1	
2	The legacy of C_4 evolution in the hydraulics of C_3 and C_4 grasses
3	
4	Haoran Zhou ^{1,2,3} , Erol Akçay ¹ , Erika Edwards ² , Brent Helliker ¹
5	
6	¹ Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
7	² Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511,
8	USA
9	³ University Corporation for Atmospheric Research, Boulder, CO 80301, USA
10	Correspondence: Haoran Zhou
11	Phone: 1-215-808-7042
12	Email: haoran.zhou@yale.edu
13	
14	Erol Akçay: eakcay@sas.upenn.edu
15	Erika Edwards: erika.edwards@yale.edu

16 Brent R. Helliker: helliker@sas.upenn.edu

17 Abstract

18 The anatomical reorganization required for optimal C₄ photosynthesis should also impact plant 19 hydraulics. Most C₄ plants possess large bundle-sheath cells and high vein density, which should 20 also lead to higher leaf hydraulic conductance (Kleaf) and capacitance. Paradoxically, the C4 21 pathway reduces water demand and increases water-use-efficiency, creating a potential mis-22 match between supply capacity and demand in C_4 plant water relations. We use phylogenetic 23 analyses, physiological measurements, and models to examine the reorganization of hydraulics 24 in closely-related C₄ and C₃ grasses. Evolutionarily young C₄ lineages have higher K_{leaf}, 25 capacitance, turgor-loss-point, and lower stomatal conductance than their C₃ relatives. In 26 contrast, species from older C4 lineages show decreased Kleaf and capacitance, indicating that 27 over time, C₄ plants have evolved to optimize hydraulic investments while maintaining C₄ 28 anatomical requirements. The initial "over-plumbing" of C₄ plants disrupts the positive 29 correlation between maximal assimilation rate and K_{leaf}, decoupling a key relationship between 30 hydraulics and photosynthesis generally observed in vascular plants.

31

32 Introduction

33 The evolution of C₄ photosynthesis in the grasses— and the attendant fine-tuning of both 34 anatomical and biochemical components across changing selection landscapes^[1,2,3]— likely 35 impacted leaf hydraulics and hydraulics-photosynthesis relationships, both within the grass lineages in which C_4 evolved independently > 20 times^[4], and as compared to closely-related 36 $C_3^{[5,6]}$. C_4 plants typically exhibit lower stomatal conductance (g_s) and consequently greater 37 38 water-use efficiency than C₃, because the concentration of CO₂ inside bundle sheath cells permits reduced intercellular CO₂ concentrations and conservative stomatal behavior^[7,8,9]. At the same 39 40 time, C₄ plants require high bundle sheath to mesophyll ratios (BS:M), which are accomplished 41 with increased vein density and bundle sheath size as compared to C₃ plants. In C₃ species, leaf hydraulic conductance (K_{leaf}) has a positive relationship with vein density^[10,11,12,13]. The 42 43 decreased inter-veinal distance and consequently higher vein density in C₄ species has been 44 predicted to lead to a higher K_{leaf} than closely-related C₃ species^[14,15]. Further, increased bundle sheath size was proposed to lead to a higher leaf capacitance in C₄ species^[15,16], This would lead 45 46 to a potential physiological "mis-match", where the evolution of the C₄ pathway simultaneously 47 increases a plant's hydraulic capacity while reducing its transpirational demand.

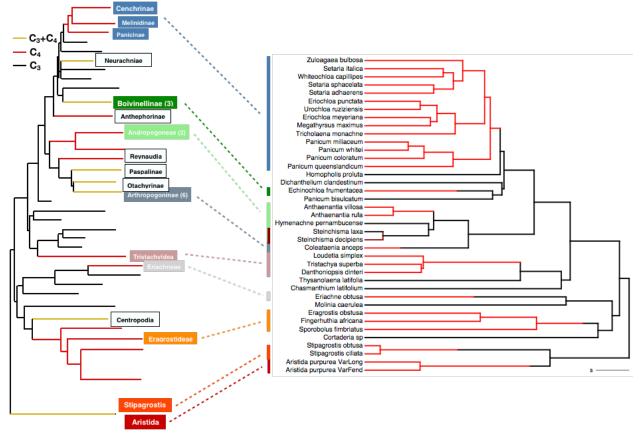
48

49 The significance of such a potential physiological mismatch depends on the potential costs and 50 tradeoffs associated with the building of an 'over-plumbed' leaf. If the costs are high^[12,17], then one would expect to see a reduction of Kleaf over evolutionary time, as continued selection works 51 52 to optimize the C₄ metabolism^[5,18]. Alternatively, a maintenance of high K_{leaf} over time could 53 result from either a lack of strong selection to reduce K_{leaf}, or a strong evolutionary constraint 54 imposed by the anatomical requirements of C4 photosynthesis. In other words, the high BS:M 55 ratio required for an efficient C₄ system may directly limit the ability of C₄ plants to optimize 56 their hydraulic architecture.

57

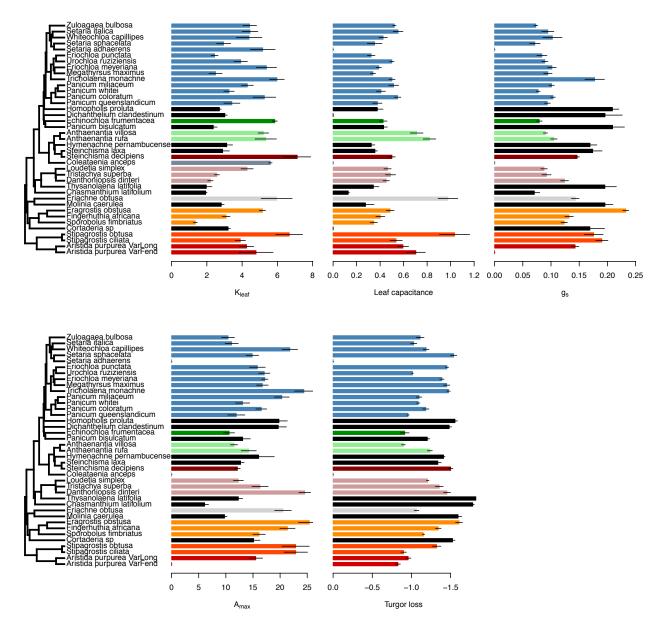
58 The evolution of a new photosynthetic pathway that results in multiple potential changes to the 59 plant hydraulic system represents the ideal platform to expand our understanding of the 60 relationship between photosynthesis and water transport. It is generally thought that maximum photosynthetic rate (A_{max}) and hydraulic capacity (K_{leaf}) are tightly linked, because the ability to 61 62 transport water through leaves to the sites of evaporation at a high rate allows for the 63 maximization of carbon gain. Studies have documented a positive correlation between Amax and 64 K_{leaf} across many scales, from a broad phylogenetic spectrum of species spanning vascular plants^[11], to smaller clades of closely related species^[13]. Grasses are largely absent from previous 65 66 efforts to examine this relationship, which is unfortunate because of the parallel venation found 67 in grasses and other monocots. With over 20 origins of C₄ photosynthesis with ages that span \sim 68 30 million years, grasses also present a unique opportunity to examine the influence of C_4 evolution on A_{max}-K_{leaf} relationships. Using a broad sampling of grasses (Fig. 1), we determined 69 70 whether anatomical differences associated with C₄ evolution result in greater K_{leaf} and leaf 71 capacitance compared to their C₃ relatives. We then compared these properties between closely 72 related C₃ and C₄ clades to determine how C₄ evolution alters the predicted A_{max}-K_{leaf} 73 relationships. Finally, we then quantified evolutionary trends in K_{leaf} , capacitance and turgor loss 74 point after the evolution of C₄ within a lineage by asking whether more recent origins of C₄ are 75 represented by higher K_{leaf} and a greater K_{leaf}-A_{max} mismatch.

