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Abstract
Sorindeia nitidula is used by traditional practitioners to treat in�uenza illnesses with cephalgia and febrile aches.
However, the potential active ingredients for its remarkable antioxidant, anti-HIV and antitrypanosomal activities
remain unexplored. The present study aims to evaluate the antioxidant, anti-HIV and antitrypanosomal activities of the
ethyl acetate extract of S. nitidula (SN) in order to screen out the bioactive compounds and to analyze their possible
mechanisms of action. Overall, 21 phenolic compounds were annotated, by using the MS and MS/MS information
provided by the QTOF-MS. In vitro assays on the extract revealed potent antioxidant (IC50 = 0.0129 mg/mL), anti-HIV
(IC50 = 1.736 mg/mL), antitrypanosomal (IC50 = 1.040 µM) activities. Furthermore, SN did not present cytotoxic effect
on HeLa cancer cell lines (IC50 = 0.045 µM). Molecular docking revealed that the potential ligands exhibited strong
binding ability and inhibitory activities on trypanosome. The integrated strategy based on LC-ESI-QTOF-MS/MS and
molecular docking provided a powerful tool and a multidimensional perspective for further exploration of active
ingredients in S. nitidula responsible for the antioxidant, anti-HIV and antitrypanosomal activities.

Introduction
The plant Sorindeia nitidula (SN) Engl., synonym of Sorindeia africana Engl. Van Der Veken is found throughout
tropical Africa in tropical forests, gallery forests at altitudes reaching 1500 m and in thickets. It is also found in the
wooded savannahs, dry forests, dense forests and humid regions of West and Central Africa, located north of the
equator, more precisely in the Democratic Republic of Congo, Gabon and Cameroon. Sorindeia nitidula is known by
several vernacular names in the Democratic Republic of Congo: Eloko loko, Inaolo an itende, Kasendo, Kassendu
(turumbu) and Liembe (mongandu). In Cameroon, it has been identi�ed in the western (Banganté and Mount
Bamboutos), eastern (Bertoua) areas of the country1. It is used by traditional healers to treat in�uenza illnesses with
cephalgia and febrile aches: the treatment consists of drinking the juice of the leaves, rubbing with the pulp and taking
a steam bath with the decoction of barks2. Sorindeia juglandifolia from the same genus, have shown antiplasmodial
activities and contain phenolic acids and �avonoids3,4. However, no previous anti-HIV and antitrypanosomal studies
has been done on this genus.

Trypanosoma brucei gambiense and Trypanosoma brucei rhodesiense are two parasites, which, cause sleeping
sickness, or human African trypanosomiasis (HAT) that is still endemic in well-de�ned regions of sub-Saharan Africa.
Co-infections with human immunode�ciency virus (HIV) and HAT are not uncommon. Some studies have indicated
that HIV-1 seropositive subjects may be at greater risk of HAT treatment failure and poor outcome than HIV-1 negative
patients. However, the in�uence of HIV-1 on the epidemiology and/or clinical course of HAT remains unclear. This can
be supported by the compromised immune system of the HIV patients5,6. Currently, there is no vaccine against HAT due
to the antigenic variation exhibited by the parasites. Chemotherapy is mainly the mode of treatment centred on three
key drugs; pentamidine for early-stage T. brucei gambiense, suramin for early-stage T. brucei rhodesiense, and
melarsoprol for late-stage disease when trypanosomes are present in the central nervous system7. Likewise, mainly
due to latency and quiescence inherent in the nature of the virus, presently, there is no cure or effective vaccine for the
HIV disease. Despite the great success achieved so far with active antiretroviral therapy, sustainable control of the
disease remains a signi�cant challenge due to the continued emergence of cross-resistant viral strains and the
associated adverse effects of most drugs on the patients. There is therefore an urgent need to discover new anti-HIV
drug candidates and new antitrypanosomal treatments with minimal side effects, potency and pharmacokinetic
pro�les.

Some investigators reported that some medicinal plants exhibit anti-HIV and anti-trypanosome activity due to the
presence of phenolic compounds7–10. Theses compounds are those that have an aromatic ring with at least one OH
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group and whose structures can vary from simple phenols to complex polymers. According to the number of phenol
units within the molecular structure, substituent groups, and the linkage type between phenol units, phenolic
compounds can be classi�ed into monomeric polyphenols, including phenolic acids, �avonoids (anthocyanins,
�avanols, �avonols, �avanones, �avones, chalcones, and dihydroxy chalcones), stilbenes, and lignans, or polymeric
polyphenols, such as tannins11. However, �avonoids are the most abundant phenolic compounds in nature12. Phenolic
compounds are known to have strong antioxidant properties via different mechanisms, including scavenger of reactive
oxygen species by transferring hydrogen atoms or donating electrons, oxidase inhibitors, metal chelators, and
antioxidant enzyme cofactors11. To provide a better understanding of pharmacological functions of S. nitidula trunk,
identi�cation and characterization of bioactive compounds from S. nitidula trunk is essential. LC-MS/MS is an
advanced and sophisticated technique that can be used to pro�le metabolites in a sample due to its high sensitivity,
selectivity and high resolution. Additionally, this technique can reduce the complexity of metabolite samples by
enabling the identi�cation, measurement and separation of metabolites before their detection13.

