Amaranthus aureus Moq. • Amaranthus batalleri Sennen • Amaranthus bellardii Moq. • Amaranthus berchtholdii Moq. • Amaranthus catechu Moq. • Amaranthus chlorostachys Willd. • Amaranthus chlorostachys var. hybridus (L.) S.Watson • Amaranthus cruentus var. patulus (Bertol.) Lambinon • Amaranthus eugenii Sennen • Amaranthus flavescens Moq. • Amaranthus hecticus Willd. • Amaranthus hybridus f. aciculatus Thell. • Amaranthus hybridus var. batalleri (Sennen) Carretero • Amaranthus hybridus var. bellardii Moq. • Amaranthus hybridus var. chlorostachys (Willd.) Beck • Amaranthus hybridus var. chlorostachys (Willd.) Thell. • Amaranthus hybridus var. densus Farw. • Amaranthus hybridus var. hecticus (Willd.) Moq. • Amaranthus hybridus subsp. hybridus • Amaranthus hybridus var. hybridus • Amaranthus hybridus subsp. incurvatus (Trimen ex Gren. & Gord.) Brenan • Amaranthus hybridus var. laetus (Willd.) Moq. • Amaranthus hybridus var. prostratus Moq. • Amaranthus hybridus var. rubricaulis Moq. • Amaranthus hybridus var. sanguineus (L.) Farw. • Amaranthus incurvatus Trimen ex Gren. & Gord. • Amaranthus intermedius Guss. ex Moq. • Amaranthus laetus Willd. • Amaranthus laxiflorus Comelli ex Pollini • Amaranthus neglectus Moq. • Amaranthus nepalensis Moq. • Amaranthus paniculatus var. sanguineus Regel • Amaranthus patulus Bertol. • Amaranthus patulus f. multispiculatus (Sennen) Priszter • Amaranthus patulus var. multispiculatus Sennen • Amaranthus pseudoretroflexus (Thell.) Almq. 426 R. Assad et al. Table 1 (continued) Name Synonyms • Amaranthus retroflexus var. chlorostachys (Willd.) A.Gray • Amaranthus retroflexus var. hybridus (L.) A.Gray • Amaranthus spicatus Rchb. • Amaranthus timeroyi Jord. Ex Moq. • Amaranthus trivialis Rota • Galliaria hybrida (L.) Nieuwl. • Galliaria patula Bubani Amaranthus hybridus subsp. quitensis (Kunth) Costea & • Amaranthus hybridus var. quitensis (Kunth) Carretero Covas • Amaranthus quitensis Kunth • Amaranthus quitensis f. rufescens Thell. • Amaranthus quitensis var. stuckertianus Thell. • Amaranthus retroflexus subsp. quitensis (Kunth) O.Bolòs & Vigo Amaranthus hypochondriacus L. • Amaranthus anardana Buch.Ham. ex Moq. • Amaranthus atrosanguineus Moq. • Amaranthus aureus Besser • Amaranthus bernhardii Moq. • Amaranthus flavus L. • Amaranthus frumentaceus Buch.Ham. ex Roxb. • Amaranthus hybridus Vell. • Amaranthus hybridus var. erythrostachys Moq. • Amaranthus hybridus f. hypochondiacus (L.) B.L. Rob. • Amaranthus hybridus f. hypochondriacus (L.) H.Rob. • Amaranthus hybridus var. hypochondriacus (L.) H.Rob. • Amaranthus hybridus subsp. hypochondriacus (L.) Thell. • Amaranthus hypochondriacus var. macrostachys Moq. • Amaranthus hypochondriacus var. monstrosus Moq. • Amaranthus hypochondriacus var. racemosus Moq. • Amaranthus hypochondriacus var. tortuosus Moq. • Amaranthus macrostachyus Mérat ex Moq. • Amaranthus monstrosus Moq. Amaranthus hypochondriacus var. powellii (S.Watson) Pedersen • Amaranthus hybridus subsp. powellii (S.Watson) Karlsson • Amaranthus obovatus S.Watson Amaranthus induratus C.A.Gardner ex J.Palmer & Mowatt Amaranthus interruptus R.Br. Amaranthus kloosianus Hunz. • Amaranthus lancifolius Delile ex Moq. • Amaranthus lineatus R.Br. • Amaranthus rhombeus R.Br. • Amaranthus spathulatus Desf. Ex Moq. • Amaranthus undulates R.Br. Biology of Amaranths 427 Table 1 (continued) Name Synonyms Amaranthus leptostachyus Benth. Amaranthus lepturus S.F.Blake Amaranthus lombardoi Hunz. Amaranthus looseri Suess. Amaranthus macrocarpus Benth. • Amaranthus macrocarpus var. pallidus Benth. Amaranthus minimus Standl. • Goerziella minima (Standl.) Urb. Amaranthus mitchellii Benth. • Amaranthus mitchellii var. strictifolius Domin Amaranthus muricatus (Gillies ex Moq.) Hieron. • Euxolus muricatus Gillies ex Moq. Amaranthus × ozanonii Piszter • Amaranthus × ralletii Contré Amaranthus pallidiflorus F.Muell. • Amaranthus pallidiflorus var. viridiflorus Thell. Amaranthus palmeri S.Watson • Amaranthus palmeri var. glomeratus Uline & W.L.Bray Amaranthus paolii Chiov. Amaranthus paraguayensis Parodi Amaranthus parvulus Peter Amaranthus persimilis Hunz. Amaranthus peruvianus (Schauer) Standl. • Mengea peruviana Schauer Amaranthus polygamus L. • Albersia polygama Boiss. • Amaranthus angustifolius subsp. polygonoides Maire & Weiller • Amaranthus polygonoides Roxb. • Amaranthus roxburgianus Nevski • Amaranthus roxburgianus var. angustifolius (Moq.) N.C.Nair • Amaranthus tenuifolius Wall. Amaranthus polygonoides L. • Albersia polygonoides (L.) Kunth • Amaranthus berlandieri (Moq.) Uline & W.L.Bray • Amaranthus polygonoides subsp. berlandieri (Moq.) Thell. • Amaranthus taishanensis F.Z.Li & C.K.Ni • Amaranthus verticillatus Pav. ex Moq. • Amblogyna polygonoides (L.) Raf. • Euxolus polygonoides Nakai • Glomeraria polygonoides (L.) Cav. • Roemeria polygonoides (L.) Moench • Sarratia berlandieri Moq. • Sarratia polygonoides (L.) Moq. Amaranthus polystachyus Willd. • Albersia polystachya Kunth Amaranthus powellii S.Watson • Amaranthus chlorostachys var. powellii (S.Watson) Priszter • Amaranthus chlorostachys var. pseudoretroflexus Thell. • Amaranthus hybridus f. pseudoretroflexus (Thell.) Thell. • Amaranthus hybridus var. pseudoretroflexus (Thell.) Carretero • Amaranthus retroflexus var. powellii (S.Watson) B.Boivin 428 R. Assad et al. Table 1 (continued) Name Synonyms • Amaranthus retroflexus var. pseudoretroflexus (Thell.) B.Boivin Amaranthus powellii subsp. bouchonii (Thell.) Costea & • Amaranthus bouchonii Thell. Carretero • Amaranthus hybridus subsp. bouchonii (Thell.) O.Bolòs & Vigo Amaranthus praetermissus Brenan Amaranthus pringlei S.Watson Amaranthus pumilus Raf. Amaranthus retroflexus L. • Amaranthus bulgaricus Kov. • Amaranthus bullatus Besser ex Spreng. • Amaranthus chlorostachys Willk. • Amaranthus curvifolius Spreng. • Amaranthus delilei Richt. & Loret • Amaranthus johnstonii Kov. • Amaranthus recurvatus Desf. • Amaranthus retroflexus var. delilei (Richt. & Loret) Thell. • Amaranthus