76


77 Results

78 Within each phylogenetic cluster, there were no clear patterns between C₃ and C₄ hydraulic traits 79 by conducting ANOVA tests only. C₄ grasses had higher or equivalent K_{leaf}, leaf capacitance 80 leaf turgor loss point, A_{max} and lower or equivalent g_s than their closest C₃ relatives (Fig. 2). The 81 one C_3 - C_4 intermediate species, *Steinchisma decipiens*, in our analysis had K_{leaf} similar or 82 equivalent to C₄, but leaf capacitance, leaf turgor loss point, g_s and A_{max} equivalent to C₃ (Fig. 2). 83 By analyzing our data in the context of the evolutionary models (Supplementary Table S1), 84 however, we found clear C₃-C₄ differences in most measured traits. We first fitted evolutionary 85 models of Brownian motion and Ornstein-Uhlenbeck processes to the hydraulic traits based on a 86 reliable dated phylogenetic tree^[19]. The best fitting evolutionary model to the data for K_{leaf} , leaf 87 turgor loss point, Amax and gs was Ornstein-Uhlenbeck model, while the Brownian model is the 88 best-fitting model for leaf capacitance, as determined by the AICc and Akaike weights and LRT 89 test (Table 1, Supplementary Tables S2-S6). Higher K_{leaf}, higher A_{max}, lower leaf turgor loss 90 point, and lower g_s are detected C₄ species compared to C₃ (LRT test, all p < 0.01; all $\Delta AICc < -3$). 91 For leaf capacitance, there is no significant difference for C₃ and C₄ species.

92


93 We also looked for evolutionary trends in hydraulic traits after the evolution of a C₄ system to probe for an extended 'optimization' phase of C₄ evolution^[3, 20]. Identifying directional trends in 94 95 continuous character evolution is difficult without fossil taxa, and it is impossible to directly 96 measure hydraulic traits for fossils; however, we can test for trends indirectly using extant 97 species. For example, if reduction in K_{leaf} is selected for subsequent to C₄ evolution we expect 98 older C4 lineages to have lower Kleaf values than younger C4 lineages. We extracted the 99 evolutionary age of C₄ origin for each of our lineages from the dated phylogeny^[19]. Regressions 100 of evolutionary age versus hydraulic traits provide strong evidence for a long-term directional 101 trend in hydraulic evolution following the origin of C₄ photosynthesis (Fig. 3). K_{leaf}, leaf turgor 102 loss point and capacitance showed significant negative correlations with evolutionary age, while 103 A_{max} had a significant positive correlation. In contrast, there was no significant relationship 104 between gs and evolutionary age. No evolutionary relationships were detected in C3 species, 105 which indicated the correlations between evolutionary age and hydraulic traits were unique to C_4 106 species. We also tested for an evolutionary trend by modelling hydraulic trait evolution using a 107 phylogeny with branch lengths scaled to molecular substitutions/site, which provides an estimate 108 of differences in evolutionary rates between lineages^[4]. While the second approach requires

- 109 many assumptions that are likely violated, the results also provide additional support to a
- 110 directional trend in K_{leaf} and capacitance in C₄ lineages: comparing 12 different types of models
- 111 with or without evolutionary trends (supplementary Table S7), we found K_{leaf} and leaf
- 112 capacitance were best fitted by the Brownian motion model with a significant negative trend for
- 113 C₄ (Supplementary Table S8, Table S9-13).
- 114
- 115

116

Fig. 1 Phylogenetic sampling of the species for measuring physiological traits and the independent evolutionary lineages corresponding to grass lineages. The figure on the left was a grass phylogeny adapted from GPWGII (2012), on which the tags represent the recommended independent evolution of C_4 for comparative studies in grasses (numbers represent there are multiple origins within a lineage). The figure on the right is the phylogeny for our species, extracted from a dated phylogeny ^[19] for species sampled in our experiments. We sampled nine independent evolution of C_4 in total.

125

126

- 127 Fig. 2 Hydraulic conductance (K_{leaf} , mmol m⁻² s⁻¹ MPa⁻¹), leaf capacitance (mmol m⁻² MPa⁻¹),
- 128 maximal stomatal conductance (g_s , mmol m⁻² s⁻¹), maximal assimilation rate (A_{max} , μ mol m⁻² s⁻¹),
- and leaf turgor loss points (Turgor loss, -MPa) of closely related C₃ and C₄ species. Different
- 130 colored clusters of bars show nine different origins of closely-related C₃ and C₄ species. C₃
- 131 species are colored black. Error bars indicated standard errors.

- 133 Table 1 Phylogenetic results of the best-fitted models and their parameters for hydraulic
- 134 conductance (K_{leaf}), leaf capacitance (Capacitance), stomatal conductance (g_s), and leaf turgor
- 135 loss point (Turgor loss) (summarizing Table S2-S6; model description: Table S1).
- 136

Property	Model	Model	AICw	Root/Theta	
Toperty	Widden	type	AICw	C ₃	C4
K _{leaf}	Model 6*	OU2	0.984	2.682	4.295
Capacitance	Model 2	BM1	0.323	0.5	23
g_{s}	Model 6*	OU2	0.980	0.183	0.102
Turgor loss	Model 6*	OU2	0.996	-1.522	-1.192
A _{max}	Model 6*	OU2	0.5292	13.66	17.34

137 * indicates the model fit significantly better than all the other models. Different root or theta values for C₃

138 and C_4 indicates that the evolutionary model with two different values of the root or theta for C_3 and C_4

139 species is a significantly better fit than the evolutionary model with the same root or theta.

