Beneficial insects are associated with botanically rich margins with trees on small

farms

Sarah E.J. Arnold^{1,2}*, Filemon Elisante^{2,3}, Prisila A. Mkenda^{2,4}, Yolice L.B. Tembo⁵, Patrick A. Ndakidemi², Geoff M. Gurr⁶, Iain A. Darbyshire⁷, Steven R. Belmain¹, Philip C. Stevenson^{1,7}

¹Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, United Kingdom.
 ²The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania.
 ³Department of Biology, The University of Dodoma, P.O. Box 338, Dodoma, Tanzania.
 ⁴Biosciences Department, Sokoine University of Agriculture, P.O Box 3000, Morogoro, Tanzania.
 ⁵Lilongwe University of Agricultural and Natural Resources, Bunda, Lilongwe, Malawi.
 ⁶School of Agricultural and Wine Sciences, Charles Sturt University, Orange, NSW 2800, Australia.
 ⁷Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3AE, United Kingdom.

Supplementary methodology

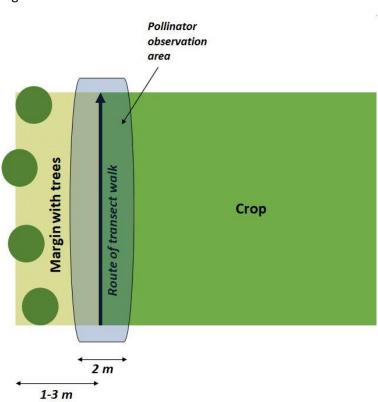
Canonical Correspondence Analysis

In addition to the co-occurrence coefficients, we carried out a canonical correspondence analysis (CCA) of plant species (from the botanical survey) and insect trap data, using each trap located in the margins as a discrete point. We employed the package 'vegan'¹ in order to explore the predictive relationships between plants and insects on the fields.

Random Forest and General Additive models

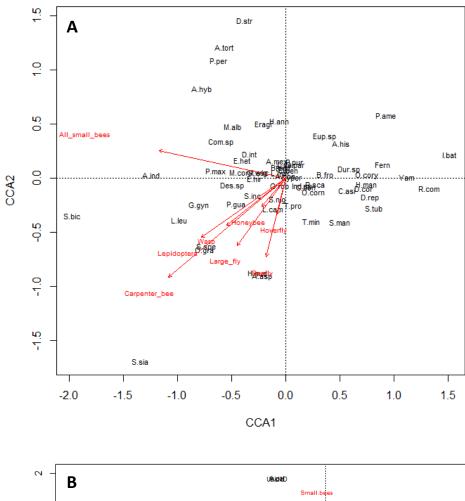
For each output variable (listed in Table S3), a Random Forest model was initially built (in R package 'randomForest'²) each time using Country + Elevation + PlantNet + PlantQuad + FloweringOffSeason + Native + Introduced + Ratio + Trees + EffPIRich with 2000 trees. The fit was improved by removing variables which showed negative values for % improvement in Mean Squared Error (%IncMSE) values. The number of variables used to split each node (mtry) and the number of trees to build (ntree) was optimised for each model by iteratively plotting the mean squared error for models run with successively different values. The variables were subsequently ranked by importance (Mean Decrease Accuracy: %IncMSE) and the variables that collectively contributed to greater than 50% of the Mean Decrease Accuracy were considered of primary importance. Where no combination of variables met this threshold, the highest %IncMSE variable was considered as the primary predictor. Primary predictor variables were then modelled via a linear, quadratic and general additive fit, with the best model being chosen according to the residual standard error (RSE) and adjusted R², with the model producing the lowest RSE taking precedence where the two values suggested different models.

