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Abstract: Modern ideas about the role of epigenetic systems in the regulation of gene expression
allow us to understand the mechanisms of vital activities in plants, such as genomic imprinting.
It is important that genomic imprinting is known first and foremost for the endosperm, which
not only provides an embryo with necessary nutrients, but also plays a special biological role in
the formation of seeds and fruits. Available data on genomic imprinting in the endosperm have been
obtained only for the triploid endosperm in model plants, which develops after double fertilization
in a Polygonum-type embryo sac, the most common type among angiosperms. Here we provide
a brief overview of a wide diversity of embryo sacs and endosperm types and ploidy levels, as well
as their distribution in the angiosperm families, positioned according to the Angiosperm Phylogeny
Group IV (APG IV) phylogenetic classification. Addition of the new, non-model taxa to study
gene imprinting in seed development will extend our knowledge about the epigenetic mechanisms
underlying angiosperm fertility.
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1. Introduction

The history of science convinces us that scientific thought and discoveries usually develop in
a spiral pattern: at new turns, old problems acquire new levels of understanding in the light of
new ideas and methodological approaches, as well as new achievements in technology, chemistry,
and bioinformatics. A clear example of this is the history of the development of ideas in epigenetics.
The term “epigenetics” comes from the Greek word “epigenesis” (epi = on, upon; genesis = origin).
It emphasizes the widespread occurrence of the epigenetic mode of inheritance, especially among plants.
Features of plant biology provide rich material for discussing the participation of epigenetic systems in
gene expression regulation and inheritance in the development and adaptation of plants in ontogenesis,
due to their ability to propagate vegetatively by rhizomes, runners, bulbs, tubers, and corms, as
well as by plantlets emerging from plant leaves, etc. In addition, annual growth of perennial plants
(presumably clones) and apomictic propagation—adventitious embryonia, aposporia, and possibly
diplosporia—should be noted as well. Modern ideas regarding the epigenetic systems of regulation of
gene expression by DNA methylation/demethylation, modifications of histones and chromatin, RNA
interference in plant development (including the phenomena of paramutation, nucleolus domination,
genomic imprinting, and gene regulation based on microRNAs), as well as the importance of epigenetic
systems in plant protection and resistance against viral infection, are highlighted in numerous articles
and comprehensive reviews [1–5].

Genomic imprinting (parent-of-origin-specific gene expression via epigenetics) refers to
the epigenetic modification of alleles inherited by the maternal or paternal line, which leads to their
different expression depending on the parent genome. Thus, the parental (maternal and paternal)
genomes are not functionally equivalent due to genomic imprinting [6]. It seems remarkable that
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genomic imprinting is now reliably known in plants, in particular dicotyledons and monocotyledons [7,8],
first of all, for the endosperm—a highly specialized tissue that not only provides the embryo with
necessary nutrients, but also plays a special biological role in the process of formation of seeds and fruits.
Although both the embryo and endosperm arise in the same system of the embryo sac after fertilization,
they differ in the nature of their reactions to the influence of various factors. Morphophysiological
studies of the endosperm in connection with various conditions of its occurrence and development
(distant hybridization, pseudogamy, various pollination modes, or its absence) showed the versatility
of its functions. Recent investigations have demonstrated that “the endosperm is perhaps the most
epigenetically divergent plant tissue, with unique DNA methylation and chromatin structure features” [7].
The existence of highly complex physical and physiological relationships between extra-embryonic
tissues, including the endosperm, and the developing embryo has been repeatedly emphasized [9–15].

It should be noted that the currently available data on genomic imprinting in the endosperm
were only obtained in studies of the triploid endosperm formed after double fertilization in
the Polygonum-type embryo sac, the most common one among angiosperms. So, in this mini-review,
we would like to draw attention to the need for research into other types of endosperm, to better
understand the essence and peculiarities of molecular mechanisms of seed reproduction in plants,
providing biological progress of species, and in evolving biodiversity in general.

2. Genomic Imprinting in the Embryo Sac, Mainly in the Endosperm

For the first time, genomic imprinting, i.e., differential expression of the two alleles of the same
gene depending on its parental origin, was described in plants by J.L. Kermicle [16] on the example of
a maize-specific gene R. In subsequent years, research interest into this phenomenon was renewed after
the discovery of MEDEA, the first imprinted gene in plants that is essential for their development [17,18].
Later, new imprinted genes have been revealed in the endosperm and great progress has been made
in understanding the mechanisms of imprinted gene expression in a mature embryo sac and in
the embryo and endosperm after fertilization [6,7,19–27]. Interesting parallels have been drawn
between the mechanisms underlying genomic imprinting in plants and mammals. Therefore, we have
only recently considered the modern ideas on the participation of the epigenetic systems in the regulation
of imprinted genes in the embryo sac, mainly in the endosperm, and its functional significance.

The study of DNA methylation in the embryo and endosperm of wild-type Arabidopsis thaliana (L.)
Heynh. (Brassicaceae/Cruciferae) demonstrated the large-scale changes in methylation accompanying
endosperm development and the expression of endosperm-specific genes. Due to certain difficulties
involved with the isolation of individual cells of the embryo sac, the hypothesis of differences in
the epigenome of the egg and central cell has not yet been fully tested, although the presence of several
imprinted genes specific to the endosperm has been proven [28–30]. Imprinting is expected to play
a role in the epigenetic differentiation of the egg and central cell of an embryo sac before fertilization [6]
and then between the zygote and endosperm, as well as between maternal and paternal DNA in
the endosperm [7].