140

141 We next explored how A_{max} and hydraulic traits are correlated across the phylogeny, and whether

142 this relationship is different for C₃ and C₄ lineages. The correlations between A_{max} and K_{leaf} were

143 different between C₃ and C₄ (Fig. 4, Table 2, Table S13). A_{max} was significantly positively

144 correlated with K_{leaf} for C₃, but not for C₄ (Fig. 4, Table 2, Table S13). A_{max} was weakly

145 positively correlated with leaf capacitance and g_s and the correlations were not significantly

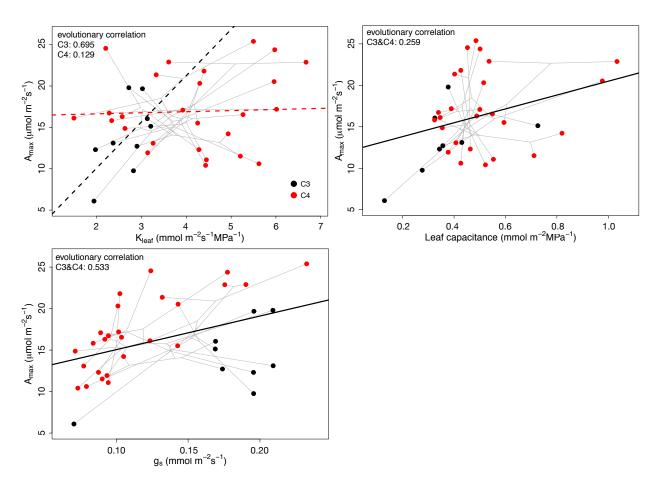
146 different for C₃ and C₄ (Fig. 4, Table 2, Supplementary Table S21, S22). A_{max} was negatively,

147 but not significantly related with leaf turgor loss point in C₃ and C₄ species (Supplementary

148 Table S23).

bioRxiv preprint doi: https://doi.org/10.1101/2020.05.14.097030; this version posted March 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license.




Fig. 3 The regression for hydraulic conductance (K_{leaf}), leaf capacitance, leaf turgor loss point, stomatal conductance (g_s) and maximal assimilation rate (A_{max}) vs. the evolutionary age for the nine origins of C₄ to show the evolutionary trend within C₄ and within their closely-related C₃ species. The evolutionary age for each sampled origin is derived from the dated phylogeny^[19].

- 157
- Table 2 Phylogenetic Correlations between maximal assimilation rates (A_{max}) and hydraulic traits
 for C₃ and C₄ species (summarizing Table S20-S23; model description: Table S19).

Parameter 1	Parameter 2	Best Model	r for C ₃	r for C ₄	<i>p</i> value
A _{max}	K _{leaf}	CorModel 3	0.695	0.129	0.012/0.51
A _{max}	Capacitance	CorModel 2	0.2	.59	0.027
A _{max}	gs	CorModel 1	0.5	33	0.003

	A _{max}	leaf turgor loss	CorModel 1	-0.223	0.256
160	Different r means	the best fitted model as	ssuming different con	rrelations for C ₃ and C ₄	. One r means the
161	best fitted model a	assuming similar correl	lations for C_3 and C_4 .	p values indicated who	ether the correlation
162	coefficients are sig	gnificant.			
163					
164	We used our me	chanism-based physi	ological model ^[32] to	o consider how the ev	volution of higher
165	K _{leaf} would affec	t the optimal g_s and p_s	photosynthesis in C	and C4 plants. An in	ncrease in K _{leaf} in
166	the C ₃ ancestor s	elects for higher gs a	nd increases the ste	ady-state leaf water j	potential to a
167	limited extent (F	ig. 5, S1). Changing	K _{leaf} has a smaller	effect on the photosy	nthesis rate of C ₄
168	than that of C_3 (I	Fig. 6, Table S25), D	Decreasing K _{leaf} by	half or doubling it ch	anges the
169	photosynthesis ra	ate of a C4 plant by a	n average of -4.27%	% and 3.48%, respect	ively. In contrast,
170	the same shifts in	n K _{leaf} has average ef	fects of -10.07% ar	nd 9.14% on the assir	nilation rate of a C3
171	plant. The sensit	ivity of the assimilati	ion rate to changes	in K _{leaf} decreases wit	h increasing CO ₂
172	concentration an	d increasing water-li	mitation for both C	3 and C4 plants (Tabl	e S25). These
173	differences in set	nsitivity to K _{leaf} were	e robust to difference	es in physiological p	roperties between
174	C ₃ and C ₄ (speci	fically, the temperatu	are response proper	ties and J _{max} /V _{cmax} ra	tio; Table S25). The
175	assimilation rate	of C ₄ plants was still	l less sensitive to K	$_{leaf}$ than that of C ₃ spectrum	ecies under
176	different CO ₂ co	ncentration and wate	r-limited condition	s (Table S25). The pl	nysiological
177	modeling results	indicates that C ₄ spe	cies maintain lowe	r g _s and higher leaf w	vater potential
178	compared to clos	sely related C3 specie	es because the CCM	I reduces transpiratio	nal demand. The
179	modeling effects	of varying K _{leaf} on p	hotosynthesis conf	irmed the diminished	returns for high-
180	efficiency water	transport in C ₄ specie	es mentioned above	2.	

181

182

Fig. 4 Phylogenetic correlation for C_3 and C_4 between A_{max} and other hydraulic traits (K_{leaf} , leaf capacitance and g_s). Different/same correlation values on the figure mean C_3 and C_4 have significantly different/same correlations. Detailed phylogenetic correlation models and analysis results are shown in Table 2. Dashed black line: C_3 ; dashed red line: C_4 ; solid black line: C_3 and C_4 have the same correlation; grey lines indicate the phylogeny.

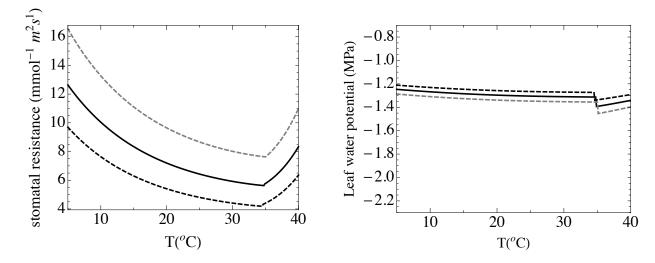


Fig. 5 The effect of changing K_{leaf} on stomatal resistance (the inverse of g_s) and leaf water potential under VPD=1.25 kPa, $\psi_s =-1$ MPa and CO₂ concentration of 200 ppm for the C₃ model. Solid black line: measured K_{leaf} ; dashed black line: K_{leaf} doubled; dashed grey line: K_{leaf} reduced by 50%.

