Academia.eduAcademia.edu
1 Nat. Vol. Essent. Oils, 2014; 1 (1): 1-50 REVIEW   Essential  Oils  of  Anatolian  Apiaceae  -­‐  A  Profile¶   K.  Hüsnü  Can  Baser1,2and  Neş’e  Kırımer1   1   Anadolu  University,  Faculty  of  Pharmacy,  Department  of  Pharmacognosy,  26470  Eskişehir,  Turkey.   2   King  Saud  University,  College  of  Science,  Department  of  Botany  and  Microbiology,  Riyadh,  Saudi  Arabia   __________________________________________________________________________________________   Abstract   The   family   Apiaceae   is   represented   in   Turkey   by   101   genera   belonging   to   485   species   included   in   511   taxa   comprising  181  endemics,  7  genera  being  monotypic.  The  ratio  of  species  endemism  in  the  family  is  37.3  %.     We   have   screened   the   literature   for   Apiaceae   taxa   studied   for   their   essential   oils   and   compiled   the   data   in   order   to  get  a  clear  aromatic  profile  of  the  family.  It  has  become  obvious  that  our  group  has  been  very  active  in  this   matter.   We   have   so   far   investigated   taxa   belonging   to   58   genera   including   the   monotypic   genera   Ekimia   bornmuelleri,  Olymposciadium  caespitosum  and  published  on  their  essential  oil  yields  and  compositions.   Apiaceae   is   an   interesting   family   comprising   many   aromatic   taxa   including   commercialized   Herbas   and   spices   such  as  anis,  fennel,  cumin,  caraway,  coriander,  chervil,  parsley,  carrot,  asa  foetida,  galbanum,  etc.  Some  are  rich   in   essential   oils.   The   most   interesting   feature   of   the   family   is   that   many   of   its   members   have   high   chemical   diversity  containing  different  aromatic  chemicals  in  different  organs.  Therefore,  it  is  advisable  to  study  all  parts   (e.g.,   fruit,   flower,   stem,   leaf   and   root)   of   an   Apiaceae   plant   separately   in   order   to   get   a   complete   chemical   profile  of  that  taxon.       Apiaceae  genera  of  Turkey  studied  so  far  for  their  essential  oils  are  as  follows:     Actinolema,   Ammi,   Anethum,   Angelica,   Anthriscus,   Apium,   Artedia,   Bifora,   Bilacunaria,   Bunium,   Bupleurum,   Cachrys,   Chaerophyllum,   Cnidium,   Coriandrum,   Crithmum,   Cuminum,   Cymbocarpum,   Daucus,   Diplotaenia,   Echinophora,   Ekimia,   Eryngium,   Ferula,   Ferulago,   Foeniculum,   Fuernrohria,   Glaucosciadium,   Grammosciadium,   Heptaptera,   Heracleum,   Hippomaranthum,   Johrenia,   Kundmannia,     Lagoecia,   Laser,   Laserpitium,   Malabaila,   Myrrhoides,   Neocryptodiscus,   Olymposciadium,   Pastinaca,   Petroselinum,   Peucedanum,   Physocaulis,   Pimpinella,   Prangos,   Rhabdosciadium,   Scaligeria,   Scandix,   Seseli,   Smyrnium,   Szovitsia,   Tordylium,   Trachyspermum,   Trinia,   Xanthogalum,  Zosima.   KEYWORDS:  Review,  Apiaceae,  essential  oil,  Turkey   __________________________________________________________________________________________   ¶Presented  as  a  plenary  lecture  at  the  2014  Apiales  Symposium  in  Istanbul,  Turkey  on  August  1-­‐3.     2 Introduction     The  family  Apiaceae  is  represented  in  Turkey  by  101  genera  belonging  to  485  species  included  in  511   taxa   comprising   181   endemics   (=   E).   Endemic   monotypic   genera   include   Crenosciadium,   Microsciadium,   Olymposciadium,   Muretia,   Froriepia,   Stenotaenia   and   Ekimia.   Other   endemic   genera   are   Rhabdosciadium   (3   spp.)   and   Kundmannia   (2   spp.)   (Davis,   1972;   1988;   Duman   H.   and   Watson,   1999;  Ozhatay  et  al.  1994;  1999;  2009;  Guner  et  al.  2000,  Duran,  2014)   Apiaceae   species   are   rich   in   essential   oils.   They   may   contain   essential   oils   in   fruits,   flowers,   leaves,   roots   and   stem.   Chemical   diversity   is   so   varied   that   essential   oil   components   in   underground   and   aboveground   parts   may   vary   significantly.   Fruit   type   in   Apiaceae   is   schizocarp   meaning   that   seed   is   fused   with   the   fruit   in   such   a   way   that   it   is   impossible   to   separate   them   from   eachother.   This   is   the   reason   why   Apiaceae   fruits   are   often   called   seeds   such   as   aniseeds,   cumin   seeds,   coriander   seeds,   fennel  seeds,  etc.  Fruit  essential  oils  in  Apiaceae     are  contained  in  oil  ducts  called  vittae.  Such  subcutaneus  oils  give  higher  yields  when  crushed  before   distillation.  If  whole  fruits  are  distilled,  oxygenated  components,  which  are  generally  less  volatile  but   more   water   soluble,   appear   earlier   in   the   distillate.   This   can   be   explained   by   the   hydrodiffusion   phenomenon.  More  water  soluble  components  in  oil  ducts  diffuse  to  the  surface  of  the  fruit  and  are   carried  away  by  the  passing  steam.  More  volatile  but  less  water  soluble  hydrocarbons  are  eluted  later.   Hydrophobics  are  released  by  crushing  the  material  to  break  the  oil  ducts  prior  to  distillation.  Heating   of   the   material   facilitates   the   removal   of   hydrocarbons.   Crushing   the   fruits   prior   to   distillation   facilitates  distillation  of  hydrocarbons  as  well  as  other  components.     Several  Apiaceae  species  are  ingredients  of  foods  and  therefore  their  large  scale  cultivation  is  required.   Surplus  of  domestic  use  is  generally  exported.  Major  Apiaceae  crops  cultivated  in  Turkey  are  aniseed   (Pimpinella  anisum),  cumin  (Cuminum  cyminum),  coriander  (Coriandrum  sativum),  fennel  (Foeniculum   vulgare).   Some   lesser   crops   cultivated   or   used   in   Turkey   include   celery   (Apium   graveolens),   dill   (Anethum  graveolens),  parsley  (Petroselinum  sativum)  and  laser  (Laser  trilobum).   In   2013,   Turkey   exported   7.942   tons   of   cumin   fruits   for   a   return   of   USD   20.5   million.   Exports   of   aniseeds  amounted  to  1.944  tons  for  a  return  of  USD  7.9  million.  15  years  ago  it  was  4.000  tons.  When   Turkish   State   Monopolies   (TEKEL)   used   to   purchase   7000   tons   annually   for   the   production   of   an   alcoholic   drink   called   RAKI   (Baser,   1997b).   Since   then,   TEKEL   has   been   privatized   and   the   state   monopoly   over   RAKI   has   been   lifted.   Therefore,   most   of   the   aniseed   production   is   consumed   by   the   domestic  Raki  producers  and  only  a  small  surplus  is  exported.  Export  figures  of  fennel  and  juniper  are   collectively   cited   under   the   same   HS   (Harmonised   system)   code   in   export   statistics.   Their   combined   exports  amounted  to  894.292  kg  in  2011  for  a  return  of  USD  2.5  million.  Coriander  exports  of  Turkey  in   2013  were  229  tons  for  USD  566.088  (Table  1).   3 Table  1.  Export  of  Some  Apiaceae  Crops  of  Turkey       1997   2013   Aniseed   kg   3.907.492   1.944.227   $   8.891.921   7.889.501   $/kg   2.28   4.05   Cumin   kg   12.927.275   7.941.924   $   19.489.209   20.574.613   $/kg   1.51   2.59   Fennel  /   kg   1.699.129   894.292*   Juniper  fruit   $   1.873.348   2.500.000*   $/kg   1.10   1.33*   Coriander kg     228.596       $     566.088   $/kg     2.48   *2011  figures   Technical  Information   1. Unless   stated   otherwise,   all   the   oils   were   obtained   by   water   distillation   using   a   laboratory-­‐ scale  Clevenger  apparatus.   2. For   micro-­‐distillation,   either   an   Eppendorf   MicroDistiller   or   a   Likens-­‐Nickerson   Simultaneous   Distillation-­‐Extraction  apparatus  were  used.   3. Unless  stated  otherwise,  all  plant  materials  were  ground  prior  to  distillation.   4. For   Gas   Chromatographic   /   Mass   Spectrometric   Analysis,   a   Shimadzu   QP2000A,   QP5050,   a   Hewlett-­‐Packard  G1800A  MSD  and  Agilent  5975GCMSD  systems  were  used.     5. For   chiral   separations,   the   Multi-­‐Dimensional   Gas   Chromatography/Mass   Spectrometry   (MDGC/MS)  system  used  consisted  of  two  HP-­‐GC6890  gas  chromatographs  +  HP-­‐MSD  +  Gerstel  MCS   system.     Apiaceae  Oils  of  Turkey   CUMIN  SEED  OIL  (Cuminum  cyminum  L.)   Cumin  (Kimyon  in  Turkish)  is  an  annual  plant  cultivated  for  its  use  as  condiment  and  as  an  ingredient  of   sucuk  (spicy  meaty  Turkish  sausages).     15  essential  oil  samples  from  Turkey  and  four  from  abroad  were  subjected  to  analysis  and  the  results   are   summarised   in   Table   2   (Baser   et   al.,   1992).   The   following   generalities   can   be   drawn   from   the   results.   1. p-­‐Mentha-­‐1,4-­‐dien-­‐7-­‐al   (γ-­‐terpinen-­‐7-­‐al)   predominates   over   the   other   components   in   lab-­‐ distilled  oils.   2. Total  aldehydes  content  in  lab-­‐distilled  oils  varies  between  61-­‐78%  while  in  commercial  oils  it   falls  between  29-­‐46%.   3. Monoterpene  hydrocarbons  predominate  over  the  aldehydes  in  commercial  oils  (32-­‐66%)   4. In   commercial   Turkish   and   Egyptian   oils   cuminaldehyde   is   the   main   constituent   while   γ-­‐ terpinene  is  the  main  component  in  Indian  oils.   4 5. p-­‐Mentha-­‐1,4-­‐dien-­‐7-­‐al   (γ-­‐terpinen-­‐7-­‐al)   is   the   main   component   in   fresh   seeds.   It   is   easily   oxidised  to  cuminaldehyde  in  pre-­‐ground  seeds  during  storage  or  during  the  heat  treatment  associated   with  distillation  of  the  commercial  oil.   Table  2.  Cumin  seed  oil       Water  distilled   whole   ground   Steam  distilled   whole   ground   Yield  (%)   p-­‐mentha-­‐1,4-­‐dien-­‐ 7-­‐al  (α-­‐terpinen-­‐7-­‐al)   cuminaldehyde   p-­‐mentha-­‐1,3-­‐dien-­‐ 7-­‐al  (α-­‐terpinen-­‐7-­‐al)   p-­‐cymene   γ-­‐terpinene   β-­‐pinene   1.2-­‐3.2   31-­‐49   1.4-­‐1.6   25-­‐38   1.2   41   1.2-­‐1.7   28-­‐32     2-­‐8     6     2-­‐3   19-­‐25   4-­‐12   21-­‐25   4-­‐12   26   12   21-­‐27   6-­‐11   22-­‐40   8-­‐13   20   9   20-­‐31   7-­‐11   5-­‐9   7-­‐11   3-­‐7   6   14-­‐15   7-­‐8   5   7   3   6   14-­‐16   6-­‐9   6-­‐9   11-­‐23   8-­‐16   9   18   10   14-­‐18   29-­‐32   4-­‐13   Turkish   Commercial   Egyptian   Indian   We  have  also  published  on  the  hydrodistilled  essential  oils  of  unripe,  ripe  and  fully  ripe  cumin  fruits   cultivated  in  Konya  (Table  3).     Table  3.  Cumin  seed  oils  at  different  vegetative  states  (Kan  et  al,  2007)   Yield  (%)   p-­‐mentha-­‐1,4-­‐dien-­‐7-­‐al  (=  γ-­‐terpinen-­‐7-­‐al)   cuminaldehyde   p-­‐mentha-­‐1,3-­‐dien-­‐7-­‐al  (=  γ-­‐terpinen-­‐7-­‐al)   p-­‐cymene   γ-­‐terpinene   α-­‐phellandrene   β-­‐pinene   Total  aldehydes   1.9   16.9   19.9   14.1   7.7   10.3   8.5   8.7   50.9   2.4   13.9   23.6   17.5   9.6   11.5   4.1   7.4   65.0   2.3   16.0   20.4   11.4   11.6   13.6   5.4   9.0   55.8     Impact  compounds  of  the  cumin  fruit  oil  are  the  three  aldehydes.  Their  total  percentages  amounted  to   50.9%,  65.0%  and  55.8%  in  unripe,  ripe  and  fully  ripe  fruits,  resp.  (Kan  et  al,  2007).   Another   paper   on   the   Turkish   cumin   seed   oil   reported   only   cuminaldehyde   as   55%   together   with   edulan  (10%)  and  carotol  (5%)  without  mention  of  other  aldehydes  and  monoterpenes.  Scientific  value   of  this  paper  is  questionable  (Topal  et  al.,  2008).   Our  group  has  also  determined  the  steam  distillation  process  parameters  of  cumin  seed  oil  using  a  500   liter   pilot   plant.   Optimum   conditions   for   the   best   yield   of   oil   were   found   as   0.5   mm   particle   size,   35   kg   batch   size,   distillation   rate   0.28     kg/   kg-­‐1h-­‐1,   distillation   time   3   h.   Major   components   were   found   as   cuminaldehyde   27.6%,   γ-­‐terpinene   17.3%,   p-­‐mentha-­‐1,3-­‐dien-­‐7   al   (γ-­‐terpinen-­‐7-­‐al)   15.2%,   β-­‐pinene   10.2%,  p-­‐mentha-­‐1,4-­‐dien-­‐7-­‐al  (γ-­‐terpinen-­‐7-­‐al)  9.5%  (Beis  et  al.,  2000).   Bunium   persicum   (Boiss.)   B.Fedtsch.   (Umbelliferae)   is   also   a   native   plant   of   Turkey   with   no   reported   use.   However,   the   fruits   of   this   species   are   used   in   place   of   cumin   in   Central   Asia,   Afghanistan   and   Pakistan.  The  analysis  of  fruits  of  Bunium  persicum  from  Tajikistan  revealed  the  presence  of  p-­‐mentha-­‐ 1,4-­‐dien-­‐7-­‐al   γ-­‐terpinen-­‐7-­‐al)   (29%),   γ-­‐terpinene   (26%),   β-­‐pinene   (16%)   and   cuminaldehyde   (12%)   as   main  constituents  (Baser  et  al,  1997a).   5 LASER  SEED  OIL  (Laser  trilobum  (L.)  Borkh.)   Laser   is   an   erect,   glaucous   perennial   plant   attaining   a   height   of   ca.   120   cm   which   grows   wild   scattered   throughout  Turkey  except  in  the  Southest  region.  Dried  ripe  fruits  known  as  “kefe  kimyonu”  is  traded   and  used  as  a  spice  in  Turkey.  The  fruits  have  a  cumin-­‐like  aroma  with  a  resinous  and  spicy  taste.  A  2%   decoction  of  the  fruit  is  applied  on  the  skin  for  acne.   Fruits   from   two   localities   in   Turkey   were   subjected   to   different   distillation   modes   and   the   oils   were   analysed.  The  results  are  summarised  in  Table  4  (Baser  et  al,  1993).   1. Perillaldehyde   and   limonene   are   the   main   constituents   of   Laser   seed   oil.   Limonene   is   a   monoterpene  hydrocarbon.  Perillaldehyde  is  an  oxygenated  monoterpene.   2. Due   to   reasons   already   explained,   perillaldehyde   is   the   main   constituent   in   essential   oil   distilled  from  whole  fruits.  Crushed  fruits  or  predistilled  whole  fruits  yield  oil  rich  in  limonene.   3. Prolonged  storage  or  heat  treatment  of  Laser  seeds  produce  an  oil  rich  in  perillaldehyde  due  to   higher  volatility  of  limonene.     Table  4.  Laser  seed  oil       Yield  (%)   perillaldehyde   limonene     whole   2-­‐3   62-­‐69   27-­‐29     ground   5-­‐7   29-­‐34   65-­‐69   Water  distilled     heated   cad   whole   2-­‐6   2   4-­‐8   67   88-­‐91   22   heated  ad   1   80   6   Steam  distilled       whole   ground   2   6   72   31   19   63   Cad:  Crushed  after  distillation  of  the  whole  fruits.   Another  recent  study  on  laser  fruits  reported  the  yield  of  essential  oil  as  4.4-­‐5.8%  with  limonene  (41-­‐ 72%)  and  perillaldehyde  (4-­‐33%)  as  main  constituents  (Parlatan  et  al,  2009).     APIACEAE  OILS  OF  OTHER  COMMERCIAL  CROPS   Table   5   summarises   the   results   of   analysis   of   the   essential   oils   of   some   commercial   Apiaceae   crops   carried  out  at  our  laboratories.     Table  5.  Main  components  of  the  essential  oils  of  some  commercial  genera   Common  name   Latin  name   %  yield   Main  components  (%)   Carrot  seed   Daucus  carota     2.5   carotol  27   0.83   carotol  67   Celery  Herba   Apium  graveolens   0.09   γ-­‐terpinene  39   Chervil  Herba   Anthriscus  cerefolium   0.4   methyl  chavicol  83,  1-­‐allyl-­‐2,4-­‐ di-­‐methoxy  benzene  15   Coriander  seed   Coriandrum  sativum   0.4-­‐2.0   (+)-­‐linalool  89   Dill  seed   Anethum  graveolens   2.0-­‐2.5   (+)-­‐carvone  46-­‐66   Parsley  seed   Petroselinum  sativum   0.5   2,3,4,5-­‐tetramethoxy   allylbenzene  29   Angelica  seed   Angelica  sylvestris  var.   0.26   α-­‐pinene  26,  β-­‐phellandrene  9,   sylvestris   bornyl  acetate  7,  p-­‐cresol  7   Ref.     Baser,  2002   Ozcan  &  Chalchat,    2007   Baser,  2002   Baser  et  al.,  1998a   Baser,  2002   Kosar  et  al.,  2005   Baser,  2002   Ozek,  T.,  et  al.,  2008   6 FENNEL  OILS   Foeniculum  vulgare  var.  dulce  oil  contains  trans-­‐anethole  80-­‐95%  as  the  main  constituent  with  methyl  chavicol   (estragole)   3-­‐16%   as   a   minor   component.   In   the   oil   of   F.   vulgare   var.   piperitum   methyl   chavicol   22-­‐70%   is   the   main  constituent,  fenchone  13-­‐28%  is  second  major  component.  Trans-­‐anethole  content  is  very  low.  F.  vulgare   var.   vulgare   oils   are   characterized   by   high   trans-­‐anethole   content   which   is   lower   than   that   of   F.   vulgare   var.   dulce.   Trans-­‐anethole   and   methyl   chavicol   contents   are   similar   in   percentage   values.   Due   to   higher   methyl   chavicol  contents  this  taxon  is  also  called  as  bitter  fennel.       Table  6.  Fennel  oils   Common  name   Fennel  seed,  sweet   Latin  name   Part   Foeniculum   vulgare   var.   Fruit   vulgare   Fruit   Fruit   Fennel  seed,  bitter   Florence   finocchio   Foeniculum   vulgare   var.   Fruit   dulce   Foeniculum   vulgare   var.   Fruit   piperitum   Leaf   %  yield   2.4-­‐3.1   3.1   6-­‐12   3   4.3-­‐7.7   1-­‐3   Root   0.17   Stem   0.87   fennel,   Foeniculum   vulgare   var.   Fruit   azoricum     Main  components  (%)   trans-­‐anethole  65-­‐88   trans-­‐anethole  75,  methyl   chavicol  16   trans-­‐anethole  81-­‐88,  methyl   chavicol  4-­‐6,  fenchone  1-­‐3   trans-­‐anethole  95,  methyl   chavicol  3   methyl  chavicol  63-­‐73,   fenchone  18-­‐28   methyl  chavicol  25-­‐70,   fenchone  8-­‐15,  limonene  2-­‐10,   fenchylacetate  2-­‐14   methyl  chavicol  59,  fenchone   12,  fenchylacetate  3   methyl  chavicol  61,  fenchone   25   trans-­‐anethole  59-­‐72,   limonene  8-­‐11,  apiole  tr-­‐9   Ref.   Baser,  2002   Cosge  et  al.,  2008   Telci  et  al.,  2009   Cosge  et  al.,  2008   Baser,2002   Figueredo   2011   et   al.,   Özcan   &   Chalchat   2010   Özcan   &   Chalchat   2010   Cetin  et  al,  2010   CORIANDER  OIL   Coriander   (Coriandrum   sativum)   is   a   cultivated   crop   whose   fresh   leaves   and   fruits   are   used   as   condiment  and  as  a  source  of  essential  oil.  Fruit  oil  is  a  rich  source  of  the  rare  (+)-­‐linalool  and  therefore   important   as   a   perfumery   ingredient.   Fresh   leaves,   rich   in   aliphatic   aldehydes   such   as   (E)-­‐2-­‐decenal,   are  added  to  soups  and  salads  due  to  its  pungent  taste.       Table  7.  Coriander  oils     Plant  name   Coriandrum  sativum   Part   Fruit   %  yield   0.3-­‐1.2   Main  components  %   linalool  (16)  72-­‐83   C.  sativum  var.  vulgare   C.  sativum  var.   macrocarpum   C.  sativum  var.   microcarpum     Fruit   Fruit   0.2-­‐0.4     linalool  30-­‐65   linalool  79   Fruit   Fruit   Fruit   Herba   0.3-­‐0.4     0.35-­‐0.61   0.5   linalool  64-­‐71   linalool  91   linalool  37-­‐77   (E)-­‐2-­‐decenal  17-­‐35  (spring);   11-­‐51  (summer)   decanal  19-­‐23  (autumn);  10-­‐18   (summer)   Ref.   Kiralan  et  al.,  2009;  Sampson  et  al.,   2005;  Koşar  et  al  2005;  Yıldırım  &   Gok,  2012.   Telci  et  al.,  2006a;  2006b.   Duman  A.D.  et  al.,  2010   Telci  et  al.,  2006b   Duman  A.D.  et  al.,  2010   Telci  et  al.,  2006a   Telci  &  Hisil,  2008a   7 PIMPINELLA  ESSENTIAL  OILS   The  genus  Pimpinella  is  represented  in  Turkey  by  25  species,  and  altogether  29  taxa,  7  being  endemic   (Duran   2014).   Essential   oils   of   20   taxa   were   analysed   by   our   group.   The   results   are   summarized   in   Table  8.   Pimpinella   oils   are   characterized   by   high   contents   of   phenylpropanoid   derivatives.   Kubeczka   has   classified   phenylpropanoids   as   two   specific   types,   a   propenylphenol-­‐type   (4-­‐monosubstituted   phenylpropanoid)  and  a  pseudoisoeugenol-­‐type  (2,5-­‐disubstituted  phenylpropanoid)  (Kubeczka,  1998).   The   2-­‐hydroxy-­‐5-­‐methoxy-­‐1-­‐(E)-­‐propenylbenzene   skeleton   of   these   compounds,   known   as   pseudoisoeugenol,   is   unique   to  Pimpinella.   Trinorsesquiterpenes   (geijerenes   and   azulenes)   were   also   found  to  be  characteristic  constituents  in  most  Pimpinella  oils  (Baser  et  al.,  2007b)   Oil   yields   of   the   fruits   of   Pimpinella   species   were   as   follows:   P.   nudicaulis   (5.10%),   P.   anisetum   (5.3-­‐ 5.05%),   P.   aurea   (5.1%),   P.   anisum   (4.8-­‐1.3   %),   P.   affinis   (2.12%),   P.   cappadocica   var.   cappadocica   (2.06-­‐0.3  %),  P.  flabellifolia  (1.88%),  P.  tragium  subsp.  