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Cell death is essential for the normal metabolism of human organisms. Ferroptosis is a
unique regulated cell death (RCD) mode characterized by excess accumulation of iron-
dependent lipid peroxide and reactive oxygen species (ROS) compared with other well-
known programmed cell death modes. It has been currently recognized that ferroptosis
plays a rather important role in the occurrence, development, and treatment of traumatic
brain injury, stroke, acute kidney injury, liver damage, ischemia–reperfusion injury, tumor,
etc. Of note, ferroptosis may be explained by the expression of various molecules and
signaling components, among which iron, lipid, and amino acid metabolism are the key
regulatory mechanisms of ferroptosis. Meanwhile, tumor cells of hematological
malignancies, such as leukemia, lymphoma, and multiple myeloma (MM), are identified
to be sensitive to ferroptosis. Targeting potential regulatory factors in the ferroptosis
pathway may promote or inhibit the disease progression of these malignancies. In this
review, a systematic summary was conducted on the key molecular mechanisms of
ferroptosis and the current potential relationships of ferroptosis with leukemia, lymphoma,
and MM. It is expected to provide novel potential therapeutic approaches and targets for
hematological malignancies.

Keywords: ferroptosis, regulated cell death, iron metabolism, reactive oxygen species, GSH, leukemia, lymphoma
1 INTRODUCTION

Death is the common end of all life—from organisms to cells. The growth, development, balance,
and stability of living organisms depend fundamentally on the organic balance of cell survival and
cell death. Conventional cell death is an important physiological process in the growth and
development of organisms or in the removal of excess or damaged cells to maintain the integrity of
organisms. Therefore, cell death is crucial for normal development, homeostasis, and the prevention
of hyperproliferative diseases such as tumors. As is known to all, cell death is mainly divided into
two distinct categories of accidental cell death and regulated cell death (RCD). RCD is precisely
regulated by genetic and signal transduction pathways primarily. It has been recognized to be the
most important form of cell death involving apoptosis, autophagy, necroptosis, pyroptosis (1), and
ferroptosis (Table 1).
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Among them, ferroptosis is a newly discovered form of iron-
dependent RCD induced by small molecules such as erastin (2)
and Ras-selective lethal small molecule 3 [RSL3 (3)], as proposed
by Dixon et al. (4) in 2012. It exhibits unique morphological,
biochemical, and genetic features, which is different from those
of the traditional form of cell death (4, 5). The characteristic
morphological changes of ferroptosis are the shrunken
mitochondria with ruptured external membrane, reduced or
vanished cristae, condensed internal membrane, and intact cell
nucleus (4, 6), while apoptosis and necroptosis generally have
swollen mitochondria and broken nucleus (4). Furthermore, the
biochemical mechanism of ferroptosis is mainly characterized by
the production of lethal reactive oxygen species (ROS), lipid
Abbreviations: ROS, reactive oxygen species; GSH, glutathione; GPX4,
glutathione peroxidase 4; RSL3, Ras-selective lethal 3; SLC7A11, solute carrier
family 7 member 11; SLC3A2, solute carrier family 3 member 2; PUFA,
polyunsaturated fatty acid; PL, phospholipid; IREB2, iron response element-
binding protein 2; HSPB1, heat shock protein b-1; LOOH, lipid hydroperoxide;
CoQ10, coenzyme Q10; SFA, saturated fatty acid; MUFA, monounsaturated fatty
acid; AA, arachidonic acid; ADA, adrenic acid; PE, phosphatidylethanolamine;
ACSL4, acyl-CoA synthetase long-chain family member 4; LPCAT3,
lysophosphatidylcholine acyltransferase 3; LOX, lipoxygenase; H2O2, hydrogen
peroxide; Fer-1, ferrostatin-1; Lip-1, liproxstatin-1; DFO, deferoxamine; TF,
transferrin; TFR1, transferrin receptor 1; DMT1, divalent metal transporter 1;
LIP, labile iron pool; FT, ferritin; FTH1, ferritin heavy chain 1; FTL, ferritin light
chain; FSP1, ferroptosis suppressor protein 1; NCOA4, nuclear receptor
coactivator 4; FPN, ferroportin; Se, selenium; Sec, selenocysteine; L-OH, lipid
alcohol; Sec, selenocysteine; IPP, isopentenyl pyrophosphate; HMG-CoA, 3-
hydroxy-3-methyl glutaryl-coenzyme A; HMGCR, HMG-CoA reductase; FSP1,
ferroptosis suppressor protein 1; NRF2, nuclear factor erythroid 2-related factor 2;
p62, nucleoporin 62; NOX, NADPH oxidase; DPI, diphenylene iodonium; TCA,
cycle tricarboxylic acid cycle; Keap1, Kelch-like ECH-associated protein; HO-1,
heme oxygenase-1; IRP, iron regulatory protein; System Xc-, cystine/glutamate
reverse transporter.
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peroxidation, and iron accumulation intracellularly (7). It can
further produce a large number of alkyl oxygen radicals, leading
to fatal cell membrane damage and disorganization (8). In
addition, genetically speaking, ferroptosis is a biological
process regulated by multiple genes. It generally involves
genetic changes in iron homeostasis and lipid peroxidation
metabolism. Collectively, it highlights the importance of
further investigation on corresponding underlying specific
regulatory mechanisms (9).

Accumulated evidence has supported the critical role of
ferroptosis in the development of tumors as the current
research of relevant mechanisms going on. The existing
treatment regimens, such as chemotherapy, immunotherapy,
etc., may result in poor therapeutic efficiency for many
hematological malignancies [e.g., leukemia, lymphoma, and
multiple myeloma (MM)], suggesting an urgent need to
explore new treatment modes. Herein, this review summarized
the main molecular regulatory mechanisms of ferroptosis, with
emphasis on its relationship with hematological malignancies.
Our study is expected to provide a comprehensive understanding
of ferroptosis and shed light on the development of novel
therapeutic strategies for hematological malignancies.
2 MOLECULAR MECHANISMS OF
CELL FERROPTOSIS

The concept of ferroptosis was for the first time proposed in 2012
(4, 10, 11), referring to an iron-dependent mode of RCD caused
by unrestricted lipid peroxidation and subsequent plasma
membrane rupture. Ferroptosis can be normally induced by
TABLE 1 | Features of different kinds of regulated cell death.