194

189

195 To see if C₄ subtypes varied in hydraulic traits and their evolutionary rates or variance, we also 196 considered evolutionary models where we allowed each variable to have a subtype-specific value 197 (Supplementary Table S1). We found no significant differences in K_{leaf}, leaf capacitance, g_s, 198 leaf turgor loss point and A_{max} among C₄ subtypes (all Δ AICc>0, Δ AICc obtained by AICc of 199 subtype models minus AICc model not considering subtypes; Supplementary Tables S14-18). 200 Although different decarboxylation enzymes are utilized by the three major subtypes (NADP-201 ME, NAD-ME and PCK), there does not seem to be an evolutionary effect on hydraulic traits. 202 However, a previous study documenting PCK species from the Chloridoideae and Panicoideae 203 lineages with lower leaf turgor loss point^[23]. Such differences were not apparent when we 204 compared C₄ subtypes with multiple lineages. Our current representation of different subtypes is, 205 however, somewhat limited. It would be advantageous to increase both lineage and species 206 diversity and to balance subtypes within lineages to more deeply examine C₄ subtypes. 207

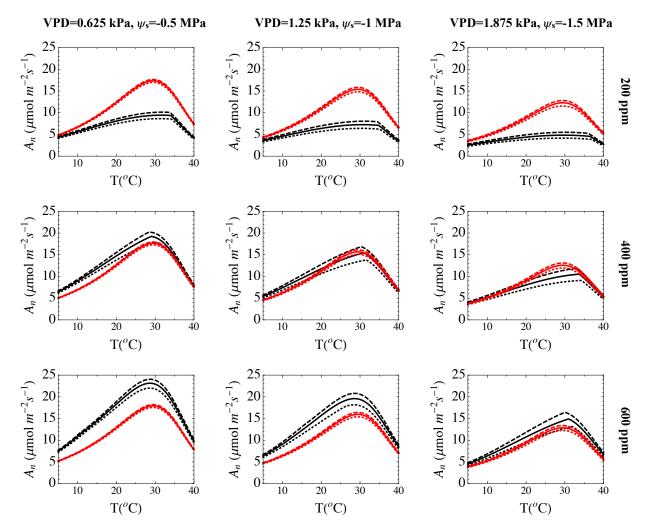


Fig. 6 Modeling results of photosynthesis rates along with different CO_2 concentration, different temperatures and different water limited conditions for C_3 (black lines) and for C_4 (red lines). Solid lines: modeling results for C_3 and C_4 with measured leaf hydraulic conductance; dashed lines: modeling results for C_3 and C_4 with twice of the regular leaf hydraulic conductance; dotted lines: modeling results for C_3 and C_4 with half of the regular leaf hydraulic conductance. C_3 and C_4 parameters are kept the same except for C_4 has the carbon concentration mechanism.

- 215
- 216

217 Discussion

- 218 The evolution of the C₄ pathway in the grasses caused a series of shifts in hydraulic properties as
- 219 compared to closely-related C₃ grasses. The anatomical requirements of C₄ initially increased
- 220 K_{leaf} and leaf capacitance, as predicted by previous studies^[14,15,16]; however, K_{leaf} and leaf

221 capacitance appear to decline over evolutionary time, suggesting a long period of physiological 222 optimization after the initial assembly of a new photosynthetic system. Previous examination of 223 leaf hydraulic traits in grasses focused on investigating single species or were not developed 224 within a phylogenetic framework when comparing multiple species^[21,22], and phylogenetic studies have assumed trait evolution as simple Brownian motion^[23,24]. Hydraulic traits, however, 225 226 may have evolved along different trajectories before and after the evolution of the C₄ pathway 227 and associated anatomical reorganization, resulting in more complicated evolutionary dynamics. 228 Our evolutionary models indicated C₄ grasses initially had higher K_{leaf}, leaf capacitance, turgor 229 loss point than corresponding C_3 , and a lower stomatal conductance (g_s) than grasses consistent with previous studies^[25,26]. Decreased vein distance and increased bundle sheath size are thought 230 231 to be anatomical precursors to the evolution of $C_4^{[27,28]}$, and both are thought to increase K_{leaf} 232 and/or leaf capacitance^[14,15]. Therefore, the shifts of K_{leaf} and leaf capacitance likely occurred 233 before, or at the initial formation of, the C₄ CCM. After the full formation of C₄, K_{leaf} and/or leaf 234 capacitance started to decrease, which led to higher or equivalent K_{leaf} and leaf capacitance in the 235 current C_3 and C_4 species (Fig. 2). Liu et al. (2019) found that K_{leaf} in C_4 grasses overlapped with C₃ values^[24]. The positive correlation between A_{max} and the evolutionary age also supports an 236 237 extended optimization phase for C₄. Previous studies have indicated that species from the oldest 238 C₄ lineages (*Chloridoideae* and *Andropogoneae* for example) contain the most productive crops 239 (Sage, 2016), while some recent C₄ lineages are not more productive than C₃ (Ripley et al., 2008; Lundgren et al., 2016). In contrast, the significant decrease of gs and the increase of leaf turgor 240 241 loss point occurred with the evolution of a fully operational C₄ CCM, as suggested by our 242 physiological models discussed below. Consistent with this prediction, in clades that possess a 243 range of C₃, C₃-C₄ intermediate and C₄ physiologies, the increased water use efficiency, 244 decreased gs, and a broadened ecological niche are observed only in plants with a full C4 CCM^[29,30]. 245

246

The evolution of C₄ significantly alters the widely-accepted A_{max} -K_{leaf} relationships existing in vascular plants. A_{max} is limited by the efficient transport of water through leaves to replace water loss through open stomata, which is the likely cause of a positive correlation between K_{leaf} and A_{max} across and within plant taxa^[11,13,31]. We found that A_{max} and K_{leaf} are positively correlated in our C₃ species but not in C₄ (Fig 4). Ocheltree et al. (2016)^[22] similarly found no relationship

252 between K_{leaf} and A_{max} in a set of nine C₄ species. We see possible explanations that are not 253 necessarily mutually exclusive. First, the positive relationship of A_{max} and K_{leaf} is weakened 254 under high K_{leaf}, possibly due to diminished returns of further increasing the efficiency of water 255 transport^[11,31], a conclusion supported by our physiological modeling results below. As K_{leaf} 256 tends to be lower in grasses than in other species, it is possible that the diminishing returns from 257 increasing K_{leaf} manifest at lower values in grasses, and the initial high K_{leaf} resulting from C₄ 258 anatomy could be in the Amax "saturation" zone. Lastly, we see evidence here that the time-since-259 C4-evolution affects several hydraulic traits across and within lineages, and it could be that a 260 walk towards A_{max} -K_{leaf} optimality is slowly occurring within C₄ grass lineages in relatively 261 newfound ecological niches. However, the similar correlations of gs vs. Amax in C3 and C4 and 262 lack of evolutionary trend in g_s indicated the evolutionary processes of g_s might be already near 263 the optimal condition or stabilized quickly. Other hydraulic traits of leaf capacitance and leaf 264 turgor loss point do not seem to contribute to the Amax directly because of weak correlations. 265