retroflexus subsp. delilei (Richt. & Loret) Tzvelev • Amaranthus retroflexus var. retroflexus • Amaranthus retroflexus var. rubricaulis Thell. • Amaranthus retroflexus f. rubricaulis Thell. Ex Probst • Amaranthus retroflexus var. salicifolius I.M.Johnst. • Amaranthus rigidus Schult. Ex Steud. • Amaranthus spicatus Lam. • Amaranthus strictus Ten. • Galliaria retroflexa (L.) Nieuwl. • Galliaria scabra Bubani Amaranthus rosengurttii Hunz. Amaranthus roxburghianus H.W.Kung • Amaranthus blitum var. angustifolius Moq. Amaranthus scandens L.f. Amaranthus scariosus Benth. • Amaranthus floridus Benth. • Amblogyna scariosa (Benth.) A.Gray • Sarratia scariosa (Benth.) Moq. Amaranthus schinzianus Thell. Amaranthus scleranthoides (Andersson) Andersson • Amaranthus scleranthoides f. abingdonensis A.Stewart • Amaranthus scleranthoides f. albemarlensis A.Stewart • Amaranthus scleranthoides f. chathamensis B.L.Rob. & Greenm. • Amaranthus sclerantoides f. abingdonensis Stewart • Amaranthus sclerantoides f. hoodensis B.L. Rob. & Greenm. • Amaranthus sclerantoides f. rugulosus Howell • Euxolus scleranthoides Andersson Amaranthus scleropoides Uline & W.L.Bray • Amaranthus blitoides var. scleropoides (Uline & W.L.Bray) Thell. Biology of Amaranths 429 Table 1 (continued) Name Synonyms • Amaranthus blitoides f. scleropoides (Uline & W.L.Bray) Thell. Ex Probst Amaranthus × soproniensis Priszter & Kárpáti Amaranthus sparganicephalus Thell. Amaranthus spinosus L. • Amaranthus spinosus var. basiscissus Thell. • Amaranthus spinosus var. circumscissus Thell. • Amaranthus spinosus var. indehiscens Thell. • Amaranthus spinosus f. inermis Lauterb. & K.Schum. • Amaranthus spinosus var. purpurascens Moq. • Amaranthus spinosus var. pygmaeus Hassk. • Amaranthus spinosus var. rubricaulis Hassk. • Amaranthus spinosus var. viridicaulis Hassk. • Galliaria spitosa (L.) Nieuwl. Amaranthus squamulatus (Andersson) B.L.Rob. • Amaranthus squarrulosus (Andersson) Uline & W.L.Bray • Scleropus squamulatus Andersson Amaranthus standleyanus Parodi ex Covas • Amaranthus parodii Standl. • Amaranthus vulgatissimus var. sublanceolatus Thell. Amaranthus tamariscinus Nutt. • Acnida tamariscina (Nutt.) Alph.Wood Amaranthus tamaulipensis Henrickson Amaranthus tenuifolius Willd. • Mengea tenuifolia Moq. Amaranthus × texensis Henrickson Amaranthus thellungianus Nevski Amaranthus thunbergii Moq. • Amaranthus albus Thunb. Amaranthus tricolor L. • Amaranthus amboinicus Buch.Ham. ex Wall. • Amaranthus bicolor Nocca ex Willd. • Amaranthus cuspidatus Vis. • Amaranthus dubius Mart. • Amaranthus flexuosus Moq. • Amaranthus gangeticus L. • Amaranthus gangeticus var. angustior L.H.Bailey • Amaranthus gangeticus var. angustior Bailey • Amaranthus inamoenus Willd. • Amaranthus incomptus Willd. • Amaranthus japonicas Houtt. Ex Willd. • Amaranthus japonicas Houtt. Ex Steud. • Amaranthus lanceolatus Roxb. • Amaranthus lancifolius Roxb. • Amaranthus lividus Roxb. • Amaranthus mangostanus L. • Amaranthus mangostanus