pseudotragium  (1.87%),  P.  saxifraga  (1.67%),  P.   isaurica  (1.4-­‐1.3%),  P.  peregrina  (1.08%),  P.  kotschyana  (1.02%),  P.  tragium  subsp.  polyclada  (0.92%),   P.   tragium   subsp.   lithophila   (0.73-­‐   0.71%),   P.   rhodantha   (0.41%),   P.   puberula   (0.32%),   P.   corymbosa   (0.26%),  P.  peucedanifolia  (0.23%),  P.  olivieroides  (0.20%).  P.  aromatica  and  P.  anisetum  roots  gave  the   highest  oil  yields  (4.2  and  3.2%,  resp.  ).  Oil  yield  of  P.  aromatica  Herba  was  6.1%  and  of  P.  anisetum   3.0%.   Oil  of  the  cultivated  anis  (Pimpinella  anisum)  with  3-­‐5%  yield  contained  trans-­‐anethole  (85-­‐96%)  as  the   main   constituent   which   crystallizes   out   easily   by   freezing.   Crushed   fruits   of   the   endemic   P.   anisetum   gave  a  high  yield  of  oil  (3-­‐5%)  with  relatively  high  percentage  of  trans-­‐anethole  (55-­‐83%)  and  methyl   chavicol  (22%).  Herbaal  parts  of  the  same  species  yielded  an  oil  also  rich  in  trans-­‐anethole  (55%)  and   methyl  chavicol  (42%).  The  oil  from  Herbaal  parts  of  P.  aromatica  obtained  in  high  yield  (6.1%)  was  a   rich   source   of   methyl   chavicol   (92%).   Essential   oil   from   roots   of   the   same   plant   gave   a   totally   different   picture   than   the   Herba   in   that   the   main   constituent   was   2-­‐methylbutanoate   of   trans-­‐pseudoeugenol   (40%).  Compounds  responsible  for  the  blue  colour  of   the   root   oil   were   two   azulene   derivatives.   Herba   oil  of  P.  isaurica,  another  endemic  species,  contained  high  proportion  of  angelic  and  tiglic  acid  esters  of   chavicol   (44%).   Fruits   and   Herbas   of   P.   cappadocica   (E)   and   P.   corymbosa   were   relatively   poor   in   essential  oil.  The  oils  contained  sesquiterpenes  as  main  constituents  (Table  8).     Of   the   22   isolated   compounds   during   this   investigation,   two   new   phenylpropanoids,   4-­‐(prop-­‐2-­‐ enyl)phenyl   angelate,   and   4-­‐(3-­‐methyloxiranyl)phenyl   2-­‐methylbutyrate,   one   new   bisabolene-­‐type   sesquiterpenoid,   1-­‐methyl-­‐4-­‐(6-­‐methylhepta-­‐1,5-­‐dien-­‐2-­‐yl)-­‐7-­‐oxabicyclo   [4.1.0]heptane   (“aureane”),   and   one   new   trinorsesquiterpene,   4-­‐(6-­‐methylbicyclo[4.1.0]hept-­‐2-­‐en-­‐7yl)butan-­‐2-­‐one   (“traginone”),   were  identified  and  characterized  by  spectral  techniques  (Tabanca  et  al.,  2006).  Six  further  compounds   were   identified   for   the   first   time   as   constituents   of   Apiaceae,   whilst   trans-­‐isoosmorhizole,   was   identified   for   the   first   time   as   a   constituent   of   Pimpinella   species.   Nine   known   phenylpropanoids,   as   well   as   trans-­‐anethole   and   methyl   eugenol,   were   isolated   and   identified   from   different   Pimpinella   oils.   The   properties   of   known   compounds   were   compared   with   previously   published   data,   and   after   identification  were  registered  in  the  “Baser  Library  of  Essential  Oil  Constituents”.   Pimpinella   oils   were   reanalyzed   by   GC/MS,   and   those   isolated   compounds   were   detected   in   other   Pimpinella  oils  (Table  8).  Oils  from  four  Pimpinella  taxa  (P.  anisum,  P.  nudicaulis,  and  two  endemic  taxa   8 P.   anisetum,   P.   flabellifolia)   were   rich   in   trans-­‐anethole.   Pimpinella   anisetum   and   P.   anisum   fruit   oils   were  characterized  by  higher  contents  of  trans-­‐anethole  (81–94  %)  than  the  other  species.   Trinorsesquiterpenes  geijerene  and  pregeijerene  were  main  constituents  in  the  oils  of  P.  affinis  and  P.   tragium   subsp.   lithophylla.   P.   saxifraga   and   P.   puberula   oils   were   rich   in   monoterpenes   and   P.   peucedanifolia   oil   was   unique   in   having   undecane   (an   alkane)   as   main   constituent   in   the   oil.   P.   cappadocica,  P.  corymbosa,  P.  kotschyana,  P.  peregrina,  P.  tragium  subsp.  lithophila,  P.  tragium  subsp.   polyclada,  P.  tragium  subsp.  pseudotragium  oils  were  rich  in  sesquiterpenes.     Methyl  eugenol  was  a  major  constituent  in  the  oils  of  P.  oliveiroides  and  P.  puberula.     9 Table  8.  Pimpinella  oils  of  Turkey   Plant  name   P.  affinis   Part   Fruit   %  yield   2.12   Stem+Leaf   0.09   Root   0.23   P.  anisum   Fruit   1.6   1.3-­‐3.7   2.8-­‐4.8   3.4   P.  anisetum  (E)   Fruit   5.3   5.05   P.  aromatica   P.  aurea   Stem+Leaf   1.06   Herba   Herba     Root   3.0   2.07   3.2   Herba   6.1   Root   4.2   Fruit   5.1   Stem+Leaf   0.3   Root   0.1   Main  components  (%)   geijerene   59,   pregeijerene   20,   dictamnol   2,   traginone  1*   geijerene  40,  pregeijerene  11,  traginone  5*,   dictamnol   4,   epoxypseudoisoeugenyl   2-­‐ methylbutyrate   0.2,   4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylangelate  0.2   geijerene  36,  4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylangelate  11,   pregeijerene  9,  epoxypseudoisoeugenyl  2-­‐ methylbutyrate  2,  traginone  1*,  dictamnol  1   trans-­‐anethole  96   trans-­‐anethole  79-­‐95     trans-­‐anethole  85-­‐92   trans-­‐anethole  85,  methyl  chavicol  16   Ref.   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Baser,  2002   Arslan  et  al.,  2004   Ozel,  2009   Sampson   et   al.,   2005   trans-­‐anethole  77,  methyl  chavicol  22   Baser   et   al.,   1999a   trans-­‐anethole   81,   methyl   chavicol   16,   4-­‐ Tabanca   et   al.,   methoxy-­‐2-­‐(prop-­‐(1E)-­‐enyl)phenyl   angelate   2006   0.2   trans-­‐anethole   54,   epoxypseudoisoeugenyl   Tabanca   et   al.,   2-­‐methylbutyrate   24,   methyl   chavicol   13,   4-­‐ 2006   methoxy-­‐2-­‐3-­‐methyloxiranyl)-­‐ phenylangelate   5,   4-­‐methoxy-­‐2-­‐(prop-­‐(1E)-­‐ enyl)phenyl  angelate  0.2,  dictamnol  0.2   trans-­‐anethole  55,  methyl  chavicol  42   Baser,  2002   trans-­‐anethole  83,  methyl  chavicol  15   Tepe  et  al.,  2006   epoxypseudoisoeugenyl  2-­‐methylbutyrate   Tabanca   et   al.,   56,  4-­‐methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ 2006   phenylangelate  8,  dictamnol  0.5,     methyl  chavicol  92,  trans-­‐anethole  7   Baser   et   al.,   1996b   trans-­‐epoxypseudoeugenyl-­‐2-­‐ Baser   et   al.,   methylbutyrate   40,   4,10-­‐dihydro-­‐1,4-­‐ 1996b   dimethylazulene   17,   1,4-­‐dimethylazulene   9,   pregeijerene  5   aureane  34*,  β-­‐bisabolene  33,  4-­‐(prop-­‐(1E)-­‐ Tabanca   et   al.,   enyl)phenyl  tiglate  2.5,  4-­‐(3-­‐ 2006   methyloxiranyl)phenyl-­‐2-­‐methylbutyrate*   1.2,  4-­‐[(2R,3R)-­‐3-­‐methyloxiranyl]phenyl   tiglate  0.3   aureane  20*,  sabinene  20,α-­‐pinene  12,  b-­‐ Tabanca   et   al.,   bisabolene  9,  4-­‐(prop-­‐(1E)-­‐enyl)phenyl   2006   tiglate  1.2,  4-­‐(3-­‐methyloxiranyl)phenyl-­‐2-­‐ methylbutyrate*  0.4   epoxypseudoisoeugenyl  2-­‐methylbutyrate   Tabanca   et   al.,   39,  aureane  10*,  4-­‐(3-­‐ 2006   methyloxiranyl)phenyl-­‐2-­‐methylbutyrate*  2,     4-­‐(prop-­‐(1E)-­‐enyl)phenyl  tiglate  1.6       10 P.   cappadocica   Fruit   var.   cappadocica   (E)   P.  corymbosa   P.  flabellifolia  (E)   P.  isaurica  (E)   0.3   2.06   Stem+Leaf   0.14   Herba   Root   0.7   0.18   Fruit   0.2   0.3   Herba   Stem+Leaf   0.1   0.2   Root   0.2   Fruit   1.88   Stem+Leaf   0.85   Herba   Root   2.61   1.43   Herba   Stem+Leaf   1.3   0.3   Fruit   1.43   Root   0.31   caryophyllene  oxide  26   bicyclogermacrene   12,   γ-­‐himachalene   9,   β-­‐ caryophyllene   9,   dehydrocostuslactone   8,   sabinene   6,   epoxypseudoisoeugenyl   2-­‐ methylbutyrate  0.1   sabinene   17,   germacrene   D   6,   epoxypseudoisoeugenyl   2-­‐methylbutyrate   0.6,   himachalol  16   epoxypseudoisoeugenyl   2-­‐methylbutyrate   43,   4-­‐(1-­‐propenyl)-­‐phenyl-­‐2-­‐methylbutyrate   19,   4-­‐methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenylangelate   3,   traginone   0.1*,   4-­‐(prop-­‐ (1E)-­‐enyl)phenyl  tiglate  0.1,  dictamnol  0.1   β-­‐caryophyllene  14,  caryophyllene  oxide  11   β-­‐caryophyllene   33,   germacrene   D   9,   12-­‐ hydroxy-­‐β-­‐caryophyllene   acetate   5,   4,6-­‐ guaiadiene  0.6,   β-­‐caryophyllene  38,  caryophyllene  oxide  17   β-­‐caryophyllene   33,   germacrene   D   12,   12-­‐ hydroxy-­‐β-­‐caryophyllene   acetate   3,   4-­‐(1-­‐ prop-­‐(1E)-­‐enyl)phenyl   (2S)-­‐methylbutyrate   0.4,   epoxypseudoisoeugenyl   2-­‐ methylbutyrate  0.1   epoxypseudoisoeugenyl-­‐2-­‐methylbutyrate   43,  4-­‐(1-­‐prop-­‐(1E)-­‐enyl)phenyl  (2S)-­‐ methylbutyrate  33,  4-­‐(prop-­‐(1E)-­‐enyl)phenyl   isobutyrate  0.5,  12-­‐hydroxy-­‐β-­‐caryophyllene   acetate  0.04   trans-­‐anethole  64,  limonene  28,     trans-­‐anethole   41,   limonene   17,   trans-­‐ isoosmorhizole  0.1   limonene  47,  trans-­‐anethole  38   trans-­‐anethole  68,  limonene  17,  trans-­‐ isoosmorhizole  2   chavicyl  angelate  44   4-­‐(prop-­‐2-­‐enyl)phenyl  angelate*  43,  4-­‐(prop-­‐ (1E)-­‐enyl)phenyl  tiglate  13,  4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylangelate  3,  4-­‐ methoxy-­‐2-­‐(prop-­‐(1E)-­‐enyl)phenyl  angelate   0.5,     α-­‐zingiberene  16,  4-­‐(prop-­‐2-­‐enyl)phenyl   angelate*  14,  4-­‐(prop-­‐(1E)-­‐enyl)phenyl   tiglate  1.4,  alismol  0.4,  4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylangelate  0.1   γ-­‐terpinene  17,  4-­‐(prop-­‐(1E)-­‐enyl)phenyl   tiglate  16,  4-­‐(prop-­‐2-­‐enyl)phenyl  angelate*   11,  4-­‐methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenylangelate  7,  4-­‐methoxy-­‐2-­‐(prop-­‐(1E)-­‐ enyl)phenyl  angelate  0.2   Baser,  2002   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Baser,  2002   Tabanca   et   al.,   2006   Baser,  2002   Tabanca   et   al.,   2005   Baser,  2002   Tabanca   et   al.,   2005   Tabanca   et   al.,   2005   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tepe  et  al.,  2006   Tabanca   et   al.,   2006   Baser,  2002   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006           11 P.kotschyana   P.  nudicaulis   P.  oliveiroides   P.  peregrina   Fruit   1.02   Stem+Leaf   0.06   Root   0.10   Fruit   5.10   Stem+Leaf   1.29   Root   0.31   Fruit   0.20   Stem+Leaf   0.27   Root   0.06   Fruit   1.1   Stem+Leaf   0.1   Root   0.1   β-­‐caryophyllene  49,  12-­‐hydroxy-­‐β-­‐ caryophyllene  acetate  12,α-­‐humulene  11,   4,6-­‐guaiadiene  2.1,  4-­‐(Prop-­‐(1E)-­‐enyl)phenyl   isobutyrate  0.3,  4-­‐(1-­‐prop-­‐(1E)-­‐enyl)phenyl   (2S)-­‐methylbutyrate  0.1,  dictamnol  0.01   β-­‐caryophyllene  40,  α-­‐humulene  9,  12-­‐ hydroxy-­‐β-­‐caryophyllene  acetate  5,  4,6-­‐ guaiadiene  2.4,  4-­‐(1-­‐prop-­‐(1E)-­‐enyl)phenyl   (2S)-­‐methylbutyrate  0.3,  dictamnol  0.1   epoxypseudoisoeugenyl  2-­‐methylbutyrate   36,  4-­‐(1-­‐prop-­‐(1E)-­‐enyl)phenyl  (2S)-­‐ methylbutyrate  34,  4-­‐(Prop-­‐(1E)-­‐enyl)phenyl   isobutyrate  0.8,  4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylisobutyrate  0.7,  4,6-­‐ guaiadiene  0.6,  dictamnol  0.3,  12-­‐hydroxy-­‐b-­‐ caryophyllene  acetate  0.04   trans-­‐anethole  64,  trans-­‐isoosmorhizole  21,   aureane  0.02*   trans-­‐anethole  28,  α-­‐pinene  17,  β-­‐pinene  15,   trans-­‐isoosmorhizole  12,  sabinene  11,   aureane  0.1*   trans-­‐isoosmorhizole  79,  trans-­‐anethole  13,   aurean  0.1*   methyl  eugenol  71,  cis-­‐isoelemicine  14,  4-­‐(1-­‐ prop-­‐(1E)-­‐enyl)phenyl  (2S)-­‐methylbutyrate   0.1,  epoxypseudoisoeugenyl  2-­‐ methylbutyrate  0.03   methyl  eugenol  52,  cis-­‐isoelemicine  5,   epoxypseudoisoeugenyl  2-­‐methylbutyrate   0.5   4-­‐(1-­‐Prop-­‐(1E)-­‐enyl)phenyl  (2S)-­‐ methylbutyrate  39,  epoxypseudoisoeugenyl   2-­‐methylbutyrate  33,  4,10-­‐dihydro-­‐1,4-­‐ dimethylazulene  6   trans-­‐β-­‐bergamotene  41,  4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylisobutyrate  4,   aureane*  1,  4-­‐(1-­‐prop-­‐(1E)-­‐enyl)phenyl  (2S)-­‐ methylbutyrate  0.3   trans-­‐β-­‐bergamotene  70,  4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylangelate  8,  4-­‐ methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenylisobutyrate  6,  aureane*  3,  4-­‐(1-­‐prop-­‐ (1E)-­‐enyl)phenyl  (2S)-­‐methylbutyrate  2,   trans-­‐isoosmorhizole  0.3,  4,6-­‐guaiadiene  0.1   4-­‐methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenylisobutyrate  45,   epoxypseudoisoeugenyl-­‐2-­‐methylbutyrate   27,  β-­‐sesquiphellandrene  10,  4-­‐(3-­‐ methyloxiranyl)phenyl-­‐2-­‐methylbutyrate  *   0.3,  aureane*  0.2,  4-­‐(1-­‐prop-­‐(1E)-­‐ enyl)phenyl  (2S)-­‐methylbutyrate  0.1,  4-­‐ methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2005   Tabanca   et   al.,   2005   Tabanca   et   al.,   2005   12 P.  peucedanifolia   P.  puberula   P.  rhodantha   P.  saxifraga   Fruit   0.23   Stem+Leaf   0.01   Root   0.13   Fruit   0.3   Stem+Leaf   0.2   Fruit   0.41   Stem+Leaf   0.06   Root   0.10   Fruit   1.67   Stem+Leaf   0.32   Root   0.17   phenylangelate  8,   undecane  77,  4-­‐(1-­‐prop-­‐(1E)-­‐enyl)phenyl   (2S)-­‐methylbutyrate  2,  4-­‐(prop-­‐(1E)-­‐ enyl)phenyl  isobutyrate  1.8,  alismol  0.3   undecane  65,  4-­‐(1-­‐prop-­‐(1E)-­‐enyl)phenyl   (2S)-­‐methylbutyrate  3,   epoxypseudoisoeugenyl  2-­‐methylbutyrate   0.8,  dictamnol  0.3,  4-­‐(Prop-­‐(1E)-­‐enyl)phenyl   isobutyrate  0.1   epoxypseudoisoeugenyl  2-­‐methylbutyrate   83,  4-­‐(1-­‐prop-­‐(1E)-­‐enyl)phenyl  (2S)-­‐ methylbutyrate  6,  4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylisobutyrate  2.4,  4-­‐(3-­‐ methyloxiranyl)  phenyl-­‐2-­‐methylbutyrate*1     limonene   63,   methyl   eugenol   23,   dictamnol   0.6,  traginone*  0.2   limonene   37,   methyl   eugenol   30,   dictamnol   3,   traginone*   1,   epoxypseudoisoeugenyl   2-­‐ methylbutyrate  0.1   (Z)-­‐β-­‐farnesene  35,  β-­‐bisabolene  33,  γ-­‐ himachalene  9,  4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylangelate  0.8,     4-­‐Methoxy-­‐2-­‐(prop  (1E)-­‐enyl)phenyl  tiglate   0.2   germacrene   D   17,   (Z)-­‐β-­‐farnesene   13,   4-­‐ methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐phenyltiglate   6,   4-­‐methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenylangelate   2.5,   alismol   1.4,   epoxypseudoisoeugenyl   2-­‐methylbutyrate   0.5,   4-­‐Methoxy-­‐2-­‐(prop   (1E)-­‐enyl)phenyl   tiglate  0.5,  dictamnol  0.4   4-­‐methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenyltiglate  29,  4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylangelate  29,     β-­‐eudesmol  9,  4-­‐Methoxy-­‐2-­‐(prop  (1E)-­‐ enyl)phenyl  tiglate  2,  alismol  0.7,  dictamnol   0.2,  epoxypseudoisoeugenyl  2-­‐ methylbutyrate  0.2,  traginone*  0.1   sabinene  41,  β-­‐pinene  21,  myrcene  14,  4-­‐(1-­‐ prop-­‐(1E)-­‐enyl)phenyl  (2S)-­‐methylbutyrate   1.5,  4-­‐(3-­‐methyloxiranyl)phenyl-­‐2-­‐ methylbutyrate*  1,  epoxypseudoisoeugenyl   2-­‐methylbutyrate  0.2   β-­‐pinene  28,  myrcene  19,  sabinene  14,   limonene  11,  4-­‐(1-­‐prop-­‐(1E)-­‐enyl)phenyl   (2S)-­‐methylbutyrate  1.3,   epoxypseudoisoeugenyl  2-­‐methylbutyrate   0.6,  4-­‐(3-­‐methyloxiranyl)phenyl-­‐2-­‐ methylbutyrate*  0.3,  trans-­‐isoosmorhizole   0.1   epoxypseudoisoeugenyl  2-­‐methylbutyrate   67,  4-­‐(3-­‐methyloxiranyl)phenyl-­‐2-­‐ Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2005   Tabanca   et   al.,   2005   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   13 P.   tragium   ssp.   Fruit   lithophila   0.73   Stem+Leaf   0.22   Root   0.17   P.  tragium  subsp.   Fruit   polyclada   0.92   Stem+Leaf   0.10   Root   0.22   P.  tragium  subsp.   Fruit   pseudotragium   1.87   *New  compunds     Stem+Leaf   0.08   Root   0.11   methylbutyrate*  4,  4-­‐(1-­‐prop-­‐(1E)-­‐ enyl)phenyl  (2S)-­‐methylbutyrate  3.3,   dictamnol  0.2   β-­‐bisabolene  30,  geijerene  23,   epoxypseudoisoeugenyl  2-­‐methylbutyrate   2.5,  traginone*  1,  4-­‐(1-­‐prop-­‐(1E)-­‐enyl)phenyl   (2S)-­‐methylbutyrate  0.2,  aureane  0.1*   geijerene  32,  pregeijerene  8,  dictamnol  6,   traginone*  5,  epoxypseudoisoeugenyl  2-­‐ methylbutyrate  4,  4,6-­‐guaiadiene  0.3,   aureane*  0.2   geijerene  27,  4,10-­‐dihydro-­‐1,4-­‐ dimethylazulene  14,  4,6-­‐guaiadiene  7,   traginone*  1,  aureane*  0.2   (Z)-­‐β-­‐farnesene   57,   epoxypseudoisoeugenyl   2-­‐methylbutyrate   20,   4-­‐methoxy-­‐2-­‐[(2R,3R)-­‐ 3-­‐methyloxiranyl]phenyl   tiglate   6,   4-­‐ methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenylangelate  0.5   (Z)-­‐β-­‐farnesene   23,   epoxypseudoisoeugenyl   2-­‐methylbutyrate22,   α-­‐pinene   12,   4-­‐ methoxy-­‐2-­‐[(2R,3R)-­‐3-­‐methyloxiranyl]phenyl   tiglate   5,   4-­‐methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenylangelate   1.5,   4-­‐Methoxy-­‐2-­‐(prop   (1E)-­‐ enyl)phenyl  tiglate  0.5   4-­‐methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenylangelate  40,  epoxypseudoisoeugenyl   2-­‐methylbutyrate  16,  4-­‐methoxy-­‐2-­‐[(2R,3R)-­‐ 3-­‐methyloxiranyl]phenyl  tiglate  12,  4-­‐ Methoxy-­‐2-­‐(prop  (1E)-­‐enyl)phenyl  tiglate  0.4   β-­‐bisabolene  19,  α-­‐pinene  16,   epoxypseudoisoeugenyl-­‐2-­‐methylbutyrate   10,  α-­‐zingiberene  8,  4-­‐(prop-­‐(1E)-­‐ enyl)phenyl  tiglate  0.8,  4-­‐methoxy-­‐2-­‐(3-­‐ methyloxiranyl)-­‐phenylangelate  0.8,  trans-­‐ isoosmorhizole  0.6,  4-­‐(1-­‐prop-­‐(1E)-­‐ enyl)phenyl  (2S)-­‐methylbutyrate  0.2   α-­‐pinene  31,  β-­‐bisabolene  6,   epoxypseudoisoeugenyl  2-­‐methylbutyrate  6,   4-­‐(prop-­‐(1E)-­‐enyl)phenyl  tiglate  0.4,  trans-­‐ isoosmorhizole  0.3,  4-­‐(1-­‐prop-­‐(1E)-­‐ enyl)phenyl  (2S)-­‐methylbutyrate  0.2,  4-­‐ methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenylangelate  0.2   4-­‐methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐ phenylangelate   31,   epoxypseudoisoeugenyl-­‐ 2-­‐methylbutyrate   19,   traginone*   1,   trans-­‐ isoosmorhizole   0.8,   dictamnol   0.6,   4-­‐(prop-­‐ (1E)-­‐enyl)phenyl  tiglate  0.5   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   Tabanca   et   al.,   2006   14 SCALIGERIA  OILS   Scaligeria  is  represented  in  Turkey  by  seven  species  of  which  two  are  endemic.  Scaligeria  lazica  is  an   endemic  species.  Herbaal  parts  of  this  species  has  a  strong  smell  of  aniseeds  due  to  the  presence  of   trans-­‐anethole   in   its   oil.   Fruit   oil   of   the   same   species   was   found   as   a   rich   source   of   (Z)-­‐b-­‐Farnesene.   After   removal   of   the   oil,   aqueous   distillate   of   the   Herba   was   extracted   with   hexane.   It   contained   phenolic  aldehydes  as  main  constituents  (Baser  et  al.,  1993;  1995).     Scaligeria   tripartita   fruit   oil   was   rich   in   geijerenes   and   its   root   oil   contained   epoxypseudoisoeugenylangelate   and   geijerene   (Tabanca,   et   al.,   2007).   Chemical   proximity   of   Pimpinella  and  Scaligeria  species  is  striking.       Table  9.  Scaligeria  oils  of  Turkey   Plant  name   Part   %  yield   Main  components  (%)   Ref.   Scaligeria  lazica  (E)   Herba   0.7   trans-­‐anethole  (50)   Baser  et  al.,  1993.   Fruit   2.2   (Z)-­‐β-­‐farnesene  89   Baser  et  al.,  1995.   Scaligeria  tripartita   Aqueous   distillate   of     the   Herba   extracted   with  hexane   2-­‐hydroxy-­‐5-­‐ Baser  et  al.,  1993.   methoxybenzaldehyde   22,   phenylacetaldehyde  14   Stem   tr   Fruit   2.24   geijerene   37,   (Z)-­‐β-­‐ farnesene   9,   β-­‐bisabolene   9,   dictamnol   9,   lavandulyl   acetate   9,   pregeijerene   5,   geijerene  isomer  5   geijerene   55,   geijerene   isomer   12,   β-­‐bisabolene   7,   pregeijerene   6,   dictamnol   5   Tabanca,   2007.   et   al.,   Tabanca,   2007.   et   al.,   ECHINOPHORA  OILS   Herbaal   parts   of   all   six   species   growing   in   Turkey   have   been   studied.   Fresh   and   dried   leaves   of   Echinophora   tenuifolia   L.   ssp.   sibthorpiana   (Guss.)   Tutin   which   is   known   as   “Çörtük,   Turşu   otu   or   Tarhana   otu”   in   Turkish   are   added   to   meaty   meals,   pickles   and   soups   for   flavouring.   According   to   previous  as  well  as  our  studies,  the  oil  of  this  species  is  characterised  with  a  high  percentage  of  methyl   eugenol   (18-­‐59%)   (Baser,   et   al.,   1994).   