266 We identified the mode and direction of evolution for hydraulic traits in C₃ and C₄ lineages and 267 found evidence that different traits followed different evolutionary processes. Hydraulic 268 conductance and leaf capacitance could therefore evolve with directions in a step-wise fashion 269 due to anatomical constraints, but g_s and leaf turgor loss point might have a more quick process 270 of readjustments, which allows them to stabilize soon. This suggests that there could be greater 271 diversification of K_{leaf} and leaf capacitance in the existing C₄ species and maybe in the future. 272 Also, these rearrangements of hydraulic properties interacted with each other throughout the 273 evolutionary trajectory. For example, increased Kleaf and leaf capacitance would lead to an 274 increased water transport efficiency, which enabled greater g_s of the C₄ ancestor (either a C₃) 275 grass or a C₃-C₄ intermediate), but the formation of the full C₄ CCM enables a decrease of g_s. 276 Therefore, observed g_s in C₄ grasses reflects a balance of these two contrasting physiologies 277 playing out in a given ecological and phenological background, which may explain why although 278 C_4 g_s was lower than the C_3 , the difference was not large. This line of reasoning might also 279 explain the inconsistent observations of g_s comparisons between C₃ and C₄. Most previous 280 studies found that C₄ grasses had lower g_s than C₃ grasses in both closely related and unrelated 281 species^[25,33], yet Taylor et al. (2014) found that C₄ grasses maintained a higher or equivalent g_s to closely-related C₃ grasses^[34]. Likewise, artificial selection or genetic engineering might have 282

283 more success in adjusting these hydraulic traits in advance. Consciously selecting or

284 manipulating narrower xylem, decreasing the expression of aquaporins, or other mechanisms of

285 decreasing leaf conductance while maintain high bundle sheath to mesophyll ratio, together with

286 CCM may increase the water use efficiency of C₄ species further. Our phylogenetic analyses can

200 Continue increase the water use enterency of 64 species further. Our phylogenetic analyses can

- thus inform both the evolutionary history of C_4 plants and future efforts to modify C_4 crops.
- 288

289 By capitalizing on the multiple origins of C₄ photosynthesis in grasses, we have shown that the 290 vascular organization that is a hallmark of C₄ plants also impacts leaf hydraulics, and disrupts the 291 established link between hydraulic and photosynthetic capacity demonstrated in C_3 plants. C_4 292 grasses are "overplumbed" relative to their C₃ counterparts, suggesting that the costs associated 293 with the production of an extensive leaf vasculature require re-evaluation in plants with C₄ 294 photosynthetic systems. The gradual decline in K_{leaf} in C₄ lineages over millions of years also 295 requires an explanation. The C₄-K_{leaf} conundrum provides an opportunity to examine what we 296 mean by "evolutionary constraint" and highlights the very dynamic nature of evolutionary trade-297 offs and functional optimization. First, we assume that the costs of building and maintaining a high K_{leaf} are still significant in C₄ plants^[12,35,36,37,38]. The most efficient way to reduce K_{leaf} costs 298 would be to reduce venation density, as veins come with high construction costs^[12,17], and also 299 300 reduce the leaf area that is available for carbon fixation. Yet the anatomical requirements of the 301 C_4 system preclude this option: reducing vein density would result in a highly inefficient C_4 302 system^[15], which would negatively impact the plant's carbon budget, presumably to a much 303 greater extent than the cost of an overbuilt venation system. As vein construction is a primary 304 contribution to the cost of a high K_{leaf}, and high vein densities are now linked to a new function 305 (C₄ carbon fixation), the cost-benefit calculations in optimizing K_{leaf} have shifted, and the 306 tradeoff is in favor of overplumbing in order to maintain a highly efficient new carbon fixation 307 system. In evolutionary vocabulary, what emerges is a new constraint – and in this example, it is 308 clear that the emergence of a new constraint to organismal evolution is simply due to a shift in 309 the tradeoffs associated with characters that influence multiple aspects of organismal function. In 310 other words, we assume a low vein density is a phenotype that is still developmentally 311 achievable for C₄ grasses; what has prevented its emergence is the shift in functional costs 312 associated with reduced vein densities.

314 And yet, we documented a gradual reduction in K_{leaf} over time, which we presume was accomplished via changes in other factors that influence leaf hydraulic capacity- perhaps by 315 316 changing xylem conduit diameters, shifts in extra-xylary mesophyll conductance, decreased expression of aquaporins, and reorganization of internal air spaces^[6,12,37,39,40]. It is possible that 317 318 these changes resulted from a continued and direct selection pressure to reduce investment in an 319 underutilized hydraulic system. An alternative explanation is that all of the traits that influence 320 K_{leaf} also play important roles in other aspects of leaf function – and the emergent of a new 321 constraint (a high vein density to maintain C4 function) has released still other constraints on 322 other traits so that they may be optimized for their other functions. A striking pattern in our data 323 is that older C₄ lineages have achieved both lower K_{leaf} and higher A_{max} – suggesting that they 324 are continuing to optimize their photosynthetic capacity, long after the initial origin of C₄. We 325 suspect that the slow evolutionary decline in K_{leaf} is due in large part to the optimization of traits 326 to increase A_{max} at the expense of K_{leaf}, which is possible only because hydraulic capacity was 327 already "buffered" by the vein density requirements of C₄ – allowing for continued reductions of 328 K_{leaf} at no functional cost. Increased suberization of bundle sheath cells is one example of a 329 potential release of constraint^[22]: it allows C₄ plants to gain higher A_{max} through reducing bundle 330 sheath leakiness, but it likely simultaneously reduces water flow from veins out into the 331 mesophyll. Since C₄ plants are already operating in hydraulic excess, bundle sheath suberization 332 may be optimized for C₄ function without any negative repercussions for plant water relations. 333 This hypothesis could also explain the opposing trends in Amax and Kleaf when viewed as a 334 function of evolutionary age. The examination of C₄ evolution in grasses provides an exciting 335 system to study the evolutionary dynamics of constraints highlighted by the interplay between 336 photosynthesis and plant hydraulics.

337

338 Methods

339 Plant material

340 We collected seeds of 39 closely related C₃ (9 species), C₄ species (29 species), representing

341 three C₄ subtypes, nine C₄ origins, and one C₃-C₄ intermediate species. The selected C₃ and C₄

342 species fall into nine identified C₄ lineages belong to the 11 recommended grass lineages for C₃

343 and C₄ study (11 out of the total 24 grass lineages have clear C₃ sister species and are

344 recommended for comparative studies in GPWGII, 2012^[4]): Aristida, Stipagrostis,

345 Chloridoideae (Eragrostideae), Eriachne, Tristachvideae, Arthropogoninae, Otachvrinae 346 (Anthaenantia), Panicinae, Melinidinae, and Cenchrinae (Fig. 1). In 2015, seeds were surface 347 sterilized before germination and the seedlings were transferred to 6 inch pots with the soil of 348 Fafard #52 (Sungro, Ajawam, MA). Six replicates of each species were randomized in the 349 greenhouse of the University of Pennsylvania supplemented with artificial lighting. The plants 350 were watered twice daily. Daytime/night temperature was controlled at 23.9-29.4/18.3-23.8 °C; 351 relative humidity was around 50-70%. Plants were fertilized once per week with 300 ppm 352 Nitrogen solution (Jacks Fertilizer; JR Peters, Allentown, PA) and 0.5 tsp of 18-6-8 slow release 353 Nutricote Total (Arysta LifeScience America Inc, NY) per pot was applied when plants were 354 potted into 6 inch pots. To maintain optimal plant growth a 15-5-15 cal-mg fertilizer was used 355 every third week. All measurements were performed on the most-recent fully expanded leaves.