Ferroptosis Apoptosis Autophagy Necroptosis Pyroptosis

Morphological
feature

Small mitochondria with increased
mitochondrial membrane densities and
decreased volume, reduction and vanishing of
mitochondria cristae

Plasma membrane blisters,
cell and nuclear volume
reduction, nuclear
fragmentation

Formation of
double-
membraned
autolysosome

Plasma membrane
swollen, Organelle swelling,
Moderate chromatin
condensation

Karyopyknosis, cell
edema and
membrane rupture

Biochemical
feature

Iron metabolism DNA fragmentation Increased
lysosomal activity

Opening of PTPC Dependent on
caspase-1 and
proinflammatory
cytokine releases

GSH deficiency Caspase activation P62 degradation A drop in ATP levels
Lipid peroxidation

Activation
condition

Erastin DNA damage Nutritional
deficiency

Severe oxidative stress LPS

RSL3 ROS overload death
receptor activation

ER stress
oxidative stress

Cytosolic Ca2+ overload NLRP3 and other
inflammatory bodies

Sorafenib
I/R injury

Key gene GPX4, SCL7A11 Caspase-3, Bcl-2 ATG5, ATG7, LC3 CYPD, LEF1 Caspase-1, IL-1b
P53, FSP1, ACSL4, VDAC2/3 Bax, Fas Beclin 1 RIP1, RIP3, MLKL IL-18, gasdermin D
TFR1, FTH1, FTL P53

Relevant
disease

Cerebral stroke, Cancer Cancer, Viral infection Cancer Infection Infection
Ischemia–reperfusion injury Autoimmune diseases Parkinson disease Toxins, trauma Inflammation
Acute kidney injury Aplastic anemia Cardiovascular

disease
Diabetic nephropathy
October 2021 | Volum
CYPD, Cyclophilin D; LEF1, lymphoid enhancer-binding factor 1; ATG5, autophagy-related gene 5; ATG7, autophagy-related gene 7; MLKL, mixed lineage kinase domain like protein; LC3,
microtubule-associated protein 1 light chain 3; RIP, receptor-interacting protein; Bcl-2, B-cell lymphoma 2; Bax, BCL2-Associated X; Fas, factor associated suicide; IL, Interleukin; LPS,
Lipopolysaccharides; NLRP3, Nucleotide- binding oligomerization domain, leucine- rich repeat and pyrin domain- containing 3; VDAC, Voltage dependent anion channel; GSDMD,
Gasdermin D.
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both endogenous and exogenous cellular pathways (12). The
exogenous pathway is initiated by the inhibition of cell
membrane transporters such as the cystine/glutamate reverse
transporter (system Xc-) or by the induction of transferrin (TF)
and ferroportin, which can contribute to the transportation of
iron in and out of cells. The endogenous pathway can be further
activated primarily by decreasing the expression or activity of
intracellular antioxidant enzymes, such as glutathione peroxidase
4 (GPX4). At present, the core regulators of ferroptosis remain to
be identified, since this process is known to be independent of the
activity of caspases, mixed-lineage kinase domain-like protein
(MLKL), or gasdermin D (13).

Specific small-molecule compounds act on the cellular
anisotropic targets to cause the reduction of the antioxidant
glutathione (GSH) or GPX4, resulting in intracellular ROS
accumulation, lipid peroxidation, and induced cell ferroptosis
under the synergistic effect of iron (5, 14). Free cystine can be
transported intracellularly via the system Xc-, a substrate for
GSH synthesis. Notably, GSH is a major redox molecule whose
function is to protect against iron poisoning by donating an
electron to GPX4 (15). More importantly, GPX4 is the only
enzyme that reduces phospholipid peroxide (16). In addition,
transferrin receptor 1 (TFR1), ferritin (FT), p53, ferroptosis
suppressor protein 1 (FSP1), and lipoxygenase (LOX) are also
involved in the occurrence of ferroptosis.

Collectively, ferroptosis is mainly caused by the intracellular
imbalance between the production and degradation of lipid ROS
(Figure 1). Oxidative cell death, namely, ferroptosis, can be
caused when there is a reduced antioxidant capacity of cells or
accumulation of lipid ROS. Importantly, the process of ferroptosis
involves different signaling pathways, while the upstream pathway
will, ultimately, lead to the occurrence of ferroptosis by directly or
indirectly affecting the activity of glutathione peroxidases (GPXs),
which may further reduce the antioxidant capacity of cells, and
cause increased lipid peroxidation and lipid ROS.

2.1 Iron Metabolism
Iron is one of the important metal ions involved in various
metabolisms in the human body and plays a vital role in
promoting ferroptosis. Cellular iron metabolism consists of
three main processes: iron uptake, storage, and output. Under
physiological conditions, circulating free iron binds to TF, and
iron metabolism in vivo maintains homeostasis. Fe2+ formed by
intestinal absorption or erythrocyte degradation can be oxidized
by ceruloplasmin to Fe3+. The generated Fe3+, which binds to TF
on the cell membrane to form TF-Fe3+, is further transported
into cells through TFR1 by constituting the TF-Fe3+/TFR1
complex to endocytose this complex (17). Heat shock protein
B1 (HSPB1) can counter the increased expression of TFR1 and
hence reduce the content of intracellular iron ions. Thus, an
increase in HSPB1 expression can prevent ferroptosis (18, 19). In
cells, Fe3+ is then reduced to Fe2+ again by iron reductases such
as prostate six-transmembrane epithelial antigen of prostate 3
(STEAP3), which is then mediated by divalent metal transporter
1 (DMT1) for intracellular transmission (20). The remaining TF/
TFR1 complex is eventually recycled to the cell surface for reuse.
Frontiers in Oncology | www.frontiersin.org 3
Fe2+ needs to be released into the labile iron pool (LIP), which is
mediated by DMT1 or zinc–iron regulatory protein family 8/14
(ZIP8/14) (9). Under normal physiological conditions, the excess
Fe2+ can be stored in two ways. It is either stored in FT to
maintain iron levels or metabolized in vivo and even reoxidized
by ceruloplasmin and recycled intracellularly (21). The proposed
intracellular iron circulation tightly controls the homeostatic
balance of iron use and recovery. Deletion of transferrin
receptor protein 1 (TFRC), encoding TFR1, can inhibit
ferroptosis induced by erastin (15), while the application of
heme oxygenase-1 (HO-1) can block this effect by
supplementing iron (22). More importantly, FT is the major
protein for iron storage, which is composed of two ferritin heavy
chain 1 (FTH1) and ferritin light chain (FTL) subunits (23). It
has been reported that cancer cells with ras oncogene are more
sensitive to ferroptosis, since ras can decrease the expression ofFTH1
and FTL to increase intracellular LIP. On the contrary, inhibiting the
activity of iron-responsive element-binding protein 2 (IREB2), a
regulator of ferroptosis, can enhance the expression of FTL and
FTH1 by preventing Erastin from inducing ferroptosis (24).

Recent studies have revealed that nuclear receptor coactivator
4 (NCOA4) is the selective autophagy flipping receptor of FT in
ferroptosis (14, 25–28). The increase of intracellular iron caused
by NCOA4-mediated degradation of FT is involved in ferroptosis.
Cells treated with GPX4 inhibitors could secrete a large number
of exosomes containing FT. During ferroptosis, the level of
prominin2 is negatively correlated with the level of intracellular
free iron, suggesting that exosomes can protect cells from
ferroptosis by expulsing intracellular iron from cells (29, 30).
Therefore, inhibition of prominin2 transcription can overcome
ferroptosis resistance in cancer (31). Non-stored cytoplasmic iron
is either transported to mitochondria for heme synthesis or
incorporated in Fe-S clusters. Iron ions can act as cofactors of
important enzymes in metabolic pathway, such as proline
hydroxylase 2 (PHD2) and LOX. Intracellularly, free irons can
regulate the posttranscriptional level of genes by affecting the
binding of regulatory proteins iron regulatory protein (IRP)1 and
IRP2 to iron response elements (IREs) within mRNAs. Moreover,
IRPs can adjust the expression of proteins that may affect the
movement of intracellular iron ions into and out of cells [TFR1,
DMT1, ferroportin (FPN) (32)], storage (FTH), and utilization
according to iron metabolism in cells (33).

