Academia.eduAcademia.edu
Industrial Crops & Products 138 (2019) 111471 Contents lists available at ScienceDirect Industrial Crops & Products journal homepage: www.elsevier.com/locate/indcrop Everlasting flowers: Phytochemistry and pharmacology of the genus Helichrysum Maryam Akaberia, Amirhossein Sahebkarb,c, Narjes Azizid, Seyed Ahmad Emamia,e, T ⁎ a Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran c Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran d Forest and Rangeland Research Department, Khorasan Razavi Agricultural and Natural Resources Research and Education Center. AREEO, Mashhad, Iran e Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran b A R TICL E INFO A BSTR A CT Keywords: Helichrysum Phytochemistry Pharmacology Phloroglucinols Pyrones Anti-microbial The plants belonging to the genus Helichrysum (Asteraceae) are known as everlasting flowers and widely used in traditional medicine worldwide. Surveys on their traditional uses as well as phytochemical and pharmacological studies have revealed the potential of these plants for drug discovery. Although there are several studies on some of the species, most of the plants need to be investigated thoroughly. The aim of this review is to present a collated and coherent overview of the documented traditional uses, pharmacological activities and particularly bioactive constituents of Helichrysum species. Scientific databases including Scifinder, ISI Web of Knowledge, PubMed and Scopus as well as several traditional texts and books were searched to collect the data. Review of studies showed that Helichrysum spp. have been used in different systems of traditional and folk medicines for the treatment of various infections, wounds, digestive problems, diabetes and colds, of which some are confirmed in modern medicine such as the antimicrobial activity. Phytochemical investigations have shown that these plants are rich in phenolic compounds such as flavonoids, pyrones, phloroglucinols and essential oils, and in some species terpenes such as sesquitepenes and diterpenes are dominant. However, among these compounds, pyrones and phloroglucinols have been reported to be the bioactive constituents in most of the studies. Overall, according to the potential of these plants, further phytochemical, ethnopharmacological and pharmacological studies are required since only a few species have been investigated so far. 1. Introduction Helichrysum genus belonging to Asteraceae family consists of about 600 species worldwide. It is originally from Africa (244 species in South Africa), Madagascar, Australasia and Eurasia. The name of the genus is derived from the Greek words “helios” and “chryos”, which mean “sun” and “gold”, respectively. This nomenclature is due to the fact that the plant species of this genus typically have inflorescences of a bright yellow color (Perrini et al., 2009). The common names of the plants are everlasting flowers and immortelles since they retain their form and color when dried and are used in dry bouquets and flower arrangements. Some species like H. arenarium are also called the golden flower referring to the golden color of the flowers. From a systematic point of view, Helichrysum Mill. is a large genus, with a worldwide distribution (Azizi et al., 2014a, b; Azizi et al., 2019). The most well-known and studied species of this genus are H. italicum (Antunes Viegas et al., 2014), H. stoechas (Les et al., 2017), and H. arenarium (Pljevljakušić et al., 2018). Studies show that Helichrysum spp. are very rich in phenolic compounds mainly phloroglucinol derivatives and flavonoids (Bohlmann et al.,). Helichrysum spp. have been used as flavoring spices in a variety of foods and folk medicines, and for cosmetic purposes for centuries (Antunes Viegas et al., 2014). In addition, Helichrysum spp. have potential pharmacological applications for their antioxidant, antimicrobial, and anti-inflammatory activities (Taglialatela-Scafati et al., 2013; Mao et al., 2017). Considering the important role that the Helichrysum spp. play in the Abbreviations: CRP, c-reactive protein; DPP-IV, dipeptidyl peptidase-IV; EMA, European medicines agency; HIV, human immunodeficiency virus; IL-1β, interleukin1β; IL-6, interleukin-6; IL-8, interleukin-8; JNK, c-Jun N-terminal kinases; MAPK, mitogen-activated protein kinase; MIC, minimum inhibitory concentration; mPGES1, microsomal prostaglandin E synthase-1; NO, nitric oxide; PGE2, prostaglandin E2; TNF-α, tumor necrosis factor-α; VEGF, vascular endothelial growth factor; WHO, World Health Organization ⁎ Corresponding author at: Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran. E-mail address: emamia@mums.ac.ir (S.A. Emami). https://doi.org/10.1016/j.indcrop.2019.111471 Received 11 March 2019; Received in revised form 25 April 2019; Accepted 9 June 2019 0926-6690/ © 2019 Elsevier B.V. All rights reserved. Name Traditional use Country/Region Plant part/preparation Ref. H. adenocarpum DC. Diarrhea and vomiting in children South Africa Roots/decoction Chest problems or infection of the respiratory tract Smallpox Anthelmintic Coughs and colds and applied externally on wounds Relax body and to reduce swelling South South South South South H. argyrophyllum DC. Intestinal problems South Africa Leaf eaten raw Whole plant/wound dressing Whole plant/wound dressing Root/wound dressing Root/ ground and burnt and smeared on the body Root as infusion (Jacot Guillarmod, 1971; Neuwinger, 1996; Phillips, 1917) (Arnold et al., 2002; Githens, 1949) H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. arenarium athrixiifolium (Kuntze) Moeser caespititium (DC.) Harv caespititium (DC.) Harv caespititium (DC.) Harv callicomum Harv calophalum Klatt cochleariforme DC. cochleariforme DC. cooperi Harv crispum (L.) D. Don crispum (L.) D. Don crispum (L.) D. Don dregeanum Sond. ecklonis Sond faradifani H. H. H. H. H. H. H. foetidum (L.) Moench foetidum (L.) Moench foetidum (L.) Moench foetidum (L.) Moench fulgidum (L.f.) Willd graveolens italicum Antiseptic, coleretic and spasmolytic agent Chest complaints Headaches Nausea, virility Wound healing Colic Hyperfunction of the lower gastro-intestinal tract Coughs Infections of the respiratory tract Used as love charm Coughs, bronchitis, urinary tract infections and tuberculosis Colds and coughs Emetic and purgative Head cold Diarrhea in children A wound-healing and disinfectant agent, disinfectant, syphilis, diarrhea, cough and headache Infected sores Influenza Infected wounds, and herpes Eye problems Used for washing sore eyes Controlling the symptoms of diabetes mellitus, wound healing and as a diuretic Toothache, digestive disorders and catarrh, analgesic, anti-odontalgic, astringent, antiemetic and dermatologic tonic, allergy, stomach cleanser, cough, colds, tracheitis and laryngitis, skin diseases, and mouth antiseptic, liver and gall disorders, sleeplessness, headache, sniffles, helmintic infections, asthma Coughs and pulmonary tuberculosis Wounds Bronchitis, cough and pharyngitis, cardiotonic H. H. H. H. H. appendiculatum appendiculatum appendiculatum appendiculatum appendiculatum (L.f.) (L.f.) (L.f.) (L.f.) (L.f.) Less. Less. Less. Less. Less. 2 H. kraussii Sch. Bip H. longifolium DC. H. melaleucum Rchb. H. H. H. H. H. H. H. H. H. H. nudifolium var. leiopodium nudifolium var. leiopodium nudifolium var. leiopodium obconicum DC odoratissimum (L.) Sweet odoratissimum (L.) Sweet odoratissimum (L.) Sweet orientale (L.) Vaill panduratum O. Hoffm. pandurifolium Schrank. Intestinal parasites Chest complaints Respiratory infections Headache Colic in children Stomach and intestinal disorders Wounds and burns Headache Tonic for pregnant women Asthma and cough Malaria Respiratory conditions, back pain, heart trouble, kidney disease, and kidney stones Africa Africa Africa Africa Africa Africa South Africa South Africa South Africa South Africa South Africa South Africa South Africa Madagascar South South South South South Africa Africa Africa Africa Africa (Arnold et al., 2002; Batten and Bokelmann, 1966; Walker, 1996; Watt and Breyer-Brandwijk, 1962) Leaf as smoke Whole plant/smoke Root as decoction Whole plant/ointment Enema Root Infusion Whole plant/decoction Leaf/ointment (Arnold et al., 2002; Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) Leaf as decoction Root/extract Leaf/smoke Root/decoction (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Benelli et al., 2018) Leaves/poultice Leaf/extract Leaf/wound dressing Root/extract Decoction (Grierson and Afolayan, 1999) (Lourens et al., 2008) (Lourens et al., 2008) Europe Aerial parts (Antunes Viegas et al., 2014) South Africa South Africa Portugal Flower and seed/smoke Leaf Flower heads and leaves/ infusion Tea Whole plant/decoction Root Leaf/smoke inhalation Decoction as enema Flower and leaves/infusion Leaf/wound dressing Leaf/smoke Leaf/decoction Flowers/infusion Whole plant/sap Infusion (Lourens et al., 2008) (Lourens et al., 2008) (Rivera and Obón, 1995) South Africa South Africa South Africa South Africa South Africa Portugal South Africa South Africa South Africa Portugal South Africa South Africa (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Rivera and Obón, 1995) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Rivera and Obón, 1995) (Lourens et al., 2008) (Lourens et al., 2008) (continued on next page) Industrial Crops & Products 138 (2019) 111471 H. miconiifolium DC. South South South South South South Africa Africa Africa Africa Africa M. Akaberi, et al. Table 1 The traditional uses of Helichrysum spp. in different parts of the world. Industrial Crops & Products 138 (2019) 111471 (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Bigovic et al., 2010; Polat et al., 2013; Yeşilada et al., 1995) (Tetik et al., 2013) (Polat et al., 2013) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Lourens et al., 2008) (Antunes Viegas et al., 2014) (Antunes Viegas et al., 2014) South Africa South Africa Turkey Turkey Turkey South Africa South Africa South Africa South Africa Spain Spain Coughs, colds, catarrh, headache, fever, menstrual disorders, and urinary tract infections Renew virility in men Gastric and hepatic disorders, jaundice, dysuria and kidney stones Wounds Diabetes Dysmenorrhea Colic Epilepsy Rheumatism Toothache, urologic conditions and digestive disorders Conjunctivitis and ocular infections, pharyngitis and tonsillitis, wounds, hemorrhoids, intestinal parasitic infections, toothache, kidney disorders Headaches Sore eyes Bladder problems 3. Traditional uses All over the world, the plants of genus Helichrysum has been used in traditional medicine for at least 2000 years. These plants have traditionally been used for ornamental, medicinal and food purposes (Antunes Viegas et al., 2014). For instance, H. italicum subsp. picardii is an aromatic halophyte common in southern Europe frequently used as a spice and traditional medicine. Generally, everlasting flowers have been used mainly in different traditional medicines as an infusion or decoction; for example, H. stoechas Moench infusion has been used traditionally to treat diverse disorders such as influenza and cold, fever, nervousness, as well as gallbladder, urinary bladder, digestive and pancreas problems (Benítez et al., 2010). The preparation of H. arenarium in the form of an infusion or decoction that is based on its traditional use for treating digestive problems (e.g. fullness and bloating) has been approved by the World Health Organization (WHO) and the European Medicines Agency (EMA). Table 1 shows the application of different Helichrysum spp. in various traditional medicine. These data show that the most frequently reported traditional uses of Helichrysum spp. are related to its antimicrobial properties. However, it has been also used as an analgesic agent and for the treatment of diabetes and digestive problems. South Africa South Africa South Africa Leaf and root/infusion Leaves South Africa South Africa 4. Phytochemistry Lloyd et al. was the first group who investigated the phytochemical composition of the plants belonging to the genus Helichrysum in 1967 by working on the species H. dendroideum (Bohlmann and Zdero, 1973), of which some terpene alcohols were isolated. Other studies on this genus confirmed the presence of terpenoids and essential oils as one of the main classes of secondary metabolites. However, further studies by other research groups on the genus showed that phenolic and oxygenated compounds contributed the major components. The reported secondary metabolites from the genus can be categorized into six structural types: flavonoids and chalcones, phenolic acids, terpenes and essential oils, pyrones (both homo- and heterodimeric), benzofurans (bitalin esters) and phloroglucinols (Taglialatela-Scafati et al., 2013) consisting mainly of two types of substituents: a prenyl/geranyl group and an acyl group. The most common acyl substituents are methyl, isopropyl, and 2-methylbutanoyl. The isolated pyrones from Helichrysum spp. can be either monomers such as the compound micropyroe 1 and glycosylated forms of yangonin 2-3 (acylated styrylpyrones) (D’ Abrosca et al., 2013) or they can be hetero- and homo-dimers (Fig. 1 and Table 6); helipyrone A 4 (Opitz and Hänsel, 1970), B 5, and C 6 (Vrkcoč et al., 1975) are examples of H. stoechas H. stoechas H. plicatum H. plicatum 4.1. Pyrones H. plicatum H. pedunculatum Hilliard and Burtt H. pedunculatum Hilliard & B.L.Burtt H. petiolare Hilliard and Burtt Infusion South Africa Heart trouble, backache, kidney disease, coronary thrombosis, bladder conditions/ infections, asthma, and influenza Antiseptic Inflammation and wounds H. patulum (L.). Don. The selection of relevant data was made through a search using the keyword “Helichrysum” in scientific databases such as “SciFinder”, “Google Scholar”, “ISI Web of Knowledge”, “PubMed”, “ScienceDirect” and “Wiley Online Library”. Information obtained in local and foreign books and other sources including several traditional texts and books were used to collect the information. Table 7 shows the scientific names of Helichrysum taxa reviewed in this paper. Leaf/tea Root/decoction Flowers as infusion, and decoction Ointment as infusion Flowers as infusion Root/decoction enema Leaf/decoction Roots Flowers as infusion Flowers and stems as decoction and ointment Aerial parts/smoke inhalation Decoction Root/decoction (Lourens et al., 2008) (Bhat and Jacobs, 1995) 2. Search strategy Country/Region (Lourens et al., 2008) traditional medicinal practices of many countries around the world, reviewing the studies and investigations about these valuable plants could be helpful for future drug discovery investigations. The present review deals with the traditional uses and pharmacological studies of Helichrysum spp. In addition, this review introduces the bioactive compounds isolated from the genus. Traditional use Name Table 1 (continued) Plant part/preparation Ref. M. Akaberi, et al. 3 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Fig. 1. Pyrones from Helichrysum spp. homo-dimer pyrones. Hetero-dimer pyrones are reported to consist of one phloroglucinol ring attached to an α-pyrone moiety via a methylene bridge. Bohlmann et al. (1980) isolated 23-methylauricepyrone 7 as a mixture with norauricepyrone 8 from H. auriceps (Bohlmann and Zdero, 1980b). Appendino et al. (2001) isolated and identified arzanol 9 and arenol 10 as novel prenylated phloroglucinol α-pyrones from H. italicum (Roth) Don spp. Microphyllum (Appendino et al., 2007a; Lavault and Richomme, 2004). Although the presence of a prenyl side chain is typical to these heterodimers like 9-14 (Appendino et al., 2007a; Akaberi et al., 2019), 7, 16 (Bohlmann and Zdero, 1980b), and 24 (Rosa et al., 2007), in some reported structures it can be absent (norauricepyrone 8) (Jakupovic et al., 1986), rearranged (heliarzanol, 15) (Taglialatela-Scafati et al., 2013), or doubled as a geranyl group (17-23 isolated from H. decumbens) (Tomás-Barberán et al., 1990; TomásLorente et al., 1989; Akaberi et al., 2019). Not only hetero-dimers but also hetero-trimers with two α-pyrone rings have been found from the genus, for instance, 23-methylitalidipyrone 25 and italidipyrone 26 from H. italicum (Hänsel et al., 1980). 4 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Fig. 2. Phloroglucinols from Helichrysum spp. As abovementioned, in some derivatives, the prenyl or geranyl groups are rearranged and create new scaffolds. They may undergo cyclization leading to the formation of chromane and benzofuran derivatives such as compounds italipyrone 27, 20-prenylitalipyrone 28, plicatipyrone 29, isobutyrylhelichromenopyrone 30, 2-methylbutyrylhelichromenopyrone 31, helicerastripyrone 32 (Bohlmann et al., 1984; Hänsel et al., 1980; Rios et al., 1991), helicepyrone 33, cycloarzanol 34, and helicyclol 35 (Akaberi et al., 2019). Lepidissipyrone 36 and 8-prenyllepidissipyrone 37 are examples of a chromanone moiety in the molecules isolated from H. lepidissimum (Jakupovic et al., 1989b). In a recent study, two new pyrone derivatives Helitalone A 38 and B 39 have been isolated and identified from H. italicum (Werner et al., 2019). Interestingly, these compounds are the first examples of pyrones reported from Helichrysum genus bearing an isopropyl and 1butyl substitutes in the pyrone ring moieties. It is noteworthy that in arzanol 9 or other α-pyrone phloroglucinols, the presence of several hydrogen bond donor or acceptor sites makes intramolecular hydrogen bonding patterns the dominant stabilizing factor. The lowest energy conformers have the highest number of stronger intramolecular hydrogen bonds (Mammino, 2017). In this case, thanks to the presence of an acyl group (COR group) whose sp2 O can form an intramolecular hydrogen bond with one of the two ortho OHs, and the presence of an α-pyrone ring which is attached to one position meta to the COR group, arzanol can form up to three OeH···O bonds simultaneously (Mammino, 2017). 5 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Fig. 3. Benzofurans and phtalides from Helichrysum spp. et al., 1986; Popoola et al., 2015b). Some reported phloroglucinols from this genus include helinudifolin 40, 41 (Jakupovic et al., 1986), helinivene A 42 and B 43, 1-(butanone)-3-prenyl-phloroglucinol 44, 1-(2methylbutanone)-3-prenyl-phloroglucinol 45, 1-butanone-3-(3- 4.2. Phloroglucinols Phloroglucinols as homo-dimers and monomers are another class of secondary metabolites present in most of the studied species (Jakupovic Table 2 Flavonoids and phenolic acids reported from Helichrysum spp. Helichrysum spp. Compound (s) Activity Ref. H. arenarium subsp. arenarium Caffeic acid conjugates (chlorogenic acid and dicaffeoylquinic acids) and flavonoids (apigenin, naringenin, apigenin-7-O-glucoside and naringenin-Ohexosides) Naringenin-7-O-β-d-glycoside, isoquercitrin, and astragalin Galangin Antibacterial (Gradinaru et al., 2014) _ Antibacterial and antioxidant Antifungal (Yang et al., 2009) (Cushnie and Lamb, 2006; De La Puerta et al., 1999) (Tomás-Lorente et al., 1989) _ (Gouveia and Castilho, 2009) Atimicrobial (Malolo et al., 2015) Anti-biofilm _ (D’Abrosca et al., 2013) (Karasartov et al., 1992) Anticarcinogenic Antimicrobial _ (Yagura et al., 2008) (Malolo et al., 2015) (Gouveia and Castilho, 2011) _ (Mutanyatta-Comar et al., 2006) Antioxidant Antioxidant (Aiyegoro and Okoh, 2009) (Carini et al., 2001) Antioxidant (Popoola et al., 2015a) H. arenarium (L.) Moench H. aureonitens H. decumbens H. devium H. foetidum (L.) Moench H. italicum H. italicum H. maracandicum H. mechowianum Klatt. H. obconicum H. paronychioides H. pedunculatum H. stoechas H. teretifolium 3,5-dihydroxy-6,7,8-trimethoxyflavone, 5,7-dihydroxy-3,6,8-trimethoxy-flavone and 3,5-dihydroxy-6,7-dimethoxyflavone Quinic acid derivatives, O-glycosylated flavonoids, caffeic acid derivatives and a protocatechuic acid derivative 7, 4′-dihydroxy-5-methoxy-flavanone, 6′-methoxy-2′,4, 4′-trihydroxychalcone, 6′methoxy-2′,4-dihydroxychalcone -4′-O-β-D-glucoside, apigenin (4), apigenin-7-Oβ-D-glucoside, kaur-16-en-18-oic acid Lignans, and quinic acid derivatives Kaempferol, 3,5,7-trihydroxy-8-methoxyflavone and 3,5-dihydroxy-6,7,8trimethoxyflavone Naringenin chalcone, and isosalipurposide 3,5,7-trihydroxy-8-methoxyflavone, and 4,5-dicaffeoyl quinic acid Quinic acid deriavtives, caffeoylquinic acid, malonylcaffeoylquinic acid, coumaroylquinic acid, and caffeoylshikimic acids 3-methylquercetin, 3,3´-dimethylquercetin, 3,7-dimethylkaempferol, penduletin, eupalitin, 2-(2-methylpropanoyl)-4-prenylphloroglucinol, and 2-(2methylbutanoyl)-4-prenylphloroglucinol Flavonoids, proanthocyanidin and phenolic contents Neo-chlorogenic acid, chlorogenic acid and crypto-chlorogenic acid, isomeric dicaffeoyl quinic acids, isomeric naringenin glucosides, quercetin, kaempferol and apigenin glucosides and a tetrahydroxychalcone-glucoside Isoxanthohumol, 2',4',6'-trihydroxy-3'-prenylchalcone, isoglabranin, glabranin, quercetin and compounds 44-48 6 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Fig. 4. Flavonoids and chalcones from Helichrysum spp. 1989b) (Fig. 2 and Table 6). Recently, helispiroketals A–H 58-65, phloroglucinol derivatives bearing an α,β-unsaturated spiroketal unit with five-membered rings, have been isolated from the endemic Iranian H. oocephalum (Akaberi et al., 2019). methylbut-2-enylacetate)-phloroglucinol 46, 1-(2-methylpropanone)-3prenylphloroglucinol 47, caespitate 48 (Popoola et al., 2015b), 2-butanoyl-4-prenylphloroglucinol 49 (Mutanyatta-Comar et al., 2006), 2(2-methylpropanoyl)-4-prenylphloroglucinol 50 (Jakupovic et al., 1986), 2-(2-methylbutanoyl)-4-prenylphloroglucinol 51 (Bohlmann and Mahanta, 1979), caespitin 52 (Dekker et al., 1984), 53 (Drawert and Beier, 1976), 54 (Bohlmann and Mahanta, 1979), 55 (Bohlmann et al., 1984), 56 (Randriaminahy et al., 1992), and 57 (Jakupovic et al., 4.3. Benzofurans and phtalides Benzofuran derivatives are another class of heterocyclic compounds 7 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Table 3 The major constituents and pharmacological activities of the essential oils from Helichrysum spp. Helichrysum spp. Major compounds Activity Ref. H. arenarium (L.) Moench. Spathulenol (36.6%) and β-pinene (12.5%) _ Beta-caryophyllene, δ-cadinene, octadecane, heneicosane Antimicrobial Antibacterial _ Linalool (1.7%), anethole (3.2%), carvacrol (3.6%) and α-muurolol (1.3%) Hexadecanoic acid (14.7%), β-caryophyllene (10.6%), α-humulene (7.7%) Alpha-pinene (38.5%), β-caryophyllene (23.0%), 1,8 cineole (12.0%), Isoborneol (28.2%), β-caryophyllene (12.9%), δ-cadinene (6.3%), bornyl acetate (6.0%), carvacrol (37.7%), α-pinene (19.7%) and β-caryophyllene (8.5%) Beta-pinene (10.3%), 1,8-cineole (24.8%) and α-humulene (10.1%) 1,8-cineole (27.3%) 1, 8-cineole (18%), α-humulene (11.6%) and β-caryophyllene (9.6%) _ _ _ (Chinou et al., 2004) (Moghadam et al., 2014) (Judzentiene and Butkiene, 2006) (Czinner et al., 2000) (Javidnia et al., 2009) (Azar et al., 2011) Bera-caryophyllene (46.4%) and α-humulene (10.9%) (E)-caryophyllene (55.6%) Alpha-fenchene (35.6%), γ-curcumene (17.7%) Alpha-fenchene (32.3%), γ-curcumene (19.4%), (E)-β-caryophyllene (14.2%), αcurcumene (2.9%), limonene (2.8%), lavandulyl acetate (2.1%) and α-fenchene hydrate (1.7%) (E)-caryophyllene (34.6%) Selina-5,11-diene (45.3%), δ-3-carene (7.8%), 1,8-cineole (4.2%) and βcaryophyllene (4.9%) Alpha-cubebene (10.5%), β-caryophyllene (9.4%), azulene-octahydro (7.5%), caryophyllene oxide (8.2%) 1,8-cineole (47.4%) 1,8-cineole (47.4%), bicyclosesquiphellandrene (5.6%), γ-curcumene (5.6%), αamorphene (5.1%) and bicyclogermacrene (5%) 1,8-cineole (59.7%) 1,8-cineole (51.5%) (E)-caryophyllene (34.0%) Gamma-curcumene, α-pinene, β-selinene, α-selinene, and limonene Neryl acetate (32.65%), γ‐Curcumene (11.64%), Italidione I (7.42%), Limonene (5.54%), Neryl propionate (4.80%), Italidione II (2.65%), Italidione III (1.92%) Alpha-trans-bergamotene (10.2%) and β-acoradiene (10.1%) Neryl acetate (8.1%), β-acoradiene Nerol (2.8-12.8%) and neryl acetate (5.6-45.9%) Iso-italicene epoxide (16.8%), β-costol (7.5%) and (Z)-α-trans-bergamotol (4.7%) Alpha-Cedrene (13.61%), α-curcumene (11.41%), geranyl acetate (10.05%), limonene (6.07%), nerol (5.04%), neryl acetate (4.91%) and α-pinene (3.78%) Alpha-cedrene (13.61%), α-curcumene (11.41%), geranyl acetate (10.05%), limonene (6.07%), nerol (5.04%), neryl acetate (4.91%) and α-pinene (3.78%) Alpha-pinene (10.2%), α-cedrene (9.6%) aromadendrene (4.4%), β-caryophyllene (4.2%), and limonene (3.8%), neryl acetate (11.5%), 2-methylcyclohexyl pentanoate (8.3%), 2-methylcyclohexyl octanoate (4.8%), and geranyl acetate (4.7%) Neryl acetate (26.0%), nerol (9.1%), neryl propionate (6.7%), γ-curcumene (10.8%) and cis-dihydro-occidentalol (4.3%) Nerol and its esters (acetate and propionate), limonene, and linalool Neryl acetate (17.6–35.6%), nerol (3.7–14.4%) and eudesmen-5-en-11-ol (6.4–23.5%) Nerol (10.7%), neryl acetate (28.9%), neryl propionate (11.4%) and γ-curcumene (11.4%) Guaiol (8.9%), nerol (7.0%) and β-caryophyllene (6.0%) Beta-caryophyllene (30.7%), α-pinene (12.1%), α-humulene (9.8%) and βsesquiphellandrene (6.9%) Rosifoliol (22.3%), β-caryophyllene (10.1%) and α-humulene (9.0%) Limonene (74.6%) and α-pinene (12.9%) Beta-caryophyllene (35.4%) and γ-curcumene (22.3%) Neryl acetate (18.2%), rosifoliol (5-eudesmen-11-ol, 11.3%) Delta-cadinene (8.4%) and γ-cadinene (6.7%) Gamma-gurjunene (11.06%), spathulenol (9.90%), alloaromadendrene (7.53%), β-caryophyllene (7.10%) β-pinene (51.6%), limonene (16.9%), α-humulene (5.6 %), β-caryophyllene (4.7 %) Alpha-pinene (47% and 41%), β-caryophyllene (14% and 5%) and α-curcumene (4% and 20%) Alpha-pinene (43.4%), (E, E)-farnesol (16.8%) and α-humulene (14.6%) Beta-caryophyllene (13.5%), menthone (10.8%), dodecane (9.1%) and menthol (8.9%) Fenchene (88.3%) Cis-α-bisabolene (22.7%), β-caryophyllene (12.6%), β-caryophyllene oxide (8.8%), β-bisabolene (4.7%) and viridiflorol (3.7%) Beta-elemene, beta-caryophyllene, geraniol, and camphene 1,8-cineole (11.7%) and β-caryophyllene (29.5%) _ _ Insecticidal _ (Baser et al., 2002) (Cavalli et al., 2001) (Ramanoelina et al., 1992) (Baser et al., 2002) (Cavalli et al., 2001) (Benelli et al., 2018) (Cavalli et al., 2006) _ _ (Cavalli et al., 2001) (El-Olemy et al., 2005) _ (Bagci et al., 2013) Insecticidal Cytotoxic, antimalarial, and antioxidant _ _ _ _ Antibacterial (Kasmi et al., 2017) (Afoulous et al., 2011) (Cavalli et al., 2001) (Baser et al., 2002) (Cavalli et al., 2001) (Jerković et al., 2016) (Cui et al., 2015) _ (Zeljkovic et al., 2015) _ Phytotoxic Antimicrobial (Leonardi et al., 2013) (Mancini et al., 2011) (Djihane et al., 2017) Antimicrobial (Djihane et al., 2017) Anti-bacterial and antifungal (Mastelic et al., 2005) _ (Marongiu et al., 2003) Antifungal _ (Angioni et al., 2003) (Usai et al., 2010) _ (Satta et al., 1999) _ Antimicrobial (Tsoukatou et al., 1999) (Bougatsos et al., 2003) _ _ Anticancer (Javidnia et al., 2009) (Ruberto et al., 2002) (Pino et al., 2004) (Ornano et al., 2015) _ (Elkiran et al., 2013) Antibacterial and cytotoxic _ (Lawal et al., 2015) (Kuiate et al., 1999) _ _ (Lwande et al., 1993) (Firouznia et al., 2007) _ Antimicrobial (Öztürk et al., 2014) (Bougatsos et al., 2003) _ (Baser et al., 2002) H. artemisioides Boiss. et Hausskn. H. aucheri H. bracteiferum H. cordifolium H. faradifani H. forsskahlii (Gmel) Hilliard et Burt H. graveolens H. gymnocephalum H. hypnoides H. italicum H. italicum G. Don ssp. microphyllum (Willd) Nym H. italicum ssp. serotinum H. kraussii H. H. H. H. leucocephalum Boiss. litoreum Guss. melaleucum Rchb. ex Holl. microphyllum Cambess. ssp. tyrrhenicum Bacch. H. noeanum Boiss. H. odoratissimum (L.) Less. H. oocephalum Boiss. H. plicatum subsp. isauricum H. rugulosum H. rupestre H. rusillonii _ _ _ (continued on next page) 8 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Table 3 (continued) Helichrysum spp. Major compounds Activity Ref. H. selaginifolium H. splendidum Beta-pinene (38.2%) Germacrene D-4-ol (17.08%), germacrene D (9.04%), bicyclogermacrene (8.79%) and δ-cadinene (8.43%) Alpha-terpinene (14.9%), β-pinene (10.2%) and 1,8-cineole (8.6%) Beta-caryophyllene, α-humulene, α-pinene and limonene Alpha-pinene (28.3%), epi-α-bisabolol (21.9%) and β-caryophyllene (5.5%) Alpha-pinene (28.3%), epi-α-bisabolol (21.9%) and β-caryophyllene (5.5%) _ _ (Cavalli et al., 2001) (Marongiu et al., 2006) _ Antibacterial _ _ (Chagonda et al., 1999) (Roussis et al., 2002) (Tsoukatou et al., 1999) (Tsoukatou et al., 1999) H. stoechas (L.) H. stoechas ssp. stoechas 69 (Rosa et al., 2007), 70 (Jerković et al., 2016), 71 (Proksch and Rodriguez, 1983), isocaproylbitalin A 72 (Bohlmann and Zdero, 1970) and bitalin A β-D-glucopyranoside derivative 73 (D’ Abrosca et al., 2013), nonanoylbitalin A 74 (Bohlmann and Zdero, 1970), oleoylbitalin A 75 (Bohlmann and Zdero, 1970), propanoylbitalin A 76 (Bohlmann and Zdero, 1970), 2,3-dihydro-5,7-dihydroxy-2-isopropenyl-6-(2-methylpropenoyl)benzofuran 77 (Bohlmann et al., 1984), 78, 79 (D’ Abrosca et al., 2013), 80 (Opitz and Hansel, 1971), and 81 (Hänsel et al., 1980) have been identified in different Helichrysum species. In a study in 2016, supercritical CO2 extraction of dried immortelle flowers (H. italicum) yielded tremetone derivatives 12-acetoxytremetone, gnaphaliol 70 as well as bitalin A 66 and 9-acetylgnaphadiol (Jerković et al., 2016). These compounds can be found as glucosides like β-D-OGlcs of gnaphadiol (Bohlmann et al., 1984; Mari et al., 2014; Rigano et al., 2014; Rosa et al., 2007; Taglialatela-Scafati et al., 2013). Phtalide derivatives have also been reported from Helichrysum spp. Platypterophtalide 82 (Jakupovic et al., 1987b) has been identified from the roots of H. platypterum (Jakupovic et al., 1987b). The compound 5,7-dihydroxyphtalide 83 (Vrkoč et al., 1973), 5,7-dimethoxyphtalide 84 (Opitz and Hansel, 1971), 7-hydroxy-5-methoxyphthalide 85 (Opitz and Hansel, 1971) and its glucosides 7-O-β-D-glucopyranoside, 7-O-(6-O-malonyl-β-D-glucopyranoside), and 7-O-[β-D-glucopyranosyl -β-D-glucopyranoside] have been reported from H. italicum, H. arenarium and H. polyphyllum. 4.4. Flavonoids, chalcones, and phenolic acids These compounds play an important role in the antioxidant and anti-inflammatory activities reported for this genus and contribute the major components of the polar fractions from various species (Facino et al., 1990). Table 2 shows the phenolic compounds isolated so far from the polar extracts of Helichrysum spp. Flavonoids have been found as both glycosides and free aglycones as well as dimers, trimers, or more complex aggregates (Fig. 4). For instance, free aglycones of apigenin, naringenin and kaempferol as well as their glycosides have been reported from the flower heads of H. plicatum (Bigović et al., 2017). Some other known flavonoids reported from Helichrysum spp. are prunin, isosalipurposide, narirutin, naringin, eriodictyol, luteolin, galuteolin, astragalin and quercetin (Bohlmann et al., 1984; Grinev et al., 2016; Mao et al., 2017). Since Helichrysum spp. are rich in flavonoids, many new structures have also been reported. Flavonoid-related structures 86-89 (Popoola et al., 2015a) have been isolated and identified from H. teretifolium (Popoola et al., 2015a). Compounds 90-93 (Morikawa et al., 2009) including four new flavanone and chalcone glycosides named arenariumosides I, II, III, and IV have been reported from the methanolic extract from the flowers of H. arenarium (Wang Fig. 5. Sesquiterpenes from Helichrysum spp. and possible active constituents present in Helichrysum spp. (Fig. 3). Tremetone derivatives such as bitalin A 66 (Bohlmann and Zdero, 1970; Rosa et al., 2007), acetoxytremetone 67, 68, acetoxyhydroxytremetone 9 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Fig. 6. Diterpenes from Helichrysum spp. et al., 2009). Moreover, the precursors of flavonoids have been detected as monomers and dimers; chemical profiling of infusions and decoctions of H. italicum subsp. picardii by UHPLC-PDA-MS showed chlorogenic and quinic acids, dicaffeoylquinic-acid isomers and gnaphaliin-A as the major constituents (Pereira et al., 2017). Cameroonenoside A 94, a new cinnamic acid glycoside ester has been isolated for the first time from H. cameroonense (Antoine et al., 2011). Among various flavonoid constituents of Helichrysum, chalcones are considered to be one of the most important bioactive compounds (95 and 96) (do Nascimento and Mors, 1972d; Popoola et al., 2015a). For example, Aljancic et al. (2014) could identify two structurally distinct chalcone dimers namely tomoroside A 97 and tomoroside B 98 from H. zivojinii with anti-cancer activities. Similar to these chalcone dimers, Morikawa et al. (2015) identified three new dimeric dihydrochalcone glycosides named arenariumosides V-VII 99-101 from a methanol extract of everlasting flowers of H. arenarium L. Moench. 4.5. Terpens and essential oil Studies on the essential oil profile of plants belonging to Helichrysum genus constitute the major investigations established on these plants and revealed that these species produce a complex bouquet of vegetative and floral volatiles. Several essential oil products from Helichrysum spp. are being sold in the markets for medicinal and non-medicinal purposes. Table 3 summarizes the main compounds in the essential oil of different species and their biological activities. The studies have shown that the essential oil mainly includes monoterpenes and sesquiterpenes and the most reported activity for the oil is antibacterial and antifungal properties; however, there are a few reports about their insecticidal and cytotoxic activities. Helichrysum spp. is a rich source of sesquiterpenes like other members of the plants belonging to Compositae family. The chemical structures of sesquiterpenes that have been reported to date are depicted in Fig. 5 (102-119). Eudesman sesquiterpenes like eudesm-5-en11-ol 116 from the oil of H. italicum (Bianchini et al., 2004), drimane 10 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Fig. 7. Miscellaneous compounds from Helichrysum spp. derivatives like helinudichromene quinone 140 (Jakupovic et al., 1986), 6-acetyl-3,4-dihydro-3-hydroxy-2,2-dimethyl-2H-1-benzopyran 141 (Bohlmann and Stöhr, 1980; de Quesada et al., 1972), 6-benzoyl-5,7dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)chroman 142 (Bohlmann and Zdero, 1980a), 5,7-dihydroxy-6-isobutyryl-2,2-dimethylchroman 143, 5-hydroxy-6-isobutyryl-7-methoxy-2,2-dimethylchroman 144, 2,2dimethyl-8-(2-methyl-1-oxopropyl)-5,7-dimethylchroman 145, 146 (Jakupovic et al., 1986), 5,7-dihydroxy-2,3-dimethyl-4-chromanone 147 (Mutanyatta-Comar et al., 2006), acetophenones like 4-hydroxy-3-(3methyl-2-butenyl)acetophenone 148 (Appendino et al., 2007a; Sala et al., 2001), some phenolic derivatives 149 (Bohlmann and Misra, 1984), 150 (Bohlmann and Hoffmann, 1979), 151 (Bohlmann and Hoffmann, 1979), 152 (Sala et al., 2001), 153 (Jakupovic et al., 1987a), 154 (Bohlmann and Ziesche, 1979), glycosides like everlastosides A-M 155-160 (Morikawa et al., 2009), and other miscellaneous compounds, such as polyacetylenes, sulphur containing compounds, coumarins like sesquiterpenes, and guaiane sesquiterpenes are found to be the most reported ones (Mari et al., 2014). A large number of diverse diterpenes have been reported from Helichrysum genus. Most of them belong to abietan, pimaran, and kaurane diterpenes (120-139) (Fig. 6and Table 6). For example, a diterpene acid related to erythroxydiol A 124 has been isolated from H. refluxum (Bohlmann et al., 1985). Triterpenes have also been isolated from some species. A few examples are 3β-hydroxy-28,13-ursanolide, ursololactone (Lloyd and Fales, 1967), and 3-acetyl-28-oleananoic acid (Bohlmann et al., 1979b). 4.6. Miscellaneous compounds The compounds of Helichrysum spp. are not limited to the abovementioned compounds. This genus contains some other compounds belonging to other classes of natural products such as coumarate 11 Compound /Extract Biological activities Study design/Result Ref. 42 and 43 Helinivene A and B Antioxidant and anti-tyrosinase (Popoola et al., 2015b) 9 Arzanol Antioxidant 9, 24, and 4 Arzanol, methylarzanol, and helipyrone Antioxidant 45 2-(2-methyl-butanoyl)-4-prenylphloroglucinol Antioxidant _ Methanol extract of H. foetidum Moench Antioxidant _ 9, 10 9 Methanol extracts of H. sanguineum (L.) Kostel Arzanol and arenol Arzanol Antioxidant and radical scavenging activity Anti-tyrosinase Anti-inflammatory and anti-HIVe 149 and 1 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone and 4hydroxy-3-(2-hydroxy-3-isopentenyl)acetophenone Anti-inflammatory 9 Arzanol Anti-inflammatory 9 The aqueous extracts (decoction) from the aerial parts of H. stoechas, as well as chlorogenic acid, cynarin, and arzanol Narirutin, naringin, eriodictyol, luteolin, galuteolin, astragalin, kaempferol Antiacetylcholinesterase In vitro, FRAP, ORAC, TEACa and Fe2+-induced microsomal lipid peroxidation assays Antioxidant activity at IC50 = 5.12 ± 0.90; 3.55 ± 1.92 ppm Antityrosinase activity at IC50 = 35.63 ± 4.67 and 26.72 ± 5.05 ppm The protective effect against the oxidative modification of lipid components induced by Cu2+ ions in human low density lipoprotein (LDL) and by tertbutyl hydroperoxide (TBH) in cell membranes Preserved lipoproteins from oxidative damage at 2 h of oxidation, and showed a remarkable protective effect on the reduction of polyunsaturated fatty acids and cholesterol levels, inhibiting the increase of oxidative products In vitro, autoxidation and iron (EDTAb)-mediated oxidation of linoleic acid at 37 °C, thermal (140 °C) autoxidation of cholesterol Protect linoleic acid against free radical attack In vitro, Cu-induced LDL oxidation assay Inhibit LDL oxidation at concentrations 0.5-10 μM In vitro, ABTSc assay, DPPHd radical-scavenging, ß-carotene/linoleic acid assay, scavenging of hydrogen peroxide test, superoxide anion scavenging test and hypochlorous acid scavenging test DPPH assay, IC50 = 12.90 ppm IC50 35.63 and 26.72 