Given the limited knowledge of the molecular pro�le of S. nitidula, as well as the antiviral potential of natural products,
herein we investigated the chemical diversity of extract from S. nitidula, in vitro antioxidant, anti-HIV and
antitrypanosomal activities. Hence, we believe that this study of the chemical diversity and bioactivity properties of S.
nitidula will lead to the discovery of promising candidates and support further research in the development of new anti-
HIV and antitrypanosomal agents.

Methods

Chemicals and reagents
Analytical grade and pure (> 95%) solvents and chemicals were used in this study. Ultrapure deionized water (with
resistivity 18.1 MX cm at 25°C), was acquired from Barnstead GenPure Water Puri�cation System (Thermo Scienti�c,
USA). Methanol was purchased from Merck KGaA, 64271 (Darmstadt, Germany), formic acid from Daejung (Daejung
Chemicals and Metals Co. Ltd, Korea) Chemical and Metals (South Korea). Pharmaceutical Drugs standards (  98%
purity) were obtained from the Drug Bank of Dr. Panjwani Center for Molecular Medicine and Drug Research (PCMD),
International Centre for Chemical and Biological Sciences (ICCBS), University of Karachi, Karachi, Pakistan and from
the Centre for Chemico and Biomedicinal Research (Rhodes University).

Sample collection and preparation of extract
The plant material (trunk) was collected at 10 km from Bagangte, going to Bankam Fokam, western region of
Cameroon in January 2015. The sample collection was conducted following the guidelines and regulations of the
legislation of Cameroon. The additional permission to collect and work on the plant Sorindeia nitidula was taken from
the Forest O�cer of the Range Forest O�ce Bangante, and from the Chief of village Bankam Fokam. Mr. Victor Nana, a
botanist at National Herbarium of Cameroon in Yaoundé, identi�ed the plant and the voucher specimen of S. nitidula
(N° 26056/SRFCam) was deposited at the National Herbarium of Cameroon in Yaoundé.

The trunk of S. nitidula Engl. was dried at ambient temperature and far from sunlight, ground and 400 g of powder was
obtained. Three hundred grams (300 g) of this powder were subjected to extraction with ethyl acetate (250 mL) by
sonication using ultrasonic waves at a frequency of 50 kHz for 30 minutes. After �ltration and evaporation of the
�ltrate to dryness using a rotary evaporator under vacuum (40 ºC, 60 rpm and a pressure of 200 mbar), an ethyl acetate
extract of 10 g was obtained. Then, 1 g of the extract was dissolved in 10 mL of methanol and 1 mL supernatant was
�ltered through a syringe-driven PTFE �lter (0.22 µm) into centrifuge tube (1.5 ml). For LC-MS analysis, the sample was
transferred into HPLC vial, and twenty times diluted with methanol.

≤
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The remain EtOAc extract (5 g) was separated by column chromatography over silica gel (70–230 mesh; Merck), eluted
with gradient solvent system of CH2Cl2/MeOH (100:0, 95:5, 90:10, 85:15, 80:20, 75:35, 70:30, 65: 35, 60:40, 50:50,
0:100, v/v). A total of 50 fractions of 250 mL each were obtained and combined based on TLC pro�les into four main
fractions (A–D). Fraction C (2.1 g, CH2Cl2/MeOH, 70:30, 65: 35 and 60:40) was subjected to column chromatography
over silica gel (70–230 mesh; Merck), and eluted with CH2Cl2/MeOH: (10:1, 5:1, v/v) to yield methyl gallate (5 mg), and
quercitrin (10 mg). Fraction D (30 mg, CH2Cl2/MeOH, 50:50 and 0:100) was puri�ed by preparative HPLC (using
MeOH/H2O, 50/50, �ow rate = 5 mL/min, tR = 25 min, 35 min, and 40 min) to afford compounds quercetin (3 mg),
eriodictyol (5 mg), and 3', 4', 5- trihydroxy�avone (7 mg), respectively. The mass and NMR spectra of these compounds
are given in supporting �les from Fig S18 to Fig S21.