α-­‐Phellandrene   is   another   important   compound   also   for   the   two   endemic   species   E.   chrysantha   Freyn   et   Sint.   (Baser   et   al.,   1996a;   Baser   et   al.,   1998f)   and   E.   lamondiana  (Baser  et  al.,  2000a).  The  latter  is  a  recently  described  new  species  of  Echinophora  (Yıldız   &   Bahcecioglu,   1997).   Main   constituent   of   its   oil   was   δ-­‐3-­‐carene   (48%).   The   oil   of   E.   orientalis   revealed   the   occurrence   of   monoterpene   hydrocarbons   as   main   constituents.   E.   trichophylla   J.E.Smith,   endemic   in  Turkey,  yielded  1.4%  oil  with  sabinene  (27%),  terpinen-­‐4-­‐ol  (16%)  and  (E,E)-­‐cosmene  (14%)  as  main   constituents.   Cosmene   (2,6-­‐dimethyl-­‐1,3(E),5(E),7-­‐octatetraene)   was   previously   reported   as   a   constituent   of   Cosmos   bipinnatus   Cav.   several   other   Compositae   plants   and   Echinophora   spinosa,   an   European   species   (Kubeczka,   1988).   This   compound   (2.1%)   was   also   found   in   the   oil   of   E.   orientalis   Hedge   et   Lamond   which   contained   myrcene   (34%)   and   p-­‐cymene   (19%)   as   main   constituents.   (E,Z)-­‐ 15 isomer   of   cosmene   was   found   in   the   oil   of   E.   trichophylla   (Baser   et   al.,   1998f).   Oil   poor   species   E.   tournefortii  Jaub.  et  Spach.  and  E.  carvifolia  Boiss.  et  Bal.  (E)  yielded  oils  rich  in  sesquiterpenes  and  the   status   of   the   latter   has   been   transformed   to   the   genus   Thecocarpus   as   T.   carvifolius   (Duran,   2014)   (Table  10).     Table  10.  Echinophora  oils  of  Turkey   Plant  name   E.  carvifolia  (E)   Thecocarpus  carvifolius     E.  chrysantha  (E)   Part   Herba   %  yield   tr   Herba   0.65   E.  lamondiana  (E)   Herba   1.6   E.  orientalis   Herba   0.5   E.  tenuifolia     1.6   E.  tenuifolia  subsp.   sibthorpiana   Herba   1.0-­‐1.7   Herba   0.76-­‐2.4   Leaf   0.77   E.  trichophylla  (E)   Herba   1.4   E.  tournefortii   Herba   0.2   Herba   0.18   Main  components  (%)   germacrene  D  31,  β-­‐caryophyllene  5   Ref.   Baser   et   al.,   1998f   α-­‐phellandrene  48-­‐61,  β-­‐phellandrene  7-­‐8   Baser   et   al.,   1996a   Baser   et   al.,   1998f   δ-­‐3-­‐carene   48,   α-­‐phellandrene   28,   p-­‐ Baser   et   al.,   2000a   cymene  7   myrcene   34,   p-­‐cymene   19,   (E,E)-­‐cosmene   Baser   et   al.,   2   1998f   α-­‐phellandrene  46,  eugenol  30,  p-­‐cymene   Aridogan   et   24   al.,  2002   methy   leugenol   18-­‐59,   α-­‐phellandrene   16-­‐ Baser   et   al.,   52,  p-­‐cymene  11-­‐15   1998f   Baser   et   al.,   1994   methyl  eugenol  10-­‐81,  γ-­‐3-­‐carene  2-­‐63,  α-­‐   Chalchat  et   phellandrene   11-­‐30,   p-­‐cymene   tr-­‐10,   β-­‐ al.,  2007   Ozcan  et  al.,   phellandrene  3-­‐5   2002   Ozcan  &   Akgul,  2003   Gokbulut   et   δ-­‐3-­‐carene  18,  methyl  eugenol  16,  α-­‐ al.,  2013   phellandrene  9,  p-­‐cymene  9   sabinene  27,  terpinen-­‐4-­‐ol  16,  2,6-­‐ Baser   et   al.,   dimethyl-­‐1,3(E),5(E),7-­‐octatetraene  [(E,E)-­‐ 1998f   cosmene]  14     caryophyllene  oxide  13,  α-­‐pinene  10   Baser   et   al.,   1998f   myrcene  30,  α-­‐pinene  27   Demirci,  B.,  et   al.,  2010a   FERULA  OILS   Ferula   is   represented   in   the   world   by   around   185   species.   According   to   latest   counts,   Ferula   taxa   in   Turkey   numbers   24   with   23   species,   14   being   endemic   (Kurtoglu   et   al.,   2013;   Pimenov   &   Kljuykov,   2013;  Duran,  2014).  17  taxa  have  been  studied  for  their  essential  oils  (Table  11)     Fruit  oil  yields  varied  between  trace  and  3.8%.  High  oil  yielding  species  were  as  follows:  F.  drudeana   3.7-­‐3.8%,   F.   elaeochytris   0.3-­‐3.5%,   F.   duranii   2.6%,   F.   coskunii   2%,   F.   mervynii   2%,   F.   parva   2%,   F.   brevipedicellata  1.87%,  F.  hermonis  0.4-­‐1.75%.     16 Fruit  oils  of  most  Ferula  species  are  characterized  by  the  high  content  of  monoterpenes,  especially  α-­‐ pinene  [F.  mervynii  80%,  F.  elaeochytris  13-­‐73%,  F.  hermonis  72%,  F.  lycia  15-­‐69%,  F.  brevipedicellata   65%,   F.   communis   60%,   F.   rigidula   13-­‐60%,   F.   coskunii   37%,   F.   tingitana   5-­‐36%,   F.   parva   34%,   F.   haussknechtii  32%];  β-­‐phellandrene  F.  halophila  14-­‐72%,  F.  orientalis  24%  (Herba)].  Sesquiterpenes  are   main  constituents  in  the  fruit  oils  of  F.  anatolica  (germacrene  D  30%),  F.  duranii  (germacrene  D  25%),   F.   szowitsiana   [β   and   α-­‐eudesmol   32+18   %   (leaf);   30+17%   (stem)],   F.   drudeana   (shyobunone   +   epishyobunone  +  diepishyobunone  67%).  Fruit  oil  of  F.  szowitsiana  was  rich  in  naphthalene  (28%)  and   an   unknown   constituent   (7%).   Naphthalene   was   also   encountered   in   a   number   of   Ferula   oils.   F.   drudeana   and   F.   szowitsiana   stand   out   by   their   different   chemical   composition   of   their   oils   among   the   Ferula  species  studied  so  far.       Table  11.  Ferula  oils   Plant  name   F.  anatolica  (E)   Part   Fruit   %  yield   tr   F.  brevipedicellata  (E)   Fruit   1.87   F.  communis   Fruit   0.09   Main  components  %   germacrene   D   30,   naphthalene   22,   germacrene  D-­‐4-­‐ol  4,  δ-­‐cadinene  3   α-­‐pinene   65,   β-­‐phellandrene   7,   β-­‐pinene   7,  naphthalene  4   α-­‐pinene  60,  β-­‐pinene  17,  naphthalene  4   F.  coskunii  (E)   Fruit   2.0   sabinene  38,  α-­‐pinene  37,  β-­‐pinene  11   F.  drudeana  (E)   Fruit   3.7   Fruit   3.8   F.  duranii  (E)   Fruit   2.6   F.  elaeochytris   Fruit   0.27   6-­‐epi-­‐isoshyobunone   38,   shyobunone   25,   diepishyobunone  6   shyobunone   44,   6-­‐epi-­‐isoshyobunone   13,   epi-­‐shyobunone  10,  β-­‐pinene  6   germacrene   D   25,   naphthalene   10,   α-­‐ copaene  6   nonane  27,  α-­‐pinene  13,  germacrene  B  10   Fruit   3.5   α-­‐pinene  73,  β-­‐pinene  15   Fruit   0.35   β-­‐phellandrene  14,  eremophilene  9   Fruit   0.62   β-­‐phellandrene  38,  eremophilene  7   cFr.   1.3   β-­‐phellandrene  72,  eremophilene  5   F.  haussknechtii   Fruit   0.88   F.  hermonis   Fruit   F.  lycia  (E)   Herba   F.  halophila  (E)   α-­‐pinene   32,   camphene   31,   myrcene   7,   bornyl  acetate  7,  β-­‐pinene  5   0.41-­‐1.75   α-­‐pinene  72     α-­‐pinene   60,   β-­‐pinene   19,   limonene   3,   bornyl  acetate  2   Ref.   Baser  et  al.,   2007a   Baser  et  al.,   2007a   Baser  et  al.,   2007a   Baser  et  al.,   2007a   Baser  et  al.,   2007a   Miski  et  al.,   2012   Baser  et  al.,   2007a   Baser  et  al.,   2000c   Baser  et  al.,   2007a   Baser  et  al.,   2007a   Miski  et  al.,   2013b   Miski  et  al.,   2013b   Baser  et  al.,   2007a   Baser  et  al.,   2007a   Kose  et  al.,   2010   17 Fruit   F.  mervynii  (E)   Fruit   F.  orientalis   Herba   F.  parva  (E)   Fruit   F.  rigidula   Fruit   cFr.   F.  szowitsiana   Fruit   Leaf   Stem   F.  tingitana   Fruit   0.58-­‐1.35   1)  naphthalene  27,  α-­‐pinene  26,  β-­‐pinene   Baser  et  al.,   26,  caryophyllene  oxide  5   2007a   2)   naphthalene   17,   α-­‐pinene   15,   caryophyllene  oxide  11,  germacrene  B  4   3)  α-­‐pinene  69,  β-­‐pinene  4   4)   α-­‐pinene   67,   β-­‐phellandrene   5,   β-­‐ caryophyllene  5,  β-­‐pinene  3   5)   α-­‐pinene   60,   caryophyllene   oxide   3,   β-­‐ pinene  3,  naphthalene  3   2   α-­‐pinene  80,  sabinene  12,  β-­‐pinene  9   Baser  et  al.,   2007a   0.51   β-­‐phellandrene   24,   (E)-­‐β-­‐ocimene   14,   α-­‐ Kartal  et  al.,   pinene   13,   α-­‐phellandrene   12,   2007   dehydrosesquicineole  10   2   α-­‐pinene   34,   eremophilene   9,   Baser  et  al.,   naphthalene  5   2007a     1)  camphene  15,  α-­‐pinene  13,  δ-­‐cadinene   Baser  et  al.,   2007a   13,  α-­‐cadinol  10,  germacrene  D-­‐4-­‐ol  10   2)   α-­‐pinene   60,   tricyclene   8,   β-­‐pinene   4,   eremophilene  3   3)  α-­‐pinene  68,  tricyclene  9,  β-­‐pinene  4   0.8   α-­‐pinene   24,   camphene   20,   germacrene   Miski  et  al.,   2013a   D-­‐4-­‐ol  8,  δ-­‐cadinene  6,  α-­‐cadinol  5     naphthalene   28,   unknown   9,α-­‐pinene   7,   Baser  et  al.,   β-­‐pinene  4,  α-­‐copaene  4,  sabinene  4   2007a   0.40   β-­‐eudesmol   32,   α-­‐eudesmol   18,   α-­‐pinene   Ozek,  G.,  et   9   al.,  2008   0.05   β-­‐eudesmol   30,   α-­‐eudesmol   17,   α-­‐pinene   Ozek,  G.,  et   6   al.,  2008     1)  naphthalene  15,  α-­‐pinene  11,  unknown   Baser  et  al.,   7,   daucene   6,   (Z)-­‐β-­‐farnesene   5,   β-­‐pinene   2007a   5   2)  α-­‐pinene  36,  β-­‐pinene  14,  naphthalene   14,   germacrene   D   5,   (Z)-­‐β-­‐farnesene   4,   daucene  3   cFr:  Crushed  fruit;     FERULAGO  OILS   Ferulago   is   represented   by   35   taxa   including   34   species   19   of   which   are   endemic   in   the   flora   of   Turkey   (Davis  et  al.,1988;  Duran  2014).  19  of  them  including  12  endemics  were  investigated  by  our  group.  The   results   of   essential   oil   analyses   are   tabulated   in   Table   7.   Percentage   oil   yields   from   some   Ferulago   fruits   are   quite   high:   F.   isaurica   12%,   F.   trachycarpa   7.3%,   F.   asparagifolia   7%,   F.   longistylis   6.4%,   F.   syriaca  4.8%,  F.  thirkeana  4.1%,  F.  humilis  3.9%,  F.  sandrasica  3.9%,  F.  pachyloba  1.5%.  Due  to  paucity   of  study  materials,  some  species  were  subjected  to  microdistillation.     2,3,6-­‐trimethylbenzaldehyde   was   the   main   constituent   in   the   fruit   oils   of   F.   asparagifolia   39-­‐42%,   F.   platycarpa  30%,  F.  longistylis  29%,  F.  idaea  14%,  F.  syriaca  9%,  F.  setifolia  6%.  In  the  oil  of  F.  setifolia   2,3,5-­‐trimethylbenzaldehyde   78%   was   the   main   constituent.   Herbal   parts   of   F.   longistylis   contained   2,3,6-­‐trimethylbenzaldehyde   33%   in   the   oil.   p-­‐Cymene   and   its   2,3-­‐dimethoxy   derivative   were   main   constituents   of   the   fruit   oils   of   F.   sylvatica   (86%),   F.   confusa   (87%),   F.   humilis  (E)   (92%)   and   F.   idaea   (E)   18 (31%).   Carvacrol   methylether,   on   the   other   hand,   was   the   main   constituent   of   the   fruit   oil   of   F.   macrosciadia  (E)  together  with  p-­‐cymene.  They  were  also  among  the  main  constituents  is  the  oil  of  F.   idaea  (E).     trans-­‐Chrysanthenylacetate   was   the   main   constituent   of   the   fruit   oils   of   F.   galbanifera   17%   and   F.   silaifolia  (E)  84%.  Oils  of  F.  sandrasica  5-­‐12%  and  F.  humilis  12%  also  contained  it.  (Z)-­‐β-­‐ocimene  was   found   as   main   constituent   in   the   fruit   oil   of   F.   trachycarpa   31%,   F.   pachyloba   26%,   F.   sandrasica   (E)   41%,  F.  longistylis  16%  and  another  sample  of  F.  humilis  32%.  A  second  sample  of  F.  sandrasica  fruits   yielded  an  oil  rich  in  α-­‐pinene  and  sesquiterpenoids  like  the  fruit  oils  of  F.  aucheri  (E)  and  F.  mughlae   (E).  While  herb  oil  of  F.  trachycarpa  contained  (Z)-­‐β-­‐ocimene  as  main  constituent  like  its  fruit,  acyclic   aldehydes  were  constituents  of  the  root  oil  (Baser  et  al.,  1998a).     Table  12.  Ferulago  oils  of  Turkey   Plant  name   Part   %     F.  asparagifolia   Fruit   7.0   dist n   WD     MD     MD     MD   F.  aucheri  (E)   Fruit   F.  confusa   Fruit     MD   F.  galbanifera   Fruit     MD   1.3   WD     MD     MD   3.9   WD   F.  humilis  (E)   Fruit   F.  idaea  (E)   Fruit     MD   F.  isaurica  (E)   Fruit   12   WD   Herb   0.08   WD   Root   0.7   WD   Main  components  (%)   2,3,6-­‐trimethylbenzaldehyde  39,   myrcene  18   Ref.   Baser   et   al.,   2001   Demirci,   F.,   et   al.,  2000   2,3,6-­‐trimethylbenzaldehyde  42,  α-­‐ Baser   et   al.,   pinene  11   2002a   α-­‐pinene  21,  caryophyllene  oxide  8,   Baser   et   al.,   spathulenol  7   2002a   α-­‐pinene  36,  humulene  epoxide  II  7,   Baser   et   al.,   trans-­‐verbenol  6   2002a   2,5-­‐dimethoxy  p-­‐cymene  63,  p-­‐cymene   Kurkcuoglu   et   24   al.,  2010   trans-­‐chrysanthenyl  acetate  17,  p-­‐ Baser   et   al.,   cymene  12,  α-­‐phellandrene  11,  limonene   2002a   10   α-­‐pinene  32,  sabinene  16,  limonene  7,  α-­‐ Demirci,   F.,   et   phellandrene  6   al.,  2000   (Z)-­‐β-­‐ocimene  32,  limonene  31   Baser   et   al.,   2002a   2,5-­‐dimethoxy  p-­‐cymene  76,  p-­‐cymene   Baser,  2002     16   (Z)-­‐β-­‐ocimene  32,  limonene  17,  α-­‐pinene   Demirci,   F.,   et   12,  trans-­‐chrysanthenyl  acetate  12   al.,  2000   p-­‐cymene  18,  α-­‐pinene  16,  2,3,6-­‐ Baser   et   al.,   trimethylbenzaldehyde  14,  carvacrol   2002a   methylether  13,  2,5-­‐dimethoxy  p-­‐ cymene  13   α-­‐pinene  32,  limonene  24,  myrcene  17   Erdurak   et   al.,   2006   nonacosane  26,  hexadecanoic  acid  15   Kilic   et   al.,   2010a   terpinolene  42,  myrcene  27   Erdurak   et   al.,   2006   19 F.  longistylis  (E)   Fruit   6.4   WD   Herb   0.16   WD   F.  macrosciadia  (E)   Fruit     MD   F.  mughlae  (E)   Fruit     MD   F.  pachyloba  (E)   Herba   1.5   WD   F.  platycarpa  (E)   Herba   0.07   WD   F.  sandrasica  (E)   Fruit   3.9   WD     MD   F.  setifolia   Herba   0.6   0.26   WD   WD   F.  silaifolia  (E)   Fruit     MD   F.  sylvatica   Fruit     MD   F.  syriaca   Fruit   4.8   WD   Root   1.1   WD   Fruit   4.1   WD     MD   Fruit   7.3   WD   Herba   0.6   WD   Root   Fruit   0.02     WD   MD   F.  thirkeana  (E)   F.  trachycarpa   *  New  compounds   2,3,6-­‐trimethylbenzaldehyde  29,  α-­‐ pinene  17,  (Z)-­‐β-­‐ocimene  16,  sabinene  6,   myrcene  6,  bornyl  acetate  4   2,3,6-­‐trimethylbenzaldehyde  33,  bornyl   acetate  13   carvacrol  methylether  72-­‐78,  p-­‐cymene   19-­‐38   α-­‐pinene  25,  cubenol  13,  β-­‐phellandrene   6   (Z)-­‐β-­‐ocimene  26,  α-­‐pinene  10   Ozkan   et   al.,   2008   Kilic   et   a.,l   2010a   Baser   et   al.,   2002a   Baser   et   al.,   2002a   Kilic   et   al.,   2010a   2,3,6-­‐trimethylbenzaldehyde  30,  cis-­‐ Kilic   et   al.,   chrysanthenylacetate  24   2010a   (Z)-­‐β-­‐ocimene  32,  limonene  17,  α-­‐pinene   Baser,  2002   12,  trans-­‐chrysanthenyl  acetate  12   α-­‐pinene  41,  germacrene  D  8,  α-­‐ Baser   et   al.,   humulene  6,  trans-­‐chrysanthenyl  acetate   2002a   5   ocimene  31,  δ-­‐3-­‐carene  27,  α-­‐pinene  18   Celik  et  al.,  2013   2,4,5-­‐trimethylbenzaldehyde  78,  2,3,6-­‐ Baser   et   al.,   trimethylbenzaldehyde  6   2002a   trans-­‐chrysanthenyl  acetate  84,  α-­‐pinene   Baser   et   al.,   6   2002a   p-­‐cymene  46,  2,5-­‐dimethoxy  p-­‐cymene   Baser   et   al.,   40   2002a   myrcene  15,  terpinolene  13,  4,6-­‐ Erdurak   et   al.,   guaiadiene  11,  cubenol  9,  2,3,6-­‐ 2006   trimethylbenzaldehyde  9   bornyl  acetate  69,  terpinolene  13   Erdurak   et   al.,   2006   ferulagone  64*,  germacrene  D  14,  α-­‐ Baser   et   al.,   pinene  9   2002a   ferulagone  56*,  germacrene  D  13,  α-­‐ Baser   et   al.,   pinene  10   2002a   (Z)-­‐β-­‐ocimene  31,  myrcene  28   Baser   et   al.,   1998b   (Z)-­‐β-­‐ocimene  34,  α-­‐pinene  8   Demirci,   F.,   et   al.,  2000   octanal  10,  (E)-­‐2-­‐decenal  7   Baser,  2002   Baser   et   al.,   γ-­‐terpinene  28,  p-­‐cymene  22,  myrcene   2002a   20   HERACLEUM  OILS     Heracleum  is  represented  in  Turkey  by  21  taxa  comprising  17  species  including  7  endemics.  Essential   oil  compositions  of  the  fruits  of  five  species  have  been  investigated.  Heracleum  fruits  are  characterised   with   high   oil   yield   and   high   proportion   of   aliphatic   esters   in   their   oils.   Octyl   acetate   was   the   main   constituent  in  the  oils  of  H.  crenatifolium  (19-­‐95%),  H.  platytaenium  (73-­‐88%),  H.  paphlagonicum  (27-­‐ 95%).     Hexyl   butyrate   was   the   main   compound   in   the   oil   of   H.   argaeum   (39%).   Octyl   butyrate   and   20 octanol   were   the   main   constituents   of   the   oils   of   H.   sphondylium   subsp.   ternatum   (25-­‐43%   and   39-­‐ 50%,  resp.)     Table  13.  Heracleum  oils  of  Turkey   Plant  name   Part   H.  argaeum  (E)     Fruit   H.  crenatifolium  (E)   %  yield   1.24   Fruit   3.66   Fruit   5.5   H.  paphlagonicum  (E)   Fruit   4.9-­‐7.4     H.  platytaenium  (E)   Fruit   5.2-­‐6.8   Fruit   5.33   Herba     Fruit   3.7   Fruit   MD   Fruit   2.0   H.  sphondylium  subsp.   ternatum   Main  components  (%)   Ref.   hexyl   butyrate   39,   octyl   hexanoate   9,   Baser  et  al.,   octyl  acetate  7,  octylbutyrate  6   1998c   octyl   acetate   19-­‐95,   octanol   1-­‐5,   Ozek,  T.,  et  al.,   octyl  isovalerate  1-­‐6,  decyl  acetate  1-­‐ 2005   4   Iscan  et  al.,   2004   octyl   acetate   88,   octanol   3,   (Z)-­‐4   Tosun  et  al.,   octenyl  acetate  1   2008   octyl   acetate   27-­‐95,   hexyl   butyrate   Baser  et  al.,   17-­‐25   2000e   octyl   acetate   73-­‐77,   octyl   butyrate   Kurkcuoglu  et   12-­‐17   al.,  1995   octyl   acetate   88,   octyl   hexanoate   3-­‐ Ozek,  T.,  et  al.,   5,   (Z)-­‐4-­‐octenyl   acetate   2,   octanol   1,   2005   decanal  1     Iscan  et  al.,   2004   octyl  acetate  86,  octyl  hexanoate  13,   Akcin  et  al.,   (Z)-­‐4-­‐octyl  acetate  2,  octyl  octanoate   2013   1   octanol   39-­‐50,   octyl   butyrate   25-­‐27,   Ozek,  T.,  et  al.,   octyl  acetate  7-­‐11   2002   Iscan  et  al.,   2003   octyl   butyrate   43,   octyl   acetate   31,   Ozek,  T.,  et  al.,   octanol  9   2002   octyl  butyrate  35-­‐41,  apiole  5-­‐20,  (Z)-­‐ Ozek,T.,  et  al.,   4-­‐octenyl   acetate   2-­‐4,   (Z)-­‐4-­‐octenyl   2005   butyrate  3   Iscan  et  al.,   2004   Fruits   of   Zosima   absinthifolia   (Baser   et   al.,   2000c)   and   Malabaila   secacul   (Demirci,   B.,   et   al.,   2006)   yielded  oils  also  rich  in  aliphatic  esters.  The  former  which  is  the  only  Zosima  species  recorded  in  Turkey   is  a  close  relative  of  the  genus  Heracleum  and  contains  octanol  esters  as  main  constituents.  Likewise,   Pastinaca  sativa  subsp.  urens  fruit  oil  also  contained  octanol  esters  as  main  constituents  (Kurkcuoglu   et   al.,   2006a).   Pastinaca   is   represented   in   Turkey   by   4   taxa   including   3   species   comprising   one   endemic.  Main  constituents  of  the  Malabaila  oil  were  hexanol  esters.  Malabaila  is  represented  in  the   flora  of  Turkey  by  six  species.       21   Table  14.  Zosima,  Pastinaca  and  Malabaila  oils  of  Turkey   Plant  name   Zosima  absinthifolia   Part   Fruit   %  yield   0.9   Pastinaca  sativa  subsp.  urens   Fruit   2.5   Malabaila  secacul   Fruit   1.05   Main  components  (%)   octyl  acetate  38,  octyl  hexanoate  32   Ref.   Baser   et   al.,   2000c   octyl  butyrate  80,  octyl  hexanoate  5,   Kurkcuoglu   et   al.,   phenylethyl  butyrate  2   2006a   hexyl  hexanoate  73,  hexyl  octanoate   Demirci,  B.,  et  al.,   9   2006     TORDYLIUM  OILS   Tordylium  is  represented  in  Turkey  by  17  species,  nine  being  endemic.  Fruit  oils  of  nine  species  have   been   investigated.   Except   for   T.   aegyptiacum   in   which   hexadecanoic   acid   (40%)   was   the   main   component,  oils  of  all  the  other  species  investigated  contained  octanol  esters  as  main  constituents  like   in   the   case   of   Heracleum   oils.   Octyl   hexanoate   predominated   the   oils   of   T.   apulum   (44%),   T.   hasselquistiae   (73%),   T.   lanatum   (E)   (59%),   T.   pestalozzae   (E)   (56%),   T.   pustulosum   (E)   (73%),   T.   syriacum  (46-­‐81%),  while  octyl  octanoate  was  a  major  constituent  in  the  oils  of  T.  ketenoglui  (E)  (73%),   T.  trachycarpum  (80%),  T.  apulum  (35%).     Table  15.  