Supplementary results


The CCA for Tanzanian flower-visitors indicated that the assemblage of plants promoting carpenter bee abundance differed from that promoting honeybee abundance (Fig. S2a). In particular, while honeybee abundance was associated with *Vachellia* (syn. *Acacia*) *tortilis*, carpenter bee and small bee abundance was more reliably associated with a plant assemblage including the trees *Senna siamea* and S. *bicapsularis* and the herbs *Ocimum gratissumum* and *Acalypha indica*. In Malawi the CCA revealed that the plant assemblages were not consistently predictive of pollinator abundance *en masse*. The botanical assemblage associated with honeybees more closely associated with *Acalypha villicaulis* and small bees more closely associated with *Senegalia (Acacia) polyacantha* and *Senna didymobotrya* (Fig. S2b).

Supplementary figures and tables

Fig. S1



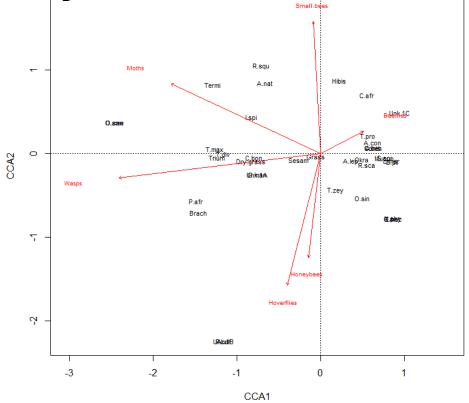
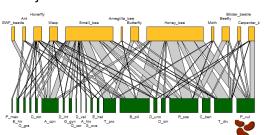
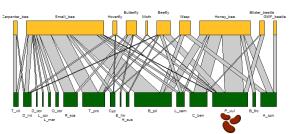
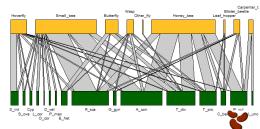

Fig. S1 Examples of typical fields from (A-B) the low and mid zones in Tanzania during the crop podding period, (C) the high zone in Tanzania post-harvest, and (D) Malawi prior to sowing the seed. All photos: SEJ Arnold.

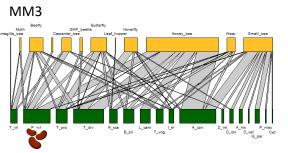
Fig. S2 Pollinator transect walk approach. The walk took place at the interface of the crop (or pre-sowing and post-harvest, the normally cultivated area) and margin, examining an area of 1m to either side and in front of the recorder as they walked along at a slow pace, looking for any interactions between an arthropod and a flower's reproductive organs. Created in MS Powerpoint version 2105.

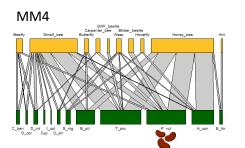

Fig. S3 Canonical correspondence analysis plots showing relationship between vegetation (black) and guilds of flower-visitors (red) for (a) Tanzania and (b) Malawi. Created in R³ version 3.5.0 - 3.6.1 using vegan¹.