Instrumentation and analytical conditions
In line with the protocols of the study, chemical �ngerprinting of the EtOAc extract was performed using a high-
resolution Bruker maXis-II QTOF Mass Spectrometer (Bremen, Germany) coupled to Thermo�sher Ultimate 3000 series
Ultra Performance Liquid Chromatography14. Macherey-Nagel C-18 column (3.0 x 50 mm, 1.8 mm particle size) was
selected for chromatographic separation. Linear mobile phase gradient system was applied, consisting of type-I water
as eluent (A) and methanol as eluent (B), with 0.1% formic acid as additive in both mobile phases. Solvent gradient
was run as 40% B in 0.0 to 1.0 min, 50% B in 1.0 to 2.0 min, 60% B in 2.0 to 7.0 min, 80% B in 7.0 to 7.5 min, 90% B in
7.5 to 9.0 min and then again 40% B in 9.0 to 15.0 min. The overall run-time was 20 min including 0.5 min of column
equilibration at the end. The constant solvent �owrate was set at 0.7 mL/min and 2 µL of each sample was injected
through autosampler. The column was maintained at the temperature of 40°C14. Each experiment was accompanied
with calibration using sodium formate solution (10 mM). Mass detection range was set between 50 and 1500 m/z. For
positive ionization mode, 4500 V of capillary voltage was provided while drying gas (nitrogen) was �own at the rate of
10 mL/min with a temperature of 300°C. A smart strategy was designed for targeted and untargeted identi�cation of
metabolites. The targeted identi�cation was done by generating a custom-made library of compounds reported from
these plants. Bruker Daltonics Target Analysis 1.3 (Bremen, Germany) was used to screen the high-resolution mass
spectra for these reported compounds by comparing accurate masses and isotopic patterns. The untargeted
identi�cation was performed by utilizing different ESI-MS/MS libraries such as Mass Bank of North America, NIST
MS/MS libraries, and Mass Bank of Europe. All these libraries are easily accessible, and these libraries were
incorporated in the NIST MS search system to make searching simple. The parameters like exact masses, isotopic
patterns and MS/MS fragmentations were used for identi�cation. The threshold value for high-resolution m/z
matching was set under 5 ppm error and for isotopic matching, it was set under 50 mSigma value. DataAnalysis
(version 4.4) was utilized to generate Extracted Ion Chromatograms (EIC) of each identi�ed compound14.

DPPH Radical Scavenging Assay
Ethanolic solution of 2, 2-diphenyl-1-picrylhydrazyl (DPPH) (95 µL, 300 µM) was mixed with the test solution (5 µL, 0.5
mg/ml), and kept at 37 ºC15. After 30 minutes, the absorbance was monitored at 517 nm by a microplate ELISA reader
(P415384, SPECTRA Max, Molecular Devices, USA). The color of the solution faded from violet to pale yellow on
reduction. Percent radical scavenging activity (% RSA) was determined by comparison with a DMSO containing
control. The concentration of the test sample/extract that reduces 50% of the initial concentration of 2, 2-diphenyl-1-
picrylhydrazyl (DPPH) is called IC50 value. The IC50 values of compounds were calculated by using EZ-Fit Enzyme
Kinetics Software Program (Perrella Scienti�c Inc., Amherst, MA, USA). N-acetyl-L-cysteine was used as standard
compound16,17. 2, 2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging ability of �avonoid rich extract was
calculated by using the Eq. (1).
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𝐷𝑃𝑃𝐻 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛% =  (1)

Trypanosoma brucei assay
To assess antitrypanocidal activity, in vitro cultures of T. brucei in 96-well plates were performed at a �xed
concentration of 25 µg/mL for natural extract (unless otherwise stated)18. The number of parasites surviving drug
exposure was determined by adding a resazurin based reagent, after an incubation period of 48 h19. The reagent
contains resazurin which was reduced to resoru�n by living cells. Indeed, resoru�n is a �uorophore (Excitation
560/Emission 590) and can thus be quanti�ed in a multiwell �uorescence plate reader19.

HIV-1 integrase strand transfer reaction assay
Adaptation from previously described method helped to perform the HIV-1 subtype C integrase (CIN) strand transfer
inhibition assay7,20. In summary, 20 nM double-stranded biotinylated donor DNA (5′-5 Biotin
TEG/ACCCTTTTAGTCAGTGTGGAAAATCTCTAGCA-3′ annealed to 5′ ACTGCTAGAGATTTTCCACACTGACTAAAAG-3′)
was immobilised in wells of streptavidin coated 96-well microtiter plates (R&D Systems, USA). Following incubation at
room temperature for 40 min and a stringent wash step, 5 µg/ml puri�ed recombinant HIV- 1 CIN in buffer 1 (50 mm
NaCl, 25 mM Hepes, 25 mM MnCl2, 5 mM β-mercaptoethanol, 50 µg/ml BSA, pH 7.5) was added to individual wells. SN
extract and chicoric acid were added to individual wells to a �nal concentration of 50 mg/ml (crude extract).
Recombinant HIV-1 subtype C IN was assembled onto the preprocessed donor DNA through incubation for 45 min at
room temperature21. Strand transfer reaction was initiated through the addition of 10 nM (�nal concentration) double-
stranded FITC-labelled target DNA (5′-TGACCAAGGGCTAATTCACT/36-FAM/−3′ annealed to 5′-
AGTGAATTAGCCCTTGGTCA−/36-FAM/−3′) in integrase buffer 2 (same as buffer 1, except 25 mm MnCl2 replaced with
2.5 mm MgCl2). After an incubation period of 60 min at 37°C, the plates were washed using PBS containing 0.05%
Tween 20 and 0.01% BSA, followed by the addition of peroxidase-conjugated sheep anti-FITC antibody (Thermo
Scienti�c, USA) diluted 1:1000 in the same PBS buffer20,21. Finally, the plates were washed and peroxidase substrate
(Sure Blue ReserveTM, KPL, USA) was added to allow for detection at 620 nm using a Synergy MX (BioTek®) plate
reader. Absorbance values were converted to percentage enzyme activity relative to the readings obtained from control
wells (enzyme without inhibitor) 7,21,22.