The excess Fe2+ can generate lipid ROS by the Fenton reaction
(6). To be precise, the Fenton reaction is an in vivo metabolic
response between Fe2+ and hydrogen peroxide (H2O2) to generate
chemicals capable of oxidizing various organic substrates. Under
the action of Fe2+, the Fenton reaction converts H2O2 to hydroxyl
radical to promote further free radical chain reaction. However, it
has been shown that radical-trapping antioxidants (RTAs) can
provide electrons to neutralize free radicals (34), thereby
inhibiting lipid peroxidation of cell membranes. The classical
Fenton reaction between Fe3+ and Fe2+ can produce hydroxyl
radicals that can damage membrane, DNA, lipids, and proteins,
which will eventually cause ferroptosis (35). Therefore, the
regulation of iron metabolism may also be a potential direction
for mediating ferroptosis.
October 2021 | Volume 11 | Article 743006
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FIGURE 1 | Molecular mechanisms of ferroptosis. The figure shows the molecular mechanisms of ferroptosis, which can be
(B) Then, the second molecular regulatory mechanism is mainly the GSH/GPX4 pathway, which is currently one of the most
such as IREB2 and Prominin 2, are related to ferritin metabolism, and both Ferroportin and TFR1 such as ACSL4 and LPCA
lipid metabolism-related pathway, such as ACSL4, LPCAT3, which have an impact on lipid peroxidation and ferroptosis.
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2.2 Lipid Metabolism and Reactive Oxygen
Species Accumulation
It is well known that all ferroptosis-promoting pathways in
abnormal cells can ultimately contribute to the production of
lipid ROS to induce cell membrane destruction. Iron-dependent
lipid ROS, produced by normal physiological processes in vivo,
can significantly affect cell signal transduction and tissue
homeostasis. However, excessive ROS-induced lipid peroxidation
can adversely modify cell components, such as lipid, protein, and
DNA damage (36). Biological cell membranes or organelle
membranes are particularly vulnerable to ROS damage, since they
are rich in high polyunsaturated fatty acids (PUFAs), which are
known as lipid peroxidation (37, 38). With double bonds near the
diallyl methylene, PUFAs are more readily oxidized than saturated
fatty acids (SFAs) andmonounsaturated fatty acids (MUFAs). Lipid
peroxidation can destroy the lipid bilayer and affect membrane
function (39). Free PUFAs are organic substances that synthesize
lipid signal transduction mediators, while their formation of
membrane phospholipids depends on their combination by some
compounds and their oxidation is the premise to transmit
ferroptosis signals (9). A recent liposome-logical study showed
that when PUFAs contain arachidonic acid (AA) and adrenaline
(ADA), there would be a higher possibility of the oxidation of
proteoliposomes (PLs) on the cell membrane, especially
phosphatidylethanolamine (PEs). Excessive oxidation can
eventually cause ferroptosis (40). Moreover, PEs are a type of key
phospholipid molecules that induce ferroptosis intracellularly, since
they contain AA or their derivative epinephrine (25, 41). The
enzymes, i.e., acyl-CoA synthetase long-chain family member 4
(ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3)
(39, 42), are required for the biosynthesis and remodeling of PEs on
the cell membrane during the initiation of lipid peroxidation, which
can activate PUFAs and affect the transmembrane properties of
PUFAs. Therefore, the production of membrane phospholipid
biosynthetic enzymes regulating PUFAs may influence the
development of ferroptosis. Accordingly, decreasing the
expression levels of ACSL4 and LPCAT3 can reduce
the accumulation of lipid peroxide substrates intracellularly,
thereby inhibiting ferroptosis. Two enzymes, ACSL4 and
LPCAT3, are promising in preventing ferroptosis or other
peroxidation-related diseases. By contrast, ACSL3 can convert
MUFAs into their acyl-CoA esters for incorporation into
membrane phospholipids, thus protecting cancer cells against
ferroptosis. LOX is an iron-containing enzyme used for the
oxidation of membrane PLs. Identically, it is also a non-heme
dioxygenase that can catalyze the peroxidation of free and esterified
PUFAs, resulting in the occurrence of ferroptosis (35, 43, 44).
Elimination of LOX gene can inhibit ferroptosis damage induced
by erastin (7). Ultimately, PUFA-PE is further oxidized by LOX
catalysis and causes ferroptosis in a wide range of cell types (41).

2.3 Glutathione Peroxidase 4
GPX4 is an antioxidant enzyme belonging to the GPX family and
one of the 25 proteins containing selenocysteine (Sec) in the
human genome 17 (37). Using GSH as a reaction substrate,
GPX4 can stimulate its conversion into oxidized glutathione
Frontiers in Oncology | www.frontiersin.org 5
(GSSG) and reduce lipid hydrogen peroxide (LOOHs) to the
corresponding non-toxic lipid alcohols (L-OH). The
consumption of two GSH molecules in this reaction ultimately
prevents the synthesis of lipid peroxides (45). However, the
production of LOOHs may increase with the decrease of GPX4
expression, leading to the damage to the membrane by lipid
peroxidation (46, 47), which is a hallmark of ferroptosis. Thus,
GPX4 may act as a central repressor of ferroptosis in cancer cells.
Covalent binding of GPX4 and the blockage of its expression are
available to directly inhibit GPX4. Previous studies have reported
that GPX4 is a protein target of RSL3. The compound RSL3 (3)
can specifically inhibit GPX4 activity and lead to intracellular
ROS accumulation through covalently binding to the Sec at the
active site of GPX4, thus inducing ferroptosis (46, 48).

Friedmann Angeli et al. (6) demonstrated that intracellular
ferroptosis could be induced through knocking out GPX4 gene.
In addition, the compounds DPI7 and DPI10 can also directly
inhibit the action of GPX4 to promote ferroptosis. Selenium is a
necessary micronutrient with multiple antioxidant capabilities,
which is beneficial to human health. It is mainly incorporated
into selenoprotein in the form of Sec and is an important
component of GPX4 (49). Therefore, selenium can affect cell
sensitivity to ferroptosis to some extent (50). Furthermore,
selenium can enhance GPX4 and other genes in this
transcription program through the synergistic activation of
transcription factors transcription factor activating protein
2 gamma (TFAP2C) and specificity protein 1 (SP1), effectively
inhibiting GPX4-dependent ferroptosis, while selenium
deficiency will inactivate GPX4, leading to increased sensitivity
of cells to oxidative damage (51, 52). Moreover, FINO2 and
FIN56 can induce ferroptosis by indirectly inhibiting GPX4
levels and activity without affecting GSH levels (53, 54). The
mevalonate (MVA) metabolic pathway is responsible for the
synthesis of the precursor of synthetic steroids and other
biomolecules with acetyl-CoA as raw materials, which can
produce isopentenyl pyrophosphate (IPP) and coenzyme Q
(CoQ)10 (49, 54). CoQ10 is an endogenous antioxidant of
cells. It has an antioxidant effect on the cell membrane and
inhibits ferroptosis by blocking the lipid peroxidation process.
Ferroptosis-inducing agents (FINs) of ferroptosis on GPX4 can
consume CoQ10 through the MVA pathway and decrease the
expression of GPX4 protein, thus enhancing the accumulation of
lipid peroxidation and causing ferroptosis.