It was shown that an allelic copy with reduced or eliminated expression at imprinted loci
had higher levels of DNA methylation in the endosperm with the expected constancy [31,32].
Determination of the allele-specific expression of the MEDEA (MEA) and FWA genes in the embryo
and endosperm, carried out on the 6th day after pollination, showed MEA mono-allelic expression from
the mother-inherited allele both in the embryo and in the endosperm [33]. The expression of maternally
inherited MEA alleles in the central cell of the embryo sac is activated by the DEMETER (DME) DNA
glycosylase, which directly removes the 5-methylcytosine base and is encoded by the DEMETER (DME)
gene [34], which is expressed preferentially in the central cell of an embryo sac before fertilization.
It has been shown that the specificity of CG demethylation for maternal sequences is proved by
the partial restoration of CG methylation in the endosperm to levels found in other tissues due to
DME mutations [22,23]. DME also activates the FWA gene in the central cell prior to fertilization and is
believed to play a common role in the regulation of imprinted genes [32]. Other imprinted genes
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also have cytosine methylated regions in promoters that are associated with maternally restricted
expression. The imprinted expression of many genes, including MEA, FIS1, FWA, and other genes,
was known to be differentially methylated in a DME-dependent manner [23]. It has been shown that
the expression of the MET1 gene supports the activity of DNA methyltransferase in A. thaliana. As in
the met1 mutant, DNA methylation is reduced both in repeating sequences and in a single copy [35].
MET1 has been reported to act as an antagonist to DME in controlling the expression of maternal
MEA [36].

The main volume of methylation in the endosperm of A. thaliana wild type was lower in all
sequence contexts, compared with the embryo. In the endosperm, fragments of mobile genetic elements
were intensively demethylated, which was accompanied by CHH (H is A, C, or T) hypermethylation
of mobile genetic elements into the embryo [21]. In the authors’ opinion, short-term transposon
activation in the endosperm is not very important, since its genome is not passed on to the next
generation. DNA-dependent RNA polymerase IV (PolIV), which specializes in small RNA-mediated
gene silencing pathways, was shown to be highly expressed in the endosperm and its expression is
predominantly of maternal origin [37]. It is assumed that activation of transposable elements and,
as a result, the production of small interfering RNAs (siRNAs) in the central cell of an embryo sac,
which migrate to the egg cell and embryo, could actively contribute to an increase in methylation
and silencing of mobile genetic elements in the egg cell and subsequently in the embryo via siRNA
transport [20,22,25,27].

An important role in the regulation of imprinted gene expression belongs to Polycomb-group
(PcG) proteins, which form a protein complex of about 650 kDa and regulate plant life cycles,
usually suppressing the transcription of their target genes [19,28,38,39]. It is assumed that these
proteins act at the level of chromatin structure to ensure mitotically inherited repression by H3K27
methylation. In A. thaliana, the identified genes encoding PcG proteins were generally named
FERTILIZATION INDEPENDENT SEED (FIS), FERTILIZATION-INDEPENDENT ENDOSPERM (FIE),
FIS2, and MULTI-COPY SUPPRESSOR OF IRA1 (MSI1). The PcG complex regulates maternally
and paternally expressed genes [22]. It is assumed that the main function of the FIS PcG complex is
the imprinting of paternally inherited genes in the endosperm [19]. A PHERES1 (PHE1) target gene
was identified that is directly regulated by the FIS PcG protein complex [28,40]. Maternal inheritance
of the FIS2, MEA (an FIS component), and FIE genes is necessary for the formation of viable seeds.
The FIS PcG complex regulates dosage-sensitive genes in the endosperm [21]. An important component
of MEA imprinting is repression of the paternal MEA allele in the endosperm; this process involves
the autoregulation of MEA by H3K27 55.68.69 trimethylation [19]. FIE and MEA are proposed to interact
directly in wild-type plants to control female gametophyte, endosperm, and embryo development [41].
It was demonstrated that the PHE1 flanking sequence was demethylated by DME in the central cell,
which allows polycomb repressive complex 2 (PRC2) to establish a repressive chromatin environment.
PHE1 imprinting is lost in the endosperm in a DME-dependent manner [23].

The PHE1 gene encodes a transcription factor of the MADS-box gene family and is usually
depressed in the mea and fis mutants. MADS-box genes are also targeted by some members of the plant
PcG [38]. It has been shown that PHE1 is not expressed in a female gametophyte, but its activity is found
in the central cell of an embryo sac in wild-type and fis mutants one to two days after pollination. Later
in the developing seed, the expression of PHE1 becomes limited in the chalazal region of the endosperm
in the wild type, while in the mea and fis mutants it remains intense. It has been demonstrated that FIE
and MEA proteins are associated with the proximal part of the PHE1 promoter and the beginning of
the coding region [42]. As already noted, PHE1 is a direct target of FIE and MEA, and, according to
the authors, this is the first serious demonstration of direct PcG targets in plants. Partial seed abortion
in mea mutants is thought to be caused by PHE1 mis-regulation. Ripe seeds were not normal; they were
larger, remained green longer, and were more sensitive to dehydration [42]. Currently, investigations of
the role of genomic imprinting in endosperm function at the later stages of seed development are being
expanded. It was demonstrated that intraspecific variations in allele-specific imprinting of the class IV
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homeodomain leucine zipper (HD-ZIP) transcription factor HDG3 in the endosperm is an important
determinant of endosperm cellularization (the transfer from the stage of free nuclei to the cellular
stage) and seed development phenotypes [43]. Recently, the type I MADS-box transcription factor (TF)
PHE1 was reported to be a major regulator of imprinted genes and other genes relevant to endosperm
development. PHE1 can establish endosperm-based reproductive barriers in crossing [44]. Regulation
of imprinting is suggested to be diverse. The evolutionary and biological significance of genomic
imprinting has been emphasized [45].