Blanco • Amaranthus melancholicus L. • Amaranthus melancholicus var. obovatus Moq. • Amaranthus melancholicus var. parvifolius Moq. • Amaranthus melancholicus var. tricolor (L.) Lam. ex Moq. • Amaranthus mucronatus Hook.f. 430 R. Assad et al. Table 1 (continued) Name Synonyms • Amaranthus oleraceus Roxb. • Amaranthus polygamus Roxb. • Amaranthus polygamus Thwaites • Amaranthus rotundifolius Moq. • Amaranthus salicifolius H.J.Veitch • Amaranthus tricolor var. gangeticus (L.) Fiori • Amaranthus tricolor var. mangostanus (L.) Aellen • Amaranthus tricolor var. melancholicus (L.) Lam. • Amaranthus tricolor var. tristis (Willd.) Mehrotra, Aswal & Bisht • Amaranthus tricolor var. tristis (L.) Thell. • Amaranthus tristis L. • Amaranthus tristis Wall. • Amaranthus tristis var. leptostachys Moq. • Blitum gangeticum Moench • Blitum melancholicum Moench • Glomeraria bicolor Cav. Ex Moq. • Glomeraria tricolor (L.) Cav. • Pyxidium gangeticum Moq. • Pyxidium melancholicum Moq. Amaranthus tuberculatus (Moq.) Sauer • Acnida altissima Moq. • Acnida altissima var. prostrate (Uline & W.L.Bray) Fernald • Acnida altissima var. subnuda (S.Watson ex A.Gray) Fernald • Acnida cannabina var. prostrate (Uline & W.L. Bray) Fernald • Acnida cannabina var. subnuda (S. Watson) Fernald • Acnida concatenate (Moq.) Small • Acnida subnuda (S.Watson) Standl. • Acnida tamariscina var. concatenate (Moq.) Uline & W.L.Bray • Acnida tamariscina var. prostrate Uline & W.L.Bray • Acnida tamariscina var. subnuda (S.Watson) J.M.Coult. • Acnida tamariscina var. tuberculata (Moq.) Uline & W.L.Bray • Acnida tuberculata Moq. • Acnida tuberculata var. prostrate (Uline & W.L.Bray) Lunell • Acnida tuberculata var. prostrate (Uline & W.L. Bray) B.L. Rob. • Acnida tuberculata var. subnuda S.Watson • Amaranthus altissimus Riddell • Amaranthus ambigens Standl. • Amaranthus cannabinus var. concatenates Moq. • Amaranthus miamiensis Riddell • Amaranthus rudis J.D.Sauer • Amaranthus tuberculatus var. prostrates (Uline & W.L.Bray) Mohlenbr. Biology of Amaranths 431 Table 1 (continued) Name Synonyms • Amaranthus tuberculatus var. rudis (J.D.Sauer) Costea & Tardif • Amaranthus tuberculatus var. subnudus (S.Watson) Mohlenbr. • Montelia tamariscina (Nutt.) A. Gray • Montelia tamariscina var. concatenate (Moq.) A. Gray Amaranthus tucsonensis Henrickson Amaranthus urceolatus Benth. • Amaranthus jonesii (Uline & W.L.Bray) Kov. • Amaranthus urceolatus var. jonesii Uline & W.L.Bray • Amaranthus urceolatus var. obcordatus Uline & W.L.Bray • Amblogyna urceolata (Benth.) Andersson • Amblogyna urceolata (Benth.) A.Gray • Amblogyna urceolata var. obcordata A.Gray • Euphorbia gracilis Pav.ex Moq. • Sarratia urceolata Moq. Amaranthus venulosus S.Watson • Amaranthus fimbriatus var. denticulatus Uline & W.L.Bray Amaranthus viridis L. • Albersia caudate (Jacq.) Boiss. • Albersia gracilis (Desf.) Webb & Berthel. • Amaranthus acutilobus Uline & W.L.Bray • Amaranthus fasciatus Roxb. • Amaranthus gracilis Desf. • Amaranthus