2.4 System Xc- and Glutathione
Production
Amino acid metabolism is closely related to the regulation of
ferroptosis (55). System Xc-, an important antioxidant system, is
an amino acid anti-transporter located in the cell membrane and
comprises a heterodimer composed of two subunits, i.e., solute
carrier family 3 member 2 (SLC3A2) and solute carrier family 7
member 11 (SLC7A11) (56, 57). Cystine and glutamate are
transported in and out of cells mediated by system Xc- and
exchanged in a 1:1 ratio for the synthesis of GSH (48, 58, 59).
Cystine is reduced to cysteine to participate in GSH synthesis by
system Xc- (60). The transport process of this system does not
October 2021 | Volume 11 | Article 743006
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require ATP, and it is mediated by the difference in the
concentration of amino acids presenting on both sides of the
cell membrane (61). GSH is a tripeptide comprising glutamate,
cysteine, and glycine. Among them, cysteine is presented in
relatively small amounts in cells and is therefore considered to
be a dominant condition governing GSH synthesis. The natural
synthesis of GSH is critical for GPX4 to exert its biological activity.
In a GPX-catalyzed chemical reaction, the GSH synthesis can be
inhibited by decreasing ROS levels, leading to oxidative damage
and cell death (56). It has been demonstrated that this classical
cellular oxidative stress pathway is associated with ferroptosis.
GPX4 converts two molecules of GSH to GSSG (62) and
simultaneously reduces LOOH to phospholipids-H (L-OH) to
reduce the membrane accumulation of toxic substances (62, 63).
By inhibiting the uptake of cystine, it can suppress the activity of
system Xc- and prevent the synthesis of GSH, which may in turn
weaken GPX activity, a decrease in cellular antioxidant capacity,
the accumulation of lipid peroxides, and ultimately oxidative
damage and ferroptosis in cells (42). In addition, the oncogene
P53 can also inhibit the transport of cystine in system Xc- by
downregulating the expression of SLC7A11, which consequently
elevates the sensitivity of cells to ferroptosis and thus affects the
activity of GPX4, leading to a decrease in the antioxidant capacity
of cell membranes and cell death by destruction (64, 65). Overall,
the intracellular transport of cysteine through the system Xc- is
important for affecting cysteine and GSH levels, and hence
inhibiting the onset of ferroptosis. In case of abnormality, the
level of GSH will be reduced that may produce a negative effect on
GPX4 to exert its inhibitory roles of cell peroxidation and death.

2.5 p53
The TP53 gene is an essential tumor suppressor gene for
humans. It is generally believed that p53-mediated cell cycle
arrest, apoptosis, and senescence are the major causes explaining
tumor suppression (66). However, it remains unclear with regard
to the mechanism of TP53 gene in ferroptosis. It has been
reported recently that p53-mutants lacking acetylated
modifications can promote ferroptosis. Jiang et al. (65)
reported that SLC7A11 was overexpressed in multiple human
cancers, and p53 could reduce cystine uptake by inhibiting
SLC7A11 transcription, decrease intracellular GSH, and
increase intracellular ROS accumulation, thereby increasing the
susceptibility of cells to ferroptosis. Analysis based on a mutant
mouse model showed that the changes in atypical p53 activity
could benefit the understanding of the development and
mortality of embryos associated with murine double mimute 2
(MDM2) deficiency. The regulation of ROS levels by p53 is an
interesting process. At low or basal intracellular ROS levels, p53
can prevent cells from accumulating lethal levels of ROS; while in
the case of an abnormally high ROS levels, however, p53 may
promote cell clearance through ferroptosis. Therefore, p53 may
have a regulatory role in ferroptosis by affecting intracellular
ROS levels. This finding may suggest a novel tumor suppression
model based on p53 to regulate cystine metabolism, ROS
response, and ferroptosis. In addition, ferroptosis can also be
inhibited through the P53–P21 axis under certain circumstances.
Meanwhile, as mentioned before, ferroptosis is mainly mediated
Frontiers in Oncology | www.frontiersin.org 6
by GPX4. Surprisingly, p53 activation was found to modulate
ferroptosis (64, 65, 67) but had no significant effect on GPX4
function, while Chu et al. (68) found that arachidonate 12-
lipoxygenase (ALOX12) (68, 69) inactivation attenuated p53-
mediated ferroptosis induced by ROS substances and promoted
the rapid growth of p53-dependent tumors in xenograft tumor
models, suggesting that ALOX12 gene may be critical for p53-
mediated ferroptosis.

2.6 Other Mechanisms
Besides the above pathways, there are several other metabolic
factors that can regulate cell sensitivity to ferroptosis. Two recent
studies have reported the role of FSP1 in the development and
progression of ferroptosis, demonstrating a novel and effective
method to regulate ferroptosis with the reintroduction of
apoptosis-inducing factor (AIF) (70, 71). Nicotinamide adenine
dinucleotide phosphate (NADPH) is a glutathione reductase that
reduces GSH to regulate ferroptosis (7). Therefore, NADPH can
be a potential biomarker to determine whether ferroptosis inducers
are sensitive to cancer cells (72). Furthermore, NADPH oxidase
(NOX)-mediated bio-oxidation is a significant pathway for lipid free
radical production. Overexpression of NOX, an enzyme complex,
can lead to depletion of NADPH and elevated levels of oxidative free
radicals, which significantly increases the sensitivity of cells to
ferroptosis. In addition, NOX can act in three approaches. Firstly,
p53 impedes ferroptosis in colorectal cancer (CRC) cells by binding
to DPP4, which is associated with NOX1 (73). Secondly, AA
significantly increased the phosphorylation level of NOX (74)
mediated by protein kinase C. It may further result in increased
NOX phosphorylation, which increases the amount of oxidative free
radicals and the risk of ferroptosis. Finally, the Hippo (75–78)
pathway is also responsible for the occurrence of ferroptosis. Luo
et al. (79) observed that miR-137 can exert antitumor effects by
modulating the 3°C untranslated region (UTR) of SLC1A5 (a major
glutamine transporter) mRNA to regulate ferroptosis.

It is well known that GPX4 and FSP1 constitute two major
defenses against ferroptosis. The main mechanisms are described
as follows: 1) GPX4 reduces toxicity caused by lipid
hydroperoxides by reduced GSH; and 2) FSP1 is a GSH-
independent ferroptosis inhibitor. As an oxidoreductase, it
reduces CoQ on the cell membrane to panthenol (CoQH2),
which traps free radicals and inhibits lipid peroxides by acting as
a lipophilic antioxidant. However, a recent study reveals a third
mechanism by which ferroptosis is inhibited (80). It reported
that treatment of cancer cells with GPX4 inhibitors resulted in
rapid depletion of N-carboxyl-L-aspartic acid, a pyrimidine
biosynthesis intermediate, accompanied by the production of
uridine. Besides, supplementation with the substrate and product
of dihydroorotate dehydrogenase (DHODH) attenuated or
enhanced the inhibition of ferroptosis induced by GPX4,
respectively, especially in cancer cells with low GPX4
expression (GPX4low). DHODH inactivation could induce
extensive mitochondrial lipid peroxidation and ferroptosis in
GPX4low-expressing cancer cells, while in GPX4high-expressing
cancer cells, these effects could be induced simultaneously by
synergistic action with ferroptosis inducers. Collectively, the
aforementioned findings confirm DHODH-mediated
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ferroptosis defense mechanism in mitochondria, suggesting a
therapeutic strategy for the targeted treatment of ferroptosis
in tumors.
3 APPLICATION OF FERROPTOSIS IN
HEMATOLOGIC MALIGNANCIES

Ferroptosis has been proven to be extensively involved in
multiple system diseases, such as nervous system diseases (81),
heart diseases, liver diseases (82), gastrointestinal diseases (73,
83), lung diseases (84), kidney diseases (6, 85, 86), and pancreatic
diseases (87). As for the blood system, ferroptosis has been
disclosed to play an important role in many hematological
neoplasms such as leukemia. Especially in the research field of
cancers, hematological malignancies may share a similar
mechanism with solid tumors in ferroptosis.