Very interesting data were reported by P. Khanduri et al. [46] about the disappearance of FIE
expression in the flowering stage of Zeylanidium olivaceum (Gardner) Engl. and Polypleurum stylosum
(Wight) J.B. Hall (the latter is now considered to be a synonym of P. wallichii (R.Br. ex Griff.) Warm.), both
belonging to the family Podostemaceae (order Malpighiales, the rosids clade of eudicot angiosperms),
which are submerged aquatic plants growing on rocky substrata under running water, although ZoFIE
and PsFIE transcripts were present in the vegetative tissue. In the authors’ opinion, the absence of
double fertilization and the endosperm underlie this unique pattern of expression [46]. In the family
Podostemaceae, an embryo sac is monosporic and four-celled. A chalazal nucleus degenerates
at the two-nucleate stage of female gametophyte development, so the mature embryo sac contains
the micropylar egg apparatus–an egg cell and two synergids and a polar nucleus. Double fertilization
is absent and the endosperm does not develop. The absence of the endosperm is compensated by
the nucellar plasmodium, which is located below the female gametophyte. The nucellar plasmodium
begins to form at the stage of the two-nucleate embryo sac by disintegration of cell walls, and it
becomes the coenocyte before the fertilization of an egg cell, for example in Inversodicraea bifurcata Engl.
(now accepted as Ledermanniella bifurcata (Engl.) C.Cusset) and “I. keniensis sp. nov.” (ined.) Nagendran
et Sicolia [47] or during the post-fertilization period, for example in Tristicha trifaria Spreng. [48].

3. Endosperm

The polyploid nature of the endosperm of angiosperms was established due to the discovery
of double fertilization in Lilium martagon L. by S.G. Navashin [also transliterated as Nawaschin] in
1898 [49]. Of the two sperms that the pollen tube brings to the embryo sac, one sperm fertilizes the egg
cell, generating the diploid zygote, whereas the other sperm fuses with the central cell of the embryo
sac, giving rise to the endosperm (Figure 1).

Discovery of double fertilization by S.G. Navashin and further demonstration of its presence in
almost all angiosperm species, representing diverse evolutionary lineages, showed both the universality
and uniqueness of the double fertilization phenomenon for flowering plants [50–58]. This has become
one of the main arguments in favor of the monophyletic origin of this most highly organized division
(mega-diverse, high-rank clade) of the plant world. It has been found that double fertilization is
normally carried out in embryo sacs of all types, regardless of the number of polar nuclei fusing with
the second sperm nucleus in the central cell of the embryo sac or its ploidy level. In only some species
of orchid, for example in tropical Phaius blumei Lindl. (now accepted as P. tankervilleae (Banks) Blume),
the sperm closely contacts with the polar nuclei, but does not fuse with them [51]. The endosperm is
not formed in these species of orchids, nor is it formed in Podostemaceae species.

Viable seeds in plants with apomixis develop after fertilization of the polar nuclei in the central
cell, a process known as pseudogamous apomixis. Diploid parthenogenesis (diplosporic or aposporic)
takes place in such embryo sacs. Aposporic and meiotic embryo sacs can be simultaneously present in
the same ovule. In single obligate apomicts, the diploid egg and the tetraploid secondary nucleus in
the central cell are able to develop without fertilization [59–61]. Numerous experiments on distant
hybridization convincingly demonstrated the dependence of embryogenesis on the development
of the endosperm. In cases of hybrid endosperm disturbance or its absence, the development of
a viable hybrid embryo stops at certain stages and can only be continued if the embryo is isolated
and placed on a nutrient medium in vitro (embryo rescue techniques) [10,62–66]. Navashin’s views [67]
on the essence and role of double fertilization formed the basis for further ideas about the biological
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role of the endosperm in the formation of seeds and fruits. It particularly explained the occurrence of
xenia in maize, a phenomenon in which kernel characteristics vary as a result of pollination of part of
the maize flowers by foreign pollen ([68], p. 724).Life 2020, 10, x FOR PEER REVIEW 5 of 20 
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Figure 1. Double fertilization in Lilium martagon (a) and Helianthus annuus (b) [67]. ps—pollen tube,
s—synergid, ov—egg cell, sp—sperms, ek—nucleus of the central cell of the embryo sac.

3.1. Endosperm Types

At present, the formation of three types of endosperm in angiosperms has been clearly
established—nuclear, cellular, and helobial.

The nuclear type of endosperm is characterized by the fact that the first division of the primary
nucleus of the endosperm (the fusion product of polar nuclei with a sperm) in the central cell of
an embryo sac, as well as the division of its derivatives at the initial stages of seed development, result
in the formation of free endosperm nuclei, which are located in the cytoplasm layer along the periphery
of the embryo sac. The central part of an embryo sac is usually occupied by a vacuole. Generation
of cell walls between the free nuclei in different species is carried out with an unequal number of
nuclei, ranging from four to eight, or up to a thousand or more. There are variants in the endosperm’s
transition from the free-nuclei stage to the cellular stage, including the formation of cell walls from
the periphery of an embryo sac to its center, or from the micropylar part to the basal one and vice versa,
the degree of filling of the embryo sac cavity with endosperm cells, etc.