Tordylium  oils  of  Turkey   Plant  name   Part   yield  %   T.  aegyptiacum   Fruit   <0.1   T.  apulum   Fruit   MD   T.  hasselquistiae   Fruit   0.5   T.  ketenoglui  (E)   Fruit   0.3   T.  lanatum  (E)   Fruit   0.15   T.  pestalozzae  (E)     T.  pustulosum  (E)   Fruit   0.3   Fruit   MD   Fruit   3.3   T.  syriacum   Fruit   0.1-­‐0.7   T.  trachycarpum   Fruit   1.85   Main  component  %   Ref.   hexadecanoic   acid   40,   β-­‐caryophyllene   11,   octyl  octanoate  9,  caryophyllene  oxide  9   octyl   hexanoate   44,   octyl   octanoate   35,   octanol  17   octyl   hexanoate   73,   octyl   octanoate   13,   octanol  3   octyl  octanoate  29,  octanol  12,  bornyl   acetate  7   octyl  hexanoate  59,  octanol  22   Tosun   et   al.,     2010   Baser   et   al.,     2002b   Ozek,   T.,   et   al.,   2007a   Tosun  et  al.,  2007   octyl  hexanoate  56,  octyl  octanoate  16,   octanol  15,  hexadecanoic  acid  6   octyl  hexanoate  73,  octanol  10   octyl  hexanoate  69,  octyl  2-­‐methylbutyrate   18,  octanol  4   octyl  hexanoate  46-­‐81,  octanol  1-­‐8,     α-­‐humulene  2-­‐7,   2,3,4-­‐trimethylbenzaldehyde  1-­‐5   octyl  octanoate  80,  octanol  11,     octanoic  acid  3   Tosun   et   al.,   2006b   Tosun   et   al.,   2006b   Baser   et   al.,   2002b   Tosun   et   al.,   2006b   Kurkcuoglu   et   al.,   2012   Ozek,   T.,   et   al.,   2007a   22 SMYRNIUM  OILS   Seven   Smyrnium   species   are   recorded   in   the   flora   of   Turkey.   Three   of   them   have   been   investigated   for   essential  oils.  The  results  are  summarised  in  Table  16.  Root  oils  of  S.  olusatrum  and  S.  perfoliatum  were   investigated  by  our  group  (Baser,  2002).   Furanosesquiterpenes   are   characteristic   constituents   of   Smyrnium   oils.   Isofuranogermacrene   was   found   as   main   constituent   in   the   root   oils   of   S.   olusatrum   and   S.   perfoliatum   and   the   fruit   oil   of   S.   rotundifolium.  Furanodiene  was  a  major  constituent  in  the  root  and  fruit  oils  of  S.  perfoliatum  and  fruit   oil  of  S.  rotundifolium.  Fruit  oils  of  S.  perfoliatum  from  two  different  locations  yielded  germacrene  D   and   α-­‐selinene   as   main   constituents,   respectively.   The   former   also   contained   acetoxy-­‐ furanoeudesmenes  (Kubeczka  &  Molleken,  1999;  Molleken  et  al.,  1998).       Table  16.  Smyrnium  oils  of  Turkey     Plant  name   Part   %  yield   S.  olusatrum   Root     S.  perfoliatum   S.  rotundifolium   Fruit   0.7   Fruit   0.2   Root       Fruit   Main  components  (%)   isofuranogermacrene  51       Ref.     Baser,  2002   germacrene  D  45-­‐47,     1β-­‐acetoxyfuranoeudesm-­‐3-­‐ene  9   α-­‐selinene  31,  furanodiene  20,  germacrene  D  9   Kubeczka  &   Molleken,  1999;   Molleken  et  al.,   1998   Baser,  2002   isofuranogermacrene  48,     isofuranogermacrene  35-­‐45,  furanodiene  28-­‐39   Kubeczka  &   Molleken,  1999   PRANGOS  OILS   The   genus   Prangos   is   represented   by   19   taxa   including   19   species   in   the   flora   of   Turkey   and   ten   of   them  are  endemic.  Essential  oils  of  nine  species  were  subjected  to  analysis.  Results  are  listed  in  Table   17.   The  endemic   P.  denticulata  root  yielded  3.2%  oil.  P.  platychlaena  (E)  and  P.  euchtritzii   (E)  fruits  yielded   1.4-­‐2.7%  and  0.7-­‐2.1%  oils,  resp.  Oil  yields  of  the  other  species  investigated  gave  <1%  essential  oil.     P.   denticulata   (E),   P.   ferulacea,   P.   ilanae,   P.   platychlaena   (E)   and   P.   uechtritzii   (E)   oils   were   rich   in   monoterpenes   while   P.   heyniae   (E),   P.   pabularia,   P.   turcica   (E)   and   P.   sp.   nova   (E)   oils   were   predominated  by  sesquiterpenes.   The  oil  from  intact  and  crushed  fruits  of  P.  ferulacea  contained  the  same  monoterpene  hydrocarbons   as  major  components  with  γ-­‐terpinene  as  the  main  constituent.  However,  the  distilled  oil  from  fruits   crushed   after   distillation   contained   sesquiterpenes,   germacrene   B   and   germacrene   D   as   main   constituents  together  with  γ-­‐terpinene  (Baser  et  al.,  1996c).   Prangos   heyniae   is   a   recently   described   species   (Duman   &   Watson,   1999).   Oils   from   fruits   collected   from  two  nearly  localities  yielded   β-­‐bisabolene  and  its  alcohol  and  aldehyde  (Baser  et  al.,  2000b).  β-­‐ Bisabolenal  and  β-­‐bisabolenol  were  first  reported  as  constituents  of  Neocallitropis  pancheri  (Carriere)   de   Laubeufels   (Cupressaceae)   (Raharivelomanana   et   al.,   1993).   This   is   the   second   report   on   the   occurrence  of  these  rare  sesquiterpenes  in  nature.     Main   component   in   the   oil   of   P.   uechtritzii   fruits   was   a   new   monoterpene   7-­‐epi-­‐1,2-­‐ dehydrosesquicineole  (13%).  Acetylenic  compound  3,5-­‐nonadiyn-­‐2-­‐ene  and  its  esters  were  among  the   23 main   components   of   the   fruit   oil   of   P.   platychlaena;   and   3,5-­‐nonadiyn-­‐7-­‐ene   in   the   root   oil   of   P.   denticulata.     The   status   of   Prangos   bornmuelleri   has   recently   been   changed   to   a   new   genus,   hence   renamed   as   Ekimia   bornmuelleri   (Duman,   H.   &   Watson,   1999).   Steam   volatiles   of   the   fruits   of   this   species   were   published  (Baser  et  al.,  1999).  The  results  are  summarised  in  Table  28  under  Ekimia  bornmuelleri.       Table  17.  Prangos  oils  of  Turkey   Plant  name   P.  denticulata  (E)   Part   Fruit   Root   Fruit   yield  %   tr   3.2   0.36   cFr   0.97   Frcad   0.98   Herba     P.  heyniae  (E)   Fruit   0.3-­‐  0.9   P.  ilanae   Herba   0.2   P.  pabularia   Fruit   0.2   P.  platychlaena  (E)   P.   platychlaena   subsp   platychlaena   (E)   Fruit   Fruit   0.4   1.4-­‐2.7   P.  turcica  (E)   Fruit   0.37   P.  uechtritzii  (E)   Fruit   0.76   Fruit   MD   Fruit   2.1   Herba   0.7   Fruit   0.65   P.  ferulacea   P.  sp.  nova  (E)   Main  component  %   sabinene  26,  p-­‐cymene  20   δ-­‐3-­‐carene  49,  (Z)-­‐3,5-­‐nonadiyn-­‐7-­‐ene  20   γ-­‐terpinene  33,  α-­‐pinene  13,  p-­‐cymene  11,  (E)-­‐β-­‐ ocimene  8,  (Z)-­‐β-­‐ocimene  4   γterpinene  30,  α-­‐pinene  18,  p-­‐cymene  10,  (E)-­‐β-­‐ ocimene  8,  (Z)-­‐β-­‐ocimene  7     germacrene  B  30,  γ-­‐terpinene  17,  germacrene  D   8,  α-­‐pinene  5,  p-­‐cymene  5,  (E)-­‐β-­‐ocimene  4,  (Z)-­‐ β-­‐ocimene  4   2,3,6-­‐trimethylbenzaldehyde  67,  chrysanthenyl   acetate  15,  p-­‐mentha-­‐1,5-­‐dien-­‐8-­‐ol  4,  β-­‐ocimene   4,  α-­‐pinene  3   β-­‐bisabolenal  18-­‐53,  β-­‐bisabolenol  2-­‐15,  β-­‐ bisabolene  10-­‐12,  germacrene  D  3-­‐14,   germacrene  B  2-­‐  9   α-­‐phellandrene  31,  p-­‐cymene  19,  β-­‐phellandrene   13,  limonene  4,  α-­‐pinene  3   α-­‐humulene  17,  bicyclogermacrene  16,   spathulenol  11,  germacrene  D  6,  α-­‐pinene  4   α-­‐pinene  70,  β-­‐phellandrene  11   3,5-­‐nonadiyn-­‐2-­‐yl  acetate  11-­‐45,  3,5-­‐nonadiyne   6-­‐25,  3,5-­‐nonadiyn-­‐2-­‐yl  acetate  isomer  4,  β-­‐ phellandrene  4-­‐23,  α-­‐phellandrene  0.1-­‐18,  α-­‐ pinene  7-­‐13   α-­‐humulene  11,  germacrene  D  11,  naphthalene   9,  terpinolene  8,  bornyl  acetate  7,  germacrene   D-­‐4-­‐ol  5,  α-­‐pinene  4,  p-­‐cymene  4   7-­‐epi-­‐1,2-­‐dehydrosesquicineole  13*,  α-­‐pinene  8,   β-­‐phellandrene  7,  α-­‐bisabolol  5   α-­‐pinene  11,  β-­‐phellandrene  8,  p-­‐cymene  6,  14-­‐ hydroxy-­‐δ-­‐cadinene  5   α-­‐pinene  41,  nonene  17,  β-­‐phellandrene  8,  δ-­‐3-­‐ carene  7,  p-­‐cymene  5   p-­‐cymene  11,  γ-­‐terpinene  7,  β-­‐phellandrene  8,  α-­‐ phellandrene  6,  (Z)-­‐β-­‐ocimene  5   germacrene  D  50,  α-­‐cadinol  9,  δ-­‐cadinene  6   Ref.   Kilic  et  al.,  2010b   Kilic  et  al.,  2010b   Baser  et  al.,  1996c   Baser  et  al.,  1996c   Baser  et  al.,  1996c   Sumer   Ercan   et   al.,   2013   Baser  et  al.,  2000b   Kurkcuoglu&Baser   personal  comm.   Ozek,  G.,  et  al.,  2007b   Uzel  et  al.,  2006   Tabanca  et  al.,  2009   Ozek,  G.,  et  al.,  2006a   Baser  et  al.,  2000f   Baser  et  al.,  2000f   Uzel  et  al.,  2006   Ozcan  et  al.,  2000   Duran   and   Duman   personal  comm.   cFr:  Crushed  fruit;  Frcad:  Crushed  after  distillation  of  the  whole  fruit;  MD:  Microdistillation;  *  New  Compound       24   SESELI  OILS   14   taxa   belonging   to   13   species   including   four   endemics   are   recorded   in   the   Flora   of   Turkey,   seven   being   endemic.   Seven   taxa   including   three   endemics   have   been   investigated   for   essential   oils.   Main   constituents  are  listed  in  Table  18.   Oil  yields  over  1%  were  as  follows:  S.  petraeum  (Herb-­‐3.4%),  S.  resinosum  (Herb-­‐2.3%;  Fruit-­‐2.1%),  S.   tortuosum  (Fruit-­‐2.2%),  S.  campestre  (Fruit-­‐1.5%;  Herb-­‐1%).     Three   species   yielded   sesquiterpene-­‐rich   oils:   S.   andronakii   (E),   S.   libanotis,   S.   gummiferum   subsp.   corymbosum  (E).   In   the   oils   of   five   species,   monoterpenes   and   sesquiterpenes   were   mixed   major   constituents:   S.   campestre,  S.  gummiferum  subsp.  corymbosum  (E),  S.  petraeum,  S.  resinosum  (E),  S.  tortuosum.   In   the   oils   of   S.   campestre   and   S.   tortuosum,   α-­‐pinene   and   (E)-­‐sesquilavandulol   were   mixed   major   constituents.       Table  18.  Seseli  oils  of  Turkey     Plant  name   Part   %  yield   Main  components  (%)   Ref.   S.  andronakii  (E)   Fruit   2.1   carotol  53,  germacrene  D  9   Tosun  et  al.,   2006a   S.  campestre   Herba   1.0   α-­‐pinene   36,   myrcene   6,   sabinene   6,   Baser  et  al.,   limonene  6,  bornyl  acetate  5   2000d   Fruit   1.5   α-­‐pinene   26,   (E)-­‐sesquilavandulol   12,   Baser  et  al.,   myrcene  9   2000d   Fruit   1   Herba   0.8   Herba     bicyclogermacrene  12,  germacrene  B  14   Tosun  et  al.,  2005   S.  gummiferum  subsp.   gummiferum   Herba     spathulenol  20   Tosun  et  al.,  2005   S.  libanotis   Herba     β-­‐caryophyllene   20,   spathulenol   12,   Ozturk  &  Ercisli,   caryophyllene   oxide   12,   euasarone   11,   2006   δ-­‐cadinene  9   S.  petraeum   Herba   3.4   carotol   21,   γ-­‐terpinene   11,   sabinene   10,   Tosun  et  al.,   2006a   germacrene  D  8   S.  resinosum  (E)   Herba   2.3   4α-­‐hydroxy   germacra-­‐1(10)-­‐   5-­‐diene   30,   Baser,  2002   β-­‐pinene  16,  germacrene  D  14   Fruit   2.1   Fruit   2.2   Herba   0.32   β-­‐pinene   38,   4α-­‐hydroxy   germacra-­‐ 1(10)-­‐  5-­‐diene  22,  α-­‐pinene  14   (E)-­‐sesquilavandulol   37,   sabinene   20,   α-­‐ pinene  14,  β-­‐phellandrene  8   α-­‐pinene   36,   sabinene   19,   (E)-­‐ sesquilavandulol  8,  β-­‐pinene  7   S.  gummiferum  subsp.   corymbosum  (E)   S.  tortuosum     α-­‐pinene  36,  (E)-­‐sesquilavandulol  3   Baser  et  al.,   2000d   α-­‐pinene   9,   sabinene   7,   β-­‐elemene   6,   Baser,  2002   spathulenol  6   Dogan  et  al.,  2006   Dogan  et  al.,  2006   Kaya  et  al.,  2003   25 LASERPITIUM  OILS   There   are   five   species   of   Laserpitium   of   which   two   are   endemic   in   Turkey.  Main   constituents   are   listed   in  Table  19.   Root  oil  of  L.  hispidum  yielded  myristicin  as  the  main  constituent  along  with  monoterpenes.  Herba  oil   of   the   endemic   species   L.   petrophyllum   contained   monoterpene   hydrocarbons   as   main   constituents   (Baser  &  Duman,  1997)  (Table  19).     Table  19.  Laserpitium  oils  of  Turkey   Plant  name   Part   L.  hispidum   Root   L.  petrophyllum  (E)   Herba   %  yield   0.4   1.3   Main  components  (%)   Ref.   myristicin   25,   γ-­‐terpinene   Baser,  2002   15,  sabinene  13,  terpinolene   12   α-­‐pinene  49,  sabinene  26   Baser   &   Duman,   1997   JOHRENIA  OILS   Johrenia  is  represented  in  the  Flora  of  Turkey  with  7  species  comprising  3  endemics.  Five  of  them  have   been  studied  for  their  essential  oils.  Main  constituents  are  listed  in  Table  20.     Essential  oils  of  the  endemic  species  J.  alpina,  J.  polyscias  and  J.  silenoides  were  rich  in  monoterpenes   while  sesquiterpenes  were  the  predominating  components  in  the  oils  of  J.  dichotoma  and  J.  tortuosa.   Methylfarnesoate,   a   sesquiterpene,   was   present   in   the   fruit   oils   of   J.   tortuosa   (43%),   J.   dichotoma   (17%)  and  J.  silenoides  (9%).       Table  20.  Johrenia  oils  of  Turkey   Plant  name   Part   yield  %   J.  alpina  (E)   Fruit   Herba     0.03   J.  dichotoma   Fruit   0.02   J.  polyscias  (E)   Fruit   0.02   Herba     Fruit   0.1   Herba     Fruit   0.02   Herba     J.  silenoides  (E)   J.  tortuosa   Main  component  %   Ref.   α-­‐pinene  39,  β-­‐pinene  5   dodecanoic   acid   24,   α-­‐pinene   12,   β-­‐ bisabolene   6,   β-­‐caryophyllene   5,   hexadecanoic  acid  4   methylfarnesoate   17,   bicyclogermacrene   13,   hexadecanoic   acid   7,   β-­‐caryophyllene   6,  spathulenol  5,  α-­‐pinene  3   α-­‐pinene   23,   β-­‐pinene   14,   hexadecanoic   acid  9,  bicyclogermacrene  6,     α-­‐pinene   19,   β-­‐pinene   18,   limonene   7,   spathulenol  6,  hexadecanoic  acid  5   spathulenol  15,  α-­‐pinene  34,  β-­‐pinene  14,   methylfarnesoate  9,  germacrene  D  5   spathulenol  13,  α-­‐pinene  8,  β-­‐pinene  5,  p-­‐ cymene  4,  limonene  3,   methylfarnesoate   43,   α-­‐pinene   7,   β-­‐ pinene   5,   β-­‐caryophyllene   5,   bicyclogermacrene  5,  hexadecanoic  acid  3   hexadecanoic   acid   9,   unknown   6,   unknown  5,  pentacosane  5,  tetradecanoic   acid  4   Ozek,  T.,  et  al.,  2009   Ozek,  T.,  et  al.,  2009   Ozek,  T.,  et  al.,  2009   Ozek,  T.,  et  al.,  2009   Ozek,  T.,  et  al.,  2009   Ozek,  T.,  et  al.,  2009   Ozek,  T.,  et  al.,  2009   Ozek,  T.,  et  al.,  2009   Ozek,  T.,  et  al.,  2009   26 BUPLEURUM  OILS     Bupleurum  is  represented  in  Turkey  by  49  taxa  comprising  47  species  including  21  endemics.  Flower,   fruit  and  root  essential  oil  of  12  of  them  have  been  analyzed.  Main  constituents  are  listed  in  Table  21.     Bupleurum  is  an  oil  poor  genus  of  Apiaceae.  Alkanes  were  the  predominating  volatiles  in  majority  of   Bupleurum   oils.   Undecane   was   the   main   constituent   in   B.   cappadocicum   (Fruit   50%;   Root   23%),   B.   croceum   (Fruit   13%),   B.   gerardii   (Flower   37%;   Fruit   49%),   B.   intermedium   (Root   63%),   B.   sulphureum   (Flower   14%;   Fruit   20%);   tridecane   in   B.   lycaonicum   (Flower   15%;   Fruit   37%),   B.   rotundifolium   (Root   12%);   pentacosane   in   B.   turcicum   (Root   9%);   hexacosane   in   B.   lancifolium   (Fruit   13%).   Hexadecanoic   acid   was   the   main   constituent   in   the   oil   of   B.   croceum   (Root   35%),   B.   heldreichii   (Root   46%),   B.   lancifolium  (Root  14%),  B.  rotundifolium  (Flower  12%).  Heptanal  was  the  main  constituent  in  the  oils  of   B.   cappadocicum   (Flower   47%),   B.   turcicum   (Flower   33%;   Fruit   24%)   and   hexanal   in   B.   gerardii   (Root   22%).  Methyl  linoleate  was  the  main  constituent  in  the  flower  oil  of  B.  intermedium  (21%).     Monoterpenes   were   present   in   the   oils   of   the   following   species   as   main   constituents:   a-­‐pinene   in   B.   falcatum   subsp.   cernuum   (Flower   41%;   Fruit   42%),   B.   rotundifolium   (Flower   9-­‐28%;   Fruit   11%),   b-­‐ phellandrene  in  B.  rotundifolium  (Flower  7-­‐19%).     Sesquiterpenes  were  the  main  constituent  in  the  oils  of  a  number  of  Bupleurum  species.  Germacrene   D  in  B.  croceum  (Flower  13%),  B.  heldreichii  (Flower  and  Fruit  48%  each),  B.  intermedium  (Fruit  26%),  B.   pauciradiatum   (Flower   12-­‐46%);   spathulenol   in   B.   lancifolium   (Flower   15%),   B.   lycaonicum   (Root   14%);   β-­‐caryophyllene  in  B.  pauciradiatum  (Flower  10-­‐12%);  calarene  in  B.  sulphureum  (Root  27%).       Table  21.  Bupleurum  oils  of  Turkey   Plant  name   Part   yield  %   B.  cappadocicum   Flower   Fruit   Root   B.  croceum  (E)   Flower   Fruit   Root   B.   falcatum   subsp.   Flower   cernuum  (E)   Fruit   Root   B.  gerardii  (E)   Flower   Fruit   Root   B.  heldreichii  (E)   Flower   Fruit   Root   B.  intermedium  (E)   Flower   Fruit   Root   B.  lancifolium  (E)   Flower   Fruit   Root   B.  lycaonicum  (E)   Flower                                               Main  component  %   Ref.   heptanal  47   undecane  50   undecane  23   germacrene  D  13   undecane  13   hexadecanoic  acid  35   α-­‐pinene  41   α-­‐pinene  42   amylfuran  23   undecane  37   undecane  49   hexanal  22   germacrene  D  48   germacrene  D  48   hexadecanoic  acid  46   methyl  linoleate  21   germacrene  D  26   undecane  63   spathulenol  15   hexacosane  13   hexadecanoic  acid  14   tridecane  15   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   27 B.  pauciradiatum  (E)   B.  rotundifolium  (E)   B.  sulphureum  (E)   B.  turcicum  (E)   Fruit   Root   Flower         Flower   MD   Flower   Flower   Flower     n-­‐hexane     MD   Fruit   Root   Flower   Fruit   Root   Flower   Fruit   Root   n-­‐hexane   n-­‐hexane               tridecane  37   spathulenol  14   germacrene  D  46,  β-­‐ caryophyllene  18   germacrene  D  12,  β-­‐ caryophyllene  10   hexadecanoic  acid  12   α-­‐pinene  9,  β-­‐phellandrene  7   α-­‐pinene  28,  β-­‐phellandrene   19   α-­‐pinene  11   undecane  26,  tridecane  12   undecane  14   undecane  20   calarene  27   heptanal  33   heptanal  24   pentacosane  9   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  &  Akin  2009a   Saracoglu  &  Akin  2009a   Akin  et  al.,  2012   Saracoglu  &  Akin  2009b   Saracoğlu  &  Akin  2009b   Akin  et  al.,  2012   Akin  et  al.,  2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   Saracoglu  et  al.,    2012   MD:  Microdistilled   OTHER  APIACEAE  OILS   This   part   of   the   treatise   comprises   the   remaining   Apiaceae   genera   not   covered   in   previous   pages   according   to   main   constituents   in   their   oils.   The   lists   also   contain   species   treated   previously.   Hence,   Apiaceae   oils   rich   in   monoterpene-­‐hydrocarbons   (Table   22),   aliphatic   aldehydes   (Table   23),   alkanes   (Table   24),   alkanol   (Table   25),   aliphatic   esters   (Table   26),   phenylpropanoids   (Table   27)   and   sesquiterpenes  (Table  28).   Tables  29-­‐37  display  Apiaceae  species  according  to  main   constituents  within  the  groups  of  compounds   contained  in  the  essential  oils.   Table  22.  Monoterpene-­‐rich  Oils   Plant  name   Part   Angelica  sylvestris  var.   sylvestris   Artedia  squamata   Fruit   %   yield     0.26   Fruit   trace   Bilacunaria  anatolica  (E)   Fruit   0.17   Herba   0.14   Chaerophyllum  byzantinum   Herba   0.8   (E)   Chaerophyllum  libanoticum     Fruit   1.5   Chaerophyllum   macropodum  (E)   Crithmum  maritimum   Fruit   MD   Herba   0.85   Main  components  (%)   Ref.   α-­‐pinene  26,  β-­‐phellandrene  9,  bornyl   acetate  7,  p-­‐cresol  7   trans-­‐verbenol  14,  carvacrol  10,   hexadecanoic  acid  10   α-­‐pinene  26,  camphene  19,  β-­‐ caryophyllene  11   α-­‐pinene  27,  caryophyllene  oxide  14     Ozek,  T.  et  al.,  2008   sabinene  27,  limonene  24,  γ-­‐terpinene  19   Baser  et  al.,  2000g   Baser,  2002   Kurkcuoglu&Baser   Personal  Comm.   Kurkcuoglu&Baser   Personal  Comm.   sabinene  30,  p-­‐cymen-­‐8-­‐ol  16,  terpinolene   Kurkcuoglu  et  al.,   12   2006   β-­‐phellandrene  18,  limonene  16,  β-­‐pinene   Demirci,  B.,  et  al.,   9,  sabinene  9   2007   p-­‐cymene  39   Baser  et  al.,  2006   28 Herba   0.18-­‐ 0.28   Ozcan  et  al.,    2001   Herba   Senatore  et  al.,  2000   Herba   Daucus  littoralis   Diplotaenia  hayri-­‐dumanii   (E)   Diplotaenia  cachrydifolia   Herba   Fruit   Leaf   Root   Fruit   Eryngium  campestre   Eryngium  thorifolium   Fuernrohria  setifolia   Herba   Herba   Herba   Fruit   Glaucosciadium  cordifolium   Herba   Lagoecia  cuminoides   Herba   γ-­‐terpinene  8-­‐35,  methyl  thymol  8-­‐30,  p-­‐ cymene  5-­‐27,  terpinen-­‐4-­‐ol  1-­‐21,  sabinene   0.1-­‐21,  dill  apiole  0.1-­‐21,  (Z)-­‐β-­‐ocimene  1-­‐ 13   0.17   1)  β-­‐phellandrene  30,  methylthymol  25   0.19   2)  γ-­‐terpinene  24,  dill  apiole  21   0.2   γ-­‐terpinene  32-­‐36,  β-­‐phellandrene  21-­‐22,   sabinene  9-­‐13   0.2   cis-­‐chrysanthenyl  acetate  47   MD   α-­‐pinene  26,  2,5-­‐dimethoxy-­‐p-­‐cymene  25,   β-­‐pinene  18   1.67   terpinolene  65,  (E)-­‐isodillapiole  18,  b-­‐ phellandrene  5   0.33   (isomyristicin  21),  α-­‐phellandrene  19,  β-­‐ phellandrene  10,  methyl  oleate  10,  p-­‐ cymene  8,  (E)-­‐isodillapiole  6   2.9   terpinolene  69,  (E)-­‐isodillapiole  8,  β-­‐ phellandrene  7,  (E)-­‐β-­‐ocimene  5   0.34   α-­‐pinene  5   0.68   α-­‐pinene  59   MD   limonene  48,  carvon  14,  β-­‐elemene  9   MD   limonene  70,  carvone  25   0.7   limonene  40,  α-­‐pinene  12,  β-­‐pinene  10     0.9-­‐1.1   thymol  73-­‐95   Laserpitium  petrophilum  (E)   Herba   1.34   α-­‐pinene  49,  sabinene  26   Peucedanum     graminifolium  (E)   Peucedanum  palimbioides   Fruit   thymol  63,  carvacrol  23,  β-­‐pinene  12   Trachyspermum  copticum   Fruit     Xanthogalum  purpurascens   (Angelica  purpurascens)   Fruit   0.8   L-­‐N   Herba   0.53   α-­‐pinene  53,  (E)-­‐9-­‐octadecanoic  acid  24,  β-­‐ pinene  20   thymol  61,  p-­‐cymene  16,  γ-­‐terpinene  12   α-­‐phellandrene  32,  β-­‐phellandrene  23,   isopropylhexanoate  6,  limonene  5,  p-­‐ cymene  4,  α-­‐pinene  3,  bicyclogermacrene   12   L-­‐N:  Likens-­‐Nickerson  simultaneous  distillation-­‐extraction;  MD:  Microdistilled   Table  23.  