Hematological malignancies, or fluid tumors vividly, are a
category of cancers that originate from cells of the hematopoietic
system (such as bone marrow) or those of the immune system. A
single germline or somatic mutation in lymphatic hematopoietic
stem cells may be prone to clonal expansion, depending on the
acquired new mutation (88), which is commonly malignant and
may result in an undesirable outcome, i.e., tumors. For instance,
lymphomas arise from lymphocytes at different stages of
development, and their subtype characteristics, B-cell and T-
cell tumors, reflect the cells of origin (89). Leukemia, on the other
hand, is a heterogeneous group of diseases characterized by
clonal expansion, abnormal proliferation of undifferentiated
myeloid or lymphoid progenitors, and variable responses to
treatment (90). Moreover, MM is a malignant plasma cell (PC)
disorder originating from PCs formed by B-lymphocyte
development in the bone marrow (91). Therefore, its pathology
is characterized by abnormal proliferation of bone marrow PC,
with overproduction of monoclonal immunoglobulin or light
chain (M protein). There is growing evidence that ferroptosis
may be a driving factor in these hematologic tumors, which are
caused by hematologic dysfunction and cell death. Figure 2
shows the agents or mechanisms that regulate ferroptosis in
animal models or patients with these hematological malignancies.

Common hematological malignancies mainly include various
types of leukemia, malignant lymphoma, and MM as stated
above. Chemotherapy, immunotherapy, and hematopoietic stem
cell transplantation (HSCT) are common choices for the
treatment of these malignancies (92–98). Stem cell
transplantation therapy still has certain limitations in its
clinical application, despite great improvement achieved in
recent decades. Furthermore, the most substantial advances
have been made in the use of chemotherapy for the treatment
of hematologic malignancies in the last decades. It achieves high
remission rates by using chemotherapy regimens; the cure rates,
however, are not high, which seriously reduce the patients’
survival and life quality (99). Therefore, there is still a need to
explore additional treatment options that will benefit patients
more, such as targeted therapy. Excitingly, it has been discovered
through mediating ferroptosis, there may be a possibility to kill
Frontiers in Oncology | www.frontiersin.org 7
tumor cells in the blood system (100) and prevent tumor
progression. Ferroptosis, a newly reported cell death, has
attracted great attention in the field of tumor research and
treatment (101, 102). At present, the research on ferroptosis in
hematological tumors emphasizes on regulating ferroptosis
pathway-specific molecules to affect the sensitivity of cells to
ferroptosis, so as to regulate the progression of ferroptosis of
tumor cells and reach the therapeutic aim. We will elaborate on
the relationship between ferroptosis and these hematological
malignancies in detail below.

3.1 Leukemia
3.1.1 Acute leukemia
3.1.1.1 Acute Lymphoblastic Leukemia
Acute lymphoblastic leukemia (ALL) is a malignant neoplastic
disease with abnormal proliferation of lymphocyte B or T cells in
the bone marrow. Abnormal proliferation of primitive cells can
be aggregated in the bone marrow and inhibit the normal
hematopoietic function. Moreover, it can invade the tissues
outside the bone marrow, such as meninges, lymph nodes,
gonads, and liver. Hynocarpin D (HD) is a bioactive flavonoid
lignin compound with good antitumor activity but insufficient
understanding of its mechanism. Lou et al. (103) found that in T-
cell acute lymphoblastic leukemia (T-ALL) cell lines Jurkat and
Molt-4, HD could inhibit the proliferation of T-ALL by inducing
cell cycle arrest and subsequent apoptosis. In addition, HD could
also increase LC3-II levels and the formation of autophagy
lysosomal vacuoles, both of which are markers of autophagy.
Autophagy was inhibited by ATG5/7 or pretreated 3-MA,
accompanied by partial preservation of HD-induced apoptosis,
suggesting that autophagy enhanced the efficacy of HD.
Moreover, this study also found that such cytotoxic autophagy
could induce ferroptosis and exert an antitumor role, as
evidenced by the accumulation of lipid ROS and reduction of
GSH and GPX4, while the inhibition of autophagy could impede
ferroptosis. In another study by Probst et al. (104) using ALL cell
lines, treatment with RSL3 resulted in the death of the
experimental cell lines, accompanied by an increase in the level
of lipid peroxidation. The addition of lipid peroxidation inhibitor
Fer-1 or LOX could inhibit cell death. Moreover, iron-chelating
agent deferoxamine (DFO) could reverse RSL3-induced
ferroptosis, suggesting that ALL cells are sensitive to RSL3-
induced ferroptosis. Besides, Dächert et al. (105) reported that
the cell death simulated by the second mitochondrial activator of
caspases (SMAC) was regulated by the redox signal. In addition,
RSL3, a GPX4 inhibitor, or erastin, a cystine/glutamate
antiporter inhibitor, could work with SMAC to mimic BV6 to
induce ROS-dependent cellular ferroptosis in ALL cells.

The above studies have shown that ALL is highly sensitive to
ferroptosis (103–107), accompanied by excessive accumulation
of ROS and increased lipid peroxidation level, which is consistent
with the currently known classical pathway of ferroptosis.
Overall, these studies offer novel insight into the molecular
regulatory mechanisms of ferroptosis and may contribute to
developing new therapeutic strategies to reactivate
programmed cell death in ALL.
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3.1.1.2 Acute Myeloid Leukemia
Acute myeloid leukemia (AML) includes all acute leukemia of
non-lymphoid origin. It belongs to a malignant clonal proliferative
disease of myeloid primitive cells in the hematopoietic system. In
general, it is also a highly heterogeneous disease that can be
transformed by the malignant transformation of hematopoietic
progenitor cells at different stages of normal myeloid cell
differentiation and development. The incidence of AML
increases with age, and >90% of deaths occur after the age of 65
(108). To our knowledge, the molecular mechanisms underlying
disease progression and clinical prognosis of AML are generally
attributed to genetic, epigenetic, and proteomic alterations (109).
At present, the research on ferroptosis in AML has been a hot
topic, providing novel and valuable insights for the application of
ferroptosis-promoting compounds in the treatment of
hematologic tumors including AML (Table 2). Our subsequent
content will give an introduction about the specific application of
ferroptosis in AML by examples from existing studies.
Frontiers in Oncology | www.frontiersin.org 8
AML has been currently found to be sensitive to compounds
that promote ferroptosis. Typhaneoside (TYP) is the main
flavonoid in the extract of Pollen Typhae, suggesting important
biological and pharmacological effects. For example, with the use
of TYP for the treatment of AML cells, there were significant
increases in intracellular and mitochondrial ROS levels;
simultaneously, TYP induced ferroptosis in AML cells in an
iron-dependent manner, accompanied by mitochondrial
dysfunction. In addition, TYP significantly triggered autophagy
in AML cells by promoting the activation of AMP-activated
protein kinase (AMPK) signals, resulting in the degradation of
FT, ROS accumulation, and ultimately ferroptosis of cells (115).
Taken together, this study provides conclusive evidence that TYP
could be a potential therapeutic agent to prevent the progression
of AML by inducing cellular ROS production and ferroptosis.