ppm, respectively Inhibit HIV-1 replication in T cells and the release of pro-inflammatory cytokines in stimulated primary monocytes The chronic inflammation induced by 12-O-tetradecanoylphorbol 13-acetate, the phospholipase A(2)-induced mouse paw oedema test, the carrageenaninduced mouse paw oedema test, and the writhing induced by acetic acid in the mouse Inhibit oedema formation, showing a similar profile to that obtained with cyproheptadine, inhibitor of both cyclooxygenase and 5lipoxygenase In vivo, inhibit 5-lipoxygenase (EC 7.13.11.34) activity and related leukotriene formation in neutrophils, as well as the activity of cyclooxygenase (COX)-1 (EC1.14.99.1) and the formation of COX-2-derived prostaglandin (PG)E2 in vitro (IC50 = 2.3–9 mM), inhibits microsomal PGE2 synthase (mPGES)-1 (EC 5.3.99.3, IC50 = 0.4 mM) rather than COX-2, block COX-2/ mPGES-1-mediated PGE2 biosynthesis in lipopolysaccharide-stimulated human monocytes and human whole blood, suppress the inflammatory response of the carrageenan-induced pleurisy in rats (3.6 ppm, i.p.), with significantly reduced levels of PGE2 in the pleural exudates In vitro Flowers and stems/leaves extracts inhibited antiacetylcholinesterase with IC50 values of 260.7 and 654.8 ppm AS model using thoracic aortas vascular ring Inhibit the expression of VEGFf, CRPg, JNK2h, p38 and NO (nitric oxide) at different level, reduce the expression of CRP, inhibit the kinases activity of JNK2 and p38, and then suppress the mitogen-activated protein kinase (MAPK) pathway, which resulted in the decrease of NO synthesis, VEGF expression and endothelial adhesion factor expression Dipeptidyl peptidase-IV inhibitory activity in vivo Inhibit the increase in blood glucose elevation in sucrose-loaded mice (500 ppm p.o.), inhibit the enzymatic activity against dipeptidyl peptidase-IV (IC50 = 41.2 ppm) In vitro Inhibit digestive α-amylase and α-glucosidase activities and SGLT1mediated methylglucoside uptake in Caco-2 cells in the presence of Na(+), decreased blood glucose levels after an oral maltose tolerance test, reduced postprandial glucose levels after the oral starch tolerance test, improve hyperinsulinemia and HOMAi index in a dietary model of insulin resistance in rats 12 Compound No. _ Anti-atherosclerotic Aureusidin 6-O-β-D-glucopyranoside, chalconaringenin 2´-Oβ-D-glucopyranoside Anti-diabetic _ H. italicum and grapefruit (Citrus × paradisi) extracts Anti-diabetic (Rosa et al., 2011) (Rosa et al., 2007) (Mutanyatta-Comar et al., 2006) (Tirillini et al., 2013) (Albayrak et al., 2008) (Popoola et al., 2015b) (Appendino et al., 2007b) (A. Sala et al., 2003) (J. Bauer et al., 2011) (Silva et al., 2017) (Mao et al., 2017) (Morikawa et al., 2015) (De La Garza et al., 2013) (continued on next page) Industrial Crops & Products 138 (2019) 111471 85, 92 M. Akaberi, et al. Table 4 Biological activities reported from the compounds of Helichrysum spp. Compound No. Compound /Extract Biological activities Study design/Result Ref. _ H. teretifolium total extract and isolated flavonoids 4'methoxyquercetin and quercetin Anti-aging, antioxidant and moderate antityrosinase and anti-elastase (Popoola et al., 2015a) _ Ethanol extract of H. plicatum flowers Anti-cancer 97 and 98 Naringenin 7-O-β-D-glucopyranoside, apigenin 7-O-βDglucopyranoside, apigenin 7-O-gentiobioside, and apigenin 7,4-di-O-β-D-glucopyranoside Tomoroside A and B Compounds quercetin and 4'-methoxyquercetin demonstrated the highest inhibitory activities on Fe2+-induced lipid peroxidation (IC50 = 2.931; 6.449 ppm); tyrosinase (8.092; 27.573) and elastase (43.342; 86.548) In vitro; isolated rat ileum Inhibit the spontaneous ileum contractions and contractions induced by acetylcholine, histamine, barium and potassium ions Inhibitory activity on tumor necrosis factor-α (1 ppb)-induced cytotoxicity on cancerous cell lines (Aljančić et al., 2014) _ H. plicatum DC. subsp. plicatum ethanol extract Nephro protective _ The methanol extract of H. graveolens flowers as well as apigenin Wound healing H. plicatum DC. subsp. plicatum extract Anti urolithiasis Methanol extract of H. stoechas Antiproliferative Dichloromethane extract of H. oocephalum Anti-protozoal In vitro, NCI-H460 and NCI-H460/R cells 97 inhibited topo IIα and hif-1α expression and stimulated doxorubicin anticancer effect, while 98 increased the expression of hif-1α, probably acting as antioxidant and redox status modulator In vivo (rats); 100 ppm; gentamicin-induced nephrotoxicity Decreased serum blood urea nitrogen, and creatinin, liver and kidney oxidant markers and tubular necrosis as well as by an increase in antioxidant enzymes, increased liver and kidney tissue malondialdehyde levels In vivo; the linear incision and the circular excision wound models Possessed significant anti-inflammatory, antioxidant, anti-hyaluronidase and anticollagenase activities In vivo (rats); 125, 250, and 500 ppm; 1% ethylene glycol and 1% ammonium chloride-induced urolithiasis Decreased levels of both serum and urine biochemical parameters, Urine CaOx level, improved histopathological parameters In vitro (HeLa cells); MTT assay; 0.008, 0.016, 0.031, 0.063,0.125, 0.250, 0.500 and 1.000 mg/mL; non-treated cells (control) Dose-dependent antiproliferative effects at concentrations over 0.06 mg/mL with an IC50 of 0.15 mg/mL In vitro; Leishmania donovani (MHOM-ET-67/L82) axenically grown amastigotes; 100 to 0.001 ppm 34 with IC50 1.79 ± 0.17 μM showed the highest activity Anti-cancer 13 11-14, 20-23, 3335, 58-65 a b c d e f g h i M. Akaberi, et al. Table 4 (continued) (Bigovic et al., 2010) (Wang et al., 2009) (Apaydin Yildirim et al., 2017) (Süntar et al., 2013) (Les et al., 2017) (Akaberi et al., 2019) the ferric reducing ability of plasma; the oxygen radical absorbance capacity; trolox equivalent antioxidant capacity. ethylenediaminetetraacetic acid. 2,2′-azinobis-3-ethylbenzothiazoline-6-sulphonic acid. 1,1-diphenyl-2-picrylhydrazyl. human immunodeficiency viruses. vascular endothelial growth factor. c-reactive protein. c-Jun N-terminal kinases. homeostatic model assessment. Industrial Crops & Products 138 (2019) 111471 Industrial Crops & Products 138 (2019) 111471 (Appendino et al., 2007a) (Albayrak et al., 2008) (Albayrak et al., 2008) (Albayrak et al., 2008) (Turker and Usta, 2008) (Djihane et al., 2017) 5. Pharmacology 100 to 400 ppm _ _ _ _ 6.325 ppm, 0.79 ppm, 12.65 ppm _ _ _ _ _ A variety of pharmacological activities have been reported for the bioactive compounds from Helichrysum spp., particularly arzanol as a prenylated heterodimeric phloroglucinyl α-pyrone derivative (Table 4). Arzanol has been reported to possess anti-inflammatory, anti-HIV, antioxidant, antibiotic, anti-cancer and antiviral activities (Rosa et al., 2017). Arzanol inhibits NFκB activation, HIV replication in T cells, release of proinflammatory mediators like IL-1β, IL-6, IL-8 and TNF-α, and biosynthesis of PGE2 by inhibiting the mPGES-1 enzyme (Kothavade et al., 2013) (Table 4). Although the activities for different extracts and pure compounds from Helichrysum spp. are diverse, the most cited ones are related to its antibacterial and antiviral properties. Table 5 shows the studied species from everlasting flowers with antimicrobial activities. In a screening study, Albayrak et al. (2010) investigated the antimicrobial activities of the phenol-rich extracts of some Turkish Helichrysum spp. including, H. arenarium (L.) Moench subsp. aucheri (Boiss), H. armenium DC. subsp. armenium, H. artvinense Davis & Kupicha, H. chionophilum Boiss. & Bal, H. compactum Boiss, H. goulandriorum E. Georgiadou, H. graveolens (Bieb.) Sweet, H. heywoodianum Davis, H. kitianum Yıldız, H. noeanum Boiss., H. orientale (L.) DC. and H. pallasii (Sprengel) Ledeb (Albayrak et al., 2010). All extracts showed strong antimicrobial activity against microorganisms including thirteen bacteria and two yeasts in the agar diffusion test (Albayrak et al., 2010). Moreover, the anti-microbial activity of the ethanol extract of H. plicatum has been investigated against various bacteria and fungi as well as the yeast Candida albicans using the microdilution method (Bigović et al., 2017). Gram-positive bacteria with MIC values of 0.02 mg/mL were more sensitive to the plant extract compared with Gram-negative ones. Moreover, the sensitivity of fungi was more than bacteria (Bigović et al., 2017). Not only the extracts showed strong antimicrobial activities, but also the isolated compounds exhibited pharmacological effects. For example, phloroglucinol derivatives 17-19 showed antifungal activities against Cladosporium herbarum (Tomás-Lorente et al., 1989). In another study, both methanol extract and the phenolic compounds from H. arenarium (L.) Moench subsp. arenarium inflorescences showed antibacterial activity against lower respiratory tract pathogens (standard strains and clinical isolates) (Gradinaru et al., 2014). The extract exhibited similar antibacterial effects against methicillin-resistant S. aureus and penicillin-resistant S. pneumoniae clinical isolates (MIC = 2.5 mg/mL), displaying a higher activity against ampicillin-resistant Moraxella catarrhalis isolate (MIC = 0.15 mg/mL). In addition, combination of the extract with ciprofloxacin increased the anti-bacterial activity (Gradinaru et al., 2014). In addition, most of the studies on this genus have investigated the essential oil activity and composition. Thus, the majority of pharmacological studies reported for these plants, mostly investigating antimicrobial activities, are related to the essential oils (Table 3). Diethyl ether extract Methanol extract Methanol extract Methanol extract _ Essential oil 6. Conclusion long terminal repeats. Everlasting flowers (Helichrysum spp.) have been shown to be an interesting source of bioactive secondary metabolites with diverse properties, potentially capable of treating microbial diseases. However, more studies must be established to investigate the intact and unexplored species to find out their potential activities and the responsible bioactive components. Moreover, supplementary studies such as clinical trials are necessary for those species and properties that are already investigated and suggested by traditional and modern medicine. a H. H. H. H. H. H. Herpes Simplex Virus Klebsiella pneumoniae Staphylococcus aureus, Proteus vulgaris S. aureus Streptococcus pyogenes, S. aureus, S. epidermidis Candida albicans, Enterococcus cereus, and Saccharomyces cerevisiae 25 ppm and 5 μM H. italicum HIV-1-LTRa Phloroglucinol and acetophenone derivatives Arzanol esculetin, scopoletin, and isoscopoletin (Fig. 7) (Karasartov et al., 1992; Morikawa et al., 2009; Wang et al., 2009). italicum pamphylicum sanguineum chasmolycicum plicatum italicum Inhibition of the TNFα-induced HIV-1-LTR transactivation in a T cell line (Tomás-Barberán et al., 1990) (Appendino et al., 2007a) (Nostro et al., 2000) (Tundis et al., 2005) 125 ppm 50 ppm Diethyl ether extract Methanol extract H. H. H. H. Bacillus subtilis Micrococcus luteus Staphylococcus aureus Penicillium italicum italicum italicum italicum MIC Extract/compound Species Microorganism Table 5 Helichrysum spp. with reported antimicrobial activities. Description Ref. M. Akaberi, et al. 14 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Table 6 The phytochemicals reported from Helichrysum spp. Compound Pyrones 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Plant Name Ref. H. italicum H. italicum H. italicum H. italicum and H. stoechas H. arenarium and H. stoechas H. arenarium and H. stoechas H. auriceps H. cephaloideum H. italicum ssp. microphyllum H. italicum ssp. microphyllum H. oocephalum Helichrysum spp. Micropyrone Yangonin O12-De-Me, 12-O-[3-hydroxy-3-methylglutaroyl-(6)-β-D-glucopyranoside Yangonin O12-De-Me, 12-O-(6-O-malonyl-β-D-glucopyranoside) Helipyrone A (Appendino et al., 2007a) (D’ Abrosca et al., 2013) (D’ Abrosca et al., 2013) (Opitz and Hänsel, 1970) Helipyrone B (norhelipyrone) (Rios et al., 1991) Helipyrone C (Rios et al., 1991) 23-methylauricepyrone Norauricepyrone Arzanol (Bohlmann and Zdero, 1980b) (Jakupovic et al., 1986) (Appendino et al., 2007a) Arenol (Appendino et al., 2007a) 23-Methyl-6-O-desmethylauricepyrone 2H-Pyran-2-one, 6-ethyl-4-hydroxy-5-methyl-3-[[2,4,6-trihydroxy-3-(3-methyl-2buten-1-yl)-5-(2-methyl-1-oxopropyl)phenyl]methyl]Arenol B Arenol C Heliarzanol (Akaberi et al., 2019) (Jakupovic et al., 1986) Auricepyrone 3-[3-Acetyl-5-(3,7-dimethyl-2,6-octadienyl)-2,4,6-trihydroxybenzyl]-4-hydroxy-5,6dimethyl-H-pyran-2-one 3-[3-Acetyl-5-(3,7-dimethyl-2,6-octadienyl)-2,4,6-trihydroxybenzyl]-4-hydroxy-5methyl-6-ethyl-H-pyran-2-one 3-[3-Acetyl-5-(3,7-dimethyl-2,6-octadienyl)-2,4,6-trihydroxybenzyl]-4-hydroxy-5methyl-6-propyl-H-pyran-2-one