In the cellular type of endosperm, the first division of the primary endosperm nucleus in the central
cell of the embryo sac and all subsequent divisions are accompanied by cytokinesis. The direction
of cytokinesis during the first division of the primary endosperm nucleus can vary. A cell plate is
chiefly situated in the transverse direction; a spindle is oriented longitudinally, or less often obliquely.
The direction of cell wall laying during subsequent divisions also varies.

In the helobial type of endosperm, the first division of the primary endosperm nucleus in the central
cell of an embryo sac is accompanied by cytokinesis, as a result of which there are two cells of unequal
volume—the micropylar cell is several times larger than the basal one. In the micropylar cell, free
nuclei form first, and the cell walls are laid between them later, as with the nuclear-type endosperm.
The chalazal cell functions for the most part as a haustorium—mononuclear, if the cell nucleus no
longer divides, or multinuclear as a result of nuclear divisions. In some cases, division of the nucleus
in a chalazal cell is accompanied by cytokinesis.

According to the summary provided by G. Davis [52], the nuclear type of endosperm was
described in at least 161 families of angiosperms, 83% of which are dicotyledonous (mainly eudicots,
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sensu Angiosperm Phylogeny Group IV (APG IV) [69]). The cellular endosperm type is characteristic
of 79 families, almost all of which, with the exception of Araceae and Lemnaceae (two groups
of monocots which are now usually merged in one family, Araceae sensu lato), belong to dicots.
The helobial type is known for 17 families, of which 14 are monocots. Although for some families
one endosperm type is characteristic, endosperm types vary significantly in other families, often
occupying rather distant positions in the phylogenetic system. Combinations of the nuclear and cellular
types are more common. For example, this was reported in families such as Alangiaceae (often
included in Cornaceae sensu lato), Asclepiadaceae (now usually treated as Apocynaceae subfam.
Asclepiadoideae), Asteraceae, Buxaceae, Gentianaceae, Haloragaceae, Hydrophyllaceae (now usually
treated as Boraginaceae subfam. Hydrophylloideae), Lauraceae, Nymphaeaceae, Philadelphaceae
(now included in Hydrangeaceae), Piperaceae, Rubiaceae, Vacciniaceae (now submerged in Ericaceae
sensu lato), and Winteraceae. Nuclear and helobial types of the endosperm were described in
families Agavaceae (now usually treated as Asparagaceae subfam. Agavoideae), Alismataceae,
Amaryllidaceae, Hypoxidaceae, Linaceae, Spigeliaceae (now included in Loganiaceae sensu lato),
Trilliaceae (now included in Melanthiaceae as tribe Parideae). Cellular and helobial types were
described in families Olacaceae, Santalaceae, and Thismiaceae, and all three types of endosperm are
found in families Boraginaceae and Solanaceae [70]. Species of Podostemaceae and partly Orchidaceae
are devoid of double fertilization and endosperms. The subsequent stages of an endosperm’s
development—synthesis and accumulation of reserve nutrients, its presence in mature seeds or its
resorption during the embryo maturation, etc.—do not reveal any direct connection with its type.

Endospermal haustoria are very diverse in their structure and development, especially in species
with cellular and helobial endosperm types. In the nuclear type of endosperm, haustoria arise
mainly from the chalazal end of the embryo sac. In most cases they are relatively short and remain
at the coenocytic stage. The longest haustoria in embryo sacs with a nuclear type of endosperm are
known in the families Euphorbiaceae and Cucurbitaceae. For example, haustoria reach 1000 µm in
length in Croton klotzschianus (Wight) Thwaites and C. sparsiflorus Morong (now usually included in
C. bonplandianus Baill.). They reach 7398 µm in Cucurbita pepo L. and 12,000 µm in C. ficifolia Bouché.
An interesting feature of nuclear endosperm development has been described in Lomatia species of
the family Proteaceae [70]. When the embryo consists of 20–30 cells, the endosperm becomes cellular
in the micropylar part of an embryo sac; in the chalazal part it remains at the stage of free nuclei.
Finger-like unicellular outgrowths appear on the entire surface of the endosperm and their formation
increases the absorptive surface (Figure 2).
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Figure 2. Endosperm and embryo in Lomatia polymorpha R.Br. (a) and L. tinctoria R.Br. (b,c) [71].

In angiosperms with cellular and helobial types of the endosperm (taxa of families Acanthaceae,
Araceae, Boraginaceae, Lamiaceae, Lentibulariaceae, Lobeliaceae, Magnoliaceae, Nymphaeaceae,
and Viscaceae), haustoria can arise either from the chalazal end of an embryo sac or from the micropylar
end, as well as from both. In Jodina rhombifolia (Hook. et Arn.) Reissek (family Santalaceae),
a haustorium is formed from a mononuclear chalazal cell [72], and only the micropylar cell gives
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rise to the endosperm itself. The nucleus of the chalazal cell migrates to the haustorium and greatly
hypertrophies. Numerous branches of the free end of the haustorium give it the look of coral (Figure 3).Life 2020, 10, x FOR PEER REVIEW 7 of 20 
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Figure 3. General view of fruit at the stage of a globular embryo (a) and haustorium (b) in Jodina
rhombifolia [72]. 1—embryo, 2—endosperm, 3—haustorium, 4—nucleus.

Micropylar and chalazal endospermal haustoria are well developed in the family Loasaceae.
As reported for Loasa bergii Hieronym. (now accepted as Pinnasa bergii (Hieron.) Weigend et R. H.
Acuña), the chalazal haustorium is spherical in shape and usually contains one hypertrophic nucleus,
although haustoria with a large number of nuclei are sometimes observed [73]. The micropylar
haustorium contains free nuclei and has hyphoid-like branches reaching significant sizes (Figure 4).
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Figure 4. General view of embryo and endosperm with chalazal and micropylar haustoria in Loasa bergii
(a) and with chalazal haustorium in Blumenbachia silvestris (= Caiophora silvestris) (b). (c)—fragment of
Figure 4b [73]. 1—embryo, 2—endosperm, 3—micropylar haustorium, 4—chalazal haustorium.