Cytotoxicity assay
This was adopted from our previously described method7,21. To assess the overt cytotoxicity, plant extract was
incubated at 25 µg/ml in 96-well plates containing HeLa cells (Cellonex, Johannesburg, South Africa), maintained in a
culture medium made of Dulbecco's Modi�ed Eagle's Medium (DMEM) with 5 mM L-glutamine (Lonza, Basel,
Switzerland) and supplemented with 10% fetal bovine serum (FBS) and antibiotics (penicillin/ streptomycin/fungizone
- PSF) for 24 h. The resazurin based reagent and resoru�n �uorescence was quanti�ed (Excitation 560/Emission 590)
in a multiwell plate reader and the number of cells surviving drug exposure were counted21.

Single concentration screening and statistical analysis
The percentage of cell viability was calculated at a �xed concentration of 25 µg/ml for plant extract20. Experiments
were performed in triplicate wells, and the standard deviation (SD) was derived. For comparative purposes, emetine
(which induced cell apoptosis) or pentamidine (an existing drug used in the treatment of trypanosomiasis) were used
as a positive control drugs standard.

Data were expressed as mean ± SEM. The statistical analyses of data were carried out using analysis of variance
(ANOVA) followed by Turkey’s test through GraphPad Prism 7.0 software. Signi�cant difference was considered to P

(AbsorbanceofControl−Absorbanceofsample)

Absorbanceofcontrol
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value less than 0.0522.

Molecular docking simulations
The 3D chemical structure of TryR, SOD, CP and PTR1 with respective access codes 2WPE, 3ESF, 2P7U and 3JQ6 were
downloaded from the Protein Data Bank (PDB)23. The proteins were prepared for protein-ligand docking with the Dock
prep tool of UCFS Chimera software V. 1.1424. Water and non-protein molecules attached to the proteins'
crystallographic structure were removed before hydrogen atoms addition, protonation states and gasteiger charges25.
The identi�ed and isolated compounds, chemical structures in SDF format, retrieved from the PubChem website and
optimized with Avogadro V1.226. The active site location of each protein was determined with the CASTp online server
before molecular docking was carried out with the AutodockVina algorithm27. The ligand docking with the protein
targets was done using a search volume covering the catalytic pocket region. Then, the molecular interactions holding
the protein-ligand complexes with the best binding pose for each enzyme were visualized with BIOVIA Discovery
Studio28.

Results and discussion

Chemical �ngerprinting and identi�cation of compounds
Chromatographic conditions were optimized for good shape and well separated peak. The overall runtime along with
equilibration was kept within 20 min while the solvent �owrate was �xed at 0.7 mL/min. Mass fragmentation was
performed on collision induced dissociation (CID) by varying the collision cell voltage. A total of �fteen-plant
metabolites were identi�ed by comparing accurate masses, fragmentation data and isotopic pattern (Table 1).
Sorindeia nitidula showed seventeen peaks (Fig. 1) on extracting the total ion chromatogram (TIC) into base peak
chromatogram (BPC). The MS/MS spectra of these compounds are given in supporting �les from Fig S1 to Fig S17.
Most of the identi�ed compounds belong to phenolic acids, �avonoids and lignans classes of compounds (Fig. 2).
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Table 1
Mass spectral characteristics and tentative identi�cation of compounds

Peak Retention
time

R.T (min)

Ion
Molecular
Formula
(IMF) [M 
+ H]+

Theoretical
(m/z)

Observed
(m/z)

MS/MS Ions

(% Intensity)

Tentative
identi�cation

Hydroxybenzoic acid derivatives

4 9.85 C8H9O5 185.0372 185.0332
[M + H]+

207.0138
[M + Na]+

153.0090(100) Methyl gallate

10 11.67 C11H11O9 287.0398 287.0376
[M + H]+

309.0184
[M + Na]+

595.0482
[2M + 
Na]+

153.0091(7), 241.0352(6),
269.0285(4), 287.0380(100)

2-O-Galloyl-L-malic
acid

Hydroxycinnamic acid derivatives

9 11.15 C17H17O4 285.1132 285.1163
[M + H]+

307.0969
[M + Na]+

591.2066
[2M + 
Na]+

149.1233(17), 177.1528(34),
201.0494(11), 229.0433(35),
247.2273(50), 265.2366(52),
285.1163(100)

Caffeic acid
phenethyl ester

11 12.08 C19H19O8 375.1002 375.0997
[M + H]+

397.0802
[M + Na]+

771.1735
[2M + 
Na]+

146.0626(10),161.0851(100),
177.0667(7), 207.0754(20)

3-O-
Methylrosmarinic
acid

Flavanols

1 9.18 C15H15O6 291.0790 291.0689
[M + H]+

313,0496
[M + Na]+

603.1121
[2M + 
Na]+

139.0306(100),147.0353(53),
165.0445(41), 179.0593(16),
205.0725(3), 207.0527(65),
249.0605(6), 273.0594(7)

(+)-Catechin
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Peak Retention
time

R.T (min)

