05.04.2013 Views

19. Tribe OXYRHACHINI Distant 1908 Old World: Afrotropical ...

19. Tribe OXYRHACHINI Distant 1908 Old World: Afrotropical ...

19. Tribe OXYRHACHINI Distant 1908 Old World: Afrotropical ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>19.</strong> <strong>Tribe</strong> <strong>OXYRHACHINI</strong> <strong>Distant</strong> <strong>1908</strong><br />

<strong>Old</strong> <strong>World</strong>: <strong>Afrotropical</strong>, Indomalayan, and Palearctic Regions<br />

Figs. <strong>19.</strong>1-<strong>19.</strong>3<br />

Type genus: Oxyrhachis Germar, 1833a<br />

Oxyrhachisaria <strong>Distant</strong>, <strong>1908</strong>g [new division]: first treated as subfamily Oxyrrhachinae<br />

[sic: for Oxyrhachinae] and tribe Oxyrrhachini (Haupt 1929c); tribe Oxyrhachisini [sic:<br />

for Oxyrhachini] Goding 1930b; subfamily Oxyrhachinae equals Centrotinae and tribe<br />

Oxyrhachini moved to Centrotinae (Dietrich et al. 2001a).<br />

Xiphistesini Goding, 1930a [new division]: first treated as tribe Xiphistini and equals<br />

Oxyrhachini (Capener 1962a).<br />

Diagnostic characters.—Frontoclypeal lobes indistinct, head with large foliate lobes.<br />

Posterior pronotal process concealing scutellum. Pleuron with propleural lobe present and<br />

mesopleural lobe enlarged. Forewing with Cu1 vein abutting clavus (not marginal vein), with<br />

m-cu1 and m-cu2 crossveins in at least one wing, M and Cu veins adjacent at base, base of<br />

R2+3 and R4+5 veins truncate. Hind wing with R4+5 and M1+2 veins fused or not (3 or 4 apical<br />

cells). Tibiae foliaceous. Mesothoracic and metathoracic femora without ab- and adlateral<br />

cucullate setae. Metathoracic tibial rows I and III without cucullate setae (row II without<br />

cucullate setae in some species). Female second valvulae short with undulating dorsal<br />

margin, narrow near base, not curved, dorsal margin with fine teeth. Male style clasp<br />

oriented laterally, apex membranous, cylindrical, angled ventrally. Abdomen with paired<br />

283


dorsal swellings, larger in posterior segments; acanthae distinct, bases not heightened,<br />

acanthae without ornamentation.<br />

Description.—Length 5-6.3 mm. Color tan to dark brown, or combinations thereof.<br />

HEAD (Fig. <strong>19.</strong>1 I): frontoclypeal margins parallel or slightly converging ventrally,<br />

frontoclypeal lobes indistinct; with large foliate lobes; ocelli about equidistant from each<br />

other and eyes; vertex without toothlike projections. THORAX: PRONOTUM (Figs. <strong>19.</strong>1 A-<br />

H): suprahumeral horns present or absent; posterior process straight at base, appressed<br />

against scutellum, significantly extending past m-cu3 crossvein in forewing. SCUTELLUM:<br />

emarginate with apices acute, concealed by posterior process; shortened--with abdomen<br />

removed, notch and apices not visible. PLEURON: propleural lobe present, mesopleural lobe<br />

enlarged. FOREWING (Figs. <strong>19.</strong>1 J): hyaline; apical limbus broad; s crossvein distad of r-m2<br />

crossvein; Cu1 vein abutting clavus (not marginal vein); m-cu1 and m-cu2 crossveins present<br />

in at least 1 wing; M and Cu veins adjacent at base; R and M veins not confluent preapically;<br />

R1 vein not perpendicular to marginal vein; r-m1 crossvein originating anterior to first<br />

division of R vein, parallel to longitudinal veins or bent towards R vein; R, M, and Cu veins<br />

not parallel apically; R4+5 vein shape prior to s crossvein significantly angled or not; base of<br />

R2+3 and R4+5 veins truncate. HIND WING (Fig. <strong>19.</strong>1 K): R4+5 and M1+2 veins fused or not (3 or<br />

4 apical cells). PRO- AND MESOTHORACIC LEGS: tibiae foliaceous; mesothoracic tibia without<br />

row(s) of cucullate setae; mesothoracic femur without ab- and adlateral cucullate setae.<br />