Notably, p53-mutated proteins were found in patients with
myelodysplastic syndrome and AML in earlier studies. As a
promising novel therapeutic agent, APR-246 can inhibit the
A
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D

FIGURE 2 | The figure shows the agents or mechanisms that regulate ferroptosis in animal models or patients with hematological malignancies. (A) Treatment of ALL
cells with HD, RSL3 and SMAC resulted in ferroptosis with increased lipid peroxidation levels, which was inhibited by antioxidants and DFO; (B) TYP treatment of
AML cells could lead to ferroptosis in AML cells through activation of AMPK signaling, accompanied by ferritin degradation and ROS accumulation; APR-246 action
on AML cells decreased cystine uptake, resulting in decreased GSH synthesis and lipid peroxidation in the cell membrane (this effect can be inhibited by iron chelators,
lipophilic antioxidants and lipid peroxidation inhibitors); (C) Expression of SLC7A11 would definitely be down-regulated in CLL cells, and system Xc- transporting
cystine capacity could be reduced, leading to increased intracellular ROS and promoting cellular ferroptosis; (D) MI-463 action on MLL led to the inhibition of tumor
cell proliferation by ferroptosis of its cells, which could be reversed by the use of ferroptosis inhibitors. (E) Treatment of DLBCLs with RSL3, Erastin, and DMF
resulted in ferroptosis of cells accompanied by increased lipid peroxidation levels, increased ROS, and decreased GSH levels, which was inhibited by antioxidants,
DFO, and vitamin E; (F) Artesunate induced ferroptosis in Burkitt‘s lymphoma(BL) cells by activating the ATF4-CHOP-CHAC1 pathway and degrading GSH;
(G) p53 inhibited system Xc- and promoted ferroptosis in Em-Myc lymphoma cells, while deletion of TP53 gene accelerated the formation of Em-Myc lymphoma
model; (H) MM could generate lipid ROS through high levels of H2O2, a byproduct of antibody production, which reacted with excess iron in the Fenton reaction,
thereby destroying the cell membrane and causing cell death.
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proliferation of cancer cells by promoting the binding of p53
mutants to DNA targets sites and reactivating their transcriptional
activity. Studies in solid cancers have shown that APR-246 can
also induce p53-independent cell death. In 2021, Birsen et al. (112)
observed that early AML cell death after exposure to APR-246 was
inhibited by iron-chelating agents, lipophilic antioxidants, and
lipid peroxidation inhibitors, leading to aberrant accumulation of
lipid peroxides, confirming ferroptosis. Therefore, cells exposed to
APR-246 can maintain GSH biosynthesis by increasing cystine
uptake and ultimately prevent cells from producing lipid
peroxides. These results firmly confirm that APR-246 induces
early cell death in AML through ferroptosis and that APR-246 can
synergistically promote cell death with ferroptosis inducers,
whether through drug compounds or gene inactivation of
SLC7A11 or GPX4, both in vivo and in vitro.

To recap, the current research on AML generally includes the
development of new therapeutic reagents that produce
interference to a certain link in the molecular mechanism of
ferroptosis, so as to kill tumor cells and alleviate disease
progression. However and importantly, due to a limited research
in this field, further studies should be conducted to reveal the
specific mechanisms underlying the role of ferroptosis in AML.

3.1.1.3 Mixed-Lineage Leukemia-Rearranged Leukemias
It has been recognized that genetic or environmental changes are
the common causes for the occurrence of different types of
Frontiers in Oncology | www.frontiersin.org 9
leukemia. Anyway, there is still a need for further elaboration
of the exact molecular mechanisms of these heterogeneous
diseases (124). Of note, mixed-lineage leukemia (MLL) gene
is located on chromosome 11q23, and rearrangement of this
gene is a common change in hematopoietic malignancies (125).
MLL gene rearrangement-positive acute leukemia (AL)
can occur from birth to adulthood, presenting as ALL or AML.
These leukemia patients are found with unique clinical
and biological characteristics, including high white blood cell
count, insensitivity to conventional chemotherapy, low
complete response rate (CR), short survival rate, and worse
prognosis in patients younger than 1 year of age (126).
Therefore, it has been classified as 11q23/MLL leukemia, a
special subtype of leukemia, as defined by the World
Health Organization.

In 2020, Kato et al. (127) reported the potential of MLL
inhibitors in the treatment of MLL-rearranged leukemias. The
use of menin-MLL inhibitors, such as MI-463, could
unexpectedly induce ferroptosis in leukemia cells. Ferrostatin 1
(an inhibitor of ferroptosis) almost eliminated the MI-463-
induced reduction in the number of living cells, while the effect
of Z-VAD-FMK (an inhibitor of apoptosis) on cell death could
be negligible. Both FT inhibitors and DFO could eliminate the
synergistic induction of cell death. Hence, menin-MLL inhibitors
(e.g., MI-463) may be an effective method for the treatment of
MLL by inducing ferroptosis.
TABLE 2 | Research progress on ferroptosis in acute myeloid leukemia.

Researcher Research object Related Pathway Target Conclusions/Results

Sarah Weber
(110)

Patients/mice Iron Metabolism pathway Iron Iron overexpression in patients with MDS and AML

Eric Grignano
(111)

Leukemic cells in vivo
experiments/Patients

Iron Metabolism pathway Iron Iron overload in AML

Rudy Birsen
(112)

AML cells both in vivo and ex
vivo

GSH synthesis pathway System Xc-

GPX4
SLC7A11 or GPX4 genes were inactivated in MDS and
AML cells after exposure to APR-246

Jie Wei (113) AML patient samples and
normal samples

Lipid peroxidation Glutathione
peroxidases
(GPXs)

High expression of GPX-1, -3, -4, and -7 in AML patients

Yan Du (114) AML xenograft mouse model/in
vitro studies

Lipid synthesis pathway ROS Overexpression of lipid ROS in AML cells due to ATPR

Hai-Yan Zhu
(115)

AML cells Lipid synthesis pathway ROS The accumulation of intracellular and mitochondrial ROS
and the activation of AMPK in AML due to TYP

Rushdia
Zareen Yusuf
(116)

Leukemic cells in multiple
mouse/human myeloid
leukemias

Lipid peroxidation Glutathione
peroxidase-4
(GPX4)

Glutathione peroxidase-4 (GPX4) inhibitors inhibited
ALDH3A2 in AML

Fanghua Ye
(117)

HL-60/NRAS Q61L cells The RAS-JNK/p38 pathway TFR1 Through the Ras-JNK/p38 pathway, HMGB1 was
downregulated and reduced the level of TFR1 in HL-60
cells

Jing Du (118) AML cell lines AMPK/mTOR/p70S6k signaling
pathway

Ferritin/Iron/ROS Increased unstable iron and ROS in AML due to DHA

Jessica
Sagasser
(119, 120)

Leukemia cell lines such as HL-
60 cells

Lipid synthesis pathway ROS Chloride [N,N'-disalicidene-1,2-phenylenediamine] iron(III)
complexes produced, induced lipid ROS and induce
ferroptosis in HL-60 cells

Yan Yu (121) HL-60 cells Activation of JNK and p38 signaling
pathway

HMGB1 release Erastin increased the sensitivity of AML cells to
chemotherapeutic agents.