356

357 Hydraulic traits

Leaf hydraulic conductance (K_{leaf}) was measured using the evaporative flux method^[41], with 358 359 some adjustments to maintain stability of the evaporative environment to which the leaf was 360 exposed (Supplementary Methods). The evening before measurements, potted plants were 361 brought to the laboratory, watered, and then covered by black plastic bags filled with wet paper 362 towels to rehydrate overnight. For the leaf gasket, a 1 cm diameter, \sim 1 cm long solid silicone 363 rubber cylinder was cut nearly in two, leaving a hinge on one end. The cylinder was placed around the leaf blade near the ligule and glued shut with superglue^[42]. The leaf was cut from the 364 plant with a razor blade while submerged in a 15 mmol L⁻¹ KCl solution; the rubber gasket was 365 366 then attached to tubing filled with the same KCl solution. The other end of the tubing was inside 367 a graduated cylinder that sat on a digital balance (Mettler-Toledo). The leaf was then placed 368 inside a custom, environmentally controlled cuvette that allowed for the measurement of entire 369 grass blades. Throughout measurements, cuvette temperature was controlled at 25 °C and the 370 humidity was 55-65% (VPD range of 1.1-1.4 kPa) across measurements, but remained constant 371 during a particular measurement. Photosynthetically active radiation in the system is 1000 µmol m⁻² s⁻¹. Flow from the balance was monitored for 45 m to 1h until the flow rates reach steady 372 373 state. After the measurements, the leaf was detached and was put into a plastic bag to equilibrate 374 for 20 minutes to measure the leaf water potential (Model 1000, PMS Instrument, USA). Kleaf 375 values were further standardized to 25 °C and leaf area to make the K_{leaf} comparable among

studies and across species. Data indicating a sudden change of flow and whose leaf waterpotential was an obvious outlier were deleted.

378

379 We measured pressure-volume (PV) curves for six leaves per species using the bench-drying method^[43,44]. A leaf was cut directly from the same plants rehydrated in the lab (as described 380 381 above) using a razor blade and leaf water potential was measured immediately. Then, the leaf 382 weight was recorded. The leaf was initially allowed to dry on the bench for 2-minute intervals 383 and put into a ziplock bag and under darkness for 10-minute equilibration before measuring the 384 leaf water potential and leaf weight again. Then, the waiting intervals could be adjusted based on 385 the decrease of the leaf water potential (from 2 minutes-1h). Ideally, a decreasing gradient of -386 0.2MPa for leaf water potential was obtained for the curves, until the leaf weight reached a 387 steady state. At the end of the experiment, leaves were dried in the oven at 70°C for 48h to obtain 388 the dry weight. The PV curves were used in curve fitting to obtain leaf capacitance, and leaf 389 turgor loss point using an excel program from Sack and Pasquet-Kok (2010)^{[44].}

390

391 Maximal assimilation rate (A_{max}) and stomatal conductance (g_s) were measured under saturated light intensity. A_{max} and g_s were obtained using a standard 2 x 3 cm² leaf chamber with a red/blue 392 393 LED light source of LI-6400XT (LI-COR Inc., Lincoln, NE, USA). Light curves were measured 394 with light intensities of 2000, 1500, 1200, 1000, 800, 500, 300, 200, 150, 100, 75, 50, 20, 0 µmol $m^{-2} s^{-1}$ under CO₂ of 400 ppm. Then, A_{max} was estimated from the light curve^[45,46]. All the 395 396 measurements were made under the temperature of 25°C and the leaf temperature to air vapor 397 pressure deficit was controlled around 2kPa. gs at the saturated light intensity of 2000 µmol m⁻² 398 s⁻¹ was recorded for each plant. The cuvette opening was covered by Fun-Tak to avoid and 399 correct for the leakiness.

400

401 *Phylogenetic analysis*

402 **Phylogenetic analysis for C₃ and C₄.** We pruned the dated phylogeny from a published grass 403 phylogeny to include only the species in our physiological experiments^[19](Fig. 1). Using the 404 dated phylogeny, for each of the hydraulic traits, we fitted evolutionary models to test which 405 evolutionary model best explains observed distribution of traits along the phylogeny and how 406 these models differ between C₃ and C₄ (Table S1). We fitted evolutionary models belonging

407 Brownian Motion model and Ornstein-Uhlenbeck Model using the package "mvMORPH" in 408 $R^{[47]}$. To determine the best fitted evolutionary model, we compared two criteria, the small-409 sample-size corrected version of Akaike information criterion (AICc, the lower AICc, the better 410 fit) and Akaike weights (AICw, the higher AICw, the better fit)^[48,49,50]. The evolutionary models 411 have nested variants (Models 1-4; Models 5-6), varying in whether C₃ and C₄ species had the 412 same or different fluctuation rates, root states for Brownian motion model and optima for 413 Ornstein-Uhlenbeck model. We used likelihood-ratio test (LRT) to verify whether a specific 414 model variant performs significantly better. The AICc, AICw and LRT allowed us to test 415 evolutionary hypotheses, for instance, if the model in which C_3 and C_4 have different root states 416 fit significantly better than model in which C₃ and C₄ have the same root states, it means there is 417 a shift of physiological trait along with the formation of C₄. To examine the further evolution of 418 hydraulic traits after a full C₄ evolved, we extracted the evolutionary ages for each represented 419 C₄ origin from the dated phylogenetic trees. Then, we regressed the hydraulic traits with 420 evolutionary age. A significant negative correlation between evolutionary age and hydraulic trait 421 will indicate a further decreasing evolutionary direction after C₄ evolved. We also performed an 422 additional analysis to test the original states and further direction together. We extracted 423 molecular phylogeny for all the species from Edwards, GPWG II (2012)^[4]. Except for the six 424 evolutionary models mentioned above, the molecular phylogeny allows us to fit for additional six 425 Brownian motion models with trend (Supplementary Table S7). Likewise, if Brownian motion 426 model with trend fits the phylogenetic patterns better than Brownian motion model without trend 427 it means there is an evolutionary trend, and a significant LRT test for a two-trend model suggests 428 that C₃ and C₄ lineages differ in the speed or direction of hydraulic evolution. We also mapped 429 the traits on the phylogeny for potential further references (Fig. S2-S5).

To further test whether there are significant differences among C₄ subtypes, evolutionary models
with subtypes (Table S1) were used to fit the data. We again used AICc, AICw and LRT
methods to find the best model variants: whether there are significant differences for hydraulic
shifts and evolutionary trends among three different subtypes. For the leaf capacitance analysis, *Dichanthelium clandestinum* is deleted as it is an obvious outlier.