Haustorium branches penetrate the ovule integument and funiculus, sometimes reaching
the placenta. The elongated chalazal haustorium in Blumenbachia silvestris Poepp. (= Caiophora
silvestris (Poepp.) Urb. et Gilg) consists of the narrow multicellular base and the highly branched
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apical part containing only one hypertrophic nucleus. The micropylar haustorium has a similar
structure, but it is shorter and wider, and contains numerous nuclei, between which cell walls can
form. Mentzelia laevicaulis (Douglas ex Hook.) Torr. et A.Gray is characterized by an elongated
and unbranched chalazal haustorium consisting of many large cells. The micropylar haustorium is
wider and shorter than the chalazal haustorium (Figure 4b,c). In species of the family Scrophulariaceae
(as understood in its traditional wide circumscription), in addition to the micropylar and chalazal
haustoria, several secondary lateral haustoria can form in the endosperm micropylar and chalazal
parts [50,74]. Well-developed and aggressive haustoria of all three types in some species of the family
can be formed simultaneously, thus creating a very effective absorptive system.

3.2. Embryo Sac Types and Endosperm Ploidy

Different levels of endosperm ploidy depend on the type of embryo sac, consequently endosperm
ploidy levels can vary from 2 n (Oenothera-type of embryo sac) to 9 n (Peperomia-type of embryo sac).
Therefore, we briefly dwell on the classification of the types of embryo sacs and their distribution
over angiosperm families. Of the proposed classifications of types of embryo sacs [75–79], we selected
the main types reflecting the evolution of the female gametophyte from the monosporic type to
the bi- and tetrasporic types [50,78]. Identification of a type of embryo sac development is based on
the following three features: (1) the number of macrospores giving rise to the embryo sac; (2) the number
of mitoses that occur during the development of the embryo sac; and (3) the behavior of the nuclei that
determines the organization of the embryo sac.

1. Polygonum-type (normal type) is single-spore, three-mitosis. The mature embryo sac is characterized
by two three-cell polar groups (egg apparatus and antipodes) and two polar nuclei in the central
cell. The most variable group is formed by antipodes (rapidly degenerating, normal, hypertrophic,
reproducing).

2. Oenothera-type: single-spore, two-mitosis. The mature embryo sac has only one polar group:
a three-cell egg apparatus and one upper polar nucleus in the central cell.

3. Allium-type: bisporic, two-mitosis. The organization of the mature embryo sac is the same as in
the normal type.

4. Drusa-type: four-spore, two-mitosis. The mature embryo sac contains a three-cell egg apparatus,
11 antipodal cells, and two polar nuclei in the central cell.

5. Fritillaria-type: four-spore, two-mitosis. Upon transition from the prophase to the metaphase of
the first mitosis, the fusion of three chalazal nuclei occurs. As a result, a secondary four-nucleus
embryo sac with a haploid upper and triploid lower pairs of nuclei is formed after the first mitosis.
The second mitosis leads to the formation of an embryo sac with the same organization as in
the normal type, but with triploid antipodal cells and the lower polar nucleus.

6. Plumbagella-type: four-spore. The organization of the mature embryo sac originating directly from
the tetranuclear coenocyte is simplified. The egg apparatus consists of only one egg; the central
cell contains two polar nuclei and one antipodal cell.

7. Adoxa-type: four-spore, single-mitosis. The organization of the mature embryo sac is the same as
in the normal type.

8. Penaea-type: four-spore, two-mitosis. After two mitoses, four nuclei are formed at each pole.
The mature embryo sac contains four polar groups of three cells each (egg apparatus, chalazal,
and two lateral) and a central cell with four polar nuclei.

9. Plumbago-type: four-spore, single-mitosis. In a four-spore coenocyte, one nucleus is located in
the micropylar end, the second is located in the chalazal end, and the other two occupy a lateral
position. The nuclei divide, and one cell is formed near each pole. In the mature embryo sac,
the micropylar cell is an egg cell. Chalazal and lateral cells usually die. The central cell contains
four polar nuclei, which fuse to form a secondary tetraploid nucleus.
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10. Peperomia-type: four-spore, two-mitosis. After the first mitosis, eight nuclei are distributed
usually in the peripheral layer of the cytoplasm or two of them are grouped in the micropylar end,
and six are closer to the chalazal end. After the second mitosis, eight nuclei occupy the peripheral
position, and the same number of nuclei is in the cell center. In the mature embryo sac there
are an egg cell and a synergid in its micropylar end. Six lateral cells are close to the chalazal
end of the embryo sac. Eight polar nuclei in the central cell fuse, forming the secondary nucleus
(Figure 5).

Among the described variations of the main types of embryo sacs [77–80] we would like to
note the organization of mature embryo sacs in Tulipa tetraphylla Regel and taxa of Tulipa subgen.
Eriostemones (Boiss.) Raamsd. reported by I. D. Romanov [79]. In the mature four-spore, single-mitosis
embryo sac of T. tetraphylla, the egg apparatus consists of five cells, the central cell with two polar
nuclei, and the antipodal cell alone with a degenerating nucleus. Cells of the egg apparatus are not
differentiated. A mature four-spore, single-mitosis embryo sac of Tulipa subg. Eriostemones has only
one micropylar group: the egg apparatus of seven cells and the upper polar nucleus of the central cell.
The egg is not morphologically indistinguishable before fertilization.