Li-Hua Dong
(122)

AML cell lines(K-562 and HL-
60)/ the nude mice/AML
patients

The putative binding sites among
circKDM4C, hsa-let-7b-5p, and P53

P53 CircKDM4C upregulated P53 by sponging hsa-let-7b-5p to
induce ferroptosis in AML

Zhe Chen
(123)

AML cells Iron metabolism pathway Iron Increased iron ameliorated AML by inducing the death of
iron-dependent cancer cells
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3.1.2 Chronic Leukemia
3.1.2.1 Chronic Lymphocytic Leukemia
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease
in terms of its genetic characteristics and response to treatments.
It is characterized by an accumulation of monoclonal B cells
(CD20+, CD5+, and CD23+) in the peripheral blood, bone
marrow, and secondary lymphoid organs, resulting in the
failure of the immune system. Additionally, despite a slow
disease progression, CLL is especially difficult to cure. Few
studies report ferroptosis in CLL so far, and the example is
as follows.

Human CLL cells cannot convert methionine to cystine, and
therefore extracellular cystine uptake is essential for their growth
and progression. Compared with the high expression of
SLC7A11 in other systemic solid tumors, its expression is
downregulated in CLL, accompanied by a reduced ability of
system Xc- to transport cystine, which can promote the increase
of intracellular ROS, resulting in membrane lipid peroxidation
and hence cell death. It may suggest an intimate association of
CLL with ferroptosis (128).

3.2 Lymphoma
3.2.1 Diffuse Large B-Cell Lymphoma
DLBCL is the most common hematologic malignancy. It is
characterized by diffuse proliferation of large B cells, and its
tumor nucleus is at least twice that of normal lymphocytes. The
common clinical symptoms of DLBCL are painless and
progressive lymphadenopathy as well as extranodal mass.
Despite the emergence of new targeted agents currently,
molecular heterogeneity of DLBCL remains to be a major
therapeutic challenge. Table 3 summarizes the existing studies
on ferroptosis in DLBCL.

DLBCL can be divided into two main subtypes of germinal
center B cell-like (GCB) and aggressive activated B cell-like
(ABC), both of which has their own specific gene expression
profile and mutation pattern. Schmitt et al. (129) investigated the
antitumor mechanism of dimethyl fumarate (DMF) against
DLBCL. Corresponding results revealed that DMF had a broad
antitumor effect on both DLBCL subtypes, which is mediated by
the induction of ferroptosis. Through the synergistic effect of
high arachidate 5-lipoxygenase expression and low levels of GSH
and GPX4, DMF induces lipid peroxidation in cells, leading to
Frontiers in Oncology | www.frontiersin.org 10
ferroptosis, especially GCB DLBCL. Overall, the study of DMF
offers new options for the treatment of DLBCL. On the other
hand, in the clinical treatment of DLBCL, sulfasalazine (SAS), a
ferroptosis inducer, can inhibit GSH synthesis by suppressing
SLC7A11 transport, suggesting the important role of ferroptosis
in DLBCL (133). In addition, erastin and RSL3 promoted the
generation of lipid ROS and induced ferroptosis in SU-DHL-8
and WSU-SLCL-2, two DLBCL cell lines, while the use of
antioxidant vitamin E inhibited the progression (134).

In addition to these in vitro studies as mentioned above,
recent clinical research (131) has precisely shown that the
expression rate of GPX4 was 35.5% (33/93) in DLBCL patients,
and the overall survival and progression-free survival of the
GPX4-positive group were worse than those of the GPX4-
negative group. It can be explained by the reason that GPX4
can reduce the intracellular lipid peroxidation level and reduce
the sensitivity of cells to ferroptosis. Collectively, it suggests that
increasing intracellular ROS accumulation by regulating GPX4
and system Xc- multiple pathways can increase the sensitivity of
lymphoma cells to ferroptosis. It may provide new promising
research direction for the selection of drugs for clinical treatment
of hematologic tumors.

3.2.2 Burkitt’s Lymphoma
Burkitt’s lymphoma (BL) is a highly invasive B-cell malignancy,
including three subsets of endemic, sporadic , and
immunodeficiency-associated BL (135). Of these three variants,
the specific features in endemic BL is commonly associated with
the presence of Epstein–Barr virus (EBV). Currently, there are
limited therapeutic options for BL patients older than 60 years
old, highlighting the need for the investigation of novel treatment
regimens. Artemisinin (136–138) has been identified as a new
effective growth inhibitor for BL. Wang et al. (139) investigated
the effect of artesunate on gene expression and its inhibitory role
in BL cells DAUDI and CA-46. The results showed that
artesunate induced a stress response in the endoplasmic
reticulum, activation of the ATF4-CHOP-CHAC1 pathway,
and degradation of intracellular GSH, ultimately reducing the
resistance of lymphoma cells to ferroptosis and leading to
ferroptosis in BL cells. This effect can be proven by the
protective effect of LIP-1, FER-1, and DFO on cells. In
addition, artemisinin inhibited CA-46 cell proliferation in vivo
TABLE 3 | Research progress on ferroptosis in diffuse large B-cell lymphoma.

Researcher Research object Related
Pathway

Target Conclusions/ Results

Anja Schmitt
(129)

GCB and ABC DLBCL cells Lipid
peroxidation

LOX/
GSH/
GPX4

Lipid peroxidation through the synergistic effect of high lipoxygenase expression and low
levels of glutathione and glutathione peroxidase 4 in DLBCL due to DMF

Yan Zhang
(130)

A DLBCL xenograft model
(mice)

GSH
synthesis
pathway

System
Xc-

Inhibition of the system Xc- and depletion of glutathione led to lipid peroxidation in DLBCL
due to imidazole ketone erastin (IKE)

Yuko
Kinowaki
(131)

Cases of diffuse large B-cell
lymphoma (patients)

Lipid
peroxidation

GPX4 GPX4 knockdown induced cell lipid peroxidation in DLBCL

Wan Seok
Yang (132)

Xenograft mouse tumor
models/177 cancer cell lines

Lipid
peroxidation

GPX4 In DLBLC, glutathione depletion resulted in the inactivation of glutathione peroxidase (GPXs)
(overexpression and downregulation of GPX4)
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and induced ferroptosis in a mouse transplanted tumor model.
Findings in this study may provide additional reference for the
development of drugs targeting different types of BL.

In addition, C-Myc [MYC] is one of the most common
inhibitory transcription factors in cancer (140–142). Its
overexpression interferes with many signaling pathways to
produce effect on cell growth and proliferation. Chromosomal
translocations of MYC with the immunoglobulin locus were first
identified in BL, resulting in abnormal structural expression of
MYC, constituting the basis for establishing the Em-Myc mouse
lymphoma model (143, 144). Em-Myc lymphoma mainly occurs
after the acquisition of the secondary mutations, including those
that inhibit tumor suppressor genes, such as p53 and ADP-
ribosylation factor (ARF) (145–147). An existing research
introduced the DNA sequence of Em-Myc into mice. The
transgenic Em-Myc was found to be only expressed in B
lymphocytes, which could cause B lymphocytes to proliferate
faster than normal cells, and eventually drove the occurrence of
aggressive B-cell lymphoma (148).