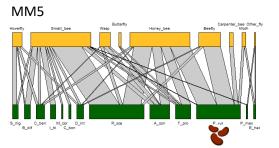

Abbreviations: Tanzania: A.tort = Acacia tortilis; A.ind = Acalypha indica; A.his = Acanthospermum hispidum; A.asp = Achyranthes aspera; A.con = Ageratum conyzoides; A.hyb = Amaranthus hybridus; A.mex = Argemone mexicana; B.fro = Bidens frondosa; B.pil = Bidens pilosa; B.dif = Boerhavia diffusa; C.asi = Centella asiatica; C.ben = Commelina benghalensis; Com.sp = Commiphora sp.; C.bon = Conyza bonariensis; Cyper = Cyperaceae; D.str = Datura stramonium; D.int = Desmodium intortum; Des.sp = Desmodium sp.; D.rep = Dichondra repens; D.cor = Drymaria cordata; Dur.sp = Duranta sp.; E.het = Euphorbia heterophylla; E.hir = Euphorbia hirta; Eup.sp = Euphorbia sp.; Fern = Fern; G.par = Galinsoga parviflora; G.wig = Glycine wightii; G.rob = Grevillea robusta; G.gyn = Gynandropsis gynandria; H.ann = Helianthus annuus; H.man = Hydrocotyle mannii; H.sua = Hyptis suaveolens; Ind.sp = Indigofera sp.; I.bat = Ipomoea batatas; L.cam = Lantana camara; L.cor = Launaea cornuta; L.leu = Leucaena leucocephala; L.mar = Leucas martinicensis; Eragr = Eragrostis sp.; M.esc = Manihot esculenta; M.alb = Morus alba; M.cor = Malvastrum coromandelianum; O.gra = Ocimum gratissimum; O.corn = Oxalis corniculata; O.cory = Oxalis corymbosa; P.max = Panicum maximum; P.pur = Pennisetum purpureum; P.ame = Persea americana; P.per = Physalis peruviana; P.gua = Psidium guajava; R.sca = Richardia scabra; R.com = Ricinus communis; S.bic = Senna bicapsularis; S.sia = Senna siamea; S.spe = Senna spectabilis; S.man = Solanecio mannii; S.inc = Solanum incanum; S.nig = Solanum nigrum; S.tub = Solanum tuberosum; T.min = Tagetes minuta; T.pro = Tridax procumbens; Yam = Yam; Malawi (also as for Tanzania): A.pol = Acacia polyacantha; A.vil = Acalypha villicaulis; A.his = Acanthospermum hispidum; P.afr = Prunus africana; A.lep = Thesium schweinfurthii; A.nat = Aspilia mossambicensis; Brach = Brachystegia stipulata; C.muc = Cissampelos mucronata; C.afr = Commelina diffusa; C.ben = Commelina diffusa; Corch = Corchorus sp.; Dry.grass = Dry grass; G.man = Gardenia mannii; Grass = Grass; Hibis = Hibiscus sp.; I.spi = Indigofera demissa; Mucun = Neorautanenia mitis; N.phy = Nicandra physalodes; O.ame = Ocimum americanum; O.can = Ocimum canum; Okra = Okra; O.sin = Oxygonum sinuatum; P.cur = Parinari curatellifolia; R.squ = Ruellia squarrosa; S.spi = Strychnos spinosa; S.did = Senna didymobotrya; Sesam = Sesamum sp.; Termi = Terminalia sp.; T.max = Thysanolaena maxima; T.div = Tithonia diversifolia; T.zey = Trichodesma zeylanicum; Trium = Triumfetta rhomboidea; Unk-1A = Unknown 1A; Unk-1B = Unknown 1B; Unk-1C = Unknown 1C; Unk-1D = Unknown 1D.

LMj LM1 V Ż LM2 LM3 **P_vul** G_gyn P_max E_hir D_int く LM4 LM5 П **P_vul** A_ing cor P_max S_nig S_pyr 2 _cor LM6 LM7 P_vul G_gyn C_ben

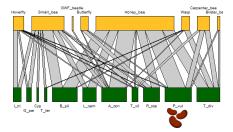

MMj

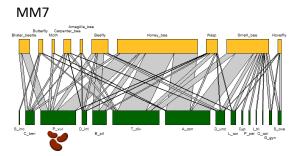

MM1

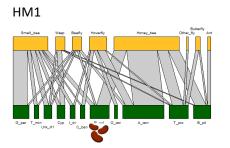




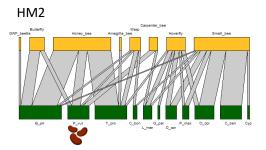
MM2

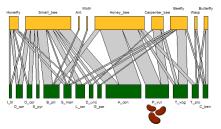




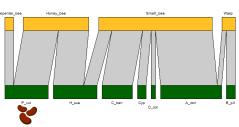


MM6

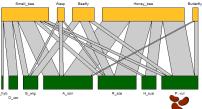


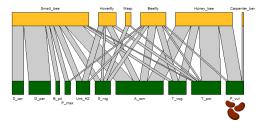


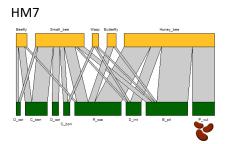
HMJ Sulf lee before bleft Hotey, lee Off before Leg of off off before the sulf off the sulf off the sulf of the su