The Polygonum-type embryo sac has been found in 80% of the examined angiosperm species in 239
families out of about 295 recognized ones. The Allium-type embryo sac is characteristic for such families
as Alismataceae, Datiscaceae, Malpighiaceae, Theaceae, Limnocharitaceae, Loranthaceae (subfamily
Viscoideae, or a separate family Viscaceae of the order Santalales), and Liliaceae. The Adoxa-type
embryo sac is described in Adoxaceae and Liliaceae families; the Drusa-type embryo sac is described
in Limnanthaceae; the Oenothera-type embryo sac is described in Onagraceae; and Plumbago-
and Plumbagella-types are described in Plumbaginaceae. The Peperomia-type is known in the families
Euphorbiaceae and Piperaceae; the Fritillaria-type in Liliaceae; and the Penaea-type in the families
Euphorbiaceae, Penaeaceae, Malpighiaceae, and Apiaceae. Of course, those are only some examples of
the distribution patterns by families, because particular embryo sac types are much more widespread
over the phylogenetic tree of angiosperms.

Only one type of embryo sac is characteristic for a number of families; for example, all species of
the family Poaceae studied in this respect, with the exception of apomictic forms, have a Polygonum-type
embryo sac. In other families and higher-rank groups, at least two different types of embryo sacs
are known in one family. For example, the Polygonum-, Allium- and Adoxa-type embryo sacs are
described in the families Caprifoliaceae, Caryophyllaceae, Commelinaceae, Orchidaceae, Solanaceae,
and Trilliaceae (Melanthiaceae sensu lato); the Polygonum-, Allium-, Adoxa-, Drusa-, and Fritillaria-type
embryo sacs are known in families Asteraceae and Liliaceae; and the Allium-, Adoxa-, Drusa-, Fritillaria-,
and Penaea-type embryo sacs occur in the family Euphorbiaceae [52].

Information on distribution of embryo sac types over the phylogenetic tree of angiosperms is also
available from the continuously updated Angiosperm Phylogeny Website; in particular, P.F. Stevens
recognizes the following main types: Adoxa-, Allium-, Drusa-, Endymion-, Fritillaria-, Oenothera-, Penaea-,
Peperomia-, Plumbagella-, Plumbago-, Polygonum-, and Schisandra-types [81].

We emphasize once again that the trophic and physiological role of the endosperm in the formation
of an embryo, seed, and fruit is basically the same, regardless of the type of its development and ploidy,
as shown by numerous studies of embryology and biology of the process of seed maturation in
a number of cultivated angiosperms in natural and experimental conditions. Attempts to compare
particular types of endosperm development with the shape and size of embryo sacs, as well as with
a rate of embryo development, have not yielded positive results.
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4. Embryo Sac and Endosperm Phylogeny

The question of the origin of a female gametophyte of the angiosperms is closely connected with
the problem of the origin of angiosperms (however, we do not consider this evergreen and fascinating
problem in our article). The peculiarities of the angiosperm female gametophyte structure, which is not
found in all other divisions of higher plants, remains unresolved and debated to date. It is sufficient
to mention that the current state of botanical knowledge allows us to join the opinion repeatedly
expressed in the literature that the emergence of angiosperms was the greatest arogenesis event (a
progressive evolution phenomenon, in the terms of A.N. Severtzov [82] and I.I. Schmalhausen [83])
and the evolution of angiosperms proceeded in various directions with a pronounced heterochronism.
In the conjugate chain of aromorphoses (roughly corresponding to the modern concept of key
evolutionary innovations; see [84] and references therein) of the internal structures of the angiosperm
generative organs (the appearance of specific female and male gametophytes, double fertilization
and polyploid endosperm, etc.), the final stage is a polyploid endosperm formed as a result of fusion
of a sperm cell with the polar nuclei of the central cell of the embryo sac. The currently accepted
concept of aromorphosis [82,83] includes the appearance in the body of such progressive changes that
are not strictly limited to any particular environment and, thus, raising the organism to a higher level
of organization, allowing it to colonize successfully new and often very distinctive and challenging
habitats [83]. The attribution of female and male gametophytes in angiosperms to phenomena such as
aromorphosis underlines the higher level of their organization as compared to their ancestor and/or
co-existing organisms.

Based on the assumption that the embryo sac is a homolog of a female gametophyte of
the gymnosperms [85–88], the archegonial hypothesis of O. Porsch [85] and M. Favre-Duchartre [88],
and the gnetaceous hypothesis of F. Fagerlind [86,87] were and still are repeatedly discussed in
the literature, but neither of them is universally recognized. J. Coulter [75] expressed the idea of
gradual reduction of an archegonium, which begins in gymnosperms and ends in angiosperms with
the complete disappearance of its wall, from which only the reproductive structure remains, an egg cell.
E. Strasburger (cited in [78]) considered the elements of the angiosperm embryo sac as the initial stages
of the female gametophyte development, practically before the formation of archegonia, like in Gnetum.
Currently available data on the comparative morphology and embryology of Gnetum species do not
give reasons to consider the organization of the female gametophyte of Gnetales as basic for an embryo
sac of angiosperms, but rather as a variant of the female gametophyte from the distant past which has
been preserved, which has not received further development, and which currently represents a kind of
“evolutionary dead end”. A clearly formulated hypothesis of the neotenic origin of the embryo sac
was proposed by I. D. Romanov [79]. Differentiation of an egg cell occurs at the very early stages of
the female gametophyte development, at the latest after the third division of a nucleus of the macrospore,
which naturally excludes the formation of the archegonium. E. N. Gerasimova-Navashina [89] further
developed these views and also considered the embryo sac as a greatly reduced female gametophyte of
some earlier ancestral forms. In her opinion, general laws that govern the development and organization
of any cell being in certain conditions are manifested in the evolution of an embryo sac.