ALOX12 gene resides on human chromosome 17p13.1, close
to that of TP53. Chu et al. (68) observed that in p533KR H1299
cells with six lipoxygenase subtypes missing, cells were treated by
tert-Butyl hydroperoxide (TBH) treatment for the detection of
ROS-induced ferroptosis levels. It was found that loss of function
of ALOX12 specifically blocked p53-mediated ferroptosis.
SLC7A11 can inhibit its enzyme activity by specifically binding
to ALOX12, indicating that p53 can indirectly activate ALOX12
lipoxygenase activity by inhibiting SLC7A11 transcription and
thus inhibiting the system Xc-, leading to ROS-induced
ALOX12-dependent ferroptosis. Therefore, p53 can regulate
the ferroptosis level by regulating the transcription level and
activity of SLC7A11. Furthermore, in xenograft tumor models of
Em-Myc lymphoma, the loss of one TP53 allele significantly
accelerated Myc-induced classical Em-Myc lymphoma
formation; however, the loss of one ALOX12 allele suppressed
p53-mediated ferroptosis and eliminated p53-dependent tumor
growth inhibition. It suggests that ALOX12 plays a critical role
in p53-mediated ferroptosis. In addition, malignant mutation
in ALOX12 gene can deprive the ability to oxidize PUFAs
and induce p53-mediated ferroptosis in human tumor cells.
Therefore, this study confirms that an ALOX12-mediated
ferroptosis pathway is critical for p53-dependent tumor
suppression, highlighting its valuable effect on the occurrence
and prognosis of Em-Myc lymphoma by affecting p53 function.
3.3 Multiple Myeloma
MM is one of the incurable hematologic malignancies
characterized by abnormal proliferation of PC at multiple sites
in bone marrow, resulting in a range of tissue and organ damage
(149, 150). Its clinical features include elevated serum
monoclonal immunoglobulin, osteolytic destruction, and
anemia, accompanied by bone marrow infiltration. In the
United States, MM accounts for 1.8% of all cancers, mostly in
older adults (151). Currently, bortezomib-based chemotherapy is
the primary treatment regimen for MM, which can significantly
prolong the survival of MM patients.
Frontiers in Oncology | www.frontiersin.org 11
As mentioned previously, iron is an essential nutrient, which
may accelerate the growth of tumor cells. Meanwhile, excess iron
is also toxic, since it catalyzes the formation of ROS (152).
Bordini et al. (153) reported in their study of MM model that
PC may be highly sensitive to excessive iron through the
production of antibodies and the synthesis of high levels of
H2O2 and other by-products and eventually stimulating their
production of ROS through the Fenton reaction (154, 155). Thus,
inducing iron excess may inhibit the proliferation of malignant
PC and enhance the effect of bortezomib, thereby controlling the
progression of the disease. Through additional in vitro
experiments, Bordini et al. (153) also cultured different MM
cell lines (MMCL) in vitro in the presence of high doses of ferrous
ammonium citrate (FeAC), with untreated and non-MM cell
lines as controls. It was observed with a reduced trend of
proliferation in all cell lines. In addition, iron also promoted
cell death in all MMCL but not in control cells. Excess iron can
be transferred out of cells by increasing FT and TF and
decreasing TFR1 or CD71. For instance, PC in normal mouse
expressed low TFR1 and high iron transporters to maintain low
intracellular iron (156).

Indeed, MYC overexpression (157) is frequently detected in
MM patients, resulting in high expression of TFR1 (153, 158),
while maintaining high iron transporter levels, at least during
growth in the BM microenvironment, to ensure iron excess
output. The development of MM PC requires a balance
between increasing iron intake to promote proliferation and
avoiding iron toxicity. In a word, the accumulation of iron and
ROS in MM cells may be critical in explaining the mechanism of
ferroptosis, and the regulation of iron content will eventually
alter the sensitivity of MM cells to ferroptosis by affecting
intracellular ROS homeostasis. This study provides an effective
therapeutic idea to design novel combination strategies including
iron supplementation to increase the efficacy of current
MM therapies.

Apart from that, Adham et al. (159) reported that Thymus
vulgaris and Arctium lappa could be considered potential herbal
candidates to suppress MM cell growth by promoting the
production of lipid ROS and the destruction of MM PC
integrity. Similarly, Zhong et al. (160) found that FTY720, a
novel immunosuppressive agent, could activate AMPK subunit a
(AMPKa) by activating protein phosphatase 2A (PP2A) and
reducing the expression of phosphorylated eukaryotic elongation
factor 2 (eEF2), which could de-phosphorylate AMP at the
Thr172 site, ultimately leading to MM cell death. In 2020,
Bordini et al. (161) reported that iron excess would cause the
death of MM cells by lipid peroxidation. Once again, these
findings strongly provide fresh perspective for the treatment
of MM.
4 DISCUSSION

Since its definition for the first time in 2012, ferroptosis has
become an attractive target in the field of tumor research in
recent decades, with much attention paid to its pathogenesis and
clinical roles, providing some new ideas for tumor treatment.
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Ferroptosis is a novel mode of RCD induced by small-molecule
compounds such as erastin and RSL3, which are regulated by
multiple pathways such as iron metabolism, lipid metabolism,
and GSH metabolism, as stated above. Its occurrence and
development are accompanied by the lethal accumulation of
ROS, leading to lipid peroxidation of cell membrane. However,
there are still no specific markers of ferroptosis, and its specific
mechanisms need to be further studied. The study of cell death
patterns and drug resistance of tumor cells is still an important
link to remove obstacles for improving the efficacy of tumor
therapy. Moreover, it remains to be clarified with respect to the
mechanism of ferroptosis and its relationship with diseases. For
example, are there other pathways of ferroptosis regulation other
than the classical pathway? Is iron essential to catalyze the
generation of lipid peroxides? Or can other elements replace
the role of iron in ferroptosis? Moreover, how can the results of
basic research on ferroptosis be applied to clinical practice for
treatment? These are the questions that need to be addressed.

Emerging studies on ferroptosis in recent decades has
provided some new ideas on tumor treatment. As stated above,
there is no doubt that ferroptosis plays a key role in the
progression and toxicity of hematological malignancies, such as
leukemia, lymphoma, and MM. Moreover, the sensitivity of
hematological tumor cells to ferroptosis can be increased by
regulating the level of ferroptosis-inducible factors, the balance of
intracellular ROS production and extinction, and the regulation
of iron metabolism homeostasis, so as to achieve the effect of
killing tumor cells. In other respects, several compounds also
exhibit intimate associations with ferroptosis in hematological
tumor cells, and ferroptosis-inducible factor levels are correlated
with the prognosis of hematological tumors. Simultaneously, the
process of ferroptosis may also be affected by changes in the
research progress and treatment of hematologic tumor diseases.
Nevertheless, existing research on ferroptosis in hematological
malignancies is still in the early stage. Further in vivo and in vitro
Frontiers in Oncology | www.frontiersin.org 12
experiments are needed to verify the effect and mechanism of
ferroptosis on hematological tumor cells, which is also the
direction of future research.

In summary, a comprehensive elaboration on ferroptosis and
its association with hematological malignancies may benefit the
understanding of the pathogenesis of these diseases and the
development of highly targeted therapies with higher efficacy,
despite multiple unanswered questions in this field. Effective
therapeutic strategies are still being explored for hematological
malignancies. Review in our study emphasizes the significance of
promoting ferroptosis in the treatment of hematological
malignancies. It is firmly believed that continuous research
related to ferroptosis may provide further insights into this topic.
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