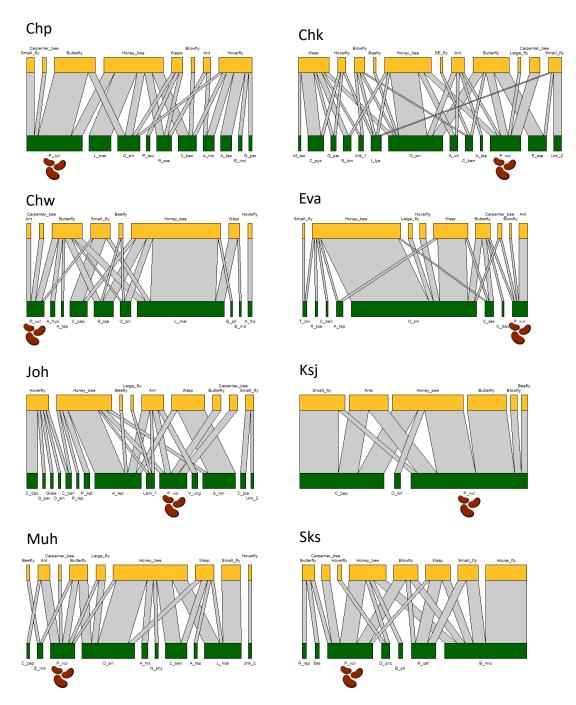


HM3




HM4




HM5

HM6

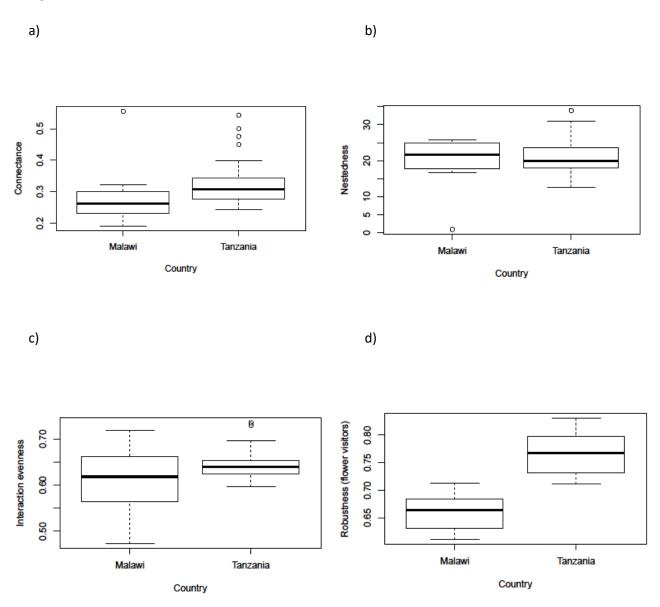


Fig. S4 Flower visitor network diagrams for the full sampling period for the individual sites for (a) the low zone, (b) the mid zone, (c) the high zone in Tanzania, and (d) Malawi. Created in R³ version 3.5.0 using bipartite⁴ and modified in MS Powerpoint version 2105.