Ion
Molecular
Formula
(IMF) [M 
+ H]+

Theoretical
(m/z)

Observed
(m/z)

MS/MS Ions

(% Intensity)

Tentative
identi�cation

Hydroxybenzoic acid derivatives

2 9.37 C29H23O12 563.1195 563.1224
[M + H]+

585.1032
[M + Na]+

165.0445(8), 231.0514(10),
272.0464(4), 393.0736(100),
423.0826(21)

7,4'-Di-O-
Galloyltricetifavan

3 9.59 C24H21O10 469.1056 469.1058
[M + H]+

491.0869
[M + Na]+

153.0089(100), 221.0670(4),
245.0680(9), 297.0438(4),
433.0899(3)

Epigallocatechin-3-
caffeate

6 10.11 C22H19O10 443.0900 443.0709
[M + H]+

465.0518
[M + Na]+

907.1148
[2M + 
Na]+

153.0091(100),
165.0446(34), 188.0575(6),
207.0528(4), 231.0515(7),
255.0495(8), 273.0597(50),
291.0689(80)

Gallocatéchine-3-O-
gallate

Flavone

12 12.35 C15H11O5 271.0528 271.0440
[M + H]+

293.0248
[M + Na]+

271.0528(100), Apigenin

13 13.39 C25H23O4 387.1591 387.1568
[M + H]+

409.1376
[M + Na]+

149.0147(43), 223.0500(37),
293.1715(46),
385.2693(100)

Fulvinervin B

14 13.69 C25H23O4 387.1591 387.1573
[M + H]+

409.1379
[M + Na]+

795.2896
[2M + 
Na]+

147.0565(57), 163.0651(20),
185.0843(16), 207.0886(38),
267.1062(38), 293.1721(30),
337.1967(100),
385.2695(93)

Linea�avone C

15 13.96 C28H25O14 585.1093 585.1072
[M + H]+

607.0880
[M + Na]+

168.9853(7), 227.0484(100),
256.2484(13), 285.0248(30),
327.2524(12), 371.2063(4),
553.0825(7)

Kaempferol galloyl
deoxyhexosides

Flavanonol
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Peak Retention
time

R.T (min)

Ion
Molecular
Formula
(IMF) [M 
+ H]+

Theoretical
(m/z)

Observed
(m/z)

MS/MS Ions

(% Intensity)

Tentative
identi�cation

Hydroxybenzoic acid derivatives

8 10.89 C15H13O7 305.0583 305.0474
[M + H]+

327.0281
[M + Na]+

631.0689
[2M + 
Na]+

153.0091(65), 167.0240(15),
195.0171(19), 213.0416(6),
231.0515(83),
259.0447(100),
287.0380(22)

Taxifolin

Lignans

7 10.41 C22H27O6 387.1729 387.1779
[M + H]+

409.1593
[M + Na]+

795.3322
[2M + 
Na]+

149.0875(34), 161.1231(16),
179.1311(6), 189.1156(24),
207.1254(100)

(+)-Eudesmin

16 14.25 C27H27O4 415.1904 415.1890
[M + H]+

437.1675
[M + Na]+

151.0872(17), 199.0999(3),
219.1615(15),
267.1071(100),
319.2650(33), 341.1751(16),
369.2285(25), 379.2612(11),
397.2214(19)

Simonsienol B

Other compounds

5 9.96 C45H23O25 963.0523 963.0525
[M + H]+

985.0345
[M + Na]+

153.0091(100),
279.0335(23), 471.0260(9),
641.0386(3), 793.0411(27)

Unknown

17 15.04 C26H25O4 385.1798 385.1798
[M + H]+

170.0002(29), 184.0157(51),
255.1639(26), 269.1200(43),
295.1773(23), 320.2077(21),
339.1770(100),
366.2112(24), 381.2394(91)

Unknown

4,4’-
dimethoxychalcone
derivative

 

Hydroxybenzoic acid derivatives
Benzoic acids and derivatives are also called benzenoids and are widely present in plants12. Two compounds were
tentatively identi�ed as hydroxybenzoic acid derivatives. Peaks 4 (tR = 9.85 min) and 10 (tR = 11.67 min) exhibited [M + 

H] + ions at m/z 185.0372 and 287.0398, respectively and showed identical fragmentation pattern as methyl gallate
and 2-O-galloyl-L-malic acid. Further MS/MS analysis of the compounds showed fragment ion at m/z 153 that
corresponded to loss of CH3O for peak 4 and C4H6O5 for peak 10 (malic acid) units29.
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Hydroxycinnamic acid derivatives
The hydroxycinnamic acids are the most abundant class of phenolic acids in fruits, herbs, and medicinal plants12. Two
phenolic metabolites were identi�ed as hydroxycinnamic acid derivatives in this selected plant. Peak 9 (tR = 11.15 min)

with [M + H] + at m/z 285.1163 gave origin to a fragment ion at m/z 177 [M – C8H9 – 2H] + by the simultaneous loss of

the ethylbenzene ion and H2 (in the precursor ion of caffeic acid). Its MS2 pro�le also showed a distinct base peak with

m/z 149 [M – C9H9O2] + because of the removal of 4-vinylcatechol ion unit. Based on literature comparison, this

compound was characterised as caffeic acid phenethyl ester (CAPE)30. The ESI-TOF-MS and MS/MS in the positive ion
mode of peak 11 (tR = 12.08 min) presented the molecular ion at m/z 375.0997 and base peak fragment at m/z 161.
This fragmentation resulted from the deprotonated caffeoyl residue. Moreover, the pseudomolecular ion at m/z
375.0997 was in agreement with the rosmarinic acid derivative of published data31. As a result, peak11 was tentatively
assigned as rosmarinic acid methyl ester.