Achyroclinopyrone A Achyroclinopyrone B 16Z/E-Achyroclinopyrone C 16Z/E-Achyroclinopyrone D Methyl arzanol (Bohlmann and Zdero, 1980b) (Tomás-Barberán et al., 1990; Tomás-Lorente et al., 1989) (Tomás-Barberán et al., 1990; Tomás-Lorente et al., 1989) (Tomás-Barberán et al., 1990; Tomás-Lorente et al., 1989) (Akaberi et al., 2019) (Akaberi et al., 2019) (Akaberi et al., 2019) (Akaberi et al., 2019) (Rosa et al., 2007) Italidipyrone Italipyrone 20-prenylitalipyrone Plicatipyrone Isobutyrylhelichromenopyrone 2-methylbutyrylhelichromenopyrone Helicerastripyrone Helicepyrone Cycloarzanol Helicyclol Lepidissipyrone 8-prenyllepidissipyrone Helitalone A Helitalone B (Hänsel et al., 1980) (Hänsel et al., 1980; Rios et al., 1991) (Hänsel et al., 1980) (Hänsel et al., 1980) (Jakupovic et al., 1986) (Jakupovic et al., 1986) (Bohlmann et al., 1984) (Akaberi et al., 2019) (Akaberi et al., 2019) (Akaberi et al., 2019) (Jakupovic et al., 1989b) (Jakupovic et al., 1989b) (Werner et al., 2019) (Werner et al., 2019) Helinudifolin 1,1'-[(6-Methylheptylidene)bis(3,4-dihydro-5,7-dihydroxy-2,2-dimethyl-2H-1benzopyran-6,6'-diyl)]bis[2-methyl-1-propanone] Helinivene A Helinivene B 1-(butanone)-3-prenyl-phloroglucinol 1-(2-methylbutanone)-3-prenyl-phloroglucinol 1-butanone-3-(3-methylbut-2-enylacetate)-phloroglucinol 1-(2-methylpropanone)-3-prenylphloroglucinol Caespitate 2-butanoyl-4-prenylphloroglucinol 2-(2-methylpropanoyl)-4-prenylphloroglucinol 2-methyl-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)-1-butanone(Appendino et al., 2007a) (Jakupovic et al., 1986) (Jakupovic et al., 1986) 16 17 H. oocephalum H. oocephalum H. italicum ssp. microphyllum H. auriceps H. decumbens 18 H. decumbens 19 H. decumbens 20 21 22 23 24 H.oocephalum H.oocephalum H.oocephalum H.oocephalum H. italicum ssp. Microphyllum 25 H. italicum 27 H. stoechas 28 H. stoechas 29 H. plicatum 30 H. mixtum 31 H. mixtum 32 Helichrysum spp. 33 H. oocephalum 34 H. oocephalum 35 H. oocephalum 36 H. lepidissimum 37 H. lepidissimum 38 H. italicum 39 H. italicum Phloroglucinols 40 H. nudifolium 41 H. platypterum 42 43 44 45 46 47 48 49 50 51 H. niveum H. niveum H. niveum H. niveum H. niveum H. niveum H. niveum H. paronychioides Helichrysum spp. Helichrysum spp. 52 53 54 55 56 57 H. caespititium Helichrysum spp. H. gymnocomum Helichrysum spp. H. aphelexioides H. monticola Caespitin 2-methyl-1-[2,4,6-trihydroxy-3-(3-methyl-2-butenyl)phenyl]-1-propanone 2-methyl-1-[2,4,6-trihydroxy-3-(2-hydroxy-3-methyl-3-butenyl)phenyl]-1-propanone 5,7-dihydroxy-2-isopropyl-4H-1-benzopyran-4-one 5'-deprenylhemihumulone 3-(3,4-dihydroxyphenyl)-1-[3-(3,7-dimethyl-2,6-octadienyl)-2,4-dihydroxy-6methoxyphenyl]-1-propanone.3'-geranyl-2',3,4,4'-tetrahydroxy-6'methoxydihydrochalcone (Akaberi et al., 2019) (Akaberi et al., 2019) (Taglialatela-Scafati et al., 2013) (Popoola et al., 2015b) (Popoola et al., 2015b) (Popoola et al., 2015b) (Popoola et al., 2015b) (Popoola et al., 2015b) (Popoola et al., 2015b) (Popoola et al., 2015b) (Mutanyatta-Comar et al., 2006) (Jakupovic et al., 1986) (Bohlmann and Mahanta, 1979; Bohlmann and Suwita, 1979b; Bohlmann and Zdero, 1979) (Dekker et al., 1984) (Drawert and Beier, 1976) (Bohlmann and Mahanta, 1979) (Bohlmann et al., 1984) (Randriaminahy et al., 1992) (Jakupovic et al., 1989b) (continued on next page) 15 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Table 6 (continued) Compound Plant 58-65 H. oocephalum Benzofurans 66 H. italicum and H. stoechas 67 H. italicum subsp. microphyllum 68 H. italicum subsp. microphyllum 69 H. italicum subsp. microphyllum 70 H. italicum 71 H. stoechas 72 H. italicum 73 H. italicum 74 H. italicum ssp. microphyllum 75 H. italicum ssp. microphyllum 76 H. italicum ssp. microphyllum 77 Helichrysum spp. 78 79 80 81 82 83 84 85 H. italicum H. italicum H. italicum H. bracteatum H. platypterum H. arenarium H. arenarium H. arenarium and H. polyphyllum Flavonoids and Chalcones 86 H. tereifolium 87 H. tereifolium 88 H. tereifolium 89 H. tereifolium 90 H. arenarium 91 H. arenarium 92 H. arenarium 93 H. arenarium 94 H. cameroonense 95 H. rugulosum 96 H. teretifolium 97 H. zivojinii 98 H. zivojinii 99 H. arenarium 100 H. arenarium 101 H. arenarium Sesquiterpenes 102 H. bilobum ssp. bilobum 103 H. albirosulatum 104 H. splendidum 105 H. dasyanthum 106 H. splendidum 107 H. splendidum 108 H. nudifolium 109 H. nudifolium 110 H. nudifolium 111 H. italicum 112 H. chinosphaerum 113 H. chionosphaerum 114 H. dasyanthum 115 H. italicum 116 H. arenarium 117 H. dasyanthum 118 H. petiolare 119 H. ambiguum Diterpenes 120 H. refluxum 121 H. chionosphaerum 122 123 124 125 H. H. H. H. formosissinum chionosphaerum dendroideum dendroideum Name Ref. Helispiroketals A-H (Akaberi et al., 2019) Bitalin A (R)-form (Bohlmann and Zdero, 1970; Rosa et al., 2007) Acetoxytremetone (Rosa et al., 2007) Diacetyl-2,3-dihydro-3-hydroxy-2-[1-(hydroxymethyl)ethenyl]benzofuran (Rosa et al., 2007) Acetoxyhydroxytremetone (Rosa et al., 2007) Gnaphaliol 6-methyleuparin Isocaproylbitalin A Isobenzofuranone Nonanoylbitalin A (Jerković et al., 2016) (Proksch and Rodriguez, 1983) (Bohlmann and Zdero, 1970) (D’ Abrosca et al., 2013) (Bohlmann and Zdero, 1970) Oleoylbitalin A (Bohlmann and Zdero, 1970) Propanoylbitalin A (Bohlmann and Zdero, 1970) 2,3-dihydro-5,7-dihydroxy-2-isopropenyl-6-(2-methylpropenoyl)benzofuran [(R)form] 3-hydroxydihydrobenzofuran glycosides 3-hydroxydihydrobenzofuran glycosides 10-acetoxytoxol bractein Platypterophthalide 5,7-dihydroxy-1(3 H)-isobenzofuranone 5,7-dimethoxy-1(3 H)-isobenzofuranone 7-hydroxy-5-methoxy-1(3 H)-isobenzofuranone. 7-Hydroxy-5-methoxyphthalide (Bohlmann et al., 1984) (D’ Abrosca et al., 2013) (D’ Abrosca et al., 2013) (Hänsel et al., 1980) (Farkas and Pallos, 1965; Honda et al., 1991) (Jakupovic et al., 1987b) (Vrkoč et al., 1973) (Opitz and Hansel, 1971) (Opitz and Hansel, 1971) Isoglabranin 4'-methoxyquercetin 4'-methoxykaempferol mosloflavone Arenariumoside I Arenariumoside II Arenariumoside III Arenariumoside IV Cameroonenoside A Derricidin Heliteretifolin Tomoroside A Tomoroside B Arenariumoside V Arenariumoside VI Arenariumoside VII (Popoola et al., 2015a) (Popoola et al., 2015a) (Popoola et al., 2015a) (Popoola et al., 2015a) (Morikawa et al., 2009) (Morikawa et al., 2009) (Morikawa et al., 2009) (Morikawa et al., 2009) (Antoine et al., 2011) (do Nascimento and Mors, 1972d) (Popoola et al., 2015a) (Aljančić et al., 2014) (Aljančić et al., 2014) (Morikawa et al., 2015) (Morikawa et al., 2015) (Morikawa et al., 2015) 4-Ambiguen-1-ol 10-hydroxy-3-aromadendranone 4-hydroxy-10(14),11α(13-dihydro)-guaiadien-12,8-olide 4-hydroxy-1(10),11(13)-guaiadien-12,8-olide Helisplendiolide 4-hydroxy-9-guaien-12,8-olide 8α-hydroxy-α-gurjunene 8α-acetoxy-α-gurjunene 2-isocomanone Italicene 1(10),4-bicyclogermacradien-13-oic acid Humulatrien 4,10(14)-cadinadiene-1,3,9-triol Italicene ether 5-selinen-11-ol 3,9-dihydroxy-δ-cadinene 1,9-cadinadien-3-one [(4α,6α,7α)-form] 1,3,5,7,9-cadinapentaen-14-al (Jakupovic et al., 1989a) (Bohlmann et al., 1978) (Jakupovic et al., 1989b) (Jakupovic et al., 1989b) (Bohlmann and Suwita, 1979a) (Jakupovic et al., 1989b) (Bohlmann et al., 1978) (Bohlmann et al., 1978) (Jakupovic et al., 1986) (Honda et al., 1991) (Jakupovic et al., 1989b) (Bohlmann et al., 1980) (Jakupovic et al., 1989b) (Cool et al., 1994) (Morikawa et al., 2015) (Jakupovic et al., 1989b) (Jakupovic et al., 1989b) (Jakupovic et al., 1989a) 3,15-erythroxyladien-18-oic acid 7,13-abietadiene (ent-5α-form) (Bohlmann et al., 1985) (Bohlmann et al., 1980; Jakupovic et al., 1990) (Jakupovic et al., 1990) (Bohlmann et al., 1980) (Lloyd et al., 1978) (Lloyd and Fales, 1967) 7,13-abietadien-12β-ol Atisirenic acid Erythroxydiol A 15-stachene-3,17-diol (continued on next page) 16 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Table 6 (continued) Compound Plant Name Ref. 126 H. dendroideum 127 H. nudifolium 128 H. chionosphaerum 129 H. chionosphaerum 130 H. aureum and H. cooperi 131 H. fulvum 132 H. fulvum 133 H. chionosphaerum 134 H. chionosphaerum 135 H. davenportii 136 H. foetidum 137 Helichrysum spp. 138 H. dendroideum 139 H. dendroideum Miscellaneous compounds 140 H. nudifolium 141 Helichrysum spp. 15-stachene-3,19-diol 13(16),14-gnaphaladien-8α-ol 10(20),16-grayanotoxadien-19-oic acid [(1β,5β,9β)-form] Acetyl-16-kauren-19-oic acid 11-acetyl-16-kauren-19-oic acid 11-hydroxy-19-helvifulvanoic acid (ent-11β)-form 11-acetoxy-19-helvifulvanoic acid 19-helvifulvanol [ent-form] Helifulvanic acid 12β-hydroxy-15-kauren-19-oic acid 15α-hyroxy-16-kauren-19-oic acid Grandiflorenic acid (ent-form) 15-kaurene-17,19-diol (ent-form) 16-kaurene-3β,19-diol (Lloyd and Fales, 1967) (Jakupovic et al., 1986) (Jakupovic et al., 1989b) (Jakupovic et al., 1989b) (Bohlmann et al., 1978) (Bohlmann et al., 1979a) (Bohlmann et al., 1979a) (Bohlmann et al., 1980) (Bohlmann et al., 1980) (Jakupovic et al., 1989a) (Barrero et al., 1998) (Herz and Kulanthaivel, 1984) (Lloyd and Fales, 1967) (Lloyd and Fales, 1967) Helinudichromene quinone 6-acetyl-3,4-dihydro-3-hydroxy-2,2-dimethyl-2H-1-benzopyran 142 143 144 145 146 147 148 149 150 151 152 153 154 155-160 6-benzoyl-5,7-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)chroman 5,7-dihydroxy-6-isobutyryl-2,2-dimethylchroman 5-hydroxy-6-isobutyryl-7-methoxy-2,2-dimethylchroman 2,2-dimethyl-8-(2-methyl-1-oxopropyl)-5,7-dimethylchroman 5-hydroxy-8-isobutyryl-2,2-dimethyl-7-methoxychroman 5,7-dihydroxy-2R,3R-dimethyl-4-chromanone 4-hydroxy-3-(3-methyl-2-butenyl)acetophenone Spinoflavone B Dihydroamorphastilbol 2,4-dihydroxy-6-(2-phenylethyl)-3-prenylbenzoic acid 3-(2-hydroxyethyl)acetophenone 4-O-β-D-glucopyranoside Acuminatolide Aureonitol, (-)-form Everlastoside F-K (Jakupovic et al., 1986) (Bohlmann and Stöhr, 1980; de Quesada et al., 1972) (Bohlmann and Zdero, 1980a) (Jakupovic et al., 1986) (Jakupovic et al., 1986) (Jakupovic et al., 1986) (Jakupovic et al., 1986) (Mutanyatta-Comar et al., 2006) (Appendino et al., 2007a; Sala et al., 2001) (Bohlmann and Misra, 1984) (Bohlmann and Hoffmann, 1979) (Bohlmann and Hoffmann, 1979) (Sala et al., 2001) (Jakupovic et al., 1987a) (Bohlmann and Ziesche, 1979) (Morikawa et al., 2009) H. H. H. H. H. H. H. H. H. H. H. H. H. H. monticola platypterum platypterum platypterum platypterum paronychioides italicum rugulosum umbraculigerum umbraculigerum, italicum acuminatum aureonitens arenarium Table 7 Scientific names of the studied plant taxa. No. Plant name No. Plant name 1 H. acuminatum (Link) DC. 54 2 H. adenocarpum DC. 55 3 H. albirosulatum Killick 56 4 5 6 7 8 9 H. ambiguum (Pers.) C.Presl H. amorginum Boiss. & Orph. H. aphelexioides DC. H. appendiculatum Less. H. arenarium (L.) Moench Basionym: Gnaphalium arenarium L. H. arenarium subsp. aucheri (Boiss) P.H.Davis & Kupicha Basionym: Helichrysum aucheri Boiss. H. argyrophyllum DC. H. armenium DC. subsp. armenium H. artemisioides Boiss. & Hausskn. H. athrixiifolium O.Hoffm. H. artvinense Davis & Kupicha H. aureum (Houtt.) Merr. Basionym: Gnaphalium aureum Houtt. H. auriceps Hilliard H. auronitens Sch.Bip. H. bilobum subsp. bilobum H. bracteatum (Vent.) Willd. Basionym: Xeranthemum bracteatum Vent. H. bracteiferum (DC.) Humbert Basionym: Stenocline bracteifera DC. H. caespititium (DC.) Sond. Basionym: Helichrysum lineare var. caespititium DC. H. callicomum Harv. H. calophalum Klatt H. cameroonense Hutch. & Dalziel H. cephaloideum DC. H. chasmolycicum P.H.Davis H. chionophilum Boiss. & Balansa H. chionosphaerum DC. H. cochleariforme DC. H. compactum Boiss. 57 58 59 60 61 62 H. italicum subsp. microphyllum (Willd.) Nym.Basionym: Gnaphalium microphyllum Willd. H. italicum subsp. picardii (Boiss. & Reut.) Franco Basionym: Helichrysum picardii Boiss. & Reut. H. italicum subsp. serotinum (Boiss.) P.Fourn. Basionym: Helichrysum serotinum var. occidentale Boiss. H. kitianum Yıldız H. kraussii Sch. Bip H. lepidissimum S.Moore H. leucocephalum Ausfeld H. litoreum Guss. H. longifolium DC. 