Abbreviations: Tanzania: A_con = Ageratum conyzoides; A_fru = Acalypha fruticosa; A_his = Acanthospermum hispidum; A_hyb = Amaranthus hybridus; A_ind = Acalypha indica; B_dif = Boerhavia diffusa; B_fro = Bidens frondosa; B_pil = Bidens pilosa; C_ben = Commelina benghalensis; C_bon = Conyza bonariensis; C_pep = Cucurbita pepo; Cyp = Cyperaceae; D_cor = Drymaria cordata; D_int = Desmodium intortum; D_unc = Desmodium uncinatum; D_vel = Digitaria velutina; E_het = Euphorbia heterophylla; E_hir = Euphorbia hirta; G_gyn = Gynandropsis gynandria; G_par = Galinsoga parviflora; G_wig = Glycine wightii; H_sua = Hyptis suaveolens; I_col = Indigofera colutea; I_tri = Indigofera trita; L_cam = Lantana camara; L_cor = Launaea cornuta; L_mar = Leucas martinicensis; M_con = Malvastrum coromandelianum; O_cor = Oxalis corniculata; O_gra = Ocimum gratissimum; O_sin = Oxygonum sinuatum; P_max = Panicum maximum; P_per = Physalis peruviana; P_vul = Phaseolus vulgaris (crop); R_sca = Richardia scabra; S_inc = Solanum incanum; S_man = Solanecio mannii; S_nig = Solanum nigrum; S_ova = Sida ovata; S_pyr = Sporobolus pyramidalis; T_div = Tithonia diversfolia; T_min = Tagetes minuta; T_pro = Tridax procumbens; T_ter = Tribulus terrestris; T_vil = Tephrosia villosa; T_vog = Tephrosia vogelli; Unk_H1 = Unknown H1; Unk_H2 = Unknown H2; Malawi (also as for Tanzania): A_hyp = Arachis hypogaea; A_lep = Thesium schweinfurthii; A_vil = Acalypha villicaulis; B_mic = Bridelia micrantha; C_afr = Commelina diffusa; C_dac = Cynodon dactylon; C_pyc = Chloris pycnothrix; C_pla = Combretum platyphyllum; C_ses = Ceratotheca sesamoides; E_ind = Eleusine indica; Grass = Grass (not firmly identified); I_lya = Tephrosia rhodesica; Lam_1 = Lamiaceae sp.; N_phy = Nicandra physalodes; P_leu = Phyllanthus leucanthus; P_pat = Pavonia patens; R_caf = Rauvolfia caffra; R_rap = Raphanus raphanistrum; S_lon = Sansevieria longiflora; Ses = Sesamum sp.; Unk_1 = Acmella radicans; Unk_2 = Unknown 2; V_ung = Vigna unguiculata.

Figure S5

Fig. S5 Network metrics for flower visitor networks from Tanzania and Malawi, showing (a) network connectance; (b) network nestedness; (c) interaction evenness and (d) robustness of the flower visitor community. Connectance, nestedness and robustness differ significantly between the countries, with connectance and robustness being higher in Tanzania and nestedness higher in Malawi. Created in R³ version 3.5.0.

Table S1. Site list where data were collected.

Site code	Country	Zone	Latitude (°S)	Longitude (°E)	Elevation	Notes
LMj	Tanzania	Low	3.4015	37.5563	827	
LM1	Tanzania	Low	3.4012	37.5563	824	
LM2	Tanzania	Low	3.3481	37.5411	831	
LM3	Tanzania	Low	3.3987	37.5615	833	
LM4	Tanzania	Low	3.3981	37.5614	835	
LM5	Tanzania	Low	3.3982	37.5609	833	
LM6	Tanzania	Low	3.3989	37.5586	831	
LM7	Tanzania	Low	3.3983	37.5584	833	
MMj	Tanzania	Mid	3.3466	37.5435	1002	
MM1	Tanzania	Mid	3.2644	37.5277	1009	
MM2	Tanzania	Mid	3.3453	37.5419	1012	
MM3	Tanzania	Mid	3.3445	37.5425	1017	
MM4	Tanzania	Mid	3.3466	37.5426	1005	
MM5	Tanzania	Mid	3.3446	37.5432	1013	
MM6	Tanzania	Mid	3.3478	37.5412	1002	
MM7	Tanzania	Mid	3.3441	37.5437	1016	
НМј	Tanzania	High	3.2477	37.5025	1853	
HM1	Tanzania	High	3.2629	37.5092	1665	
HM2	Tanzania	High	3.2593	37.5076	1705	
HM3	Tanzania	High	3.2583	37.5076	1712	
HM4	Tanzania	High	3.2518	37.5051	1788	
HM5	Tanzania	High	3.2466	37.5058	1834	
HM6	Tanzania	High	3.2468	37.5044	1846	
HM7	Tanzania	High	3.2463	37.5041	1856	
Chp	Malawi		14.2151	33.7578	1168	
Chk	Malawi		14.2146	33.7546	1163	
Chw	Malawi		14.2122	33.7600	1172	
Eva	Malawi		14.2162	33.7566	1164	
Ksj	Malawi		14.2110	33.7556	1167	
Joh	Malawi		14.2143	33.7528	1158	
Sks	Malawi		14.2124	33.7600	1171	
Muh	Malawi		14.2109	33.7562	1171	
Lng	Malawi		14.2121	33.7551	1148	Limited data
Ктр	Malawi		14.2104	33.7551	1169	Limited data
Kgw	Malawi		14.1936	33.7727	1132	Limited
						data