The prevailing point of view is that the Polygonum-type embryo sac (monosporic, three-mitosis,
eight-nucleate, seven-celled) is the initial or ancestral one, whereas the other types, which are different
variations of the main type, are likely derivatives. Less common is the belief that other types of
embryo sacs—for example, a four-spore 16-nucleate embryo sac—are more primitive or evolutionarily
independent from the Polygonum-type. According to Modilevsky [51], mono-, bi- and tetrasporic
embryo sacs have a common origin, but from the very first days of their appearance they differed
by the patterns of formation, thus being peculiar and equivalent variants of one general type. This
assumption is based on the presence of a four-spore female gametophyte in Gnetum gnemon L.
(G. ovalifolium Poir.), as well as on the formation of 16-nucleate embryo sacs in a number of angiosperm
families, for example Euphorbiaceae, among the Polygonum-type embryo sacs typical of these families.
It should be noted that formation of mono-, bi- and tetrasporic embryo sacs with the dominance
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of a bisporic embryo sac can occur in different ovules of the same species, for example in Erigeron
elatus Greene.

It should be also emphasized that the Polygonum-type is present in several plant families
that occupy especially important positions on the phylogenetic tree of angiosperms [69,81,90,91].
In particular, the Polygonum-type is typical for (1) the family Amborellaceae, representing the basalmost
(the most early-branching) angiosperm clade sister to the clade containing all other angiosperms;
(2) other representatives of the ANA grade (orders Amborellales, Nymphaeales, and Austrobaileyales),
representing the basal grade of angiosperms, although in Amborellales the embryo sac is 9-nucleate,
whereas in the two other orders it is 4-nucleate; (3) the family Acoraceae (with the single genus
Acorus), which forms the basalmost clade of monocots; and (4) in early-branching eudicots, such as
representatives of the family Ceratophyllaceae and most taxa of the order Ranunculales (families
Lardizabalaceae, Circaeasteraceae, Menispermaceae, Berberidaceae, and Ranunculaceae; in the last
family the Allium-type is also known). Such predominance of the Polygonum-type in basalmost or
early-branching clades of angiosperms in general, and their main clades in particular, indicates that
that type was probably the ancestral one (Figure 6).
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Discussion of the evolution and homology of the endosperm of angiosperms is mainly based
on two alternative hypotheses. These hypotheses have been actively discussed in the past and have
received new developments in connection with data from a cladistic analysis of the basal species
of angiosperms, as well as from cases of fertilization of female cells with a second sperm in species
of Ephedra and Gnetum [92–99]: (1) the endosperm is homologous to the embryo, i.e., it can arise
from the transformation of the additional embryo development as a result of the second act of
fertilization, which first occurred in the ancestors of the angiosperms; and (2) the endosperm is
homologous to the female gametophyte, as a product of altered ontogenesis of female gametophytes
of non-flowering seed plants, which later sexualized. In addition, a triploid endosperm could be
considered homologous to the gymnosperm female gametophyte in the evolutionary context of
the parental conflict hypothesis [100–102].

Two cases of penetration of two sperms from the pollen tube into the cell central of an archegonium
in Ephedra nevadensis S. Watson and E. trifurca Torr. ex S. Watson were described [92,93]. One sperm
fused with the egg cell, and the second with the abdominal canal nucleus, resulting in the formation of
two zygotes and, as a consequence, the additional embryo. According to W. E. Friedman [94], this fact
may support the point of view that the transitional stage in endosperm evolution was the formation of
additional embryos with modified endosperm function to improve the developmental conditions of
the sister embryo. In G. gnemon, which is characterized by the absence of archegonia [103], the fusion
of each of two sperms with individual female cells in the micropylar part of the female gametophyte
also described [97]. Based on these observations, the hypothesis about the origin of the gymnosperms
and angiosperms from a common ancestor was revived [104–106]. Recognition of the potential
homology of the reproductive traits of Gnetales and angiosperms is a key point in the hypothesis
on the origin of double fertilization from their common ancestor. However, the results of modern
molecular phylogenetic studies, as well as earlier morphological studies (as already mentioned),
do not support these ideas, but indicate that Gnetales are a monophyletic group closely related to
conifers [107,108]. It should also be noted that formation of a second zygote is a result of additional
fertilization in Gnetales. Both zygotes give rise to identical multicellular embryos, which can be
considered a phenomenon of polyembryony.

Features of the origin and genetic constitution of the endosperm of gymnosperms and angiosperms
do not give reasons to consider them homologous formations, although the function of the latter
after fertilization is the same. In gymnosperms, the endosperm is a vegetative cell of the female
gametophyte, the development of which begins with the germination of macrospores. It is basically
composed of haploid cells. The development of the endosperm of angiosperms occurs, as a rule, only
after triple fusion, i.e., the fusion of sperm with the polar nuclei of the central cell of an embryo sac,
resulting in the formation of the primary nucleus of the endosperm.

The accumulation of reserve substances in the endosperm of gymnosperms begins, as in
angiosperms, during embryogenesis. Therefore, we can clearly observe similarity between
the endosperm of angiosperm plants and the female gametophyte of gymnosperms in the process of
seed maturation, but not as any evidence of their homology. Moreover, convergence takes place mainly
at the level of tissues and cells that are functionally similar.