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 maracandicum Popov mechowianum Klatt melaleucum Rchb. miconiifolium DC. microphyllum (Willd.) Cambess. subsp. tyrrhenicum Bacch. & al. mixtum (Kuntze) Moeser Basionym: Gnaphalium mixtum Kuntze monticola Hilliard niveum Graham noeanum Boiss. nudifolium (L.) Less. Basionym: Gnaphalium nudifolium L. nudifolium var. leiopodium (DC.) Moeser Basionym: Helichrysum leiopodium DC. obconicum DC. odoratissimum (L.) Sweet Basionym: Gnaphalium odoratissimum L. oocephalum Boiss. orientale Gaertn. pallasii Ledeb. pamphylicum P.H.Davis & Kupicha panduratum O.Hoffm. ex De Wild. & T.Durand. pandurifolium Schrank paronychioides DC. patulum (L.) D.Don Basionym: Gnaphalium patulum L. (continued on next page) 17 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Table 7 (continued) No. Plant name 31 32 33 34 35 36 37 H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. H. 39 41 42 43 44 45 46 47 48 49 50 51 52 53 cooperi Harv. cordifolium DC. crispum (L.) D. Don [Illegitimate] dasyanthum (Willd.) Sweet davenportii F.Muell. decumbens Cambess. dendroideum N.A.Wakef. devium J.Y.Johnson dregeanum Sond. & Harv. ecklonis Sond. faradifani Scott Elliot foetidum (L.) Cass. Basionym: Gnaphalium foetidum L. formosissimum Sch.Bip. forsskahlii Hilliard & B.L.Burtt fulgidum Willd fulvum N.E.Br. goulandriorum Georgiadou graveolens (M.Bieb.) Sweet Basionym: Gnaphalium graveolens M.Bieb. gymnocephalum (DC.) Humbert Basionym: Stenocline gymnocephala DC. gymnocomum DC. heywoodianum Davis hypnoides (DC.) Viguier & Humbert Basionym: Aphelexis hypnoides DC. italicum (Roth) Don Basionym: Gnaphalium italicum Roth No. Plant name 84 85 86 87 88 89 90 H. pedunculatum Hilliard & B.L.Burtt H. petiolare Hilliard & B.L.Burtt H. platypterum DC. H. plicatum DC. H. plicatum subsp. isauricum Parolly H. plicatum subsp. plicatum H. polyphyllum Ledeb. H. psilolepis Harv. H. reflexum N.E.Br. H. rugulusum Less. H. rupestre Guss. ex Nyman H. rusillonii Hochr. H. sanguineum (L.) Kostel. Basionym: Gnaphalium sanguineum L. H. selaginifolium (DC.) Viguier & Humbert Basionym: Gnaphalium selaginifolium DC. Helichrysum setosum Harv. H. splendidum (Thunb.) Less. Basionym: Gnaphalium splendidum Thunb. H. stoechas Moench H. stoechas subsp. stoechas H.subglomeratum Less. H. tenax M.D. Hend var. tenax H. teretifolium (L.) D.Don Basionym: Gnaphalium teretifolium L. H. tomentosulum (Klatt) Merxm. Basionym: Stenocline tomentosula Klatt H. zivojini Černjavski & Soska 92 94 95 96 97 98 99 100 101 102 103 104 105 106 Conflict of interests Arnold, T.H., Prentice, C.A., Hawker, L.C., Snyman, E.E., Tomalin, M., Crouch, N.R., Pottas-Bircher, C., 2002. Medicinal and Magical Plants of Southern Africa: An Annotated Checklist. National Botanical Institute, Pretoria. Azar, P.A., Torabbeigi, M., Tehrani, M.S., Husain, S.W., 2011. Hydrodistillation, solvent free microwave assisted extraction and headspace-solid phase microextraction for analysis of essential oil of flowers of Helichrysum aucheri. Asian J. Chem. 23, 1209–1211. Azizi, N., Sheidai, M., Mozaffarian, V., Arman, M., Noormohammadi, Z., 2019. Assessment of relationships among and within Helichrysum mill. (asteraceae) species by using issr markers and morphological traits. Hacquetia 18, 105–118. https://doi. org/10.2478/hacq-2018-0014. Azizi, N., Sheidai, M., Mozafarian, V., Noormohammadi, Z., 2014a. Genetic, cytogenetic and morphological diversity in Helicrysum leucocephalum (Asteraceae) populations. Biologia (Poland) 69, 566–573. https://doi.org/10.1590/0102-33062014abb3136. Azizi, N., Sheidai, M., Mozaffarian, V., Nourmohammadi, Z., 2014b. Karyotype and genome size analyses in species of Helichrysum (Asteraceae). Acta Bot. Bras. 28, 367–375. Bagci, E., Elkiran, O., Evren, H., 2013. Constituents of the essential oils of Helichrysum graveolens (Bieb.) sweet from Turkey. Asian J. Chem. 25, 7254–7256. Barrero, A.F., Arteaga, P., Herrador, M.M., 1998. Ent-Kaurene diterpenoids from Helichrysum foetidum. Fitoterapia 69, 83–84. Baser, K.H.C., Demirci, B., Kirimer, N., 2002. Compositions of the essential oils of four Helichrysum species from madagascar. J. Essent. Oil Res. 14, 53–55. Batten, A., Bokelmann, H., 1966. Wild Flowers of the Eastern Cape Province. Books of Africa, Cape Town. Bauer, J., Koeberle, A., Dehm, F., Pollastro, F., Appendino, G., Northoff, H., Rossi, A., Sautebin, L., Werz, O., 2011. Arzanol, a prenylated heterodimeric phloroglucinyl pyrone, inhibits eicosanoid biosynthesis and exhibits anti-inflammatory efficacy in vivo. Biochem. Pharmacol. 81, 259–268. https://doi.org/10.1016/j.bcp.2010.09. 025. Benelli, G., Pavela, R., Rakotosaona, R., Randrianarivo, E., Nicoletti, M., Maggi, F., 2018. Chemical composition and insecticidal activity of the essential oil from Helichrysum faradifani endemic to Madagascar. Nat. Prod. Res. 32, 1690–1698. https://doi.org/ 10.1080/14786419.2017.1396590. Benítez, G., González-Tejero, M.R., Molero-Mesa, J., 2010. Pharmaceutical ethnobotany in the western part of Granada province (southern Spain): ethnopharmacological synthesis. J. Ethnopharmacol. 129, 87–105. https://doi.org/10.1016/j.jep.2010.02. 016. Bhat, R.B., Jacobs, T.V., 1995. Traditional herbal medicine in Transkei. J. Ethnopharmacol. 48, 7–12. Bianchini, A., Tomi, F., Richomme, P., Bernardini, A.F., Casanova, J., 2004. Eudesm-5-en11-ol from Helichrysum italicum essential oil. Magn. Reson. Chem. 42, 983–984. Bigovic, D., Brankovic, S., Kitic, D., Radenkovic, M., Jankovic, T., Savikin, K., Zivanovic, S., 2010. Relaxant effect of the ethanol extract of Helichrysum plicatum (Asteraceae) on isolated rat ileum contractions. Molecules 15, 3391–3401. https://doi.org/10. 3390/molecules15053391. Bigović, D.J., Stević, T.R., Janković, T.R., Noveski, N.B., Radanović, D.S., Pljevljakušić, D.S., Djurić, Z.R., 2017. Antimicrobial activity of Helichrysum plicatum DC. Hem. Ind. 71, 337–342. Bohlmann, F., Abraham, W.R., Sheldrick, W.S., 1980. Weitere diterpene mit helifulvangerüst und andere inhaltsstoffe aus Helichrysum chionosphaerum. Phytochem. 19, 869–871. https://doi.org/10.1016/0031-9422(80)85128-4. None. References Afoulous, S., Ferhout, H., Raoelison, E.G., Valentin, A., Moukarzel, B., Couderc, F., Bouajila, J., 2011. Helichrysum gymnocephalum essential oil: chemical composition and cytotoxic, antimalarial and antioxidant activities, attribution of the activity origin by correlations. Molecules 16, 8273–8291. https://doi.org/10.3390/ molecules16108273. Aiyegoro, O.A., Okoh, A.I., 2009. Phytochemical screening and polyphenolic antioxidant activity of aqueous crude leaf extract of Helichrysum pedunculatum. Int. J. Mol. Sci. 10, 4990–5001. https://doi.org/10.3390/ijms10114990. Akaberi, M., Danton, O., Tayarani-Najaran, Z., Asili, J., Iranshahi, M., Emami, S.A., Hamburger, M., 2019. HPLC-based activity profiling for antiprotozoal compounds in the endemic Iranian medicinal plant Helichrysum oocephalum. J. Nat. Prod., Ahead of Print. https://doi.org/10.1021/acs.jnatprod.8b01031. Albayrak, S., Aksoy, A., Sagdic, O., Hamzaoglu, E., 2010. Compositions, antioxidant and antimicrobial activities of Helichrysum (Asteraceae) species collected from Turkey. Food Chem. 119, 114–122. https://doi.org/10.1016/j.foodchem.2009.06.003. Albayrak, S., Sagdic, O., Aksoy, A., Hamzaoglu, E., 2008. Antimicrobial and antioxidant activities of Helichrysum species from the Mediterranean region of Turkey. Asian J. Chem. 20, 3143–3152. Aljančić, I.S., Vučković, I., Jadranin, M., Pešić, M., Orević, I., Podolski-Renić, A., Stojković, S., Menković, N., Vajs, V.E., Milosavljević, S.M., 2014. Two structurally distinct chalcone dimers from Helichrysum zivojinii and their activities in cancer cell lines. Phytochem. 98, 190–196. https://doi.org/10.1016/j.phytochem.2013.11.025. Angioni, A., Barra, A., Arlorio, M., Coisson, J.D., Russo, M.T., Pirisi, F.M., Satta, M., Cabras, P., 2003. Chemical composition, plant genetic differences, and antifungal activity of the essential oil of Helichrysum italicum G. Don ssp. Microphyllum (Willd) Nym. J. Agric. Food Chem. 51, 1030–1034. https://doi.org/10.1021/jf025940c. Antoine, K.Z., Hussain, H., Dongo, E., Krohn, K., Schulz, B., 2011. Cameroonenoside A: a new antialgal phenolic glycoside from Helichrysum cameroonense. Rec. Nat. Prod. 5, 305–308. Antunes Viegas, D., Palmeira-de-Oliveira, A., Salgueiro, L., Martinez-de-Oliveira, J., Palmeira-de-Oliveira, R., 2014. Helichrysum italicum: from traditional use to scientific data. J. Ethnopharmacol. 151, 54–65. https://doi.org/10.1016/j.jep.2013.11.005. Apaydin Yildirim, B., Kordali, S., Terim Kapakin, K.A., Yildirim, F., Aktas Senocak, E., Altun, S., 2017. Effect of Helichrysum plicatum DC. Subsp. Plicatum ethanol extract on gentamicin-induced nephrotoxicity in rats. J. Zhejiang Univ. Sci. B 18, 501–511. https://doi.org/10.1631/jzus.B1500291. Appendino, G., Ottino, M., Marquez, N., Bianchi, F., Giana, A., Ballero, M., Sterner, O., Fiebich, B.L., Munoz, E., 2007a. Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol alpha-Pyrone from Helichrysum italicum ssp. Microphyllum. J. Nat. Prod. 70, 608–612. https://doi.org/10.1021/np060581r. Appendino, G., Ottino, M., Marquez, N., Bianchi, F., Giana, A., Ballero, M., Sterner, O., Fiebich, B.L., Munoz, E., 2007b. Arzanol, an anti-inflammatory and anti-HIV-1 phloroglucinol α-pyrone from Helichrysum italicum ssp. Microphyllum. J. Nat. Prod. 70, 608–612. https://doi.org/10.1021/np060581r. 18 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Bohlmann, F., Hartono, L., Jakupovic, J., 1985. A diterpene related to erythroxydiol from Helichrysum refluxum. Phytochem. 24, 611–612. https://doi.org/10.1016/S00319422(00)80783-9. Bohlmann, F., Hoffmann, E., 1979. Cannabigerol-ähnliche verbindungen aus Helichrysum umbraculigerum. Phytochem. 18, 1371–1374. https://doi.org/10.1016/00319422(79)83025-3. Bohlmann, F., Mahanta, P.K., 1979. Weitere phloroglucin-derivate aus Helichrysum gymnoconum. Phytochem. 18, 348–350. https://doi.org/10.1016/0031-9422(79) 80100-4. Bohlmann, F., Misra, L.N., 1984. New prenylflavanones and chalcones from Helichrysum rugulosum. Planta Med. 50, 271–272. https://doi.org/10.1055/s-2007-969699. Bohlmann, F., Misra, L.N., Jakupovic, J., 1984. Further phloroglucinol and α-pyrone derivatives from Helichrysum spp. Planta Med. 50, 174–176. Bohlmann, F., Stöhr, F.M., 1980. Synthese natürlich vorkommender p‐Hydroxyacetophenon‐Derivate, III. Liebigs Ann. Chem. 185–191. https://doi.org/ 10.1002/jlac.198019800203. 1980. Bohlmann, F., Suwita, A., 1979a. Ein neues guajanolid und ein secoguajanolid aus Helichrysum splendidum. Phytochem. 18, 885–886. Bohlmann, F., Suwita, A., 1979b. Weitere phloroglucin-derivate aus helichrysum-arten. Phytochem. 18, 2046–2049. https://doi.org/10.1016/S0031-9422(00)82740-5. Bohlmann, F., Zdero, C., 1970. Neue benzofuranderivate aus Doronicum austriacum jacq. Tetrahedron Lett. 11, 3575–3576. Bohlmann, F., Zdero, C., 1973. Natürlich vorkommende terpenderivate, XXII. Über ein neues azulen aus Helichrysum bracteaturn (vent.) willd. Chem. Ber. 106, 1337–1340. https://doi.org/10.1002/cber.19731060432. Bohlmann, F., Zdero, C., 1979. Neue phloroglucin-derivate aus Helichrysum natalitium und Helichrysum bellum. Phytochem. 18, 641–644. https://doi.org/10.1016/S00319422(00)84276-4. Bohlmann, F., Zdero, C., 1980a. Neue geranylphloroglucin-derivate aus Helichrysum monticola. Phytochem. 19, 683–684. Bohlmann, F., Zdero, C., 1980b. Neue phloroglucin-derivate aus helichrysum-arten. Phytochem. 19, 153–155. https://doi.org/10.1016/0031-9422(80)85038-2. Bohlmann, F., Zdero, C., Hoffmann, E., Mahanta, P.K., Dorner, W., 1978. Neue diterpene und sesquiterpene aus südafrikanischen Helichrysum-arten. Phytochem. 17, 1917–1922. https://doi.org/10.1016/S0031-9422(00)88733-6. Bohlmann, F., Zdero, C., Zeisberg, R., Sheldrick, W.S., 1979a. Helifulvanolsäkure—ein neues diterpen mit anomalem kohlenstoffgerüst aus Helichrysum fulvum. Phytochem. 18, 1359–1362. https://doi.org/10.1016/0031-9422(79)83022-8. Bohlmann, F., Zdero, C., Ziesche, J., 1979b. Neue flavone und phloroglucin-derivate aus Helichrysum herbaceum und Helichrysum chrysargyrum. Phytochem. 18, 1375–1378. Bohlmann, F., Ziesche, J., 1979. Ein ungewöhnliches tetrahydrofuran-derivat aus Helichrysum aureo-nitens. Phytochem. 18, 664–665. Bougatsos, C., Meyer, J.J.M., Magiatis, P., Vagias, C., Chinou, I.B., 2003. Composition and antimicrobial activity of the essential oils of Helichrysum kraussii Sch. Bip. And H. Rugulosum less. From South Africa. Flavour Fragr. J. 18, 48–51. Carini, M., Aldini, G., Furlanetto, S., Stefani, R., Facino, R.M., 2001. LC coupled to iontrap MS for the rapid screening and detection of polyphenol antioxidants from Helichrysum stoechas. J. Pharm. Biomed. Anal. 24, 517–526. https://doi.org/10. 1016/S0731-7085(00)00431-3. Cavalli, J.F., Ranarivelo, L., Ratsimbason, M., Bernardini, A.F., Casanova, J., 2001. Constituents of the essential oil of six Helichrysum species from Madagascar. Flavour Fragr. J. 16, 253–256. https://doi.org/10.1002/ffj.994. Cavalli, J.F., Tomi, F., Bernardini, A.F., Casanova, J., 2006. Chemical variability of the essential oil of Helichrysum faradifani Sc. Ell. From Madagascar. Flavour Fragr. J. 21, 111–114. https://doi.org/10.1002/ffj.1531. Chagonda, L.S., Makanda, C., Chalchat, J.C., 1999. Essential oils of four wild and semiwild plants from zimbabwe: colospermum mopane (kirk ex Benth.) kirk ex leonard, Helichrysum splendidum (Thunb.) less, Myrothamnus flabellifolia (Welw.) and Tagetes minuta L. J. Essent. Oil Res. 11, 573–578. Chinou, I.B., Bougatsos, C., Perdetzoglou, D., 2004. Chemical composition and antimicrobial activities of Helichrysum amorginum cultivated in Greece. J. Essent. Oil Res. 16, 243–245. Cool, L.G., Kim, Yk., Zavarin, E., Ball, G.E., 1994. Bakerol: an unusual nor-acorane hemiketal from Cupressus bakeri foliage. Phytochem. 