Aliphatic  aldehyde-­‐rich  Oils   Plant  name   Part   %  yield   Bifora  radians   Herba   0.4   Cymbocarpum     Fruit   0.3   wiedemannii   Herba   0.6   Eryngium  creticum   Herba   0.21   Main  components  (%)   (E)-­‐2-­‐tridecenal  47,  (E)-­‐2-­‐tetradecenal  23   (E)-­‐decenal  39,  (E)-­‐2-­‐dodecenal  16,  (E)-­‐2-­‐ tetradecenal  9   (E)-­‐2-­‐decenal  32,  2-­‐decenoic  acid  20.  (E)-­‐ 2-­‐dodecenal  11,  decanoic  acid  9   Hexanal  53,  heptanal  14,  octane  9   Ozcan  et  al.,  2006   Baser  et  al.,  2009   Kurkcuoglu&Baser   Personal  Comm.   Ozcan  et  al.,    2004   Ozcan  et  al.,    2004   Ozcan  et  al.,    2004   Celik  et  al.,  2011   Celik  et  al.,  2011   Ozek,  T.  et  al.,  2010   Ozek,  T.  et  al.,  2010   Baser  et  al.,  2000m   Baser  &  Tumen,   1994     Baser  &  Duman,   1997   Baser,  2002   Tepe  et  al.,  2011   Monguzzi  &  Akgül,   1993   Ozek,  G.,  et  al.,   2006b   Ref.   Baser  et  al.,  1998g   Baser  et  al.,  1999b   Baser  et  al.,  1999b   Celik  et  al.,  2011   29 Table  24.  Alkane-­‐rich  Oils   Plant  name   Part   Heptaptera  anatolica   Fruit   %  yield   <0.1   Heptaptera  anisoptera   Fruit   <0.1   Heptaptera  cilicica  (E)   Fruit   <0.1   Heptaptera  triquetra   Fruit   <0.1   Hippomarathrum   cristatum   (Cachrys  cristata)   Herba   0.4   Part   Leaf   %  yield   Main  components  (%)   n-­‐hexane   1-­‐octadecanol  24,  hexadecanoic  acid  19   Ref.   Demirci,   B.,   et   al.,  2013   %  yield   0.74   Ref.   Ozer   et   2007   Main  components  (%)   nonacosane  24,  heptacosane  23   Ref.   Yılmaz   et   al.,   2009   nonacosane  69,  heptacosane  10,  hexadecanoic   Yılmaz   et   al.,   acid  7,  pentacosane  2,  octacosane  2   2009   nonacosane   39,   heptacosane   11,   pentacosane   Yılmaz   et   al.,   6,   hexahydrofarnesylacetone   5,   (E)-­‐ 2009   geranylacetone  4   nonacosane  42,  heptacosane  23   Yılmaz   et   al.,   2009   hexadecanoic   acid   12,   nonacosane   8,   Ozek,   G.,   et   al   germacrene  D  6,  myristicin  4   2007a   Table  25.  Alkanol-­‐rich  Oil   Plant  name   Actinolema  macrolema   Table  26.  Aliphatic  ester-­‐rich  Oils   Plant  name   Part   Hippomarathrum   Herba   microcarpum   (Bilacunaria  microcarpa)   Malabaila  secacul   Fruit   Pastinaca  sativa  subsp.   urens   Zosima  absinthifolia   1.05   Fruit   2.5   Fruit   0.9   Table  27.  Phenylpropanoid-­‐rich  Oils   Plant  name   Part   %  yield   Anthriscus  cerefolium   Herba   0.42   Main  components  (%)   Bornyl   acetate   20,   caryophyllene   oxide   8,   β-­‐ caryophyllene   6,   trans-­‐verbenol   6,   β-­‐elemene   4,  germacrene  D  3   Hexyl  hexanoate  73,  hexyl  octanoate  9   Octyl  butyrate  80,  octyl  hexanoate  5,   phenylethyl  butyrate  2   octyl  acetate  38,  octyl  hexanoate  32   Main  components  (%)   methyl  chavicol  83,  1-­‐allyl-­‐2,4-­‐ dimethoxybenzene  15,  undecane  2   methyl  chavicol  74,  1-­‐allyl-­‐2,4-­‐ dimethoxybenzene  12   methyl  chavicol  96   Myrrhoides  nodosa   Herba   0.1   (Physocaulis  nodosa)   Scandix   australis   subsp.   Herba   0.4   grandiflora   Scandix  iberica   Fruit   n-­‐hexane   methyl  chavicol  91   Flower   n-­‐hexane   methyl  chavicol  86   al.,   Demirci,  B.,  et   al.,  2006   Kurkcuoglu  et   al.,  2006a   Baser  et  al.,   2000c   Ref.   Baser  et  al.,   1998a   Tumen   et   al.,   2005   Tumen  &  Baser   1997   Kaya   et   al.,   2007   Kaya   et   al.,   2007   30 Table  28.  Sesquiterpene-­‐rich  Oils   Plant  name   Actinolema  macrolema   Part   Fruit   %  yield   2.3   Bilacunaria  aksekiensis  (E)   Fruit   0.26   Cachrys  alpina  (Prangos  ilanae)   Chaerophyllum     aksekiense  (E)   Fruit   Fruit   MD   1.1   Cnidium  silaifolium  subsp.  orientale   (E)   Ekimia     bornmuelleri  (E)   Grammosciadium  pterocarpum   Herba   0.09   Fruit   L-­‐N   Fruit   MD   Leaf   MD   Herba   0.4   Fruit   MD   Herba   MD   Neocryptodiscus  papillaris   Fruit   0.12   Olymposciadium  caespitosum  (E)     (Aegokeras  caespitosa)   Fruit   Tr   Peucedanum  longifolium   Herba   0.75   Rhabdosciadium  microcalycinum   Szovitsia  callicarpa   Herba   Herba   Herba   Herba   Fruit     0.2   MD   0.6   MD   0.6   Trinia  glauca   Fruit   1.1   Xanthogalum    purpurescens   (Angelica  purpurascens)   Fruit   0.2   Hippomarathrum    boissieri   (Bilacunaria  boissieri)   Kundmania  anatolica  (E)   Main  components  (%)   guaia-­‐5,7(11)-­‐diene   37,   germacrene   B   25,   selina-­‐ 3,7(11)-­‐diene12,  γ-­‐guaiene  11   β-­‐caryophyllene   41,   caryophyllene   oxide   8,   germacrene  B  8,  α-­‐humulene  7   Ref.   Demirci,  B.,  et   al.,  2013   Kurkcuoglu&   Baser  Personal   Comm.   α-­‐humulene  33   Baser  et  al.,  2004   (heptacosane   10),   humulene   epoxide   II   8,   (E)-­‐β-­‐ Baser  et  al.,   farnesene   6,   caryophyllene   oxide   6,   α-­‐humulene   2000h   6,  terpinolene  6   kessane   33,   α-­‐copaene   11,   β-­‐caryophyllene   8,   α-­‐ Polat  et  al.,  2011   pinene  8,  δ-­‐cadinene  7   germacrene   D-­‐4-­‐ol   43,   α-­‐cadinol   19,   δ-­‐cadinene   Baser  et  al.,  1999   11   (Z)-­‐β-­‐farnesene   57,   β-­‐caryophyllene   11,   γ-­‐ Ozek,  T.,  et  al.,   2007b   terpinene  10,  β-­‐elemene  8   (Z)-­‐β-­‐farnesene   11,   β-­‐caryophyllene   10,   γ-­‐ Ozek,  T.,  et  al.,   2007b   terpinene  2,  γ-­‐elemene  1   β-­‐caryophyllene   26,   caryophyllene   oxide   9,   α-­‐ Baser  et  al.,   pinene  9   2000k     Rhabdosciadium  oligocarpum  (E)   caryophyllene   oxide   31,   muurola-­‐4,10(14)-­‐dien-­‐1-­‐ Kurkcuoglu&   Baser  Personal   ol  26,  δ-­‐cadinene  15   Comm..   caryophyllene   oxide   19,   δ-­‐cadinene   14,   β-­‐ Kurkcuoglu  &   Baser  Personal   bisabolone  13,  muurola-­‐4,10(14)-­‐dien-­‐1-­‐ol  12   Comm..   α-­‐humulene   20,   β-­‐caryophyllene   17,   germacrene   Ozek,  G.  et  al.,   D  7   2010   germacrene   D   31,   β-­‐ylangene   9,   β-­‐cubebene   Kurkcuoglu  &   isomer   6,   bicyclosesquiphellandrene   5,   γ-­‐ Baser  Personal   gurjunene   3,   eudesma-­‐4(15),7-­‐dien-­‐1β-­‐ol   3,   Comm..   octanal  3   8-­‐cedren-­‐13-­‐ol   34,   myristicin   8,   germacrene   D   7,   Tepe  et  al  2011   δ-­‐3-­‐carene  6   germacrene  D  25   Baser  et  al.,  2006   germacrene  D  33   Baser  et  al.,  2006   germacrene  D  62   Baser  et  al.,  2006   germacrene  D  62   Baser  et  al.,  2006   α-­‐kessyl  acetate  65,  longipinene  19   Demirci.  B.,  et   al.,  2010b   Baser  et  al.,   germacrene  D  20,  δ-­‐cadinene  13,  α-­‐pinene  13   1998d   bicyclogermacrene   12,   β-­‐phellandrene   7,   Ozek,  G.,  et  al.,   spathulenol  7,  kessane  7   2006b   31 IMPORTANT  CONSTITUENTS   Table  29.  Monoterpene  Hydrocarbons  [Taxon  (plant  part)  %]   α-­‐Pinene   β-­‐Pinene   p-­‐cymene   Sabinene   Camphene     Myrcene   α-­‐phellandrene   β-­‐phellandrene   δ-­‐3-­‐carene   γ-­‐terpinene   Ferula  mervynii  (Fr)  80,  Ferula  elaeochytris  (Fr)  13-­‐73,  Ferula  hermonis  (Fr)  72,  Prangos   platychlaena  (Fr)  70,  Ferula  lycia  (Fr)  15-­‐69,  (H)  60;  Ferula  brevipedicellata  (Fr)  65,    Ferula   communis  (Fr)  60,    Ferula  rigidula  (Fr)  13-­‐60,  Eryngium  thorifolium  (H)  59,  Peucedanum   palimbioides  (H)  53,  Laserpitium  petrophilum  (H)  49,  Bupleurum    falcatum  ssp.  cernuum  (Fl)   41,  (Fr)  42;  Prangos  uechtritzii  (Fr)  11-­‐41,  Ferulago  sandrasica  (Fr)  12-­‐41,  Johrenia  alpina  (Fr)   39,  Ferula  coskunii  (Fr)  37,    Seseli  campestre  (H)  26-­‐36,  (Fr)  26;  Seseli  tourtuosum  (H)  36,  (Fr)   14;  Ferulago  aucheri  (Fr)  21-­‐36,  Ferula  tingitana  (Fr)  11-­‐36,  Ferula  parva  (Fr)  34,  Johrenia   silenoides  (Fr)  34,  Ferula  haussknechtii  (Fr)  32,  Ferulago  isaurica  (Fr)  32,  Ferulago   galbanifera  (Fr)  32,  Pimpinella  tragium  ssp.  pseudotragium  (S+L)  31,  Bupleurum   rotundifolium  (Fl)  9-­‐28,  Echinophora  tournefortii  (H)  10-­‐27,  Bilacunaria  anatolica  (H)  27,  (Fr)   26,  Diplotaenia  hayri-­‐dumanii  (Fr)  26,  Angelica  sylvestris  var.  sylvestris  (S)  26,  Ferulago   mughlae  25,  Johrenia  polyscias  (Fr)  23,  (H)  19;  Prangos  ferulacea  (Fr)  13-­‐18,  Pimpinella   nudicaulis  (H)  17,  Ferulago  longistylis  (Fr)  17,  Ferulago  idaea  (Fr)  16,  Pimpinella  tragium  ssp.   pseudotragium  (S+L)  31,  (Fr)  16;  Trinia  glauca  (Fr)  13,  Ferula  orientalis  (Fr)  13,  Prangos   platychlaena  ssp.  platychlaena  (Fr)  7-­‐13,  Pimpinella  tragium  ssp.  polyclada  (S+L)  12,   Glaucosciadium  cordifolium  (H)  12,  Johrenia  alpina  (H)  12,  Pimpinella  aurea  (S+L)  12,   Ferulago  humulis  (Fr)  12,  Bupleurum  rotundifolium  (Fr)  11,  Ferulago  asparagifolia  (Fr)  11,   Ferulago  thirkeana  (Fr)  10,  Ferulago  pachyloba  (H)  10   Seseli  resinosum  (Fr)  38,  Pimpinella  saxifragra  (S+L)  28,  (Fr)  21;  Ferula  lycia  (Fr)  26,  (H)  19;   Peucedanum  palimbioides  (H)  20,    Johrenia  polyscias  (H)  18,  Diplotaenia  hayri-­‐dumanii  (Fr)   18,  Ferula  communis  (Fr)  17,  Seseli  resinosum  (H)  16,  Cuminum  cyminum  (Fr)  3-­‐16,  Ferula   elaeochytris  (Fr)  15,  Pimpinella  nudicaulis  (S+L)  15,  Ferula  tingitana  (Fr)  5-­‐14,  Johrenia   silenoides  (Fr)  14,  Peucedanum  graminifolium  (Fr)  12,  Ferula  coskunii  (Fr)  11,   Glaucosciadium  cordifolium  (H)  10   Ferulago  sylvatica  (Fr)  46,  Chaerophyllum  macropodum  (Fr)  39,  Ferulago  macrosciadia  (Fr)   19-­‐38,  Chritmum  maritimum  (H)  5-­‐27,  Diplotenia  hayri-­‐dumani  (Fr)  25,  Ferulago  confusa  (Fr)   24,  Ferulago  trachycarpa  (Fr)  22,  Prangos  denticulata  (Fr)  20,  Echinophora  orientalis  (H)  19,   Prangos  ilanae  (H)  19,  Ferulago  idea  (Fr)  18,  Cuminum  cyminum  (Fr)  5-­‐18,  Ferulago  humilis   (Fr)  16,  Trachyspermum  copticum  (Fr)  16,  Echinophora  tenuifolia  ssp.  sibthorpiana  (H)  11-­‐15,   Ferulago  galbanifera  (Fr)  12,  Prangos  uechtritzii  (H)  11,  Prangos  ferulacea  (Fr)  10-­‐11   Ferula  coskunii  (Fr)  38,  Chaerophyllum  byzantinum  (H)  30,  Echinophora  trichophylla  (H)  27,   Crithmum  maritimum  (H)  5-­‐27,  Laserpitium  petrophilum  (H)  26,  Prangos  denticulata  (Fr)  26,   Ferula  galbanifera  (Fr)  26,  Seseli  tortuosum  (Fr)  20,  (H)  19;  Pimpinella  tragium  ssp.  lithophila   (Fr)  16,  Laserpitium  hispidum  (R)  13,  Ferula  mervynii  (Fr)  12,  Seseli  petraeum  (H)  10   Ferula  haussknechtii  (Fr)  31,  Ferula  rigidula  (Fr)  15-­‐20,  Bilacunaria  anatolica  (Fr)  19   Echinophora  orientalis  (H)  34,  Echinophora  tournefortii  (H)  30,  Ferulago  trachycarpa  (Fr)  20-­‐ 28,  Ferulago  isaurica  (R)  27,  (Fr)  17;  Pimpinella  saxifragra  (S+L)  19,  (Fr)  14;  Ferulago   asparagifolia  (Fr)  18,  Ferulago  syriaca  (Fr)  15,  Seseli  campestre  (Fr)  9   Echinophora  chrysantha  (H)  48-­‐61,  Echinophora  tenuifolia  ssp.  sibthorpiana  (H)  16-­‐52,   Angelica  purpurascens  (Fr)  32,  Prangos  ilanae  (H)  31,  Echinophora  lamondiana  (H)  28,   Diplotaenia  cachrydifolia  (R)    19,  Prangos  platychlaena  ssp.  platychlaena  (Fr)  0.1-­‐18,  Ferula   orientalis  (H)  12,    Ferulago  galbanifera  (Fr)  11   Ferula  halophila  (Fr)  14-­‐72,  Crithmum  maritimum  (H)  21-­‐30,  Ferula  orientalis  ((H)  24,   Prangos  platychlaena  ssp.  platychlaena  (Fr)  4-­‐23,  Angelica  purpurascens  (Fr)  23,  Bupleurum   rotundifolium  (Fl)  7-­‐19,  Chaerophyllum  libanoticum  (Fr)  18,  Prangos  ilanae  (H)  13,  Prangos   platychlaena  (Fr)  11,  Diplotaenia  cachrydifolia  (R)  10,  Prangos  uechtritzii  (Fr)  7-­‐8   Prangos  denticulata  (R)  49,  Echinophora  lamondiana  (H)  48   Apium  graveolens  (H)  39,  Prangos  ferulacea  (Fr)  30-­‐33,  Cuminum  cyminum  (Fr)  7-­‐32,   Ferulago  trachycarpa  (Fr)  28,  Crithmum  maritimum  (H)  8-­‐35,  Laserpitium  hispidum  (R)  15,   Trachyspermum  copticum  (Fr)  12,  Seseli  petraeum  (H)  11,  Grammosciadium  pterocarpum   32 Limonene   Terpinolene   (Z)-­‐β-­‐ocimene   (Fr)  10   Laser  trilobum  (Fr)  6-­‐91,  Fuernrohria  setifolia  (Fr)  70,  (H)  48;  Pimpinella  puberula  (Fr)  63,   (S+L)  37,  Pimpinella  flabellifolia  (S+L)  17-­‐47,  (Fr)  28,  (R)  17;  Glaucosciadium  cordifolium  (H)   40,  Ferulago  humilis  (Fr)  31,  Pimpinella  isaurica  (Fr)  24,  Crithmum  maritimum  (H)  24,   Ferulago  sandrasica  (Fr)  17,  Chaerophyllum  libanoticum  (Fr)  16,  Pimpinella  saxifraga  (H)  11,   Foeniculum  vulgare  var.  azoricum  (Fr)  8-­‐11,  Ferulago  galbanifera  (Fr)  10   Diplotaenia  cachrydifolia  (Fr)  69,  (L)  65;  Ferulago  isaurica  (R)  42,  Ferulago  syriaca  (Fr)  13,  (R)   13,  Laserpitium  hispidum  (R)  12,  Chaerophyllum  byzantinum  (H)  12   Ferulago  trachycarpa  (H)  34,  Ferulago  humilis  (Fr)  32,  Ferulago  sandrasica  (Fr)  32,  Ferulago   trachycarpa  (Fr)  31,  Ferulago  pachyloba  (H)  26,  Ferulago  longistylis  (Fr)  16,  Crithmum   maritimum  (H)  1-­‐13   Ferula  orientalis  (H)  14   (E)-­‐β-­‐ocimene     Table  30.  Oxygenated  Monoterpenes   Linalool   Coriandrum  sativum  var.  microcarpum  (Fr)  37-­‐91Coriandrum  sativum  (Fr)  72-­‐83,   Coriandrum  sativum  var.  macrocarpum  (Fr)  79,  Coriandrum  sativum  var.  vulgare  (Fr)   30-­‐65,   Terpinen-­‐4-­‐ol     Crithmum  maritimum  (H)  1-­‐21,  Echinophora  trichophylla  (H)  16   trans-­‐Verbenol   Artedia  squamata  (Fr)  14   Carvone   Anethum  graveolens  (Fr)  46-­‐66,  Fuernrohria  setifolia  (Fr)  25   Fenchone   Foeniculum  vulgare  var.  piperitum  (Fr)  18-­‐28   Thymol   Lagoecia  cuminoides  (H)  73-­‐95,  Peucedanum  graminifolium  (Fr)  63,  Trachyspermum   copticum  (Fr)  61   Carvacrol   Peucedanum  graminifolium  (Fr)  23,  Artedia  squamata  (Fr)  10   Carvacrol  methyl  ether   Ferulago  macrosciadia  (Fr)  72-­‐78,  Ferulago  idaea  (Fr)  13   2,5-­‐Dimethoxy-­‐p-­‐ Ferulago  humilis  (Fr)  76,  Ferulago  confusa  (Fr)  63,  Ferulago  sylvatica  (Fr)  40,   cymene   Diplotaenia  hayri-­‐dumanii  (Fr)  25,  Ferulago  idaea  (Fr)  13   trans-­‐Chrysanthenyl   Ferulago  silaifolia  (Fr)  84,  Ferulago  galbanifera  (Fr)  17,  Ferulago  sandrasica  (Fr)  12,   acetate   Ferulago  humulis  (Fr)  12   cis-­‐Chrysanthenyl   Daucus  littoralis  (H)  47,  Ferulago  platycarpa  (H)  24   acetate   Cuminaldehyde   Cuminum  cyminum  (Fr)  19-­‐40   p-­‐Mentha-­‐1,4-­‐dien-­‐7-­‐al   Cuminum  cyminum  (Fr)  2-­‐49   p-­‐Mentha-­‐1,3-­‐dien-­‐7-­‐al   Cuminum  cyminum  (Fr)  4-­‐13   Ferulagone  (NEW)   Ferulago  thirkeana  (Fr)  56-­‐64   p-­‐cymen-­‐8-­‐ol   Chaerophyllum  byzantinum  (H)  16   Methyl  thymol   Crithmum  maritimum  (H)  8-­‐30   Table  31.  Phenyl  propanoids   1-­‐Allyl-­‐2,4-­‐dimethoxybenzene   trans-­‐Anethole   Methyl  chavicol   Chavicyl  angelate   trans-­‐Epoxypseudoeugenyl  2-­‐ Anthriscus  cerefolium  (H)  15,  Physocaulis  nodosa  (H)  12   Pimpinella  anisum  (Fr)  96-­‐94,  Foeniculum  vulgare  var.  dulce  (Fr)  95,   Foeniculum  vulgare  var.  vulgare  (Fr)  65-­‐88,  Foeniculum  vulgare  var.   azoricum  (Fr)  59-­‐72,  Pimpinella  anisetum  (Fr)  81-­‐77,  (S+L)  54;  Pimpinella   flabellifolia  (R)  68,  (Fr)  64,  (S+L)  41,  (H)  38;  Pimpinella  nudicaulis  (Fr)  64,   (S+L)  28,  (R)  13;  Scaligeria  lazica  (H)  50     Scandix  australis  ssp.  grandiflora  (H)  96,  Pimpinella  aromatica  (H)  92,   Scandix  iberica  (Fr)  91,  (Fl)  86;  Anthriscus  cerefolium  (H)  83,  Physocaulis   nodosa  (H)  74,  Foeniculum  vulgare  var.  piperitum  (Fr)  63-­‐73,  (L)  25-­‐70,   (S)  61,  (R)  59;  Pimpinella  anisetum  (H)  15-­‐42,  (Fr)  16-­‐22,  (S+L)  13;   Pimpinella  anisum  (Fr)  16,  Foeniculum  vulgare  var.  vulgare  (Fr)  4-­‐16   Pimpinella  isaurica  (H)  44   Pimpinella  aromatica  (R)  40   33 methylbutyrate     Epoxypseudoisoeugenyl  2-­‐ methylbutyrate  (=  4-­‐Methoxy-­‐2-­‐ [(2R,3R)-­‐3-­‐ methyloxiranyl]phenyl(2S)-­‐ methylbutyrate)   Methyl  eugenol   Myristicin   Isomyristicin   2,3,4,5-­‐Tetramethoxy  allylbenzene   4-­‐(Prop-­‐2-­‐enyl)phenyl  angelate   (NEW)   4-­‐(3-­‐Methyloxiranyl)phenyl-­‐2-­‐ methylbutyrate  (NEW)   Pimpinella  peucedanifolia  (R)  83,  Pimpinella  saxifraga  (R)  67,  Pimpinella   anisetum  (R)  56,  Pimpinella  cappadocica  (R)  43,  Pimpinella  corymbosa   (R)  43,  Pimpinella  aurea  (R)  39,  Pimpinella  kotschyana  (R)  36,  Pimpinella   olivieroides  (R)  33,  Pimpinella  peregrina  (R)  27,  Pimpinella  anisetum  (S+L)   24,  Pimpinella  tragium  ssp.  polyclada  (Fr)  20,  Pimpinella  tragium  ssp.   pseudotragium  (R)  19,  Pimpinella  tragium  ssp.  polyclada  (R)  16,   Pimpinella  tragium  ssp.  pseudotragium  (Fr)  10   Pimpinella  olivieroides  (Fr)  71,  (S+L)  52,  (R)  1;  Echinophora  tenuifolia  ssp.   sibthorpiana  (H)  18-­‐59,  Pimpinella  puberula  (Fr)  30,  (S+L)  23;  Pimpinella   rhodantha  (Fr)  0.2   Laserpitium  hispidum  (R)  25   Diplotaenia  cachrydifolia  (R)  21   Petroselinum  sativum  (Fr)  29   Pimpinella  isaurica  (S+L)  43,  (Fr)  14,  (R)  11   Pimpinella  saxifraga  (R)  4,  (Fr)  0.7,  (S+L)  0.3;  Pimpinella  aurea  (R)  2,  (Fr)   1.2,  (S+L)  0.4;  Pimpinella  peucedanifolia  (R)  1,  Pimpinella  peregrina  (R)   0.3   trans-­‐Isoosmorhizole   Pimpinella  nudicaulis  (R)  79,  (Fr)  21,  (S+L)  12;  Pimpinella  flabellifolia  (R)   2,  (H)  0.1;  Pimpinella  tragium  ssp.  pseudotragium  (R)  1,  (Fr)  0.6,  (S+L)   0.3;  Pimpinella  peregrina  (S+L)  0.3,  Pimpinella  saxifraga  (S+L)  0.1   4-­‐(1-­‐Prop-­‐(1E)-­‐enyl)phenyl  (2S)-­‐ Pimpinella  olivieroides  (R)  39,  (Fr)  0.1;  Pimpinella  kotschyana  (R)  34,  (S+L)   methylbutyrate  (=  Anethol  2-­‐ 0.3,  (Fr)  0.1;  Pimpinella  corymbosa  (R)  33,  (S+L)  0.4;  Pimpinella   methylbutyrate)   peucedanifolia  (R)  6,  (S+L)  3,  (Fr)  2;  Pimpinella  saxifraga  (R)  3,  (Fr)  1.5,   (S+L)  1.3;  Pimpinella  peregrina  (S+L)  2,  (Fr)  0.3,  (R)  0.1;  Pimpinella   tragium  ssp.  lithophila  (Fr)  0.2;  Pimpinella  tragium  ssp.  pseudotragium   (S+L)  0.2,  (Fr)  0.2   4-­‐(Prop-­‐(1E)-­‐enyl)phenyl   Pimpinella  peucedanifolia  (Fr)  2,  (S+L)  0.1;  Pimpinella  kotschyana  (R)  1,   isobutyrate   (S+L)  0.3,  (Fr)  0.3;  Pimpinella  corymbosa  (R)  0.5   4-­‐(Prop-­‐(1E)-­‐enyl)phenyl  tiglate  =   Pimpinella  isaurica  (R)  16,  (S+L)  12,  (Fr)  1.4;  Pimpinella  aurea  (Fr)  3,  (R)  2,   anol  tiglate   (S+L)  1;  Pimpinella  tragium  ssp.  pseudotragium  (Fr)  1,  (R)  1,  (S+L)  0.4;   Pimpinella  cappadocica  var.  cappadocica  (R)  0.1     4-­‐[(2R,3R)-­‐3-­‐Methyloxiranyl]phenyl   Pimpinella  aurea  (Fr)  0.3   tiglate   4-­‐Methoxy-­‐2-­‐(prop-­‐(1E)-­‐enyl)phenyl   Pimpinella  isaurica  (S+L)  0.5,  (R)  0.2;  Pimpinella  anisetum  (S+L)  0.2,  (Fr)   angelate   0.2   4-­‐Methoxy-­‐2-­‐[(2R,3R)-­‐3-­‐ Pimpinella  tragium  ssp.  polyclada  (R)  12,  (Fr)  6,  (S+L)  5;  Pimpinella   methyloxiranyl]phenyl  tiglate   isaurica  (R)  2,  (S+L)  0.3);  Pimpinella  cappadocica  var.  cappadocica  (R)  1;   Pimpinella  peregrina  (S+L)  1,  (R)  0.04;  Pimpinella  olivieroides  (R)  1,   Pimpinella  anisetum  (S+L)  0.3,  (R)  0.1;  Pimpinella  aurea  (R)  0.2,   Pimpinella  affinis  (R)  0.1   4-­‐Methoxy-­‐2-­‐[(2R,3S)-­‐3-­‐ Pimpinella  peregrina  (R)  45,  (S+L)  6,  (Fr)  4;  Pimpinella  peucedanifolia  (R)   methyloxiranyl]phenylisobutyrate   2.4,  Pimpinella  kotschyana  (R)  1   4-­‐Methoxy-­‐2-­‐(prop  (1E)-­‐enyl)phenyl   Pimpinella  rhodantha  (R)  2,  (S+L)  0.2,  (Fr)  0.2;  Pimpinella  tragium  ssp.   tiglate   polyclada  (S+L)  1,  (R)  0.4   pseudoisoeugenyl  2-­‐methylbutyrate   Pimpinella  aurea  (R)  4,  (S+L)  0.1;  Pimpinella  saxifraga  (R)  2,  Pimpinella   tragium  ssp.  polyclada  (S+L)  1,  (Fr)  1,  (R)  0.01;  Pimpinella  tragium  ssp.   pseudotragium  (R)  1,  (Fr)  1,  (S+L)  0.3;  Pimpinella  peregrina  (R)  1,   Pimpinella  anisum  (Fr)  1,  Pimpinella  cappadocica  var.  cappadocica  (R)  1,   Pimpinella  tragium  ssp.  lithophila  (R)  1,  (Fr)  0.1     4-­‐Methoxy-­‐2-­‐[(2R,3R)-­‐3-­‐ Pimpinella  tragium  ssp.  polyclada  (R)  40,  (S+L)  2,  (Fr)  1;  Pimpinella   34 methyloxiranyl]phenylangelate   tragium  ssp.  pseudotragium  (R)  31,  (Fr)  1,  (S+L)  0.2;  Pimpinella   rhodantha  (R)  29,  (S+L)  3,  (Fr)  1;  Pimpinella  affinis  (R)  11,  (S+L)  0.2;   Pimpinella  anisetum  (R)  8,  (S+L)  5;  Pimpinella  peregrina  (S+L)  8,   Pimpinella  isaurica  (R)  7,  (S+L)  3,  (Fr)  0.1;  Pimpinella  cappadocica  var.   cappadocica  (R)  3   Pimpinella  olivieroides  (Fr)  14,  (H)  5   Crithmum  maritimum  (H)  0.1-­‐21   Diplotaenia  cachrydifolia  (L)  18,  (Fr)  8,  (R)  6   cis-­‐Isoelemicine   Dill  apiole   (E)-­‐Isodillapiole   Table  32.  