Flavanols
Flavanols or favan-3-ols are also called monomeric �avanols including catechins, epicatechin, gallocatechin,
epigallocatechin, and their gallate derivatives. They are the most common �avonoids due to their diversity in chemical
structures and biological functions12. Four �avanols were tentatively identi�ed in this study. Peak 1 (tR = 9.18 min)

exhibited [M + H] + ion at m/z 291.0689. The LC-MS/MS spectrum showed base peak at m/z 139, by loss of C8H8O3

residue (m/z 152). In addition, the fragmented ion at m/z 273 resulted from a loss of water [M–18 + H] +32. Hence, this
compound was identi�ed as + (–) catechin. Peak 6 (tR = 10.11 min) was characterized as (+)-catechin 3-O-gallate

based on the precursor ion [M + H] + at m/z 443.0709 and a major fragment peak ion at m/z 153 [M – 289] + due to
loss of its aglycone, catechin observed in its LC-MS/MS spectrum. Two important product ions at m/z 273 [M – 169] +

and 291 [M – 153 + 2H] + were also observed as in compound 1, which were attributable to loss of galloyl (C7H5O5) and

(3,4,5-trihydroxybenzylidyne) oxonium moieties, respectively (Zhu et al., 2022), from the precursor ion11. Peaks 2 (tR =
9.37 min) and 3 (tR = 9.59 min) were identi�ed as 7,4'-di-O-galloyltricetifavan and epigallocatechin-3-caffeate based on

the protonated molecular ions [M + H] + peaks at m/z 563.1224 and 469.1058, respectively. Theses identities were in
agreement with previously reported literature and online databases33,34. The MS2 spectrum produced ions at m/z 393
and 272 generated by the loss of a galloyl (− 169 Da) and C7H5O2 (− 121 Da) moieties from the precursor aglycone of
peak 2.

Flavones
In this context, four �avones were putatively identi�ed in S. nitidula (Table 1). Peak 12 (tR = 12.35 min) showing

characteristic LC-MS spectrum and [M + H] + ion at m/z 271.0440 (Table 1) was identi�ed as the �avone aglycone
apigenin35. Peak 15 (tR = 13.96 min) gave protonated ion at m/z 585.1072 and the MS2 spectra showed product ions

at m/z 285 that originated from the loss of a galloyl-deoxyhexosyl group36. The compound also exhibited diagnostic
daughter ions for kaempferol and gallate at m/z 285, 256, 227 and 169 and thus, peak 15 was tentatively identi�ed as
kaempferol galloyl deoxyhexoside37. Peaks 13 (tR = 13.39 min) and 14 (tR = 13.69 min) were tentatively identi�ed as

fulvinervin B and linea�avone C, respectively and presented [M + H]+ ions at m/z 387.1568 and 387.157338,39. MS2

spectra of peaks 13 and 14 showed same fragments at m/z 385 [M – H]+ and 293 [M – C6H5 – OH]+ due to loss of
hydrogen and consecutive losses of phenyl and hydroxyl groups, respectively. Peak 13 also exhibited diagnostic
daughter ion for (E)-2, 2-dimethyl-8-(3-methylbuta-1,3-dien-1-yl)-2H-chromene at m/z 223 [M – C9H6O2 – OH]+.

Moreover, the MS2 of the peak 14 in the positive-ion mode was also dominated by ions losses at m/z 147 [M –
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C16H16O2 + H]+, 267 [M – C8H6 - OH]+, 337 [M – 2xCH3 – OH + 2H]+, which correspond to cleavage of the C ring and

con�rmed the presence of prenyl and dimethylpyran substituents (Supporting Information Fig. S14)39.

Flavanonol
One �avanonol was detected in the S. nitidula extract. Thus, peak 8 (tR = 10.89 min) was proposed as taxifolin (m/z
305.0474) in accordance with the MS/MS information.

The ions at m/z 287 [M – H2O + H] + and 195 [M – C6H5O2]+ was due to the losses of a water molecule (− 18 Da) and

catechol moiety, respectively40. MS2 spectrum also showed daughter ions at m/z 153 and 167. The ion at m/z 153
correspond to cleavage of the C ring attributed to 1,3B− − 2H, and 1,3A− + 2H scissions, whereas at m/z 167 the ion
corresponds to cleavage of the C ring attributed to 3,9B− − H scission41.