435 Phylogenetic analysis for correlations among traits. Multivariate analysis in "mvMORPH"
436 was used to estimate the correlations between A_{max} and each of the hydraulic traits and to test the

437 hypotheses that whether such correlations are different between C₃ and C₄. The process of

438 brownian motion with different root for C₃ and C₄ was used for K_{leaf}, g_s and leaf turgor loss and

439 brownian motion with the same root was used for leaf capacitance. Since the Ornstein-

440 Uhlenbeck process is difficult to take the root state difference into consideration, here we used

441 Brownian motion assumptions as approximation for leaf turgor loss. Seven different correlation

442 models are fitted (Table S19). We used LRT for the seven correlation models to test whether the

443 correlation of the two traits is significantly different from 0 and whether the correlation of two

traits is significantly different between C₃ and C₄. Such correlation analysis is similar to PGLS

445 considering C₃ and C₄, but with more varieties on the setting of variance and covariance matrix.

446

447 Physiological Modeling

448

449 Furthermore, we used physiological models that couples the photosynthesis systems and

450 hydraulic systems to predict the effect of changing K_{leaf} on assimilation rate^[32]. The change of

451 K_{leaf} was assumed to change the plant hydraulic conductance (K_{plant}) proportionally in the

452 modeling process. We double or reduce by half K_{leaf} relative to the original value to predict the

453 effects on assimilation rates for C_3 and C_4 pathways. We assumed C_4 had the same

454 photosynthetic properties with C₃ species (e.g., Rubisco affinity and specificity, Supplementary

455 Table S24) other than the carbon concentration mechanism, which mimics the initial evolution of

456 C_4 and the closely-related C_3 - C_4 system. We also model the additional scenarios in which C_4 had

457 different photosynthetic properties to support the above condition further (Supplementary Table

- 458 S25).
- 459

460 Acknowledgements

461 HZ and this research is supported by the NOAA Climate and Global Change Postdoctoral

462 Fellowship Program, administered by UCAR's Cooperative Programs for the Advancement of

463 Earth System Science (CPAESS) under award #NA18NWS4620043B and is also supported by

the Dissertation Completion Fellowship provided by the Graduate Division of School of Arts and

465 Sciences, University of Pennsylvania. BH is supported by NSF-IOS award 1856587.

466

467 Data availability

468	The data that support the	he findings	of this study	v are available from	the corresponding au	thor upon

469 red	quest.
470	
471 Co	ode availability
472 Al	l source code is available upon request.
473	
474	
	eferences
476	
477	1. Sage, R.F., 2017. A portrait of the C4 photosynthetic family on the 50th anniversary of its
478	discovery: species number, evolutionary lineages, and Hall of Fame. Journal of
479	experimental botany, 68(2), pp.e11-e28.
480	2. Ehleringer JR, Monson RK (1993). Evolutionary and ecological aspects of
481	photosynthesis pathway variation. Annu Rev Ecol Syst 24: 411-439.
482	3. Edwards, E. J. (2019). Evolutionary trajectories, accessibility and other metaphors: the
483	case of C ₄ and CAM photosynthesis. New Phytol. 223(4), 1742-1755.
484	4. Grass Phylogeny Working Group II. (2012). New grass phylogeny resolves deep
485	evolutionary relationships and discovers C4 origins. New Phytol 193: 304-312.
486	5. Christin PA, Osborne CP (2014) Tansley Review. The evolutionary ecology of
487	C ₄ photosynthesis. New Phytol 204: 765-781.
488	6. Kocacinar F, Sage RF (2003) Photosynthetic pathway alters xylem structure and
489	hydraulic function in herbaceous plants. Plant, Cell & Environment 26(12): 2015-2026.
490	7. Pearcy RW, Ehleringer J (1984) Comparative ecophysiology of C ₃ and C ₄ plants. Plant,
491	Cell & Environment 7(1): 1-13.
492	8. Huxman TE, Monson RK (2003) Stomatal responses of C ₃ , C ₃ -C ₄ and C ₄ Flaveria species
493	to light and intercellular CO ₂ concentration: implications for the evolution of stomatal
494	behaviour. Plant, Cell & Environment 26(2): 313-322.
495	9. Way DA, Katul GG, Manzoni S, Vico G (2014) Increasing water use efficiency along the
496	C_3 to C_4 evolutionary pathway: a stomatal optimization perspective. Journal of
497	Experimental Botany 65(13): 3683-3693.
498	10. Sack L, Frole K (2006) Leaf structural diversity is related to hydraulic capacity in
499	tropical rain forest trees. Ecology 87: 483–491.
500	11. Brodribb TJ, Feild TS, Jordan GJ (2007) Leaf maximum photosynthetic rate and venation
501	are linked by hydraulics. Plant Physiol 144: 1890–1898.
502	12. McKown AD, Cochard H, Sack L (2010) Decoding leaf hydraulics with a spatially
503 504	explicit model: principles of venation architecture and implications for its evolution. Am Nat 175: 447–460.
504 505	13. Scoffoni C, Chatelet DS, Pasquet-kok J, Rawls M, Donoghue MJ, Edwards EJ, Sack L
505 506	
507	(2016) Hydraulic basis for the evolution of photosynthetic productivity. Nature plants 2:16072.
507 508	14. Osborne CP, Sack L (2012). Evolution of C ₄ plants: a new hypothesis for an interaction of
509	CO_2 and water relations mediated by plant hydraulics. Philos Trans R Soc Lond B Biol