littoralis Bernh. Ex Moq. • Amaranthus polystachyus Buch.Ham. ex Wall. • Chenopodium caudatum Jacq. • Euxolus caudatus (Jacq.) Moq. • Euxolus caudatus var. gracilis Moq. • Euxolus caudatus var. maximus Moq. • Galliaria adscendens Bubani • Glomeraria viridis (L.) Cav. • Pyxidium viride (L.) Moq. Amaranthus vulgatissimus Speg. • Amaranthus ataco Thell. Amaranthus watsonii Standl. • Amaranthus torreyi (A.Gray) Benth. ex S.Watson • Amaranthus torreyi f. prostrates Farw. • Amaranthus torreyi var. suffruticosus Uline & W.L.Bray • Amblogyna torreyi A.Gray Amaranthus wrightii S.Watson Source: http://www.theplantlist.org/browse/A/Amaranthaceae/Amaranthus/ (Accessed on November 20, 2016) 432 R. Assad et al. Table 2 Chromosome number(s) of various Amaranthus species Amaranthus species Chromosome number Ploidy Reference A. albus 32 34 Diploid Heiser and Whitaker (1948) Grant (1959b) Sharma and Banik (1965) Mulligan (1984) Song et al. (2002) A. arenicola 32 Diploid Grant (1959b) A. asplundii 34 Diploid Grant (1959b) A. atropurpureus 34 Diploid Sharma and Banik (1965) A. aureus 32 34 Diploid Grant (1959b) Milan (2008) A. australis 32 Diploid Murray (1940) Grant (1959b) A. blitoides 32 Diploid Song et al. (2002) Sheidai and Mohammadzadeh (2008) A. blitum 28 34 Diploid Takagi (1933) Murray (1940) Grant (1959b) Pal et al. (2000) Srivastava and Roy (2012) A. caturus 64 Tetraploid Behera and Patnaik (1974) A. caudatus 30 32 34 Diploid Takagi (1933) Grant (1959b) Behera and Patnaik (1974) National Research Council (1989) Greizerstein and Poggio (1995) Song et al. (2002) Ramesh and Kumar (2009) Bonasora et al. (2013) A. crispus 34 Diploid Grant (1959b) A. cruentus 32 34 Diploid Takagi (1933) Grant (1959b) National Research Council (1989) Greizerstein and Poggio (1995) Song et al. (2002) Lanta et al. (2003) Milan (2008) Ramesh and Kumar (2009) Bonasora et al. (2013) A. deflexus 34 Diploid Grant (1959b) A. dubius 64 Tetraploid Grant (1959a) Pal (1971) Madhusoodanan and Nazeer (1983) Greizerstein and Poggio (1992) Greizerstein et al. (1997) A. fimbriatus 34 Diploid Ward and Spellenberg (1986) A. graecizans 32 34 Diploid Heiser and Whitaker (1948) Grant (1959b) Pal (1972) A. hybridus 32 34 Diploid Covas and Schnack (1946) Grant (1959b) Behera and Patnaik (1974) Weaver and McWilliams (1980) Pal et al. (1982) National Research Council (1989) Biology of Amaranths 433 Table 2 (continued) Amaranthus species Chromosome number Ploidy Reference Song et al. (2002) Ramesh and Kumar (2009) A. hypochondriacus 32 34 Diploid Grant (1959b) Pal and Khoshoo (1974) Pal et al. (1982) National Research Council (1989) Greizerstein and Poggio (1995) Song et al. (2002) Milan (2008) Ramesh and Kumar (2009) Bonasora et al. (2013) A. mangostanus 32 34 Diploid Takagi (1933) Behera and Patnaik (1974) A. muricatus 34 Diploid Covas and Hunziker (1954) A. palmeri 32 34 Diploid Heiser and Whitaker (1948) Grant (1959a) Grant (1959b) Pal et al. (1982) Mulligan (1984) Rayburn et al. (2005) Gaines et