Lignans
Lignans are a subgroup of non-�avonoid phenolic compounds, which comprise two phenylpropane units (C6–C3)12.
They are commonly present in vegetables and fruits (Cassidy et al., 2000). These compounds can act as
phytoestrogens as they have both hormonal and non-hormonal activities in animals42. Lignans have strong
antioxidant and anti-diabetic capabilities with high medicinal value43,44. In this study, two lignans were tentatively
identi�ed. Peak 7 (tR = 10.41min) with [M + H] + at m/z 387.1779 was identi�ed as +(–) eudesmin, a non-phenolic

furofuran lignan45. The MS2 fragmentation showed the product ions at m/z 207 [M – 179] + and 179 [M – 207] +,
consistent with losses of 2-(2,4-dimethoxyphenyl) oxirenium and 2-(2,4-dimethoxyphenyl)tetrahydrofuran moieties,
respectively after cleavage of furofuran ring. Daughter ions were also observed at m/z 189, 161 and 149 corresponding
to the successive losses of CH3, 2xOCH3 from the second and �rst moieties, respectively46. Peak 16, (tR = 14.25 min)

was identi�ed with a signal peak at m/z 415.1890 in positive mode. MS2 spectrum showed losses of 4-allylbenzene-
1,3-diol (C9H9O2) and magnolol (C18H17O2) derivatives ions at m/z 267 [M – 147] + and 151 [M – 265] +, respectively.

The observation of other fragments associated with losses at m/z 397 [M – 17] +, 379 [M – 2x18 + H]+ and 341[M –
2x17–41 + 2H]+ con�rmed the presence of hydroxyl and allyl groups in the structure. Hence, compound 17 was
identi�ed as simonsienol B, a sesquilignan47. To our best knowledge, the lignans identi�ed in our study were the �rst
time detected by LC-MS/MS in the Sorindeia genus.

Unknown Compounds
Peak 4 was detected at m/z 963.0525 [M + H] + but not identi�ed. Peak 17 with a parent ion at m/z 385.1798 [M + H] +

which yielded product ion at m/z 269.1200 (4,4'-dimethoxychalcone), was identi�ed as an unknown 4,4'-
dimethoxychalcone derivative48.

DPPH radical scavenging activity
DPPH radical is one of the free radicals widely used for testing the preliminary radical scavenging activity of the plant
extract, as it is a direct and reliable method for determining radical scavenging activity49. Crude extract of S. nitidula
was evaluated for their antioxidant activity comparing with the standard N-acetyl-L-cysteine. The results are presented
in Table 2. The whole plant extract fraction showed 94.9% radical scavenging activity, as compared to the standard, N-
acetyl-L-cysteine, that showed 97.5% RSA. In general, the phenolic compounds are one of the contributors to the
antioxidant activities. Polyphenols have signi�cant antioxidant effects, which can reduce oxygen free radicals in the
human body, inhibit oxidative stress, and play a role in anti-aging, liver protection, neuroprotection, and anti-
atherosclerosis 49. Hydroxyl group in the ring of �avonoids have signi�cant role in antioxidant activity since it donates
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a hydrogen atom to stabilize the free radicals. Thus, screening of these phenolic compounds is essential. The
abundant presence of methyl gallate (MG) and catechins on the extract can also explain the good activity of the
extract. MG derived from natural plant sources exhibits high antioxidant activity, making it a valuable natural source of
antioxidants50. Catechins possess signi�cant antioxidant effects and strong activity against several pathogens,
including bacteria, viruses, parasites, and fungi51.

Table 2. In vitro assays of the ethyl acetate extract.

Sample Antioxidant

IC50 (mg/ml)

Antitrypanosomal

IC50 (µM)

Cytotoxicity

IC50 (µM)

Anti-HIV

IC50 (µM)

SNa 0.0129 1.040 - 1.736

Reference drugb 0.0141 0.000782 0.045 0.008099

IC50: 50% inhibitory concentration, i.e. the concentration of extract that reduces by 50% the growth or proliferation
of cells.

The number of replicates was 3.

a (SN) ethyl acetate extract of Sorindeia nitidula trunk.

b Reference drugs, i.e. N-acetyl-L-cysteine, pentamidine, emetine and L-chicoric acid for antioxidant,
antitrypanosomal, cytotoxicity and HIV-1 IN activities, respectively used at a concentration of 0.5 mg/ml for the �rst
drug or at 25 µg/ml in case of the three second drugs.

 
 

Antitrypanosomal activity
The ethyl acetate extract from S. nitidula trunk (SN) affected the growth of trypanosomes at 25 µg/mL concentration
with a percentage of viable parasites estimated to be 4.68 ± 0.56% (Fig. 4). Furthermore, SN extract was both in the
lower range of IC50 value (1.040 µM), whereas the reference drug pentamidine exhibited an IC50 value of 0.000782 µM
(Table 2). The plant has not been previously used as antitrypanosomial treatment in traditional Cameroonian medicine
and there is not information available on the antitrypanosomal effects of the genus Sorindeia. The crude extract SN
contain �avonoids that may be responsible for the antitrypanosomial activity in the S. nitidula species, as showed in
the LC-MS/MS results. According to Vigueira et al., epigallocatechin-3-gallate is an active polyphenol compound
against Trypanosoma brucei9.