36, 1283–1285. Cui, H., Zhao, C., Lin, L., 2015. Antibacterial activity of Helichrysum italicum oil on vegetables and its mechanism of action. J. Food Process. Preserv. 39, 2663–2672. https://doi.org/10.1111/jfpp.12516. Cushnie, T.P.T., Lamb, A.J., 2006. Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine 13, 187–191. https://doi.org/10.1016/j.phymed.2004.07.003. Czinner, E., Lemberkovics, É., Bihátsi-Karsai, E., Vitányi, G., Lelik, L., 2000. Composition of the essential oil from the inflorescence of Helichrysum arenarium (L.) Moench. J. Essent. Oil Res. 12, 728–730. D’Abrosca, B., Buommino, E., D’Angelo, G., Coretti, L., Scognamiglio, M., Severino, V., Pacifico, S., Donnarumma, G., Fiorentino, A., 2013. Spectroscopic identification and anti-biofilm properties of polar metabolites from the medicinal plant Helichrysum italicum against Pseudomonas aeruginosa. Bioorg. Med. Chem. 21, 7038–7046. https:// doi.org/10.1016/j.bmc.2013.09.019. De La Garza, A.L., Etxeberria, U., Lostao, M.P., San Román, B., Barrenetxe, J., Alfredo Martínez, J., Milagro, F.I., 2013. Helichrysum and grapefruit extracts inhibit carbohydrate digestion and absorption, improving postprandial glucose levels and hyperinsulinemia in rats. J. Agric. Food Chem. 61, 12012–12019. https://doi.org/10. 1021/jf4021569. De La Puerta, R., Forder, R.A., Hoult, J.R.S., 1999. Inhibition of leukocyte eicosanoid generation and radical scavenging activity by gnaphalin, a lipophilic flavonol isolated from Helichrysum picardii. Planta Med. 65, 507–511. https://doi.org/10.1055/s- 1999-14005. de Quesada, T.G., Rodríguez, B., Valverde, S., 1972. The constituents of Helichrysum stoechas. Phytochem. 11, 446–449. https://doi.org/10.1016/S0031-9422(00) 90048-7. Dekker, T.G., Fourie, T.G., Snyckers, F.O., van der Schyf, C.J., 1984. 13C NMR spectra of 3‐substituted phlorophenone compounds. Org. Magn. Reson. 22, 607–608. https:// doi.org/10.1002/mrc.1270220918. Djihane, B., Wafa, N., Elkhamssa, S., Pedro, D.H.J., Maria, A.E., Mohamed Mihoub, Z., 2017. Chemical constituents of Helichrysum italicum (Roth) G. Don essential oil and their antimicrobial activity against Gram-positive and Gram-negative bacteria, filamentous fungi and Candida albicans. Saudi Pharm. J. 25, 780–787. https://doi.org/ 10.1016/j.jsps.2016.11.001. do Nascimento, M.C., Mors, W.B., 1972d. Chalcones of the root bark of Derris sericea. Phytochem. 11, 3023–3028. https://doi.org/10.1016/0031-9422(72)80097-9. Drawert, F., Beier, J., 1976. Monoprenylierte acylphloroglucine. Phytochem. 15, 1695–1696. https://doi.org/10.1016/S0031-9422(00)97457-0. El-Olemy, M.M., Al-Rehaily, A.J., Albishi, O.A., Mossa, J.S., Demirci, B., Baser, K.H.C., 2005. Composition of the essential oil of Helichrysum forsskahlii (Gmel) Hilliard et Burt. J. Essent. Oil Res. 17, 112–116. Elkiran, O., Bagci, E., Evren, H., 2013. Composition of the essential oil of endemic Helichrysum noeanum boiss. (Asteraceae) growing wild in Turkey. Asian J. Chem. 25, 7949–7951. Facino, R.M., Carini, M., Franzoi, L., Pirola, O., Bosisio, E., 1990. Phytochemical characterization and radical scavenger activity of flavonoids from Helichrysum italicum G. Don (Compositae). Pharmacol. Res. 22, 709–721. Farkas, L., Pallos, L., 1965. Aurone und auron‐glykoside, X: synthese und endgültiger strukturbeweis des bracteins, eines glucosids aus Helichrysum bracteatum (vent.) willd. Chem. Ber. 98, 2930–2932. https://doi.org/10.1002/cber.19650980922. Firouznia, A., Akbari, M.T., Rustaiyan, A., Masoudi, S., Bigdeli, M., Anaraki, M.T., 2007. Composition of the essential oils of Artemisia turanica krasch., Helichrysum oocephalum boiss. and Centaurea ispahanicaboiss. Three asteraceae herbs growing wild in Iran. J. Essent. Oil-Bear. Pl. 10, 88–93. Githens, T.S., 1949. Drug Plants of Africa. African Handbooks 8. University of Pennsylvania Press, The University Museum, Philadelphia. Gouveia, S.C., Castilho, P.C., 2009. Analysis of phenolic compounds from different morphological parts of Helichrysum devium by liquid chromatography with on-line UV and electrospray ionization mass spectrometric detection. Rapid Commun. Mass Spectrom. 23, 3939–3953. https://doi.org/10.1002/rcm.4335. Gouveia, S., Castilho, P.C., 2011. Characterisation of phenolic acid derivatives and flavonoids from different morphological parts of Helichrysum obconicum by a RP-HPLCDAD-(-)-ESI-MSn method. Food Chem. 129, 333–344. https://doi.org/10.1016/j. foodchem.2011.04.078. Gradinaru, A.C., Silion, M., Trifan, A., Miron, A., Aprotosoaie, A.C., 2014. Helichrysum arenarium subsp. arenarium: phenolic composition and antibacterial activity against lower respiratory tract pathogens. Nat. Prod. Res. 28, 2076–2080. https://doi.org/ 10.1080/14786419.2014.924931. Grierson, D.S., Afolayan, A.J., 1999. An ethnobotanical study of plants used for the treatment of wounds in the Eastern Cape, South Africa. J. Ethnopharmacol. 67, 327–332. Grinev, V.S., Shirokov, A.A., Navolokin, N.A., Polukonova, N.V., Kurchatova, M.N., Durnova, N.A., Bucharskaya, A.B., Maslyakova, G.N., 2016. Polyphenolic compounds of a new biologically active extract from immortelle sandy flowers (Helichrysum arenarium (L.) Moench.). Russ. J. Bioorg. Chem. 42, 770–776. Hänsel, R., Cybulski, E.-M., Çubukçu, B., Meriçli, A.H., Bohlmann, F., Zdero, C., 1980. Neue pyron-derivate aus helichrysum-arten. Phytochem. 19, 639–644. https://doi. org/10.1016/0031-9422(80)87030-0. Herz, W., Kulanthaivel, P., 1984. Ent-kauranes and 10α-methyl-eudesman-8αh,12-olides from Wedelia calycina and Wedelia hispida. Phytochem. 23, 2271–2275. https://doi. org/10.1016/S0031-9422(00)80533-6. Honda, T., Ishige, H., Tsubuki, M., Naito, K., Suzuki, Y., 1991. Novel carbon-carbon bond formation by means of a rhodium acetate-catalysed reaction of γ,δ-unsaturated diazoketone and its application to the synthesis of 4-epi-isovalerenenol. J. Chem. Soc. Perkin Trans. I 1, 954–955. https://doi.org/10.1039/P19910000954. Jacot Guillarmod, A., 1971. Flora of Lesotho (Basutoland). Cramer, Lehre. Jakupovic, J., Grenz, M., Bohlmann, F., Mungai, G.M., 1990. 12β-hydroxyabieta-7, 13diene and other constituents from east african Helichrysum species. Phytochem. 29, 1589–1590. https://doi.org/10.1016/0031-9422(90)80127-3. Jakupovic, J., Kuhnke, J., Schuster, A., Metwally, M.A., Bohlmann, F., 1986. Phloroglucinol derivatives and other constituents from South African Helichrysum species. Phytochem. 25, 1133–1142. https://doi.org/10.1016/S0031-9422(00) 81569-1. Jakupovic, J., Pathak, V.P., Bohlmann, F., King, R.M., Robinson, H., 1987a. Obliquin derivatives and other constituents from Australian Helichrysum species. Phytochem. 26, 803–807. https://doi.org/10.1016/S0031-9422(00)84791-3. Jakupovic, J., Schuster, A., Bohlmann, F., Ganzer, U., King, R.M., Robinson, H., 1989a. Diterpenes and other constituents from Australian Helichrysum and related species. Phytochem. 28, 543–551. https://doi.org/10.1016/0031-9422(89)80048-2. Jakupovic, J., Schuster, A., Sun, H., Bohlmann, F., Bhakuni, D.S., 1987b. Prenylated phthalides from Anaphalis araneosa and Helichrysum platypterum. Phytochem. 26, 580–581. https://doi.org/10.1016/S0031-9422(00)81462-4. Jakupovic, J., Zdero, C., Grenz, M., Tsichritzis, F., Lehmann, L., Hashemi-Nejad, S.M., Bohlmann, F., 1989b. Twenty-one acylphloroglucinol derivatives and further constituents from South African Helichrysum species. Phytochem. 28, 1119–1131. https://doi.org/10.1016/0031-9422(89)80195-5. Javidnia, K., Miri, R., Soltani, M., Khosravi, A.R., 2009. Essential oil composition of two Iranian endemic Helichrysummiller. Species (H. leucocephalum boiss. and H. 19 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. artemisioides boiss. Et hausskn.). J. Essent. Oil Res. 21, 54–56. Jerković, I., Rajić, M., Marijanović, Z., Bilić, M., Jokić, S., 2016. Optimization of supercritical CO2 extraction of dried Helichrysum italicum flowers by response surface methodology: GC-MS profiles of the extracts and essential oil. Sep. Sci. Technol. 51, 2925–2931. Judzentiene, A., Butkiene, R., 2006. Chemical composition of the essential oils of wild Helichrysum arenarium (L.) with differently colored inflorescences from eastern Lithuania. J. Essent. Oil Res. 18, 80–83. Karasartov, B.S., Kurkin, V.A., Zapesochnaya, G.G., 1992. Coumarins and flavonoids of the flowers of Helichrysum italicum. Chem. Nat. Compd. 28, 504–505. Kasmi, A., Hammami, M., Raoelison, E.G., Abderrabba, M., Bouajila, J., Ducamp, C., 2017. Chemical composition and behavioral effects of five plant essential oils on the green pea aphid Acyrthosiphon pisum (Harris) (Homoptera: aphididae). Chem. Biodivers. 14. https://doi.org/10.1002/cbdv.201600464. Kothavade, P.S., Nagmoti, D.M., Bulani, V.D., Juvekar, A.R., 2013. Arzanol, a potent mPGES-1 inhibitor: novel anti-inflammatory agent. Transfus. Apher. Sci. https://doi. org/10.1155/2013/986429. 2013. Kuiate, J.R., Amvam Zollo, P.H., Nguefa, E.H., Bessière, J.M., Lamaty, G., Menut, C., 1999. Composition of the essential oils from the leaves of Microglossa pyrifolia (Lam.) O. Kuntze and Helichrysum odoratissimum (L.) less. Growing in Cameroon. Flavour Fragr. J. 14, 82–84. https://doi.org/10.1002/(SICI)1099-1026(199903/04) 14:2<82::AID-FFJ780>3.0.CO;2-Z. Lavault, M., Richomme, P., 2004. Constituents of Helichrysum stoechas variety olonnense. Chem. Nat. Compd. 40, 118–121. Lawal, O.A., Ogunwande, I.A., Kasali, A.A., Opoku, A.R., Oyedeji, A.O., 2015. Chemical composition, antibacterial and cytotoxic activities of essential oil from the leaves of Helichrysum odoratissimum grown in South Africa. J. Essent. Oil Bear. Pl. 18, 236–241. Leonardi, M., Ambryszewska, K.E., Melai, B., Flamini, G., Cioni, P.L., Parri, F., Pistelli, L., 2013. Essential-oil composition of Helichrysum italicum (Roth) G. Don ssp. Italicum from Elba Island (Tuscany, Italy). Chem. Biodivers. 10, 343–355. https://doi.org/10. 1002/cbdv.201200222. Les, F., Venditti, A., Cásedas, G., Frezza, C., Guiso, M., Sciubba, F., Serafini, M., Bianco, A., Valero, M.S., López, V., 2017. Everlasting flower (Helichrysum stoechas Moench) as a potential source of bioactive molecules with antiproliferative, antioxidant, antidiabetic and neuroprotective properties. Ind. Crop. Prod. 108, 295–302. https://doi. org/10.1016/j.indcrop.2017.06.043. Lloyd, H.A., Evans, S.L., Fales, H.M., 1978. Terpene alcohols of Helichrysum dendroideum. II. J. Nat. Prod. 41, 494–496. Lloyd, H.A., Fales, H.M., 1967. Terpene alcohols of Helichrysum dendroideum. Tetrahedron Lett. 8, 4891–4895. https://doi.org/10.1016/S0040-4039(01)89626-X. Lourens, A.C.U., Viljoen, A.M., Van Heerden, F.R., 2008. South African Helichrysum species: a review of the traditional uses, biological activity and phytochemistry. J. Ethnopharmacol. 119, 630–652. Lwande, W., Hassanali, A., Wanyama, O.B., Ngola, S., Mwangi, J.W., 1993. Constituents of the essential oil of Helichrysum odoratissimum (L.) less. J. Essent. Oil Res. 5, 93–95. Malolo, F.A.E., Nouga, A.B., Kakam, A., Franke, K., Ngah, L., Flausino, O., Mpondo, E.M., Ntie-Kang, F., Ndom, J.C., Bolzani, V.S., Wessjohann, L., 2015. Protease-inhibiting, molecular modeling and antimicrobial activities of extracts and constituents from Helichrysum foetidum and Helichrysum mechowianum (compositae). Chem. Cent. J. 9, 32. https://doi.org/10.1186/s13065-015-0108-1. Mammino, L., 2017. Intramolecular hydrogen bonding and conformational preferences of arzanol - an antioxidant acylphloroglucinol. Molecules 22, 1294. https://doi.org/10. 3390/molecules22081294. Mancini, E., De Martino, L., Marandino, A., Scognamiglio, M.R., De Feo, V., 2011. Chemical composition and possible in vitro phytotoxic activity of Helichrsyum italicum (Roth) don ssp. Italicum. Molecules 16, 7725–7735. https://doi.org/10.3390/ molecules16097725. Mao, Z., Gan, C., Zhu, J., Ma, N., Wu, L., Wang, L., Wang, X., 2017. Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. MOENCH through the pathway of anti-inflammation. Bioorg. Med. Chem. Lett. 27, 2812–2817. https://doi.org/10.1016/j.bmcl.2017.04.076. Mari, A., Napolitano, A., Masullo, M., Pizza, C., Piacente, S., 2014. Identification and quantitative determination of the polar constituents in Helichrysum italicum flowers and derived food supplements. J. Pharm. Biomed. Anal. 96, 249–255. Marongiu, B., Piras, A., Desogus, E., Porcedda, S., Ballero, M., 2003. Analysis of the volatile concentrate of the leaves and flowers of Helichrysum italicum (Roth) Don ssp. Microphyllum (Willd.) Nyman (Asteraceae) by supercritical fluid extraction and their essential oils. J. Essent. Oil Res. 15, 120–126. Marongiu, B., Piras, A., Porcedda, S., 2006. Comparative analysis of the oil and supercritical CO2 extract of Artemisia arborescens L. And Helichrysum splendidum (Thunb.) less. Nat. Prod. Res. 20, 421–428. Mastelic, J., Politeo, O., Jerkovic, I., Radosevic, N., 2005. Composition and antimicrobial activity of Helichrysum italicum essential oil and its terpene and terpenoid fractions. Chem. Nat. Compd. 41, 35–40. Moghadam, H.D., Sani, A., Sangatash, M.M., 2014. Inhibitory effect of Helichrysum arenarium essential oil on the growth of food contaminated microorganisms. J. Essent. Oil Bear. Pl. 17, 911–921. Morikawa, T., Ninomiya, K., Akaki, J., Kakihara, N., Kuramoto, H., Matsumoto, Y., Hayakawa, T., Muraoka, O., Wang, L.B., Wu, L.J., Nakamura, S., Yoshikawa, M., Matsuda, H., 2015. Dipeptidyl peptidase-IV inhibitory activity of dimeric dihydrochalcone glycosides from flowers of Helichrysum arenarium. J. Nat. Med. 69, 494–506. https://doi.org/10.1007/s11418-015-0914-8. Morikawa, T., Wang, L.B., Ninomiya, K., Nakamura, S., Matsuda, H., Muraoka, O., Wu, L.J., Yoshikawa, M., 2009. Medicinal flowers. XXX. Eight new glycosides, everlastosides F-M, from the flowers of Helichrysum arenarium. Chem. Pharm. Bull. 57, 853–859. Mutanyatta-Comar, J., Phale, O.J.K., Abegaz, B.M., Croft, K., 2006. Phloroglucinol derivatives and flavones from Helichrysum paronychioides. Bull. Chem. Soc. Ethiop. 20, 61–68. https://doi.org/10.4314/bcse.v20i1.21144. Neuwinger, H.D., 1996. Poisons and Drugs, African Ethnobotany. Chapman and Hall, Weinheim, pp. 253–255. Nostro, A., Germano, M.P., D’Angelo, V., Marino, A., Cannatelli, M.A., 2000. Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett. Appl. Microbiol. 30, 379–384. Opitz, L., Hänsel, R., 1970. Helipyron, ein methylen-bis-triacetsäurelacton aus Helichrysum italicum. Tetrahedron Lett. 11, 3369–3370. Opitz, L., Hänsel, R., 1971. Phthalide aus Helichrysum italicum. Arch. Pharm. (Weinheim) 304, 228–230. Ornano, L., Venditti, A., Sanna, C., Ballero, M., Maggi, F., Lupidi, G., Bramucci, M., Quassinti, L., Bianco, A., 2015. Chemical composition and biological activity of the essential oil from Helichrysum microphyllum cambess. ssp. tyrrhenicumbacch., brullo e giusso growing in la maddalena archipelago, Sardinia. J. Oleo Sci. 64, 19–26. https:// doi.org/10.5650/jos.ess14171. Öztürk, B., Özek, G., Özek, T., Baser, K.H.C., 2014. Chemical diversity in volatiles of Helichrysum plicatum DC. Subspecies in Turkey. Rec. Nat. Prod. 8, 373–384. Pereira, C.G., Barreira, L., Bijttebier, S., Pieters, L., Neves, V., Rodrigues, M.J., Rivas, R., Varela, J., Custódio, L., 2017. Chemical profiling of infusions and decoctions of Helichrysum italicum subsp. Picardii by UHPLC-PDA-MS and in vitro biological activities comparatively with green tea (Camellia sinensis) and rooibos tisane (Aspalathus linearis). J. Pharm. Biomed. Anal. 145, 593–603. https://doi.org/10.1016/j.jpba. 2017.07.007. Perrini, R., Morone-Fortunato, I., Lorusso, E., AvatoGlands, P., 2009. Essential oils and in vitro establishment of Helichrysum italicum (Roth) G. Don ssp. Microphyllum (Willd.). Nyman Ind. Crops Prod. 29, 395–403. Phillips, E.P., 1917. A contribution to the flora of the Leribe Plateau and environs: with a discussion on the relationships of the floras of Basutoland, the Kalahari, and the south-eastern regions. Ann. South Afr. Mus. Ann. Van Die Suid-afrikaanse Mus. 16, 123–135. Pino, J.A., Fernandes, P., Marbot, R., Rosado, A., Fontinha, S.S., 2004. Leaf oils of Helichrysum melaleucum rchb. Ex holl., Oenanthe divaricata (r. br.) mabb. And Persea indica (l.) spreng. From madeira). J. Essent. Oil Res. 16, 487–489. Pljevljakušić, D., Bigović, D., Janković, T., Jelačić, S., Šavikin, K., 2018. Sandy everlasting (Helichrysum arenarium (L.) Moench): botanical, chemical and biological properties. Front. Plant Sci. 9, 1123. https://doi.org/10.3389/fpls.2018.01123. Polat, R., Cakilcioglu, U., Satil, F., 2013. Traditional uses of medicinal plants in Solhan (Bingöl - Turkey). J. Ethnopharmacol. 148, 951–963. https://doi.org/10.1016/j.jep. 2013.05.050. Popoola, O.K., Marnewick, J.L., Rautenbach, F., Ameer, F., Iwuoha, E.I., Hussein, A.A., 2015a. Inhibition of oxidative stress and skin aging-related enzymes by prenylated chalcones and other flavonoids from Helichrysum teretifolium. Molecules 20, 7143–7155. https://doi.org/10.3390/molecules20047143. Popoola, O.K., Marnewick, J.L., Rautenbach, F., Iwuoha, E.I., Hussein, A.A., 2015b. Acylphloroglucinol derivatives from the South African Helichrysum niveum and their biological activities. Molecules 20, 17309–17324. https://doi.org/10.3390/ molecules200917309. Proksch, P., Rodriguez, E., 1983. Chromenes and benzofurans of the asteraceae, their chemistry and biological significance. Phytochem. 22, 2335–2348. https://doi.org/ 10.1016/0031-9422(83)80118-6. Ramanoelina, P.A.R., Bianchini, J.P., Gaydou, E.M., 1992. Chemical composition of essential oil of Helichrysum bracteiferum. J. Essent. Oil Res. 4, 531–532. Randriaminahy, M., Witte, L., Kunze, A., Wray, V., Proksch, P., 1992. Detoxification of naturally occurring chromenes in larvae of the generalist herbivore Spodoptera littoralis (Noctuidae). Biochem. Syst. Ecol. 20, 711–722. https://doi.org/10.1016/ 0305-1978(92)90030-H. Rigano, D., Formisano, C., Pagano, E., Senatore, F., Piacente, S., Masullo, M., Capasso, R., Izzo, A.A., Borrelli, F., 2014. A new acetophenone derivative from flowers of Helichrysum italicum (Roth) Don ssp. Italicum. Fitoterapia 99, 198–203. https://doi. org/10.1016/j.fitote.2014.09.019. Rios, J.L., Recio, M.C., Villar, A., 1991. Isolation and identification of the antibacterial compounds from Helichrysum stoechas. J. Ethnopharmacol. 33, 51–55. Rivera, D., Obón, C., 1995. The ethnopharmacology of Madeira and Porto Santo Islands, a review. J. Ethnopharmacol. 46, 73–93. Rosa, A., Atzeri, A., Nieddu, M., Appendino, G., 2017. New insights into the antioxidant activity and cytotoxicity of arzanol and effect of methylation on its biological properties. Chem. Phys. Lipids 205, 55–64. https://doi.org/10.1016/j.chemphyslip.2017. 05.001. Rosa, A., Deiana, M., Atzeri, A., Corona, G., Incani, A., Melis, M.P., Appendino, G., Dessi, M.A., 2007. Evaluation of the antioxidant and cytotoxic activity of arzanol, a prenylated alpha-pyrone-phloroglucinol etherodimer from Helichrysum italicum subsp. Microphyllum. Chem. Biol. Interact. 165, 117–126. Rosa, A., Pollastro, F., Atzeri, A., Appendino, G., Melis, M.P., Deiana, M., Incani, A., Loru, D., Dessi, M.A., 2011. Protective role of arzanol against lipid peroxidation in biological systems. Chem. Phys. Lipids 164, 24–32. https://doi.org/10.1016/j. chemphyslip.2010.09.009. Roussis, V., Tsoukatou, M., Chinou, I.B., Harvala, C., 2002. Composition and antibacterial activity of the essential oils of two Helichrysum stoechas varieties growing in the island of crete. J. Essent. Oil Res. 14, 459–461. Ruberto, G., Biondi, D.M., Barbagallo, C., Meli, R., Savoca, F., 2002. Constituents of stem and flower oils of Helichrysum litoreum Guss. Flavour Fragr. J. 17, 46–48. Sala, A., Recio, Md.C., Giner, R.M., Máñez, S., Ríos, J.-L., 2001. New acetophenone glucosides isolated from extracts of Helichrysum italicum with antiinflammatory activity. J. Nat. Prod. 64, 1360–1362. 20 Industrial Crops & Products 138 (2019) 111471 M. Akaberi, et al. Sala, A., Recio, M.C., Schinella, G.R., Manez, S., Giner, R.M., Rios, J.L., 2003. A new dual inhibitor of arachidonate metabolism isolated from Helichrysum italicum. Eur. J. Pharmacol. 460, 219–226. Satta, M., Tukroso, C.I.G., Angioni, A., Pirisi, F.M., Cabras, P., 1999. Analysis of the essential oil of Helichrysum italicum G. Don ssp. Microphyllum (Willd) Nym. J. Essent. Oil Res. 11, 711–715. Silva, L., Rodrigues, A.M., Ciriani, M., Falé, P.L.V., Teixeira, V., Madeira, P., Machuqueiro, M., Pacheco, R., Florêncio, M.H., Ascensão, L., Serralheiro, M.L.M., 2017. Antiacetylcholinesterase activity and docking studies with chlorogenic acid, cynarin and arzanol from Helichrysum stoechas (Lamiaceae). Med. Chem. Res. 26, 2942–2950. Süntar, I., Küpeli Akkol, E., Keles, H., Yesilada, E., Sarker, S.D., 2013. Exploration of the wound healing potential of Helichrysum graveolens (Bieb.) Sweet: isolation of apigenin as an active component. J. Ethnopharmacol. 149, 103–110. https://doi.org/10.1016/ j.jep.2013.06.006. Taglialatela-Scafati, O., Pollastro, F., Chianese, G., Minassi, A., Gibbons, S., Arunotayanun, W., Mabebie, B., Ballero, M., Appendino, G., 2013. Antimicrobial phenolics and unusual glycerides from Helichrysum italicum subsp. Microphyllum. J. Nat. Prod. 76, 346–353. https://doi.org/10.1021/np3007149. Tetik, F., Civelek, S., Cakilcioglu, U., 2013. Traditional uses of some medicinal plants in Malatya (Turkey). J. Ethnopharmacol. 146, 331–346. https://doi.org/10.1016/j.jep. 2012.12.054. Tirillini, B., Menghini, L., Leporini, L., Scanu, N., Marino, S., Pintore, G., 2013. Antioxidant activity of methanol extract of Helichrysum foetidum Moench. Nat. Prod. Res. 27, 1484–1487. https://doi.org/10.1080/14786419.2012.722085. Tomás-Barberán, F., Iniesta-Sanmartín, E., Tomás-Lorente, F., Rumbero, A., 1990. Antimicrobial phenolic compounds from three Spanish Helichrysum species. Phytochem. 29, 1093–1095. https://doi.org/10.1016/0031-9422(90)85410-H. Tomás-Lorente, F., Iniesta-Sanmartín, E., Tomás-Barberán, F.A., Trowitzsch-Kienast, W., Wray, V., 1989. Antifungal phloroglucinol derivatives and lipophilic flavonoids from Helichrysum decumbens. Phytochem. 28, 1613–1615. https://doi.org/10.1016/ S0031-9422(00)97809-9. Tsoukatou, M., Roussis, V., Chinou, L., Petrakis, P.V., Ortiz, A., 1999. Chemical composition of the essential oils and headspace samples of two Helichrysum species occurring in Spain. J. Essent. Oil Res. 11, 511–516. Tundis, R., Statti, G.A., Conforti, F., Bianchi, A., Agrimonti, C., Sacchetti, G., Muzzoli, M., Ballero, M., Menichini, F., Poli, F., 2005. Influence of environmental factors on composition of volatile constituents and biological activity of Helichrysum italicum (Roth) Don (Asteraceae). Nat. Prod. Res. 19, 379–387. Turker, A.U., Usta, C., 2008. Biological screening of some Turkish medicinal plant extracts for antimicrobial and toxicity activities. Nat. Prod. Res. 22, 136–146. Usai, M., Foddai, M., Bernardini, A.F., Muselli, A., Costa, J., Marchetti, M., 2010. Chemical composition and variation of the essential oil of wild sardinian Helichrysum italicum G. Don subsp. Microphyllum (willd.) nym from vegetative period to postblooming. J. Essent. Oil Res. 22, 373–380. Vrkcoč, J., Dolejš, L., Buděšínský, M., 1975. Methylene-bis-2H-pyran-2-ones and phenolic constituents from the root of Helichrysum arenarium. Phytochem. 14, 1383–1384. https://doi.org/10.1016/S0031-9422(00)98631-X. Vrkoč, J., Ubik, K., Sedmera, P., 1973. Phenolic extractives from the achenes of Helichrysum arenarium. Phytochem. 12, 2062. Walker, J., 1996. Wild Flowers of KwaZulu-Natal. W.R. Walker Family Trust, Pinetown. Wang, L.B., Morikawa, T., Nakamura, S., Ninomiya, K., Matsuda, H., Muraoka, O., Wu, L.J., Yoshikawa, M., 2009. Medicinal flowers. XXVIII. Structures of five new glycosides, everlastosides A, B, C, D, and E, from the flowers of Helichrysum arenarium. Heterocycles 78, 1235–1242. Watt, J.M., Breyer-Brandwijk, M.G., 1962. The Medicinal and Poisonous Plants of Southern and Eastern Africa, 2nd ed. Livingstone, London. Werner, J., Ebrahim, W., Özkaya, F.C., Mándi, A., Kurtán, T., El-Neketi, M., Liu, Z., Proksch, P., 2019. Pyrone derivatives from Helichrysum italicum. Fitoterapia 133, 80–84. https://doi.org/10.1016/j.fitote.2018.12.018. Yagura, T., Motomiya, T., Ito, M., Honda, G., Iida, A., Kiuchi, F., Tokuda, H., Nishino, H., 2008. Anticarcinogenic compounds in the Uzbek medicinal plant, Helichrysum maracandicum. J. Nat. Med. 62, 174–178. Yang, Y., Huang, Y., Gu, D., Yili, A., Sabir, G., Aisa, H.A., 2009. Separation and purification of three flavonoids from Helichrysum arenarium (L.) Moench by HSCCC. Chromatographia 69, 963–967. Yeşilada, E., Honda, G., Sezik, E., Tabata, M., Fujita, T., Tanaka, T., Takeda, Y., Takaishi, Y., 1995. Traditional medicine in Turkey. V. Folk medicine in the inner Taurus Mountains. J. Ethnopharmacol. 46, 133–152. https://doi.org/10.1016/03788741(95)01241-5. Zeljkovic, S.C., Solic, M.E., Maksimovic, M., 2015. Volatiles of Helichrysum italicum (Roth) G. Don from Croatia. Nat. Prod. Res. 29, 1874–1877. https://doi.org/10.1080/ 14786419.2015.1009458. 21