On the basis of a cladistic analysis, the possible primacy of a diploid endosperm, which is formed
after fusion of a sperm with a haploid nucleus in the central cell of four-celled embryo sacs in species of
Nuphar (Nymphaeaceae) and Illicium (Illiciaceae), both belonging to basal angiosperms, is discussed [98].
Based on these data, the four-celled female gametophyte, and thus the diploid endosperm, can be
considered ancestral to the seven-celled female gametophyte and triploid endosperm [109]. At the same
time, a monosporic seven-celled embryo sac of Polygonum-type, characteristic of most species of
angiosperms, was found in the basalmost angiosperm Amborella trichopoda Baill. (Amborellaceae) [110].
We can add that the monosporic four-celled embryo sac, described in species of Nuphar and Illicium, is
typical of the Oenothera-type of embryo sac inherent to the family Onagraceae (Figure 6).
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Currently, the possibility of a twofold occurrence of diploid endosperm from the initial triploid
one in different clades is considered. Phylogenetic patterns of the emergence of the triploid endosperm,
once in Amborella with a seven-cell embryo sac and once in a common ancestor of monocots, magnoliids,
and eudicots, is widely discussed [111]. The triploid endosperm is also assumed to emerge only once
in the whole evolutionary history of flowering plants, if the Polygonum-type embryo sac is recognized
as being peculiar to the last common ancestor of all angiosperms. At the same time, the occurrence
of bisporic and tetrasporic embryo sacs and, consequently, higher-ploidy endosperms could have
emerged more than once, or even many times [80].

Thus, the question of the origin of the female gametophyte and endosperm of the angiosperms
remains open, and numerous hypotheses about the initial or ancestral type of the embryo sac
and endosperm, and their derivatives in the extant angiosperms, are largely debatable. The main
difficulty in covering these issues lies primarily in the absence of paleobotanical data concerning
the various stages of the formation of generative organs in higher plants. Therefore, in assessing
the phylogenetic value of traits, subjective elements depending both on the state of scientific knowledge
in a certain period and on the views of a researcher will inevitably manifest themselves. Concerns were
expressed about the existence of a “vicious circle” in assessing the primitiveness or progressiveness of
morphological (in the broad sense of the word) traits: certain traits are considered to be an indicator of
primitive initial organization, depending on the position of the organism in a phylogenetic system, yet
at the same time, the position of the organism in the currently accepted system is determined by these
same traits. Cladistics and molecular phylogenetic approaches do not eliminate completely the existing
difficulties, although they allow for the discussion of the “old” problems from new, much improved
positions. Broadening the boundaries of knowledge and confirming or denying what has been achieved
inevitably raises new discussion issues in such a complex problem as the history and evolution of
the unique features of the generative organs in angiosperms.

5. Concluding Remarks

Current research on genomic imprinting in the endosperm has considerably expanded our
understanding of its biological role in seed and fruit development, and has also created new possibilities
to study molecular and genetic mechanisms involved in endosperm formation and functioning.
However, it should be noted that available data have been obtained only in studies of the triploid
endosperm formed after double fertilization in the Polygonum-type embryo sac, the most common type
among angiosperms.

Summing up the research on gene imprinting in the endosperm, M. Gehring and P.R. Satyaki [7]
outlined most topical questions which are still outstanding. Among them, we would like to emphasize
the issues related to “the exact mechanisms by which imprinted genes and genome dosage regulate
endosperm cellularization timing”. The wide spectrum of endosperm types and ploidy levels pose
great opportunities to solve these questions and to analyze the other parent-of-origin effects. A ratio of
paternal and maternal genetic information after double fertilization, i.e., “gene dosage” and subsequent
transcript abundance in the endosperm must change significantly as its ploidy alters. Variations of
the endosperm ploidy from the 3n to 2n (embryo sac of Oenothera-type) and on the contrary to 5n (embryo
sac of Plumbago-type) and 9n (embryo sac of Peperomia-type) can be the excellent objects for testing
the parental (kinship) conflict model [93] and a dosage-sensitive regulatory model [112,113]. Using
such objects also provides new approaches to understanding the complex relations of the endosperm
with the embryo, in particular the possible “defense” role of the endosperm in the silencing of
transposons in the embryo via transport of siRNA formed as a result of intensive demethylation of
mobile genetic elements in the endosperm after fertilization. In addition, it is of interest to study
the DNA methylation/demethylation of imprinted genes in aposporic and diplosporic embryo sacs
after fertilization of only the polar nuclei (pseudogamy), i.e., the relations of a parthenogenetic embryo
(maternal origin) and endosperm (maternal and paternal origin). The comparative investigations of
spatial nuclear organization in endosperms of nuclear, cellular and helobial types at the successive
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stages of their development, including the formation of endospermal haustoria, could be useful in
answering the question of how the spatial nuclear organization of endosperm chromatin relates to
gene imprinting [7]. Understanding the role of genomic imprinting in post-zygotic incompatibility
associated with abnormal development of the endosperm under self-fertilization of cross-pollinated
plants and distant hybridization, i.e., interspecific crosses, may be continued in studies of wild species
with endosperms of various ploidy levels. Finally, an answer may be obtained to the question of
whether the ploidy of endosperms above 3 n is an adaptive advantage or an “excess” of development.

In general, the addition of new non-model taxa to study gene imprinting in the embryo sac
before and especially after fertilization will extend our knowledge about the parent-of-origin effects in
seed development in angiosperm species occupying different places in the system and the epigenetic
mechanisms underlying plant seed reproduction on the whole.
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