Cytotoxic activity
The ethyl acetate extract from S. nitidula trunk (SN) did not show cytotoxic activity against HeLa cells. Indeed, the
extract was not cytotoxic at 25 µg/ml, giving 64.68 ± 0.43% of viability whereas the reference drug emetine exhibited an
IC50 value of 0.045 µM (Table 2).

Finally, as SN extract showed substantial antioxidant and antitrypanosomal activities without toxicity on HeLa cells,
this suggested that the effects on parasite cultures may not arise from a general cytotoxic effect of the crude extract.

Anti-HIV IN assay
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The S. nitidula ethyl acetate crude extract was tested and exhibited activity against HIV-1 IN (Fig. 5). The IC50 of the
crude extract was found to be 1.736 µM. Interestingly, the IC50 of L-chicoric acid was found to be higher (IC50 = 
0.008099 µM). The methyl gallate isolated and identi�ed might be the principle chemical constituent that is
responsible for the anti-HIV IN activity of the ethyl acetate S. nitidula trunk extract. It was showed that, methylgallate
inhibits HIV-1 IN by chelating the active site Mg2+ cofactor.7

Molecular modeling study
As shown in Table 3, molecular docking studies revealed potent molecular interactions of the isolated compounds with
trypanothione reductase (TryR), Fe-superoxide dismutase from Trypanosoma brucei (SOD), and cysteine protease (CP),
pteridine reductase 1 (PTR1). Fulvinervin B showed the most potent molecular interaction with TryR, with a free binding
energy of 9 kcal/mol (Fig. 3A). For SOD, CP and PTR1, 7,4'-Di-O-Galloyltricetifavan displayed the most potent molecular
interaction, with free binding energies of -10.6, -8.5 and − 9.7 kcal/mol, respectively (Figs. 3B-3D). The inhibition of
these enzymes in Trypanosoma brucei have been reported as a major antitrypanosomial mechanism52–55. The
molecular interactions also corroborate the antitrypanosomial activity of S. nitidula extract, and may be attributed to
the synergistic effect of the compounds.
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Table 3
The free binding energy (kcal/mol) of Sorindeia nitidula extract phytochemicals with various protein

targets
Compound TryR SOD CP PTR1

Quercitrin -7.9 -9.3 -7.1 -9.1

Quercetin -8.0 -8.2 -7.3 -8.4

Eriodictyol -8.0 -8.4 -6.8 -8.3

3', 4', 5- trihydroxy�avone -7.2 -9.5 -7.4 -9.4

Methyl gallate -6.3 -5.7 -5.1 -5.5

Catechin -7.6 -7.9 -6.7 -8.6

7,4'-Di-O-Galloyltricetifavan -8.1 -10.6 -8.5 -9.7

Epigallocatechin-3-caffeate -7.7 -10.0 -6.5 -9.6

Gallocatéchine-3-O-gallate -7.2 -9.9 -7.9 -9.2

Eudesmin -6.3 -8.2 -6.3 -8.3

Taxifolin -7.9 -7.9 -7.0  

Caffeic acid phenethyl ester -8.2 -7.1 -6.2 -8.3

2-O-Galloyl-L-malic acid -6.6 -6.7 -5.6 -7.1

3-O-Methylrosmarinic acid -7.2 -8.2 -6.7 -8.0

Apigenin -8.3 -8.3 -7.0 -8.0

Fulvinervin B -9.0 -9.6 -7.5 -9.4

Values in bold represent the binding energy of compound with the highest a�nity for each protein

Conclusion
The LC-MS/MS study of active fraction from S. nitidula led to the identi�cation of seventeen phenolic derivatives
compounds, reported from this species for the �rst time. The current studies also showed that S. nitidula is a natural
source for �avonoids and hydroxybenzoic acids with potent free radical scavenging activity. The antitrypanosomal
activity exhibited in this study could be ascribed to the presence of certain �avonoids identi�ed in the trunk, but it
would be interesting to establish whether these compounds are also present in the leaves as they may be used
interchangeably or in conjunction with the leaves for the treatment of the mentioned trypanosomial infections.

Data availability
The data that support the fndings of this study are available in the supplementary material of

this article.
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Figures

Figure 1

MS base peak chromatogram (bpc) of sorindeia nitidula.
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Figure 2

structures of identi�ed and isolated compounds from the ethylacetate extract of sorindeia nitidula engl.
(Anacardiaceae).

http://www.theplantlist.org/1.1/browse/A/Anacardiaceae/
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Figure 3

Images of active site interactions between (A) fulvinervin B and tryr (B) 7,4'-di-o-galloyltricetifavan and sod (C) 7,4'-di-o-
galloyltricetifavan and cp (D) 7,4'-di-o-galloyltricetifavan and ptr1.

Figure 4

Dose-response curve for trypanosome assay.
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Figure 5

The dose–response plots obtained for the extract in an hiv integrase enzyme assay.

The % enzyme activity levels were derived from the absorbance values of the experimental sample compared to the
untreated (control) samples. The log[extract] is plotted against the % IN enzyme activity. A non-linear regression
analysis was used to calculate the IC50 value for the extract. Data manipulation was performed as described in the
methodology.
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