al. (2012) A. polygonoides 32 34 Diploid Song et al. (2002) A. powellii 32 34 Diploid Murray (1940) Grant (1959b) Pal and Khoshoo (1974) Weaver and McWilliams (1980) A. retroflexus 32 34 Diploid Murray (1940) Heiser and Whitaker (1948) Grant (1959b) Weaver and McWilliams (1980) Mulligan (1984) Song et al. (2002) Lanta et al. (2003) 34 Diploid Song et al. (2002) A. roxburghianus A. spinosus n = 17 Koul et al. 1976 Behera and Patnaik 1977 Behera and Patnik 1982 34 Diploid Takagi (1933) Murray (1940) Grant (1959b) Behera and Patnaik (1974) Baquar and Olusi (1988) Greizerstein and Poggio (1995) Al-Turki et al. (2000) Song et al. (2002) Rayburn et al. (2005) Srivastava and Roy (2012) A. standleyanus 34 Diploid Grant (1959b) Covas and Hunziker (1954) A. tamariscinus 32 Diploid Grant (1959b) A. tenuifolius 28 Diploid Pal et al. (2000) A. tricolor 34 Diploid Takagi (1933) Grant (1959b) Sharma and Banik (1965) 434 R. Assad et al. Table 2 (continued) Amaranthus species Chromosome number Ploidy Reference Behera and Patnaik (1974) Madhusoodanan and Nazeer (1983) Song et al. (2002) Srivastava and Roy (2012) A. tuberculatus 32 Diploid Murray (1940) Grant (1959b) Wetzel et al. (1999b) Franssen et al. (2001b) Steinau et al. (2003) Trucco et al. (2007) A. viridis 32 34 Diploid Covas and Hunziker (1954) Grant (1959b) Sharma and Banik (1965) Behera and Patnaik (1974) Madhusoodanan and Nazeer (1983) Greizerstein and Poggio (1995) Song et al. (2002) Table 3 Effect of temperature on seed germination of Amaranthus species Parameters Amaranthus species Results (Optimum germination) Reference Effect of temperature A. blitum 35 °C Teitz et al. (1990) A. caudatus 35 °C Gutterman et al. (1992) Kępczyński and Bihun (2002) A. cruentus 30 to 35 °C Oladiran and Mumford (1985) A. gangeticus 30 to 35 °C Oladiran and Mumford (1985) A. hybridus 32 to 34 °C Washitani and Takenaka (1984) Oladiran and Mumford (1985) A. palmeri 25 to 40 °C Wright et al. (1999) Guo and Al-Khatib (2003) Jha et al. (2008c) Jha et al. (2010) A. paniculatus 30 to 35 °C Oladiran and Mumford (1985) A. retroflexus 25 to 40 °C Evans (1922) McWilliams et al. (1968) Baskin and Baskin (1977) Habib and Morton (1987) Kępczyński et al. (1996) Ghorbani et al. (1999) Guo and Al-Khatib (2003) A. rudis 25 to 40 °C Guo and Al-Khatib (2003) A. spinosus 30 to 35 °C Steckel et al. (2004) Chauhan and Johnson (2009) A. viridis 30 °C Thomas et al. (2006) Chauhan and Johnson (2009) Biology of Amaranths 435 Table 4 Effect of various environmental parameters on seed germination of Amaranthus species Parameters Amaranthus species Effect of seed burial depth A. albus Results (Optimum germination) Reference 1.9 cm Santelmann and Evetts (1971) A. graecizans A. hybridus A. palmeri A. retroflexus 0.5 cm to 4 cm Effect of duration of seed burial Wiese and Davis (1967) Baskin and Baskin (1977) Ghorbani et al. (1999) Omami et al. (1999) Benvenuti et al. (2001) A. spinosus 0.5 to 2 cm Santelmann and Evetts (1971) Chauhan and Johnson (2009) A. viridis 0.5 to 2 cm Thomas et al. (2006) Chauhan and Johnson (2009) A. palmeri peak germination occurred after 9 months of burial Jha et al. (2010) A. patulus remain viable upto 3 years Washitani (1985) A. retroflexus peak germination occurred after 9 months of burial Baskin and Baskin (1985b) Baskin and Baskin (1998) Omami et al. (1999) A. retroflexus remain viable for 6–10 years Chepil (1946) Burnside et al. (1981) Burnside et al. (1996) A. retroflexus germinated even after 40 years Telewski and Zeevaart (2002) of burial Table 5 Allelopathic effect of Amaranthus species on other plants Amaranthus Species Allelopathic effect against Effect Reference A. blitoides A. gracilis Triticum aestivum • Reduced germination, coleoptile length, root length, root dry weight, plant height, grain and straw yield. Qasem (1995b) A. hybridus Phaseolus spp. • Negative effect on total chlorophyll content, number of developed leaves, stem length, and total plant dry matter. Amini et al. (2013) A. palmeri seeds • Inhibit growth and seed germination. A. palmeri Allium cepa Brassica oleracea var. Capitata Altieri and Doll (1978) Bradow and Connick (1987) Connick et al. (1987) Menges (1987) 436 R. Assad et al. Table 5 (continued) Amaranthus Species Allelopathic effect against Effect Menges (1988) Daucus carrota Lycopersicon lycopersici Sorghum bicolour A. retroflexus Beta vulgaris Brassica oleracea var. brotrytis Capsicum annuum Cucumis sativus Cucurbita ovifera Daucus carota Helianthus annus Lycopersicon lycopersici Solanum melongena Carthamus tinctorius • Decrease chlorophyll content. • Decrease nitrogen fixation of nodules. • Decrease respiration. • Decrease RGR, NAR and FWR. • Inhibit radicle and hypocotyl elongation. • Interfere in photosynthesis. • Reduce coleoptile length, root length, root dry weight, plant height, grain and straw yield. • Reduce germination, nutrient uptake, growth and yield. Glycine max A. spinosus Bhowmik and Doll (1980) Qasem (1995a) Alam et al. (2001) Souza et al. (2011) Williams et al. (2005) Rezaie and Yarnia (2009) Bhowmik and Doll (1982) Bhowmik and Doll (1984) Chaniago et al. (2006) Gossypium hirsutum Munger et al. (1983) Hordeum vulgare Lolas (1981) Lolas (1986) Qasem (1994) Lactuca sativa Dos Santos et al. (2004) Nicotiana tabacum Lolas (1981) Lolas (1986) Phaseolus vulgaris Aguyoh and Masiunas (2003) Sorghum bicolour Bhowmik and Doll (1983) Triticum aestivum Qasem (1995b) Shahrokhi et al. (2012) Zea mays Bhowmik and Doll (1982) Bhowmik and Doll (1984) Cultures Lactuca sativa Parthenium hysterophorus Sinapis alba Triticum aestivum A. viridis Reference Pennisetum americanum • Negative impact on growth. • Reduce time duration of vegetative and reproductive phases. Suma (1998) Shrefler et al. (1996) Chikkalingaiah and Mahadevappa (1998) Datta and Bandyopadhayay (1981) • Decrease growth and productivity Singhal and Sen (1981) Web-Links http://www.theplantlist.org/1.1/browse/A/Amaranthaceae/Amaranthus/ (Accessed on November 20, 2016).