511	15. Griffiths H, Weller G, Toy L, Dennis RJ (2012) You're so vein: bundle sheath physiology,
512	phylogeny and evolution in C ₃ and C ₄ plants. Plant Cell Environ 36: 249–261.
512	16. Sage RF (2001) Environmental and evolutionary preconditions for the origin and
515	diversification of the C ₄ photosynthetic syndrome. Plant Biology 3: 202-213.
515	17. McCulloh, KA, Sperry, JS, Adler, FR (2003) Water transport in plants obeys Murray's
516	law. Nature 421: 939-942.
517	18. Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C_4
518	photosynthesis. Annual review of plant biology 63: 19-47.
510	19. Spriggs EL, Christin PA and Edwards EJ (2014) C ₄ photosynthesis promoted species
520	diversification during the Miocene grassland expansion. Plos one 9(5): p.e97722.
521	20. Heyduk ., Moreno-Villena JJ, Gilman IS, Christin PA, and Edwards EJ (2019). The
522	genetics of convergent evolution: insights from plant photosynthesis. Nature Review
523	Genetics, 20, 485-493.
524	21. Martre P, Cochard H, Durand JL (2001) Hydraulic architecture and water flow in
525	growing grass tillers (Festuca arundinacea Schreb.). Plant, Cell and Environment 24: 65-
526	76.
527	22. Ocheltree TW, Nippert JB, Prasad PV (2016) A safety vs efficiency trade-off identified in
528	the hydraulic pathway of grass leaves is decoupled from photosynthesis, stomatal
529	conductance and precipitation. New Phytologist 210(1): 97-107.
530	23. Liu H, Osborne CP (2015) Water relations traits of C ₄ grasses depend on phylogenetic
531	lineage, photosynthetic pathway, and habitat water availability. Journal of Experimental
532	Botany 66, 761–773.
533	24. Liu H, Taylor SH, Xu Q, Lin Y, Hou H, Wu G, Ye, Q (2019) Life history is a key factor
534	explaining functional trait diversity among subtropical grasses, and its influence differs
535	between C ₃ and C ₄ species. Journal of experimental botany 70(5): 1567-1580.
536	25. Taylor SH, Hulme SP, Rees M, Ripley BS, Woodward FI, Osborne CP (2010).
537	Ecophysiological traits in C ₃ and C ₄ grasses: a phylogenetically controlled screening
538	experiment New Phytol 185: 780-791
539	26. Taylor SH, Franks PJ, Hulme SP, Spriggs E, Christin PA, Edwards EJ, Woodward FI,
540	Osborne CP (2012) Photosynthetic pathway and ecological adaptation explain stomatal
541	trait diversity amongst grasses. New Phytol 193: 387-396.
542	27. Sage RF (2004) The evolution of C ₄ photosynthesis. New Phytol $161(2)$:341-370.
543	28. Christin PA, Osborne CP, Chatelet DS, Columbus JT, Besnard G, Hodkinson TR,
544	Garrison LM, Vorontsova MS, Edwards EJ (2013) Anatomical enablers and the evolution
545	of C ₄ photosynthesis in grasses. Proc Natl Acad Sci USA 110: 1381-1386.
546	29. Lundgren MR, Besnard G, Ripley BS, Lehmann CE, Chatelet DS, Kynast RG,
547	Namaganda M, Vorontsova MS, Hall RC, Elia J, Osborne CP (2015) Photosynthetic
548	innovation broadens the niche within a single species. Ecology Letters 18(10): 1021-
549	
550	30. Sage RF, Monson RK, Ehleringer JR, Adachi S, Pearcy RW (2018) Some like it hot: the
551	physiological ecology of C4 plant evolution. Oecologia 187(4):941-966.
552	31. Brodribb TJ, Holbrook NM, Zwieniecki MA, Palma B (2005) Leaf hydraulic capacity in
553	ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytol 165:
554	839–846
555 556	32. Zhou H, Helliker BR, Huber M, Dicks A, Akçay E (2018) C ₄ photosynthesis and climate
556	through the lens of optimality. Proceedings of the National Academy of Sciences 115:

557		12057-12062.
558	33	. Ripley BS, Cunniff J, Osborne CP (2013) Photosynthetic acclimation and resource use by
559	00	the C_3 and C_4 subspecies of <i>Alloteropsis semialata</i> in low CO_2 atmospheres. Glob
560		Change Biol 19: 900–910.
561	34	. Taylor SH, Ripley BS, Martin T, De-Wet L-A, Woodward FI, Osborne CP (2014).
562	5 1	Physiological advantages of C_4 grasses in the field: a comparative experiment
563		demonstrating the importance of drought. Glob Change Biol 20: 1922-2003.
564	35	. Tyree MT, Sperry JS (1989) Vulnerability of xylem to cavitation and embolism. Annu
565		Rev Plant Physiol Plant Mol Biol 40(1):19–36.
566	36	. Niinemets Ü, Portsmuth A, Tobias M (2007) Leaf shape and venation pattern alter the
567		support investments within leaf lamina in temperate species: a neglected source of leaf
568		physiological differentiation? Functional Ecology 21: 28-40.
569	37.	. Scoffoni C, Rawls M, McKown A, Cochard H, Sack L (2011) Decline of leaf hydraulic
570		conductance with dehydration: relationship to leaf size and venation architecture. Plant
571		Physiology 156(2): 832-843.
572	38.	. Wolf A, Anderegg WR, Pacala SW (2016) Optimal stomatal behavior with competition
573		for water and risk of hydraulic impairment. Proceedings of the National Academy of
574		Sciences 113(46): E7222-E7230.
575	39.	. Scoffoni C, Albuquerque C, Brodersen CR, Townes SV, John GP, Bartlett MK, Buckley
576		TN, McElrone AJ, Sack L (2017) Outside-xylem vulnerability, not xylem embolism,
577		controls leaf hydraulic decline during dehydration. Plant Physiology 173: 1197-1210.
578	40	. Pathare VS, Sonawane BV, Koteyeva N, Cousins AB (2020) C ₄ grasses adapted to low
579		precipitation habitats show traits related to greater mesophyll conductance and lower leaf
580		hydraulic conductance. Plant Cell & Environment doi: 10.1111/pce.13807.
581	41	. Sack L, Scoffoni C (2012) Measurement of Leaf Hydraulic Conductance and Stomatal
582		Conductance and Their Responses to Irradiance and Dehydration Using the Evaporative
583		Flux Method (EFM). J Vis Exp (70), e4179, doi:10.3791/4179.
584	42.	. Ocheltree T, Gleason S, Cao KF, Jiang GF (2020) Loss and recovery of leaf hydraulic
585		conductance: Root pressure, embolism, and extra-xylary resistance. Journal of Plant
586	40	Hydraulics 7
587	43	. Tyree MT, Hammel HT (1972) The measurement of the turgor pressure and the water
588		relations of plants by the pressure-bomb technique. Journal of Experimental
589		Botany 23(1): 267-282.
590	44	. Sack L, Pasquet-Kok J and PrometheusWiki contributors. Leaf pressure-volume curve
591 502		parameters. PrometheusWiki. May 20, 2010, 17:08 UTC. Available at: /tiki-
592	45	pagehistory.php?page=Leaf pressure-volume curve parameters&preview=16.
593	45	. Marshall B, Biscoe PV (1980) A model for C_3 leaves describing the dependence of net
594	10	photosynthesis on irradiance. Journal of Experimental Botany 31:29-39.
595 506	46	. Thornley JHM (1998) Dynamic model of leaf photosynthesis with acclimation to light
596	47	and nitrogen. Annals of Botany 81(3): 421-430.
597	4/	. Clavel J, Escarguel G, Merceron G (2015) mvMORPH: an R package for fitting
598		multivariate evolutionary models to morphometric data. Methods in Ecology and
599 600	40	Evolution, 6(11):1311-1319. <doi:10.1111 2041-210x.12420=""></doi:10.1111>
600 601	48	Akaike H (1974) A new look at the statistical model identification. In Selected Papers of
601 602	10	Hirotugu Akaike (pp. 215-222). Springer, New York, NY.
602	49	. Cavanaugh JE (1997) Unifying the derivations for the Akaike and corrected Akaike

- 603 information criteria. Statistics & Probability Letters 33(2): 201-208.
- 604 50. Burnham KP and Anderson DR (1998) Practical use of the information-theoretic
- 605 approach. In Model Selection and Inference (pp. 75-117). Springer, New York, NY.