Aldehydes     2,3,6-­‐Trimethylbenzaldehyde   2-­‐Hydroxy-­‐5-­‐methoxy-­‐benzaldehyde   Phenylacetaldehyde   (E)-­‐2-­‐Decenal   Decanal   Octanal   (E)-­‐2-­‐Dodecenal   (E)-­‐2-­‐Tridecenal   (E)-­‐2-­‐Tetradecenal   Heptanal   Hexanal   Table  33.  Alkane  derivatives   2,6-­‐Dimethyl-­‐1,3(E),5(E),7-­‐ octatetraene  (=  (E,E)-­‐cosmene)   2-­‐Decenoic  acid   Decanoic  acid   Hexadecanoic  acid   Nonane   Nonene   Dodecanoic  acid   Undecane   Methyl  linoleate   Hexacosane   Tridecane   Pentacosane   Methyl  oleate   (E)-­‐9-­‐octadecanoic  acid     Nonacosane   Heptacosane   Ferulago  asparagifolia  (Fr)  39-­‐42,  Ferulago  idaea  (Fr)  14   Scaligeria  lazica  (Hydrosol)22   Scaligeria  lazica  (Hydrosol)  14   Coriandrum  sativum  (H)  11-­‐51,  Cymbocarpum  wiedemannii  (Fr)  39,   Cymbocarpum  wiedemannii  (H)  32,  Ferulago  trachycarpa  (R)  7   Coriandrum  sativum  (H)  10-­‐23   Ferulago  trachycarpa  (R)  10   Cymbocarpum  wiedemannii  (Fr)  16,  Cymbocarpum  wiedemannii  (H)  11   Bifora  radians  (H)  47   Bifora  radians  (H)  23,  Cymbocarpum  wiedemannii  (Fr)  9   Bupleurum  cappadocicum  (Fl)  47,  Bupleurum  turcicum  (Fl)  33,  (Fr)  24;   Eryngium  creticum  ((H)  14     Eryngium  creticum  (H)  53,  Bupleurum  gerardii  (R)  22   Echinophora  trichophylla  (H)  14   Cymbocarpum  wiedemannii  (H)  20   Cymbocarpum  wiedemannii  (H)  9   Bupleurum  heldreichii  (R)  46,  Tordylium  aegypticum  (Fr)  40,  Bupleurum   croceum  (R)  35,  Actinolema  macrolema  (L)  19,  Ferulago  isaurica  (H)  15,   Bupleurum  lancifolium  (R)  14,  Bupleurum  rotundifolium  (Fl)  12,  Cachrys   cristata  (H)  12,  Artedia  squamata  (Fr)  10,  Johrenia  polycias  (Fr)  9,  Johrenia   tortuosa  (H)  9   Ferula  elaeochytris  (Fr)  27   Prangos  uechtritzii  (Fr)  17   Johrenia  alpina  (H)  24,     Pimpinella  peucedanifolia  (Fr)  77,  (S+L)  65,  Bupleurum  intermedium  (R)  63,   Bupleurum  cappadocicum  (Fr)  50,  (R)  23;  Bupleurum  gerardii  (Fr)  49,  (Fl)   37;  Bupleurum  rotundifolium  (R)  26,  Bupleurum  sulphureum  (Fr)  20,  (Fl)  14;   Bupleurum  croceum  (Fr)  13,     Bupleurum  intermedium  (Fl)  21,     Bupleurum  lancifolium  (Fr)  13   Bupleurum  lycaonicum  (Fr)  37,  (Fl)  15;  Bupleurum  rotundifolium  (R)  12   Bupleurum  turcicum  (R)  9   Diplotaenia  cachrydifolia  (R)  10   Peucedanum  palimbioides  (H)  24   Heptaptera  anisoptera  (Fr)  69,  Heptaptera  triquetra  (Fr)  42,  Heptaptera   cilicica  (Fr)  39,  Ferulago  isaurica  (H)  26,  Heptaptera  anatolica  (Fr)  24,     Heptaptera  anatolica  (Fr)  23,  Heptaptera  triquetra  (Fr)  23,  Heptaptera   cilicica  (Fr)  11,  Heptaptera  anisoptera  (Fr)  10,  Chaerophyllum  aksekiense   35 1-­‐Octadecanol   Octanol   (Fr)  10   Actinolema  macrolema  (L)  24   Heracleum  sphondylium  ssp.  ternatum  (Fr)  39-­‐50,  Tordylium  lanatum  (Fr)   22,  Tordylium  apulum  (Fr)  17,  Tordylium  pestalozzae  (Fr)  15,  Tordylium   ketenoglui  (Fr)  12,  Tordylium  trachycarpum  (Fr)  11,  Tordylium  pustulosum   (Fr)  4-­‐10   Table  34.  Sesquiterpene  hydrocarbons   β-­‐Caryophyllene   Bilacunaria  aksekiensis  (Fr)  41,  Pimpinella  corymbosa  (H)  38,  (Fr)  14-­‐33,  (S+L)  33;   Bilacunaria  boissieri  (H)  26,  Seseli  libanotis  (H)  20,  Bupleurum  pauciradiatum  (Fl)  10-­‐ 18,  Tordylium  aegypticum  (Fr)  11,  Bilacunaria  anatolica  (Fr)  11,  Grammosciadium   pterocarpum  (Fr)  11,  (L)  10   Germacrene  D   Rhabdosciadium  oligocarpum  (H)  62,  Prangos  sp.  nova  (Fr)  50,  Bupleurum  heldreichii   (Fl)  48,  (Fr)  48;  Smyrnium  perfoliatum  (Fr)  9-­‐47,  Bupleurum  pauciradiatum  (Fl)  12-­‐46,   Rhabdosciadium  microcalycinum  (H)  25-­‐33,  Thecocarpus  carvifolius  (H)  31,   Aegokeras  caespitosa  (Fr)  27-­‐31,  Ferula  anatolica  (Fr)  30,  Bupleurum  intermedium   (Fr)  26,  Ferula  duranii  (Fr)  25,  Trinia  glauca  (Fr)  20,  Pimpinella  rhodantha  (S+L)  17,   Seseli  resinosum  (Fr)  14,  Ferula  thirkeana  (Fr)  13-­‐14,  Prangos  heyniae  (Fr)  3-­‐14,   Bupleurum  croceum  (Fr)  13,  Pimpinella  corymbosa  (S+L)  12,  (Fr)  9,  Prangos  turcica   (Fr)  11,     Germacrene  B   Prangos  ferulacea  (Frcad)  30,  Actinolema  macrolema  (Fr)  19-­‐24,  Seseli  gummiferum   ssp.  corymbosum  (H)  14,  Ferula  elaeochytris  (Fr)  10,  Prangos  heyniae  (Fr)  2-­‐9   α-­‐Humulene   Cachrys  alpina  (Fr)  33,  Neocryptodiscus  papillaris  (Fr)  20,  Prangos  pabularia  (Fr)  17,   Prangos  turcica  (Fr)  11,  Pimpinella  kotschyana  (Fr)  11,  (S+L)  9,  Ferulago  sandrasica   (Fr)  6,  Chaerophyllum  aksekiense  (Fr)  7,  Tordylium  syriacum  (Fr)  2-­‐7   Kundmania  anatolica  (Fr)  15,  (H)  14,  Trinia  glauca  (Fr)  13,  Ferula  rigidula  (Fr)  6-­‐13,   δ-­‐Cadinene   Ekimia  bornmuelleri  (Fr)  11,  Seseli  libanotis  (H)  9   Bicyclogermacrene   Prangos  pabularia  (Fr)  16,  Johrenia  dichotoma  (Fr)  13,  Angelica  purpurascens  (Fr)   12,  Seseli  gummiferum  ssp.  corymbosum  (H)  12,  Pimpinella  cappadocica  var.   cappadocica  (Fr)  12   α-­‐Selinene   Smyrnium  perfoliatum  (Fr)  31   (Z)-­‐β-­‐Farnesene   Scaligeria  lazica  (Fr)  89,  Pimpinella  tragium  ssp.  polyclada  (Fr)  57,  (S+L)  23;   Grammosciadium  pterocarpum  (Fr)  57,  (L)  11,  Pimpinella  rhodantha  (Fr)  35,  (S+L)  13,   Scaligera  tripartita  (S)  9,  Ferula  tingitana  (Fr)  4   (E)-­‐β-­‐Farnesene   Chaerophyllum  aksekiense  (Fr)  6   Bicyclosesquiphellandre Olymposciadium  caespitosum  (Fr)  5   ne   β-­‐Bisabolene   Pimpinella  tragium  ssp.  lithophila  (Fr)  30,  Pimpinella  aurea  (Fr)  33,  Prangos  heyniae   (Fr)  10-­‐12   Selina-­‐3,7(11)-­‐diene   Actinolema  macrolema  (Fr)  12-­‐15   Actinolema  macrolema  (Fr)  11   γ-­‐Guaiene   1,4-­‐Dimethylazulene   Pimpinella  aromatica  (R)  9   4,10-­‐Dihydro-­‐1,4-­‐ Pimpinella  aromatica  (R)  17,  Pimpinella  tragium  ssp.  lithophila  (R)  14,  Pimpinella   dimethylazulene   oliveiroides  (R)  6   4,6-­‐Guaiadiene   Ferulago  syriaca  (Fr)  11,  Pimpinella  tragium  ssp.  lithophila  (R)  7,  (S+L)  0.3;  Pimpinella   kotschyana   (S+L)   2,   (Fr)   2,   (R)   1;   Pimpinella   corymbosa   (Fr)   1;   Pimpinella   peregrina   (S+L)  0.1   7-­‐Epi-­‐1,2-­‐ Ferulago  uechtritzii  (Fr)  13   dehydrosesquicineole   (NEW)   Dehydrosesquicineole   Ferula  orientalis  (H)  10   Geijerene   Pimpinella   affinis   (Fr)   59,   (S+L)   40,   (R)   36;   Scaligeria   tripartita   (Fr)   55,   (H)   37;   36 Pregeijerene   Geijerene  isomer   γ-­‐Himachalene   α-­‐Zingiberene   trans-­‐β-­‐bergamotene   Eremophilene   Calarene   Guaia-­‐5,7(11)-­‐diene   Longipinene   Pimpinella  tragium  ssp.  lithophila  (S+L)  32,  (R)  27,  (Fr)  23;   Pimpinella   affinis   (Fr)   20,   (S+L)   11,   (R)   9;  Pimpinella   tragium   ssp.   lithophila   (S+L)   8,   Scaligeria  tripartita  (Fr)  6,  (H)  5,  Pimpinella  aromatica  (R)  5   Scaligeria  tripartita  (Fr)  12,  (H)  5   Pimpinella  cappadocica  var.  cappadocica  (Fr)  9,  Pimpinella  rhodantha  (Fr)  9   Pimpinella  isaurica  (Fr)  16,  Pimpinella  tragium  ssp.  pseudotragium  (Fr)  8   Pimpinella  peregrina  (S+L)  70,  (Fr)  41   Ferula  halophila  (Fr)  5-­‐9,  Ferula  parva  (Fr)  9,  Ferula  rigidula  (Fr)  3   Bupleurum  sulphureum  (R)  27   Actinolema  macrolema  (Fr)  37   Szovitsia  callicarpa  (Fr)  19   Table  35.  Oxygenated  sesquiterpenes   Caryophyllene  oxide   Kundmannia  anatolica  (Fr)  31,  (H)  19,  Pimpinella  cappadocica  (Fr)  26,  Pimpinella   corymbosa  (S+L)  17,  (Fr)  11;  Bilacunaria  anatolica  (H)  14,  Echinophora   tournefortii  (H)  13,  Seseli  libanotis  (H)  12,  Ferula  lycia  (Fr)  3-­‐10,  Tordylium   aegyptiacum  (Fr)  9,  Bilacunaria  boissieri  (H)  9,  Bilacunaria  microcarpa  (H)  8,   Bilacunaria  aksekiensis  (Fr)  8,  Ferulago  aucheri  (Fr)  8,  Chaerophyllum  aksekiense   (Fr)  6   Germacrene  D-­‐4-­‐ol   Ekimia  bornmuelleri  (Fr)  43,  Ferula  rigidula  (Fr)  8-­‐10,  Prangos  turcica  (Fr)  5   4α-­‐Hydroxy  germacra-­‐1(10)-­‐   Seseli  resinosum  (H)  30,  (Fr)  22,     5-­‐diene   Isofuranogermacrene   Smyrnium  olusatrum  (R)  51,  Smyrnium  perfoliatum  (R)  48,  Smyrnium   rotundifolium  (Fr)  35-­‐45   Furanodiene   Smyrnium  rotundifolium  (Fr)  28-­‐39,  Smyrnium  perfoliatum  (Fr)  20   Acetoxyfuranoeudesm-­‐3-­‐ene   Smyrnium  perfoliatum  (Fr)  9   β-­‐Bisabolenal   Prangos  heyniae  (Fr)  18-­‐53   β-­‐Bisabolenol   Prangos  heyniae  (Fr)  2-­‐15   Cubenol   Ferulago  mughlae  (Fr)  13,  Ferulago  syriaca  (Fr)  9   Carotol   Daucus  carota  (Fr)  27-­‐67,  Seseli  andronakii  (Fr)  53,  Seseli  petraeum  (H)  21   α-­‐Cadinol   Ekimia  bornmuelleri  (Fr)  19,  Ferula  rigidula  (Fr)  5-­‐10,  Prangos  sp.  nova  (Fr)  9   (E)-­‐Sesquilavandulol   Seseli  tortuosum  (Fr)  37,  (H)  8;  Seseli  campestre  (Fr)  3-­‐12,     Humulene  epoxide  II   Chaerophyllum  aksekiense  (Fr)  8,  Ferulago  aucheri  (Fr)  7   Spathulenol   Seseli  gummiferum  ssp.  gummiferum  (H)  20,  Bupleurum  lancifolium  (Fl)  15,   Johrenia  silenoides  (Fr)  15,  (H)  13;  Bupleurum  lycaonicum  (R)  14,  Seseli  libanotis   (H)  12,  Prangos  pabularia  (Fr)  11,  Ferulago  aucheri  (Fr)  7,  Xanthogalum   purpurascens  (Fr)  7,  Seseli  gummiferum  ssp.  corymbosum  (H)  6,  Johrenia   polyscias  (H)  6,  Johrenia  dichotoma  (Fr)  5   Kessane   Cnidium  silaifolium  ssp.  orientale  (H)  33,  Xanthogalum  purpurascens  (Fr)  7   Kessyl  acetate   Szovitsia  callicarpa  (Fr)  65   1-­‐Methyl-­‐4-­‐(6-­‐methylhepta-­‐ Pimpinella  aurea  (Fr)  34,  (S+L)  20,  (R)  10;  Pimpinella  peregrina  (S+L)  3,  (Fr)  1,  (R)   1,5-­‐dien-­‐2-­‐yl)-­‐7-­‐ 0.2;   Pimpinella   tragium   ssp.   lithophila   (S+L)   0.2,   (R)   0.2,   (Fr)   0.1;   Pimpinella   oxabicyclo[4.1.0]  heptane   nudicaulis  (S+L)  0.1,  (R)  0.1,  (Fr)  0.02   (“aureane”)  (NEW)   4-­‐(6-­‐ Pimpinella  tragium  ssp.  lithophila  (S+L)    5,  (Fr)  2,  (R)  1;  Pimpinella  affinis  (S+L)  5,   Methylbicyclo[4.1.0]hept-­‐2-­‐ (Fr)   1,   (R)   0.6;   Pimpinella   puberula   (R)   1,   (S+L)   0.2;   Pimpinella   tragium   ssp.   en-­‐7-­‐yl)butan-­‐2-­‐one   pseudotragium   (R)   1,   Pimpinella   cappadocica   var.   cappadocica   (R)   0.1,   (“traginone”)  (NEW)   Pimpinella  rhodantha  (R)  0.1   Dictamnol   Pimpinella   tragium   ssp.   lithophila   (S+L)   6,   Pimpinella   affinis   (S+L)   4,   (Fr)   2,   (R)   1;   Pimpinella  puberula  (R)  3,  (S+L)  0.6;  Pimpinella  tragium  ssp.  pseudotragium  (R)   0.6;   Pimpinella   anisetum   (R)   0.5,   (S+L)   0.2;   Pimpinella   rhodantha   (S+L)   0.4,   (R)   37 Alismol   12-­‐Hydroxy-­‐β-­‐caryophyllene   acetate     Himachalol   Dehydrocostuslactone   Shyobunone   Epi-­‐shyobunone   6-­‐Epi-­‐shyobunone   β-­‐Eudesmol   α-­‐Eudesmol   Methylfarnesoate   Muurola-­‐4,10(14)-­‐dien-­‐1-­‐ol   8-­‐Cedren-­‐13-­‐ol   Table  36.  Esters   Bornyl  acetate     Octyl  acetate   Octyl  hexanoate   Hexyl  butyrate   Hexyl  hexanoate   Hexyl  octanoate   Octyl  butyrate   Octyl  octanoate     Octyl  2-­‐methylbutyrate   Table  37.  Others   Naphthalene   3,5-­‐Nonadiyn-­‐7-­‐ene   3,5-­‐Nonadiyn-­‐2-­‐yl  acetate   3,5-­‐Nonadiyn-­‐2-­‐yl  acetate   isomer   3,5-­‐Nonadiyne   Amylfuran   0.2;  Pimpinella  kotschyana  (R)  0.3,  (S+L)  0.1,  (Fr)  0.04;  Pimpinella  peucedanifolia   (S+L)  0.3,  Pimpinella  saxifraga  (R)  0.2,  Pimpinella  cappadocica  var.  cappadocica   (R)  0.1,     Pimpinella   rhodantha   (S+L)   1.4,   (R)   1;   Pimpinella   isaurica   (Fr)   0.4,   Pimpinella   peucedanifolia  (Fr)  0.3   Pimpinella   kotschyana   (Fr)   12,   (S+L)   5,   (R)   0.03;   Pimpinella   corymbosa   (Fr)   5,   (S+L)  3,  (R)  0.04   Pimpinella  cappadocica  var.  cappadocica  (S+L)  16   Pimpinella  cappadocica  var.  cappadocica  (Fr)  8   Ferula  drudeana  (Fr)  25-­‐44   Ferula  drudeana  (Fr)  10-­‐38   Ferula  drudeana  (Fr)  6-­‐13   Ferula  szowitsiana  (L)  32,  (Stem)  30   Ferula  szowitsiana  (L)  18,  (Stem)  17   Johrenia  tortuosa  (Fr)  43,  Johrenia  dichotoma  (Fr)  17,  Johrenia  silenoides  (Fr)  9,     Kundmannia  anatolica  (Fr)  26,  (H)  12   Peucedanum  longifolium  (H)  34   Ferulago  syriaca  (R)  69,  Bilacunaria  macrocarpa  (H)  20,  Ferulago  longistylis  (H)   13,  (Fr)  4;Ferula  haussknechtii  (Fr)  7,  Prangos  turcica  (Fr)  7,  Angelica  sylvestris   var.  sylvestris  (S)  7,  Tordilium  ketenoglu  (Fr)  7,  Prangos  turcica  (Fr)  7,  Seseli   campestre  (H)  5,  Ferula  lycia  (H)  2,     Heracleum  paphlagonicum  (Fr)  27-­‐95,  Heracleum  crenatifolium  (Fr)  19-­‐95,   Heracleum  platytaenium  (Fr)  73-­‐88,  (H)  86,  Zosima  absinthifolia  (Fr)  38,   Heracleum  sphondylium  ssp.  ternatum  (Fr)  7-­‐31,  Heracleum  argeum  (Fr)  7   Tordylium  syriacum  (Fr)  46-­‐81,  Tordylium  hasselquistiae  (Fr)  73,  Tordylium   pustulosum  (Fr)  69-­‐73,  Tordylium  lanatum  (Fr)  59,  Tordylium  pestalozzae  (Fr)   56,  Tordylium  apulum  (Fr)  44,  Zosima  absinthifolia  (Fr)  32,  Heracleum   platytaenium  (H)  13,  (Fr)  3-­‐5,  Heracleum  argaeum  (Fr)  9,  Pastinaca  sativa  ssp.   urens  (Fr)  5   Heracleum  argaeum  (Fr)  39,  Heracleum  paphlagonicum  (Fr)  17-­‐25   Malabaila  secacul  (Fr)  73-­‐86   Malabaila  secacul  (Fr)  9-­‐14   Pastinaca  sativa  ssp.  urens  (Fr)  80,  H.  sphondylium  ssp.  ternatum  (Fr)  25-­‐43,   Heracleum  platytaenium  (Fr)  12-­‐17   Tordylium  trachycarpum  (Fr)  80,  Tordylium  apulum  (Fr)  35,  Tordylium  ketenoglui   (Fr)  29,  Tordylium  pestalozzae  (Fr)  16,  Tordylium  hasselquistiae  (Fr)  13,   Tordylium  aegyptiacum  (Fr)  9   Tordylium  pustulosum  (Fr)  18   Ferula  szowitsiana  (Fr)  28,  Ferula  lycia  (Fr)  3-­‐27,  Ferula  anatolica  (Fr)  22,  Ferula   tingitana  (Fr)  14-­‐15,  Ferula  duranii  (Fr)  10,  Prangos  turcica  (Fr)  9,  Ferula  parva   (Fr)  5,  Ferula  brevipedicellata  (Fr)  4,  Ferula  communis  (Fr)  4   Prangos  denticulata  (R)  20,     Prangos  platychlaena  ssp.  platychlaena  (Fr)  11-­‐45,     Prangos  platychlaena  ssp.  platychlaena  (Fr)  4   Prangos  platychlaena  ssp.  platychlaena  (Fr)  6-­‐25,   Bupleurum  falcatum  ssp.  cernuum  (R)  23   38 GENERAL  REMARKS  &  CONCLUSIONS   1. In  this  paper,  essential  oil  compositions  of  179  Apiaceae  taxa  comprising  172  species  of  Turkey   belonging  to  53  genera  were  presented.  The  study  covered  at  least  392  oil  samples.   2. All   the   oils   were   obtained   by   standard   procedures   and   analyzed   by   GC/MS   techniques   using   commercial   libraries   as   well   as   the   home-­‐made   “Baser   Library   of   Essential   Oil   Constituents”   containing   MS  and  retention  data  of  over  4000  compounds.   3. Some   Umbelliferae   fruits   were   found   particularly   rich   in   essential   oil,   such   as   Foeniculum   vulgare   var.   vulgare   6-­‐12%,   Ferulago   isaurica   (E)   12%,   Foeniculum   vulgare   var.   piperitum   4.3-­‐7.7%,   Heracleum  paphlagonicum  (E)  4.9-­‐7.4%,  Ferulago  trachycarpa  7.3%,  Ferulago  asparagifolia  7.0%,  Laser   trilobum  5-­‐7%,  Heracleum  platytaenium  (E)  5.2-­‐6.8%,  Ferulago  longistylis  (E)  6.4%,  Pimpinella  anisetum   (E)   5.0-­‐5.3%,   Pimpinella   aurea   5.1%,   Pimpinella   nudicaulis   5.1%,   Ferulago   syriaca   4.8%,   Pimpinella   anisum   1.3-­‐4.8%,   Pimpinella   thirkeana   (E)   4.1%,   Ferulago   humilis   (E)   3.9%,   Ferulago   sandrasica   (E)   3.9%,  Ferula  drudeana  (E)  3.7-­‐3.8%,  Heracleum  crenatifolium  (E)  3.7%,  Heracleum  sphondylium  subsp.   ternatum   3.7%,   Ferula   elaeochytris   3.5%,   Ferula   duranii   (E)   2.6%,   Anethum   graveolens   2-­‐2.5%,   Actinolema   macrolema   2.3%,   Ferula   coskunii   (E)   2%,   Pimpinella   cappadocica   (E)   2%,   Pimpinella   flabellifolia  (E)  1.9%,  Ferula  brevipedicellata  1.9%.  Pimpinella  aromatica    (Herba)  6.1%,  (root)  4.2%.     4. Chemical  diversity  in  the  family  Umbelliferae  is  evident.   5. Some   genera   such   as   Pimpinella,   Anthriscus,   Foeniculum,   Petroselinum,   Scaligeria   are   rich   in   phenylpropanoids  and  have  commercial  importance.   • Cuminum  cyminum,  Laser  trilobum,  Bunium  persicum  are  rich  in  monoterpene  aldehydes  and   possess  similar  odour  properties,  hence  have  commercial  importance.   • Lagoecia   cuminoides,   Peucedanum   graminifolium,   Trachyspermum   copticum   are   rich   in   thymol.   Only   the   latter   species   is   known   in   commerce.   The   former   is   the   richest   ever   source   of   thymol   (up  to  95%).  Oil  yield  of  this  common  weed  is  over  1%.  In  some  western  parts  of  Turkey  it  is  used  as   Herbaal  tea.  If  cultivated  it  can  become  an  important  source  of  natural  thymol.     6. Infraspecific   diversity   within   a   genus   is   also   interesting.   Essential   oils   may   have   chemotaxonomic  significance.  Some  marker  compounds  are  genus  or  species  specific,  e.g.,  compounds   such   as   anethole   and   epoxypseudoisoeugenyl-­‐2-­‐methylbutyrate   in   Pimpinella   and   Scaligeria;     furanosesquiterpenes   in   Smyrnium,   shyobunones   in   Ferula   drudeana,   (+)-­‐linalool   in   Coriandrum   sativum.     7. It  is  quite  frequent  for  Apiaceae  plants  to  show  different  chemical  profile  in  aboveground  and   underground  organs  of  the  same  plant  like  in  Pimpinella  peucedanifolia:  oils  of  fruits  and  leafy  stems   contain   undecane   as   main   constituent   while   root   oil   contains   epoxypseudoisoeugenyl-­‐2-­‐ methylbutyrate  and  4-­‐methoxy-­‐2-­‐(3-­‐methyloxiranyl)-­‐phenylisobutyrate.     8. Process   conditions   can   be   adjusted   to   obtain   aromachemicals   selectively   from   Umbelliferae   fruits  as  shown  in  Cumin  and  Laser  seed  oils.     9. Taxonomic   studies   in   the   family   Apiaceae   are   ongoing   and   the   statuses   of   many   genera   are   continuously   modified.   Table   38   gives   a   summary   of   our   publications   reporting   essential   oils   of   the   species  whose  status  have  been  modified       39   Table  38.  New  names  of  the  species  studied  for  essential  oils   Old  name   New  name   Cachrys  alpina  M.  Bieb.   Echinophora   carvifolia   Boiss.  et  Balansa   Hippomarathrum   boissieri   Reut.   &   Hausskn.  ex  Boiss.   Hippomarathrum   cristatum  Boiss.     Hippomarathrum   microcarpum   (M.Bieb.)   B.Fedtsch.   Myrrhoides   nodosa   (L.)   Cannon   Olymposciadium   caespitosum   (Sibth.   &   Sm.)  H.Wolff   Xanthogalum   purpurascens  Ave-­‐Lall.   Reference   Prangos  ilanae  Pimenov,  Akalın  &  Kljuykov   Baser  et  al.,  2004   Thecocarpus   carvifolius   (Boiss.)   Hedge   &   Baser,  Kurkcuoglu  et  al.,  1998   Lamond   Bilacunaria   boissieri   (Boiss.)   Pimenov   &   Baser  et  al.,  2000k   V.N.Tikhom.   Cachrys  cristata  DC.     Ozek,  G.,  et  al  2007a   Bilacunaria   microcarpa   (M.Bieb.)   Pimenov   Ozer  et  al.,  2007   &  V.N.Tikhom.   Physocaulis  nodosus  (L.)  Tausch   Tumen  et  al.,  2005   Aegokeras  caespitosa  (Sibth.  &  Sm.)  Raf.   Kurkcuoglu   &   Baser   Personal   Comm..   Angelica  purpurascens  (Ave-­‐Lall.)  Gilli   Ozek,  G.,  et  al.,  2006b   40 REFERENCES   Akcin,   A.,   Seyis,   F.,   Akcin,   T.   A.,   Cayci,   Y.   T.   &   Coban,   A.   Y.   (2013).   Chemical   Composition   and   Antimicrobial   Activity   of   the   Essential   Oil   of   Endemic   Heracleum   platytaenium   Boiss.   from   Turkey.   Journal  of  Essential  Oil  Bearing  Plants,  16(2),  166-­‐171.     Akin,  M.,  Saracoglu,  H.  T.,  Demirci,  B.,  Baser,  K.  H.  C.  &  Kucukoduk,  M.  (2012).  Chemical  Composition   and  Antibacterial  Activity  of  Essential  Oils  from  Different  Parts  of  Bupleurum  rotundifolium  L.  Records   of  Natural  Products,  6(3),  316-­‐320.     Aridogan,   B.   C.,   Baydar,   H.,   Kaya,   S.,   Demirci,   M.,   Ozbasar,   D.   &   Mumcu,   E.   (2002).   Antimicrobial   activity  and  chemical  composition  of  some  essential  oils.  Archives  of  Pharmacal  Research,  25(6),  860-­‐ 864     Arslan,  N.,  Gurbuz,  B.,  Sarihan,  E.  O.,  Bayrak,  A.  &  Gumuscu,  A.  (2004).  Variation  in  essential  oil  content   and  composition  in  Turkish  Anise  (Pimpinella  anisum  L.)  Populations.  Turkish  Journal  of  Agriculture  and   Forestry,  28(3),  173-­‐177.     Baser,   K.   H.   C.   &   Tumen,   G.   (1994).   Composition   of   the   Essential   Oil   of   Lagoecia   cuminoides   L.   from   Turkey.  Journal  of  Essential  Oil  Research,  6,  545-­‐546.     Baser,   K.   H.   C.,   Bicakci,   A.   &   Malyer,   H.   (2000a).   Composition   of   the   essential   oil   of   Echinophora   lamondiana  B.  Yildiz  et  Z.  Bahcecioglu.  Journal  of  Essential  Oil  Research,  12(2),  147-­‐148.     Baser,  K.  H.  C.,  Demirçakmak,  B.,  Ermin,  N.,  Demirci,  F.  &  Boydağ,  I.  (1998g).  The  Essential  oil  of  Bifora   radians  Bieb.  Journal  of  Essential  Oil  Research,  10,  451-­‐452.     Baser,   K.   H.   C.,   Demirci,   B.   &   Duman,   H.   (2001).   Composition   of   the   essential   oil   of   Ferulago   asparagifolia  Boiss.  from  Turkey.  Journal  of  Essential  Oil  Research,  13(2),  134-­‐135.     Baser,   K.   H.   C.,   Demirci,   B.,   &   Ozek,   T.   (2002b).   Composition   of   the   microdistilled   essential   oils   of   Tordylium  apulum  L.  and  T.  pustulosum  Boiss.  Journal  of  Essential  Oil  Research,  14(5),  353-­‐354     Baser,  K.  H.  C.,  Demirci,  B.,  Akalin,  E.  &  Ozhatay,  N.  (2004).  Composition  of  the  essential  oil  of   Cachrys   alpina  Bieb.  Journal  of  Essential  Oil  Research,  16(3),  167-­‐168     Baser,  K.  H.  C.,  Demirci,  B.,  Demirci,  F.,  Bedir,  E.,  Weyerstahl,  P.,  Marschall,  H.,  Duman,  H.,  Aytac,  Z.  &   Hamann,   M.   T.   (2000f).   A   new   bisabolene   derivative   from   the   essential   oil   of  Prangos   uechtritzii   fruits,   Planta  Medica,  66(7),  674-­‐677.     Baser,   K.   H.   C.,   Demirci,   B.,   Ozek,   T.,   Akalin,   E.,   &   Ozhatay,   N.   (2002a).   Micro-­‐distilled   volatile   compounds  from  Ferulago  species  growing  in  western  Turkey,  Pharmaceutical  Biology,  40(6),  466-­‐471.     Baser,   K.   H.   C.,   Demirci,   B.,   Sağıroğlu,   M.   &   Duman,   H.   (2007a).   Essential   Oils   of   Ferula   Species   of   Turkey,  Paper  presented  at  the  38th  International  Symposium  on  Essential  Oils,  Graz,  Austria.     Baser,   K.   H.   C.,   Erdemgil,   F.Z.   &   Ozek,   T.   (1994).   Essential   Oil   of   Echinophora   tenuifolia   L.   subsp.   sibthorpiana  (Guss.)  Tutin.,  Journal  of  Esential  Oil  Research,  6,  399-­‐400     Baser,   K.   H.   C.,   Ermin,   N.,   &   Demirçakmak,   B.   (1998a).   The   Essential   Oil   of   Anthriscus   cerefolium   (L.)   Hoffm.  (Chervil)  growing  Wild  in  Turkey.  Journal  of  Essential  Oil  Research,  10,  463-­‐464     Baser,  K.  H.  C.,  Ermin,  N.,  Adıguzel,  N.  &  Aytac,  Z.  (1996c).  Composition  of  the  Essential  Oil  of  Prangos   ferulaceae  (L.)  Lindl.,  Journal  of  Essential  Oil  Research,  8,  297-­‐298  .   41 Baser,   K.   H.   C.,   Koyuncu,   M.   &   Vural,   M.   (1998b).Composition   of   the   Esential   Oil   of   Ferulago   trachycarpa  (Fenzl)  Boiss.  Journal  of  Essential  Oil  Research,  10,  665-­‐666.   Baser,   K.   H.   C.,   Kurkcuoglu,   M.   &   Aytaç,   Z.   (1998c).   Composition   of   the   Essential   oil   of   Heracleum   argaeum  Boiss.  et  Bal.  Journal  of  Essential  Oil  Research,  10,  561-­‐562.     Baser,   K.   H.   C.,   Kurkcuoglu,   M.   &   Duman,   H.   (1999).   Steam   volatiles   of   the   fruits   of   Prangos   bornmuelleri  Hub.-­‐Mor.  et  Reese,  Journal  of  Essential  Oil  Research,  11(2),  151-­‐152.     Baser,  K.  H.  C.,  Kurkcuoglu,  M.  &  Vural,  M.  (1998d).  Composition  of  the  Essential  Oil  of  Trinia  glauca   (L.)  Dum.  Journal  of  Essential  Oil  Research,  10,  593-­‐594.     Baser,  K.  H.  C.,  Kurkcuoglu,  M.,  Adiguzel,  N.,  Aytac,  Z.,  Joulain,  D.  &  Laurent,  R.  (2000e).  Composition  of   the   essential   oil   of   Heracleum   paphlagonicum   Czeczott.   Journal   of   Essential   Oil   Research,   12(3),   385-­‐ 386     Baser,   K.   H.   C.,   Kurkcuoglu,   M.,   Askun,   T.   &   Tumen,   G.   (2009).   Anti-­‐tuberculosis   Activity   of   Daucus   littoralis  Sibth.  et  Sm.  (Apiaceae)  from  Turkey.  Journal  of  Essential  Oil  Research,  21(6),  572-­‐575     Baser,   K.   H.   C.,   Kurkcuoglu,   M.,   Malyer,   H.   &   Bicakci,   A.   (1998f).   Essential   Oils   of   Six   Echinophora   Species  from  Turkey.  Journal  of  Essential  Oil  Research,  10,  345-­‐351     Baser,  K.  H.  C.,  Ozek,  G.,  Ozek,  T.,  Duran,  A.  &  Duman,  H.  (2006).  Composition  of  the  essential  oils  of   Rhabdosciadium  oligocarpum  (Post  ex  Boiss.)  Hedge  et  Lamond  and  Rhabdosciadium  microcalycinum   Hand.-­‐Mazz.  Flavour  and  Fragrance  Journal,  21(4),  650-­‐655.  doi:  10.1002/ffj.1639   Baser,   K.   H.   C.,   Ozek,   T,   &   Aytac,   Z.   (2000k).   Essential   oil   of   Hippomarathrum   boissieri   Reuter   et   Hausskn.  Journal  of  Essential  Oil  Research,  12(2),  231-­‐232.     Baser,  K.  H.  C.,  Özek,  T.  &  Vural,  M.  (1999b).  Essential  oil  of  Cymbocarpum  wiedemannii  Boiss.  Journal   of  Essential  Oil  Research,  11(6),  679-­‐680.     Baser,  K.  H.  C.,  Ozek,  T.,  Demircakmak,  B.,  Bicakci,  A.  &  Malyer,  H.  (1996a).  Esential  oil  of  Echinophora   chrysantha  freyn  et  Sint.  Journal  of  Essential  Oil  Research,  8,  433-­‐434.   Baser,  K.  H.  C.,  Ozek,  T.,  Demirci,  B.  &  Duman,  H.  (2000b).  Composition  of  the  essential  oil  of  Prangos   heyniae  H.  Duman  et  M.  F.  Watson,  a  new  endemic  from  Turkey.  Flavour  and  Fragrance  Journal,  15(1),   47-­‐49   Baser,   K.   H.   C.,   Ozek,   T.,   Demirci,   B.   &   Duman,   H.   (2000m).   Composition   of   the   essential   oil   of   Glaucosciadium  cordifolium  (Boiss.)  Burtt  et  Davis  from  Turkey.  Flavour  and  Fragrance  Journal,  15(1),   45-­‐46.     Baser,  K.  H.  C.,  Ozek,  T.,  Demirci,  B.  &  Saritas,  Y.  (2000g).  Essential  oil  of  Crithmum  maritimum  L.  from   Turkey.  Journal  of  Essential  Oil  Research,  12(4),  424-­‐426     Baser,  K.  H.  C.,  Ozek,  T.,  Demirci,  B.,  Kurkcuoglu,  M.,  Aytac,  Z.  &  Duman,  H.  (2000c).  Composition  of  the   essential  oils  of  Zosima  absinthifolia  (Vent.)  Link  and  Ferula  elaeochytris  Korovin  from  Turkey.  Flavour   and  Fragrance  Journal,  15(6),  371-­‐372.     Baser,   K.   H.   C.,   Ozek,   T.,   Duman,   H.   &   Guner,   A.   (1996b).   Essential   oil   of   Pimpinella   aromatica   Bieb.   from  Turkey.  Journal  of  Essential  Oil  Research,  8(4),  463-­‐464.     42 Baser,  K.  H.  C.,  Ozek,  T.,  Kurkcuoglu,  M.  &  Aytac,  Z.  (2000d).  Essential  oil  of  Seseli  campestre  Besser.   Journal  of  Essential  Oil  Research,  12(1),  105-­‐107.     Baser,  K.  H.  C.,  Ozek,  T.,  Kurkcuoglu,  M.  K.,  &  Guner,  A.  (1993).  Essential  oil  of  Scaligeria  lazica  Boiss.   Journal  of  Essential  Oil  Research,  5(4),  463-­‐464.     Baser,  K.  H.  C.,  Ozek,  T.,  Kurkcuoglu,  M.,  &  Guner,  A.  (1995).  Composition  of  the  essential  oil  from  fruits   of  Scaligeria  lazica  Boiss.  Journal  of  Essential  Oil  Research,  7(5),  557-­‐558.     Baser,  K.  H.  C.,  Ozek,  T.,  Tabanca,  N.  &  Duman,  H.  (1999a).  Essential  oil  of  Pimpinella  anisetum  Boiss.  et   Bal.  Journal  of  Essential  Oil  Research,  11(4),  445-­‐446.     Baser,  K.  H.  C.  (2002).  Recent  Advances  on  the  Umbelliferae  Essential  Oils  of  Turkey,  In  M.  I.  C.  Atta-­‐ur-­‐ Rahman,  K.M.  Khan  (Eds.),  Natural  Products  Chemistry  at  the  Turn  of  the  Century,  pp.  271-­‐289,  Karachi,   Pakistan     Baser,  K.  H.  C.,  Tabanca,  N.,  Ozek,  T.,  Demirci,  B.,  Duran,  A.  &  Duman,  H.  (2000h).  Composition  of  the   essential   oil   of   Chaerophyllum   aksekiense   A.   Duran   et   Duman,   a   recently   described   endemic   from   Turkey.  Flavour  and  Fragrance  Journal,  15(1),  43-­‐44.     Baser,  K.H.C.  &  Duman,  H.  (1997).  Composition  of  the  essential  oil  of  Laserpitium  petrophilum  Boiss.  et   Heldr.  Journal  Essential  Oil  Research,  9,  707-­‐708     Baser,   K.H.C.,   Kurkcuoglu,   M.   &   Ozek,   T.   (1992).   Composition   of   the   Turkish   cumin   seed   oil.   Journal   Essential  Oil  Research,  4,  133-­‐138.     Baser,   K.H.C.,   Ozek,   G.,   Ozek,   T.   &   Duran,   A.   (2006).   Composition   of   the   Essential   Oil   of   Chaerophyllum   macropodum  Boiss.  Fruits  Obtained  by  Microdistillation.  Journal  of  Essential  Oil  Research,  18,  515-­‐517.     Baser,  K.H.C.,  Ozek,  T.  &  Kirimer,  N.  (1993).  The  essential  oil  of  Laser  trilobum  fruit  of  Turkish  origin.   Journal  Essential  Oil  Research,  5,  365-­‐369.     Baser,  K.H.C.,  Ozek,  T.,  Abduganiev,  B.E.,  Abdullaev,  U.A.  &  Aripov,  Kh.  N.  (1997).  Composition  of  the   essential   oil   of   Bunium   persicum   (Boiss.)   B.Fedtsch.   from   Tajikistan,   Journal   Essential   Oil   Research,   9,   597-­‐598     Baser,  K.H.C.,  Tabanca,  N.,  Kirimer,  N.,  Bedir,  E.,  Khan,  I.A.  &  Wedge,  D.E.  (2007b).  Recent  advances  in   the   chemistry   and   biological   activities   of   the  Pimpinella   species   of   Turkey,   Pure   and   Applied   Chemistry,   79(4)  539-­‐556.     Baser,  K.H.C.  (1997b).  Tıbbi  ve  Aromatik  Bitkilerin  İlaç  ve  Alkollü  İçki  Sanayilerinde  Kullanımı.  ITO  Yayın   no.  1997-­‐39,  Istanbul     Beis,  S.,  Azcan,  N.,  Ozek,  T.,  Kara,  M.  &  Baser,  K.H.C.  (2000).  The  production  of  Essential  Oil  from  Cumin   Seeds.  Khimiya  Prirodnykh  Soedinenii,  3,  214-­‐  216.     Celik,   A.,   Arslan,   I.,   Herken,   E.   N.   &   Ermis,   A.,   (2013).     Constituents,   Oxidant-­‐Antioxidant   Profile,   and   Antimicrobial   Capacity   of   the   Essential   Oil   Obtained   from   Ferulago   sandrasica   Pesmen   and   Quezel.   International  Journal  of  Food  Properties,  16(8),  1655-­‐1662.  doi:  10.1080/10942912.2011.618898   Celik,   A.,   Aydinlik,   N.   &   Arslan,   I.   (2011).   Phytochemical   constituents   and   inhibitory   activity   towards   methicillin-­‐resistant   Staphylococcus   aureus   strains   of   Eryngium   species   (Apiaceae),   Chemistry   &   Biodiversity,  8(3),  454-­‐459.     43 Cetin,  B.,  Ozer,  H.,  Cakir,  A.,  Polat,  T.,  Dursun,  A.,  Mete,  E.,  Ozturk,  E.  &  Ekinci,  M.  (2010).  Antimicrobial   Activities   of   Essential   Oil   and   Hexane   Extract   of   Florence   Fennel   Foeniculum   vulgare   var.   azoricum   (Mill.)  Thell.  Against  Foodborne  Microorganisms.  Journal  of  Medicinal  Food,  13(1),  196-­‐204.     Chalcat,  J.  C.,  Ozcan,  M.  M.,  Dagdelen,  A.  &  Akgul,  A.  (2007).  Variability  of  essential  oil  composition  of   Echinophora   tenuifolia   subsp.   sibthorpiana   Tutin   by   harvest   location   and   year   and   oil   storage.   Chemistry  of  Natural  Compoundds,  43(2)  225-­‐227.     Cosge,   B.,   Kiralan,   M.   &   Gurbuz,   B.   (2008).   Characteristics   of   fatty   acids   and   essential   oil   from   sweet   fennel   (Foeniculum   vulgare   Mill.   var.   dulce)   and   bitter   fennel   fruits   (F.   vulgare   Mill.   var.   vulgare)   growing  in  Turkey.  Natural  Product  Research,  22(12),  1011-­‐1016.     Davis  P.  H.  (Ed.)  (1972).  Flora  of  Turkey  and  the  East  Aegean  Islands,  Vol.4,  Edinburgh  University  Press,   Edinburgh.     Davis,   P.   H.,   Mill   R.   R.   &   Kit   Tan   (Eds.)   (1988).   Flora   of   Turkey   and   the   East   Aegean   Islands,   Vol.10,   Edinburgh  University  Press,  Edinburgh.     Demirci,   B.,   Kiyan,   T.,   Koparal,   A.,   Kaya,   M.,   Demirci,   F.   &   Baser,   K.   (2010a).   The   in   vivo   and   in   vitro   angiogenic   evaluation   of   the   essential   oil   of   Echinophora   tournefortii.   Planta   Medica,   76(12),   1346-­‐ 1346.     Demirci,   B.,   Koltuksuz   Yasdikcioglu,   G.   &   Baser,   K.   H.   C.   (2013).   Sesquiterpene   hydrocarbons   of   the   essential  oil  of  Actinolema  macrolema  Boiss.  Turkish  Journal  of  Chemistry,  37(6),  917-­‐926.     Demirci,   B.,   Kosar,   M.,   Demirci,   F.,   Dinc,   M.   &   Baser,   K.   H.   C.   (2007).   Antimicrobial   and   antioxidant   activities   of   the   essential   oil   of   Chaerophyllum   libanoticum   Boiss.   et   Kotschy.   Food   Chemistry,   105(4)   1512-­‐1517.     Demirci,  B.,  Kosar,  M.,  Demirci,  F.,  Duran,  A.,  Dinc,  M.  &  Baser,  K.H.C.  (2006).  Malabaila  secacul  Banks   &   Sol.   Ucucu   Yaginin   Antimikrobiyal   ve   Antioksidan   Aktivitelerinin   Incelenmesi,   Paper   presented   at   the   16.  Bitkisel  Ilac  Hammaddeleri  Toplantisi  (XVI.  BIHAT),  Erzurum,  Turkey.     Demirci,   B.,   Kucukboyaci,   N.,   Adiguzel,   N.,   Baser,   K.   H.   C.   &   Demirci,   F.   (2010b).   Characterization   of   Szovitsia   callicarpa   volatile   constituents   obtained   by   micro-­‐   and   hydrodistillation.   Natural   Product   Communications,  5(2),  297-­‐300     Demirci,  F.,  Iscan,  G.,  Guven,  K.,  Kirimer,  N.,  Demirci,  B.  &  Baser,  K.  H.  C.  (2000).  Antimicrobial  activities   of  Ferulago  essential  oils,  Zeitschrift  fur  Naturforschung  -­‐  Section  C  Journal  of  Biosciences,  55(11-­‐12),   886-­‐889.     Dogan,  E.,  Duman,  H.,  Tosun,  A.,  Kurkcuoglu,  M.  &  Baser,  K.  H.  C.  (2006).  Essential  oil  composition  of   the   fruits   of   Seseli   resinosum   Freyn   et   Sint.   and   Seseli   tortuosum   L.   growing   in   Turkey.   Journal   of   Essential  Oil  Research,  18(1),  57-­‐59.     Duman,   A.   D.,   Telci,   I.,   Dayisoylu,   K.   S.,   Digrak,   M.,   Demirtas,   I.   &   Alma,   M.   H.   (2010).   Evaluation   of   Bioactivity   of   Linalool-­‐rich   Essential   Oils   from   Ocimum   basilicum   and   Coriandrum   sativum   Varieties.   Natural  Product  Communication,  5(6)  969-­‐974.     Duman,  H.  &  Watson,  M.F.  (1999).  Ekimia,  A  new  genus  of  Umbelliferae  and  two  new  taxa  of  Prangos   Lindl.  (Umbelliferae)  from  Southern  Turkey.  Edinburgh  Journal  of  Botany,  56(2)  199-­‐209.     Duran,  A.  (2014)  Personal  Communication.   44 Erdurak,  C.  S.,  Coskun,  M.,  Demirci,  B.  &  Baser,  K.  H.  C.  (2006).  Composition  of  the  essential  oil  of  fruits   and   roots   of   Ferulago   isaurica   Pesmen   and   F.   syriaca   Boiss.   (Umbelliferae)   from   Turkey.   Flavour   and   Fragrance  Journal,  21(1),  118-­‐121.     Figueredo,   G.,   Ozcan,   M.   M.   &   Chalchat,   J.   C.   (2011).   Effect   Of   Harvest   Years   On   Chemical   Composition   Of   Essential   Oils   of   Bitter   Fennel   (Foeniculum   vulgare   Mill.   subsp.   piperitum)   Fruits,   Journal   of   Food   Biochemistry,  35(4),  1223-­‐1230.     Gokbulut,  I.,  Bilenler,  T.  &  Karabulut,  I.  (2013).  Determination  of  Chemical  Composition,  Total  Phenolic,   Antimicrobial,   and   Antioxidant   Activities   of   Echinophora   tenuifolia   Essential   Oil.   International   Journal   of  Food  Properties,  16(7),  1442-­‐1451.     Güner,  A.,  Özhatay,  N.,  Ekim,  T.  &  Başer,  K.  H.  C.  (2000).  Flora  of  Turkey  and  the  East  Aegean  Islands.   Supp.  2,  Vol.11,  Edinburgh  University  Press,  Edinburgh.     Iscan,  G.,  Demirci,  F.,  Kurkcuoglu,  M.,  Kivanc,  M.  &  Baser,  K.  H.  C.  (2003).  The  bioactive  essential  oil  of   Heracleum  sphondylium  L.  subsp.  ternatum  (Velen.)  Brummitt.  Zeitschrift  fur  Naturforschung  -­‐  Section   C  Journal  of  Biosciences,  58(3-­‐4),  195-­‐200.     Iscan,   G.,   Ozek,   T.,   Ozek,   G.,   Duran,   A.   &   Baser,   K.   H.   C.   (2004).   Essential   oils   of   three   species   of   Heracleum  Anticandidal  activity.  Chemistry  of  Natural  Compounds,  40(6),  544-­‐547.     Kan,   Y.,   Kartal,   M.,   Ozek,   T.,   Aslan,   S.   &   Baser,   K.   H.   C.   (2007).   Composition   of   essential   oil   of   Cuminum   cyminum  L.  according  to  harvesting  times.  Turkish  Journal  of  Pharmaceutical  Sciences,  4(1),  25-­‐29.     Kartal,  N.,  Sokmen,  M.,  Tepe,  B.,  Daferera,  D.,  Polissiou,  M.  &  Sokmen,  A.  (2007).  Investigation  of  the   antioxidant   properties   of   Ferula   orientalis   L.   using   a   suitable   extraction   procedure.   Food   Chemistry,   100(2),  584-­‐589.     Kaya,  A.,  Demirci,  B.  &  Baser,  K.  H.  C.  (2007).  Study  of  the  essential  oils  from  the  flowers  and  fruits  of   Scandix  iberica  Bieb.  growing  in  Turkey.  Journal  of  Essential  Oil  Research,  19(2),  155-­‐156       Kaya,   A.,   Demirci,   B.   &   Baser,   K.   H.   C.   (2003).   The   essential   oil   of   Seseli   tortuosum   L.   growing   in   Turkey.   Flavour  and  Fragrance  Journal,  18(2),  159-­‐161.     Kilic,  C.  S.,  Coskun,  M.,  Duman,  H.,  Demirci,  B.  &  Baser,  K.  H.  C.  (2010b).  Comparison  of  the  Essential   Oils   From   Fruits   and   Roots   of   Prangos   denticulata   Fisch   et   Mey.   growing   in   Turkey.   Journal   of   Essential   Oil  Research,  22(2),  170-­‐173.     Kilic,  C.  S.,  Ozkan,  A.  M.  G.,  Demirci,  B.,  Coskun,  M.  &  Baser,  K.  H.  C.  (2010a).  Essential  oil  composition   of   four   endemic   Ferulago   species   growing   in   Turkey.   Natural   Product   Communications,   5(12),   1951-­‐ 1954     Kiralan,   M.,   Calikoglu,   E.,   Ipek,   A.,   Bayrak,   A.   &   Gurbuz,   B.   (2009).   Fatty   acid   and   volatile   oil   composition   of   different   coriander   (Coriandrum   sativum)   registered   varieties   cultivated   in   Turkey.   Chemistry  of  Natural  Compounds,  45(1),  100-­‐102.     Kosar,   M.,   Ozek,   T.,   Goger,   F.,   Kurkcuoglu,   M.   &   Baser,   K.   H.   C.   (2005).   Comparison   of   microwave-­‐ assisted   hydrodistillation   and   hydrodistillation   methods   for   the   analysis   of   volatile   secondary   metabolites.  Pharmaceutical  Biology,  43(6),  491-­‐495     45 Kose,   E.   O.,   Aktas,   O.,   Deniz,   I.   G.   &   Sarikurkcu,   C.   (2010).   Chemical   composition,   antimicrobial   and   antioxidant  activity  of  essential  oil  of  endemic  Ferula  lycia  Boiss.,  Journal  of  Medicinal  Plants  Research,   4(17),  1698-­‐1703.     Kubeczka  K.-­‐H.  &  Molleken,  U.  (1999).  The  essential  fruit  oils  of  Smyrnium  rotundifolium  and  Smyrnium   perfoliatum  (Apiaceae).  In  N.  Kırımer  &  A.  Mat  (Eds.),  Essential  Oils  (211-­‐220)  Eskişehir.     Kubeczka,   K.-­‐H.   (1988).   Phytochemical   studies   of   essential   oils   of   Umbelliferae   belonging   to   the   subfamily  Apioideae,  Proceedings  of  Le  Ombrellifere:  Ricerche  ed  applicazioni,  ASSISI,  29-­‐30  September   1988,  pp.  7-­‐31.   Kubeczka,   K.-­‐H.   (1998).   The   essential   oil   composition   of   Pimpinella   species,   In:   K.H.C.   Baser   &   N.   Kırımer  (Eds.),  Progress  in  Essential  Oil  Research,  Proceedings  of  the  28th   International  Symposium  on   Essential  Oils  (35-­‐56)  Eskişehir,  Turkey,  Anadolu  University  Press.     Kurkcuoglu,  M.,  Baser,  K.  