Table S2. Functional groups used in the field surveys

Functional group	Taxonomic groups included	Assumed functional
		significance
Pollinator: Social	Apis mellifera	Common visitor to bean
short proboscis		flowers, able to manipulate
nectar- and pollen-		flowers, but pollination efficacy
collectors		uncertain
(Honeybees)		
Pollinator: Small	Amegilla sp., Ceratina sp., other	Possible pollinator of beans
nectar- and pollen-	Hymenoptera: Apidae	
collectors (Small		
bees)		
Pollinator: Large,	Xylocopa spp.	Likely important pollinator of
long proboscis		beans
nectar- and pollen-		
collectors (Carpenter		
bees)		
Pollinator: Short	Diptera: Syrphidae	Possible pollinator of beans,
proboscis pollen-		natural enemy of bean pests
feeders (Hoverflies)		(predation of groups of pests
		by larvae)
Pollinator: Long-	Diptera: Bombylidae	Possible pollinator of beans
proboscis nectar-		
feeders with non-		
pest larvae (Beeflies)		
Possible Pollinator:	Diptera not otherwise classified	Various
Other highly active		
flying flower visitors		
Pollinator/Pest: Long	Lepidoptera	Possible pollinator of beans
proboscis nectar		Larvae may be pests
feeders with pest		
larvae (Butterflies		
and moths)		
Natural Enemy:	Hymenoptera: Vespidae, Hymenoptera:	Possible minor pollinator of
Medium and large	Polistidae, Hymenoptera: Crabronidae	beans, natural enemy of bean

I			
flying predators		pests (predation of individual	
(Predatory wasps)		pests by adults)	
Natural Enemy:	Coleoptera: Coccinellidae; Coleptera:	Natural enemy of bean pests	
Ground-based	Staphylinidae	(predation of groups of pests	
predators (Predatory		by larvae and adults)	
beetles)			
Natural Enemy: Small	Hymenoptera: Braconidae and diverse	Natural enemy of bean pests	
parasitoids (Parasitic	Chalcidoidea	(parasitoid)	
wasps)			
Natural Enemy:	Diptera: Tachinidae	Natural enemy of bean pests	
Larger parasitoids		and other insects (parasitoid)	
(Parasitic flies)			
Natural Enemy: Small	Diptera: Dolichopodidae	Natural enemy of bean pests	
flying predators		(predation of individual pests	
(Long-legged flies)		by adults)	
Pest: Flower feeders	Coleoptera:	Pest of bean flowers, but	
(Blister beetles)		frequent flower visitor so	
		retained for completeness	
Possible Natural	Hymenoptera: Formicidae	Significance uncertain (may be	
Enemy: Social non-		a predator or may be	
flying nectar feeders		detrimental to natural enemy	
(Ants)		activity) but frequent flower	
		visitor	
Other beetles	Coleoptera not otherwise classified	Various	