H.  C.  &  Vural,  M.  (2006a).  Composition  of  the  essential  oil  of  Pastinaca  sativa   L.  subsp.  urens  (Req.  ex  Godron)  Celak,  Chemistry  of  Natural  Compounds,  42(1),  114-­‐115.     Kurkcuoglu,   M.,   Baser,   K.   H.   C.,   Iscan,   G.,   Malyer,   H.   &   Kaynak,   G.   (2006b).   Composition   and   anticandidal   activity   of   the   essential   oil   of   Chaerophyllum   byzantinum   Boiss.   Flavour   and   Fragrance   Journal,  21(1),  115-­‐117.     Kurkcuoglu,  M.,  Baser,  K.  H.  C.,  Tosun,  A.,  Duman,  H.  &  Duran,  A.  (2012).  Essential  oil  composition  of   Tordylium  syriacum  L.  (Umbelliferae)  collected  from  different  localities  in  Turkey.  Journal  of  Essential   Oil  Research,  24(4),  347-­‐350.     Kurkcuoglu,  M.,  Iscan,  G.,  Demirci,  F.,  Baser,  K.  H.  C.,  Malyer,  H.  &  Erdogan,  E.  (2010).  Composition  and   Antibacterial  Activity  of  the  Essential  Oil  of  Ferulago  confusa  Velen.  Journal  of  Essential  Oil  Research,   22(6),  490-­‐492.     Kurkcuoglu,   M.,   Ozek,   T.,   Baser,   K.H.C.   &   Malyer,   H.   (1995).   Composition   of   the   Essential   Oil   of   Heracleum  platytaenium  Boiss.  from  Turkey.  Journal  of  Essential  Oil  Research,  7,  69-­‐70     Kurtoglu,   S.,   Tan,   N.   Mericli,   A.   H.   &   Miski,   M.   (2013).   Biological   activities   and   chemical   constituents   of   Ferula  anatolica  Boiss.  Planta  Medica,  79,  P160     Miski,   M.,   Kurkcuoglu,   M.,   Iscan,   G.   &   Tosun,   F.   (2013a).   Biological   Activity   and   Composition   of   the   Essential   Oil   of   Ferula   rigidula   DC,   Paper   presented   at   the   10th   International   Symposium   on   the   Chemistry  of  Natural  Compounds  (10th  SCNC),  Taşkent/Buhara,  Uzbekistan.     Miski,   M.,   Kurkcuoglu,   M.,   Iscan,   G.   &   Tosun,   F.   (2013b).   Biological   Activity   and   Composition   of   the   Essential   Oil   of     Fruits   of   Ferula   halophila   Peşmen,   Paper   presented   at   the   10th   International   Symposium  on  the  Chemistry  of  Natural  Compounds  (10th  SCNC),  Taşkent/Buhara,  Uzbekistan.     Miski,  M.,  Kurkcuoglu,  M.,  Iscan,  G.  &  Tosun,  F.  (2012).  Ferula  drudeana  Korovin  Meyvalarından  Elde   Edilen  Uçucu  Yağın  GC/GC-­‐MS  Analizi  ve  Antimikrobiyal  Aktivitesi,  Paper  presented  at  the  20.  Bitkisel   İlaç  Hammaddeleri  Toplantısı  (20.  BİHAT),  Antalya,  Turkey.     Molleken,   U.,   Sinnwell,   V.   &   Kubeczka,   K.-­‐H.   (1998).   The   essential   oil   composition   of   fruits   from   Smyrnium  perfoliatum,  Phytochemistry,  47,  1079-­‐1083.     Monguzzi,   P.   M.   &   Akgul,   A.   (1993).   Essential   Oil   Constituents   of   Trachyspermum   copticum   (L.)   Link   Fruits.  Journal  of  Essential  Oil  Research,  5(1),  105-­‐106.     46 Ozcan,   M.   &   Akgul,   A.   (2003).   Essential   oil   composition   of   Turkish   pickling   Herba   (Echinophora   tenuifolia  L.  subsp.  sibthorpiana  (Guss.)  Tutin).  Acta  Botanica  Hungarica,  45(1-­‐2),  163-­‐167.     Ozcan,  M.  M.  &  Chalchat,  J.  C.  (2010).  Comparison  of  Chemical  Composition  of  Essential  Oil  Obtained   from   Different   Parts   of   Foeniculum   vulgare   ssp.   piperitum   Used   as   Condiment.   Journal   of   Food   Biochemistry,  34(6),  1268-­‐1274   Ozcan,   M.   M.,   &   Chalchat,   J.   C.   (2007).   Chemical   composition   of   carrot   seeds   (Daucus   carota   L.)   cultivated  in  Turkey:  characterization  of  the  seed  oil  and  essential  oil.  Grasas  Y  Aceites,  58(4),  359-­‐365     Ozcan,   M.   M.,   Pedro,   L.   G.,   Figueiredo,   A.   C.   &   Barroso,   J.   G.   (2006).   Constituents   of   the   essential   oil   of   sea  fennel  (Crithmum  maritimum  L.)  growing  wild  in  Turkey,  Journal  of  Medicinal  Food,  9(1),  128-­‐130.     Ozcan,   M.,   Akgul,   A.   &   Chalchat,   J.   C.   (2002).   Composition   of   the   essential   oil   of   Echinophora   tenuifolia   L.  ssp.  sibthorpiana  (Guss.)  Tutin  from  Turkey.  Journal  of  Essential  Oil  Research,  14(1),  23-­‐24     Ozcan,  M.,  Akgul,  A.,  Baser,  K.  H.,  Ozek,  T.  &  Tabanca,  N.  (2001).  Essential  oil  composition  of  sea  fennel   (Crithmum  maritimum)  form  Turkey  Nahrung,  45(5),  353-­‐356     Ozcan,  M.,  Bagci,  Y.,  Akgul,  A.,  Dural,  H.  &  Novak,  J.  (2000).  Chemical  composition  of  the  essential  oil  of   Prangos  uechtritzii  Boiss.  et  Hausskn.  fruits  from  Turkey.  Journal  of  Essential  Oil  Research,  12(2),  183-­‐ 185     Ozcan,   M.,   Bagci,   Y.,   Ertugrul,   K.   &   Novak,   J.   (2004).   Comparison   of   the   leaf,   root   and   fruit   oils   of   Diplotaenia  cachrydifolia  from  Turkey.  Journal  of  Essential  Oil  Research,  16(3),  211-­‐213     Ozek,   G.,   Ozek,   T.,   Baser,   K.   H.   C.,   Duran,   A.   &   Sagiroglu,   M,   (2006b).   Comparison   of   essential   oil   of   Xanthogalum  purpurascens  Lallem.  obtained  via  different  isolation  techniques,  Journal  of  Essential  Oil   Research,  18(2),  181-­‐184.     Ozek,   G.,   Ozek,   T.,   Baser,   K.   H.   C.,   Duran,   A.,   Sagiroglu,   M.   &   Duman,   H.   (2006a).   Comparison   of   the   essential   oils   of   Prangos   turcica   A.   Duran,   M.   Sagiroglu   et   H.   Duman   fruits   obtained   by   different   isolation  techniques.  Journal  of  Essential  Oil  Research,  18(5),  511-­‐514.     Ozek,  G.,  Ozek,  T.,  Baser,  K.  H.  C.,  Hamzaoglu,  E.  &  Duran,  A.  (2007a).  Composition  of  the  essential  oil   of  Hippomarathrum  cristatum  (DC.)  Boiss.  Journal  of  Essential  Oil  Research,  19(6),  540-­‐542     Ozek,   G.,   Ozek,   T.,   Iscan,   G.,   Baser,   K.   H.   C.,   Hamzaoglu,   E.   &   Duran,   A.   (2007b).   Comparison   of   hydrodistillation  and  microdistillation  methods  for  the  analysis  of  fruit  volatiles  of  Prangos  pabularia   Lindl.,  and  evaluation  of  its  antimicrobial  activity.  South  African  Journal  of  Botany,  73(4),  563-­‐569.     Ozek,   G.,   Ozek,   T.,   Iscan,   G.,   Baser,   K.H.C.,   Duran,   A.   &   Hammoglu,   E.   (2008).   Composition   and   antimicrobial   activity   of   the   oils   of   Ferula   szowitsiana   DC.   from   Turkey.   Journal   of   Essential   Oil   Research,  20(2)186-­‐190.     Ozek,   G.,   Duran,   A.,   Ozturk,   M.   &   Baser,   K.   H.   C.   (2010)   Neocryptodiscus   papillaris   (Boiss.)   Hernst   &   Heyn   Bitkisinin   Uçucu   Yağ   Kompozisyonu.   Paper   presented   at   the   19.   Bitkisel   Ilac   Hammaddeleri   Toplantisi  (19.  BİHAT),  Mersin,  Turkey.   Ozek,   T.,   Demirci,   B.   &   Baser,   K.   H.   C.   (2002).   Comparative   study   of   the   essential   oils   of   Heracleum   sphondylium   ssp   ternatum   obtained   by   micro-­‐   and   hydro-­‐distillation   methods.   Chemistry   of   Natural   Compounds,  38(1),  48-­‐50.     47 Ozek,   T.,   Kurkcuoglu,   M.,   Baser,   K.   H.   C.   &   Tosun,   A.   (2007a).   Composition   of   the   essential   oils   of   Tordylium  trachycarpum  (Boiss.)  Al-­‐Eisawi  et  Jury  and  Tordylium  hasselquistiae  DC.  growing  in  Turkey.   Journal  of  Essential  Oil  Research,  19(5),  410-­‐412.     Ozek,  T.,  Ozek,  G.,  Baser,  K.  H.  C.  &  Duran,  A.  (2005).  Comparison  of  the  essential  oils  of  three  endemic   Turkish  Heracleum  species  obtained  by  different  isolation  techniques.  Journal  of  Essential  Oil  Research,   17(6),  605-­‐610     Ozek,  T.,  Ozek,  G.,  Baser,  K.  H.  C.,  Duran,  A.  &  Sagiroglu,  M.  (2008).  Composition  of  the  essential  oils  of   Angelica   sylvestris   L.   var.   sylvestris   isolated   from   the   fruits   by   different   isolation   techniques.   Journal   of   Essential  Oil  Research,  20(5),  408-­‐411.     Ozek,  T.,  Ozek,  G.,  Duran,  A.,  Bagci,Y.,  Dinc,  M.  &  Baser,  K.  H.  C.  (2009).  Gas-­‐chromatographic  analysis   of   the   essential   oils   of   Johrenia   species   from   Turkey,   Paper   presented   at   the   40th   International   Symposium  on  Essential  Oils  (40th  ISEO),  Savigliano,  Italy.     Ozek,  T.,  Ozek,  G.,  Pimenov,  M.  G.,  Kljuykov,  E.  V.  &  Baser,  K.  H.  C.  (2007b).  Composition  of  the  fruit   and   leaf   essential   oils   of   Grammosciadium   pterocarpum   Boiss.,   a   new   floristic   record   for   Eskisehir,   Paper  presented  at  the  17.  Bitkisel  Ilac  Hammaddeleri  Toplantisi  (17.  BİHAT),  Kuşadası,  İzmir,  Turkey.     Ozek,   T.,   Ozek,   G.,   Pimenov,   M.G.,   Kljuykov,   E.   V.   &   Baser,   K.   H.   C.   (2010).   Fuernrohria   setifolia   C.   Koch   Bitkisinden   Mikrodistilasyon   ile   elde   edilen   Uçucu   Bileşenlerin   GC/FID   ve   GC/MS   Analizi.   Paper   presented  at  the  19.  Bitkisel  Ilac  Hammaddeleri  Toplantisi  (19.  BİHAT),  Mersin,  Turkey.   Ozel,   A.   (2009).   Anise   (Pimpinella   anisum):   Changes   in   Yields   and   Component   Composition   on   Harvesting   at   Different   Stages   of   Plant   Maturity.   Experimental   Agriculture,   45(1),   117-­‐126.   doi:   10.1017/s0014479708006959   Ozer,   H.,   Sokmen,   M.,   Gulluce,   M.,   Adiguzel,   A.,   Sahin,   F.,   Sokmen,   A.,   Kilic,   H.   &   Baris,   O.   (2007).   Chemical   composition   and   antimicrobial   and   antioxidant   activities   of   the   essential   oil   and   methanol   extract  of  Hippomarathrum  microcarpum  (Bieb.)  from  Turkey.  Journal  of  Agricultural  Food  Chemistry,   55(3),  937-­‐942.     Özhatay,  N.,  Akalın,  E.,  Özhatay,  E.  &  Unlu,  S.  (2009).  Rare  and  endemic  Taxa  of  Apiaceae  in  Turkey  and   their  Conservation  Significance.  Journal  of  Faculty  of  Pharmacy  Istanbul  40(2008-­‐2009)  1-­‐15.     Özhatay,   N.,   Kültür,   Ş.   &   Aksoy,   N.   (1994),   Checklist   of   additional   taxa   to   the   supplement   flora   of   Turkey,  Turkish  Journal  of  Botany,  18,  497-­‐514.     Özhatay,   N.,   Kültür,   Ş.   &   Aksoy,   N.   (1999).   Checklist   of   additional   taxa   to   the   supplement   flora   of   Turkey-­‐II,  Turkish  Journal  of  Botany,  23,  151-­‐169     Ozkan,   A.   M.   G.,   Demirci,   B.,   Demirci,   F.   &   Baser,   K.   H.   C.   (2008).   Composition   and   Antimicrobial   Activity  of  Essential  Oil  of  Ferulago  longistylis  Boiss.  Fruits.  Journal  of  Essential  Oil  Research,  20(6),  569-­‐ 573.     Ozturk,  S.  &  Ercisli,  S.  (2006).  Chemical  composition  and  in  vitro  antibacterial  activity  of  Seseli  libanotis.   World  Journal  of  Microbiology  &  Biotechnology,  22(3),  261-­‐265.  doi:  10.1007/s11274-­‐005-­‐9029-­‐9   Parlatan,  A.,  Saricoban,  C.  &  Ozcan,  M.  M.  (2009).  Chemical  composition  and  antimicrobial  activity  of   the   extracts   of   Kefe   cumin   (Laser   trilobum   L.)   fruits   from   different   regions.   International   Journal   of   Food  Sciences  and  Nutrition,  60(7),  606-­‐617.  doi:  10.3109/09637480801993938   48 Pimenov,   M.   G.   &   Kljuykov,   E.   V.(2013).   Ferula   divaricata   (Umbelliferae,   a   new   species   from   Central   Anatolia,  Turkey.  Phytotaxa,  99(1)  35-­‐39.     Polat,   T.,   Ozer,   H.,   Cakir,   A.,   Kandemir,   A.,   Mete,   E.,   Ozturk,   E.   &   Yildiz,   G.   (2011).  Volatile   Constituents   of  Cnidium  silaifolium  (Jacq.)  Simonkai  subsp.  orientale  (Boiss.)  Tutin  from  Turkey.  Journal  of  Essential   Oil  Bearing  Plants,  14(4),  453-­‐457.     Raharivelomanana,   P.,   Cambon,   A.,   Azzaro,   M.,   Bianchini,   J.-­‐P.   &   Faure,   R.   (1993).   b-­‐Bisabolenol   and   b-­‐ bisabolenal,   two   new   bisabolene   sesquiterpenes   from   Neocallitropsis   pancheri.   Journal   of   Natural   Products,  56(2)  272-­‐274.     Sampson,  B.  J.,  Tabanca,  N.,  Kirimer,  N.,  Demirci,  B.,  Baser,  K.  H.  C.,  Khan,  I.  A.,  Spiers,  J.M.  &  Wedge,  D.   E.   (2005).   Insecticidal   activity   of   23   essential   oils   and   their   major   compounds   against   adult   Lipaphis   pseudobrassicae  (Davis)  (Aphididae:  Homoptera),  Pest  Management  Science,  61(11),  1122-­‐1128.     Saracoglu,   H.   T.   &   Akin,   M.   (2009a).   Essential   oil   of   Bupleurum   pauciradiatum   Fenzl.   flowers,   Planta   Medica,  75(9),  1057-­‐1057.     Saracoglu,  H.  T.,  Akin,  M.,  Demirci,  B.  &  Baser,  K.  H.  C.  (2012).  Chemical  composition  and  antibacterial   activity   of   essential   oils   from   different   parts   of   some   Bupleurum   L.   species.   African   Journal   of   Microbiology  Research,  6(12),  2899-­‐2908.     Saracoglu,   H.T.   &   Akin,   M.   (2009b).   Essential   oil   of   Bupleurum   rotundifolium   L.   flowers.   Planta   Medica,   75(9),  1057-­‐1057.     Senatore,   F.,   Napolitano,   F.   &   Ozcan,   M.   (2000).   Composition   and   antibacterial   activity   of   the   essential   oil   from   Crithmum   maritimum   L.   (Apiaceae)   growing   wild   in   Turkey.   Flavour   and   Fragrance   Journal,   15(3),  186-­‐189.     Sumer   Ercan,   F.,   Bas,   H.,   Koc,   M.,   Pandir,   D.   &   Oztemiz,   S.   (2013).   Insecticidal   activity   of   essential   oil   of   Prangos   ferulacea   (Umbelliferae)   against   Ephestia   kuehniella   (Lepidoptera:   Pyralidae)   and   Trichogramma   embryophagum   (Hymenoptera:  Trichogrammatidae).   Turkish   Journal   of   Agriculture   and   Forestry,  37(6),  719-­‐725.     Tabanca,   N.,  Demirci,  B.,  Baser,  K.  H.  C.,  Mincsovics,  E.,  Khan,  S.  I.,   Jacob,   M.   R.,   &   Wedge,   D.   E.  (2007).   Characterization   of   volatile   constituents   of   Scaligeria   tripartita   and   studies   on   the   antifungal   activity   against  phytopathogenic  fungi.  Journal  of  Chromatography  B-­‐Analytical  Technologies  in  the  Biomedical   and  Life  Sciences,  850(1-­‐2),  221-­‐229.   Tabanca,  N.,  Demirci,  B.,  Kirimer,  N.,  Baser,  K.  H.  C.,  Bedir,  E.,  Khan,  I.  A.  &  Wedge,  D.  E.  (2005).  Gas   chromatographic-­‐mass   spectrometric   analysis   of   essential   oils   from   Pimpinella   aurea,   Pimpinella   corymbosa,  Pimpinella  peregrina  and  Pimpinella  puberula  gathered  from  Eastern  and  Southern  Turkey.   Journal  of  Chromatography  A,  1097(1-­‐2),  192-­‐198.     Tabanca,   N.,   Demirci,   B.,   Ozek,   T.,   Kirimer,   N.,   Baser,   K.   H.   C.,   Bedir,   E.,   Khan,   I.   A.   &   Wedge,   D.   E.   (2006).   Gas   chromatographic-­‐mass   spectrometric   analysis   of   essential   oils   from   Pimpinella   species   gathered  from  Central  and  Northern  Turkey.  Journal  of  Chromatography  A,  1117(2),  194-­‐205.     Tabanca,   N.,   Gao,   Z.,   Li,   X.-­‐C.,   Ozek,   G.,   Ozek,   T.,   Baser,   K.   H.   C.,   Uzunhisarcıklı,   E.,   Duran,   A.,   Hamzaoğlu,   E.   &   Wedge,   D.   E.   (2009).   A   new   acetylenic   derivative   compound   from   Prangos   49 platychlaena   ssp.   platychlaena   fruit   essential   oils,   The   50th   Anniversary   Meeting   of   the   American   Society  of  Pharmacognosy  (ASP),  Honolulu,  Hawai,  USA.     Telci,  I.  &  Hisil,  Y.  (2008).  Biomass  Yield  and  Herba  Essential  Oil  Characters  at  different  Harvest  Stages   of  Spring  and  Autumn  Sown  Coriandrum  sativum.  European  Journal  of  Horticultural  Science,  73(6),  267-­‐ 272.     Telci,   I.,   Bayram,   E.   &   Avci,   B.   (2006a).   Changes   in   yields,   essential   oil   and   linalool   contents   of   Coriandrum   sativum   varieties   (var.   vulgare   Alef.   and   var.   microcarpum   DC.)   harvested   at   different   development  stages.  European  Journal  of  Horticultural  Science,  71(6),  267-­‐271.     Telci,  I.,  Demirtas,  I.  &  Sahin,  A.  (2009).  Variation  in  plant  properties  and  essential  oil  composition  of   sweet   fennel   (Foeniculum   vulgare   Mill.)   fruits   during   stages   of   maturity.   Industrial   Crops   and   Products,   30(1),  126-­‐130.     Telci,  I.,  Toncer,  O.  G.  &  Sahbaz,  N.  (2006b).  Yield,  essential  oil  content  and  composition  of  Coriandrum   sativum  varieties  (var.  vulgare  Alef  and  var.  microcarpum  DC.)  grown  in  two  different  locations.  Journal   of  Essential  Oil  Research,  18(2),  189-­‐193     Tepe,  B.,  Akpulat,  H.  A.  &  Sokmen,  M.  (2011).  Evaluation  of  the  Chemical  Composition  and  Antioxidant   Activity   of   the   Essential   Oils   of   Peucedanum   longifolium   (Waldst.   &   Kit.)   and   P.   palimbioides   (Boiss.).   Records  of  Natural  Products,  5(2),  108-­‐116.     Tepe,  B.,  Akpulat,  H.  A.,  Sokmen,  M.,  Daferera,  D.,  Yumrutas,  O.,  Aydin,  E.,  Polissiou,  M.  &  Sokmen,  A.   (2006).   Screening   of   the   antioxidative   and   antimicrobial   properties   of   the   essential   oils   of   Pimpinella   anisetum  and  Pimpinella  flabellifolia  from  Turkey.  Food  Chemistry,  97(4),  719-­‐724.     Topal,  U.,  Sasaki,  M.,  Goto,  M.  &  Otles,  S.  (2008).   Chemical  compositions  and  antioxidant  properties  of   essential   oils   from   nine   species   of   Turkish   plants   obtained   by   supercritical   carbon   dioxide   extraction   and  steam  distillation.  International  Journal  of  Food  Sciences  and  Nutrition,  59(7-­‐8),  619-­‐634.     Tosun,   A.,   Kodama,   T.,   Nakanishi,   H.,   Baba,   M.   &   Okuyama,   T.  (2005).   The   composition   of   essential   oils   from  Seseli  species  growing  in  Turkey.  Natural  Medicines,  59(2),  85-­‐90.     Tosun,   A.,   Kurkcuoglu,   M.   &   Baser,   K.   H.   C.   (2010).   Composition   of   Tordylium   aegyptiacum   (L.)   Lam.   Essential  Oil.  Journal  of  Essential  Oil  Research,  22(3),  245-­‐246.     Tosun,   A.,   Kurkcuoglu,   M.   &   Baser,   K.   H.   C.   (2006b).   Essential   Oils   of   Tordylium   pestalozzae   Boiss.,   Tordylium   pustulosum   Boiss.   and   Tordylium   lanatum   (Boiss.)   Boiss.   (Umbelliferae)   Growing   Wild   in   Turkey.  Journal  of  Essential  Oil  Research,  18(6),  640-­‐642.     Tosun,  A.,  Kurkcuoglu,  M.,  Baser,  K.  H.  C.  &  Duman,  H.  (2007).  Essential  oil  of  Tordylium  ketenoglui  H.   Duman  et  A.Duran  (Umbelliferae)  growing  in  Turkey.  Journal  of  Essential  Oil  Research,  19(2),  153-­‐154.   Tosun,  A.,  Kurkcuoglu,  M.,  Dogan,  E.,  Duman,  H.  &  Baser,  K.  H.  C.  (2006a).  Essential  oil  composition  of   Seseli   petraeum   M.   Bieb.   and   Seseli   andronakii   Woron.   growing   in   Turkey.   Flavour   and   Fragrance   Journal,  21(2),  257-­‐259.     Tosun,   F.,   Kızılay,   C.   A.,   Erol,   K.,   Kılıc,   F.   S.,   Kurkcuoglu,   M.   &   Baser,   K.H.C.   (2008).   Anticonvulsant   activity  of  furanocoumarins  and  the  essential  oil  obtained  from  the  fruits  of  Heracleum  crenatifolium.   Food  chemistry,  107,  990-­‐993.     50 Tumen,   G.   &   Baser,   K.H.C.   (1997).   Composition   of   the   Essential   Oil   of   Scandix   australis   L.   subsp.   grandiflora  (L.)  Thell.  Journal  Essential  Oil  Research,  9,  335-­‐336.     Tumen,   G.,   Kurkcuoglu,   M.,   Demirci,   B.   &   Baser,   K.   H.   C.   (2005).   Composition   of   the   essential   oil   of   Myrrhoides  nodosa  (L.)  Cannon  from  Turkey.  Journal  of  Essential  Oil  Research,  17(2),  126-­‐127.     Uzel,  A.,  Dirmenci,  T.,  Celik,  A.  &  Arabaci,  T.  (2006).  Composition  and  antimicrobial  activity  of  Prangos   platychlaena  and  P.  uechtritzii.  Chemistry  of  Natural  Compounds,  42(2),  169-­‐171     Yildirim,  B.  &  Gok,  N.  (2012).  Effect  of  Sowing  Date  and  Varieties  on  Essential  Oil  Ratio  and  Essential  Oil   Components  of  Coriander  (Coriandrum  sativum  L.)  in  Van  Ecological  Condition,  Journal  of  Animal  and   Veterinary  Advances,  11(11),  1925-­‐1929.     Yıldız,   B.   &   Bahcecioglu,   Z.   (1997).   A   new   species   from   Malatya/Turkey:   Echinophora   lamondiana   B.   Yıldız  et  Z.  Bahcecioglu  (Apiaceae/Umbelliferae).  The  Karaca  Arboretum  Magazine,  4(1)  7-­‐12.     Yilmaz,  G.,  Demirci,  B.,  Koyuncu,  M.  &  Baser,  K.  H.  C.  (2009).  Composition  of  the  fruit  essential  oils  of   four  Heptaptera  species  growing  in  Turkey,  Chemistry  of  Natural  Compounds,  45(3),  431-­‐433.     View publication stats