Table S3. Variables used in Random Forest models

Variable	Input or	Type of measure	Origin data set	Code
	Output	(for output		
		variables)		
All insect visits to beans	Output	Flower visitors	Transect	Visits.beans
Carpenter bee visits to	Output	Flower visitors	Transect	Carpenter
beans				
Natural enemy	Output	Natural enemies	Pan traps	FGrich
functional group				
richness in traps				
Natural enemy	Output	Natural enemies	Pan traps	NEabundance
abundance				
Dolichopodidae	Output	Natural enemies	Pan traps	Dolichopodidae
abundance				
Plant effective species	Input	-	Quadrat	EffSpRich
number				
Plant species richness	Input	-	Quadrat	PlantQuad
(per quadrat)				
Plant species richness	Input	-	Transect	PlantNet
(being visited in				
networks)				
Tree species richness	Input	-	Quadrat	Trees
Species richness of	Input	-	Quadrat	FloweringOffSeason
plants blooming during				
the bean podding				
period				
Native plant species	Input	-	Quadrat	Native
richness				
Introduced plant	Input	-	Quadrat	Introduced
species richness				
Ratio of native to	Input	-	Quadrat	Ratio
introduced plant				
species				

Table S4. Linear and non-linear results for the relationship between explanatory variables ranked highly by the Random Forest models, and the key output variables. A larger 'Ratio' value is indicative of more introduced species relative to native species.

Output variable	Explanatory	Optimal model	Sample size	Adjusted R ²	General
	variable	(lin = linear; quad			directionality
		= quadratic; gam			of
		= general			relationship
		additive)			relationship
Visits.beans	Trees	gam	32	0.8160	Positive
Visits.beans	PlantQuad	gam	32	0.7620	Positive
Visits.beans	Ratio	quad	32	0.2562	Positive
Carpenter	Trees	gam	32	0.5380	Positive
Carpenter	PlantNet	quad	32	0.3762	Positive
Carpenter	PlantQuad	quad	32	0.3095	Positive
Dolichopodidae	Native	quad	26	0.3664	Positive
Dolichopodidae	PlantQuad	quad	26	0.1792	Negative
Dolichopodidae	Ratio	lin	26	0.0873	Negative
FGrich	FloweringOffS	lin	26	0.2279	Negative
	eason				
FGrich	PlantQuad	gam	26	0.2870	Complex
NEabundance	FloweringOffS	quad	26	0.4499	Negative
	eason				
NEabundance	Ratio	poly	26	0.0772	Negative
NEabundance	Introduced	gam	26	0.2490	Negative

Table S5. ANOVA results for the difference in network statistics between Tanzania and Malawi. Asterisks indicate significance at * = 0.05, ** = 0.01, *** = 0.001 level.

Dependent	Independent	F-value	df	p-value
variable	variable			
Connectance	Country	1.112	1	0.300
Interaction	Country	3.543	1	0.070
evenness				
Nestedness	Country	0.565	1	0.458
Robustness	Country	55.135	1	<0.001 ***
(flower visitors)				
Robustness	Country	3.884	1	0.058
(plants)				

 Table S6. Results of ANOVAs examining network metrics (using linear models testing Variable~Country/Ric

 hnessVariable) in which sites were categorised as above- or below-median for their respective country.

Network	<i>F</i> -value	<i>p</i> -value	F-value	<i>p</i> -value
metric	Country/TreeRichness	Country/TreeRichness	Country/EffSpRich	Country/EffSpRich
Connectance	0.8723	0.4290	2.2219	0.1272
Interaction	0.6119	0.54941	0.4147	0.66453
evenness				
Nestedness	0.9266	0.4077	0.7061	0.5021
Robustness	0.0042	0.9958	1.9225	0.1651
(pollinators)				

Supplementary references

- 1 Oksanen, J. *et al.* vegan: Community Ecology Package. R package version 2.5–3. (2018).
- Liaw, A. & Wiener, M. Classification and regression by randomForest. *R news* **2**, 18-22 (2002).
- 3 R Core Team. R: A language and environment for statistical computing., <u>https://www.R-project.org/</u>. (2020).
- 4 Dormann, C. F., Gruber, B. & Fruend, J. Introducing the bipartite Package: Analysing Ecological Networks. *R news* **8/2**, 8-11 (2008).