METATHORACIC LEG (Figs. <strong>19.</strong>2 A-B): ventral margin of coxa, trochanter, and femur without<br />

enlarged setal bases; femur without ab- and adlateral cucullate setae; femur without ablateral<br />

cucullate setae ventrolaterally; tibia foliaceous, rows I and III without cucullate setae; row II<br />

with or without cucullate setae, if present, in single row; tarsomere I with 1 cucullate seta or<br />

284


none. ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal<br />

borders not modified; sternal longitudinal carina absent; paired dorsal swellings present,<br />

larger in posterior segments; tergum III ventrolateral margin carinate; abdominal setal bases<br />

not enlarged. FEMALE GENITALIA (Figs. <strong>19.</strong>3 A-D): second valvulae short with undulating<br />

dorsal margin, narrow near base, not curved, dorsal teeth fine in size, acute projections on<br />

dorsal margin absent; third valvulae without small ventral conelike projections. MALE<br />

GENITALIA (Figs: <strong>19.</strong>3 E-K) lateral plate with short dorsoapical lobe extending laterally (Fig.<br />

<strong>19.</strong>3 J) or vertically, without ventral lobe; subgenital plate without distinct division; style<br />

clasp (Fig. <strong>19.</strong>3 E-F) oriented laterally, membranous, cylindrical, angled ventrally; style<br />

shank arched, apex at midpoint or past midpoint. ABDOMINAL FINE STRUCTURE (Figs. <strong>19.</strong>2<br />

C-D): acanthae distinct, bases not heightened, acanthae without ornamentation.<br />

Chromosome numbers.—Male 2n= 21 (Table 26.3).<br />

Distribution.—The tribe Oxyrhachini is recorded from the <strong>Afrotropical</strong>,<br />

Indomalayan, and Palearctic Regions (McKamey 1998a).<br />

Ecology.—Members of the tribe Oxyrhachini are reported from the host plant<br />

families Amaranthaceae, Balanitaceae, Bignoniaceae, Buddlejaceae, Casuarinaceae,<br />

Compositae, Ebenaceae, Euphorbiaceae, Gramineae, Lauraceae, Leguminosae, Moraceae,<br />

Myrtaceae, Proteaceae, Rhamnaceae, Santalaceae, Solanaceae, Sterculiaceae, Tamaricaceae,<br />

Ulmaceae, and Verbenaceae. Oxyrhachis is the only centrotine genus reported from the<br />

family Balanitaceae (Table 26.2). Oxyrhachis is reported to be tended by ants (Table 26.1).<br />

Some species of Oxyrhachis are gregarious intra- and interspecifically as both nymphs and<br />

adults (Ananthasubramanian 1996a). In addition, certain species of Oxyrhachis show<br />

285


parental care by guarding egg masses and nymphs from predators and parasitoids<br />

(Ananthasubramanian 1996a).<br />

Discussion.—The tribe Oxyrhachini, represented by the genus Oxyrhachis, is a very<br />

morphologically distinct, geographically widespread, and speciose group. The genus<br />

Oxyrhachis is among the four largest membracid genera, with 117 species (McKamey<br />

1998a). Oxyrhachini, although monotypic, is here retained as a valid tribe due to the<br />

numerous character changes on the phylogenetic tree (Fig. 24.1) and the size of the lineage.<br />

The genus Oxyrhachis is perhaps best known morphologically for its large foliate lobes on<br />

the head that closely border the frontoclypeus. Oxyrhachini was historically placed in the<br />

Membracinae by many workers including Stål (1866a), <strong>Distant</strong> (<strong>1908</strong>g), Goding (1931a), and<br />

Metcalf and Wade (1965a). Funkhouser (1951a), however, included the Oxyrhachini within<br />

the Centrotinae.<br />

<strong>Distant</strong>’s (<strong>1908</strong>g) key characteristics are still valuable diagnostic features for the<br />

tribe: oxyrachine treehoppers have a long and narrow posterior process, the tibiae are<br />

foliaceous, and the pro- and mesosterna have distinct tooth-like processes. Along with these<br />

features, all oxyrhachines examined have dorsal abdominal swellings which are larger in the<br />

posterior portion of the abdomen. This is in contrast to nessorhinines and gargarines where<br />

the dorsal abdominal processes are more distinct in the anterior portion of the abdomen.<br />

Unlike other centrotines, the oxyrhachines examined here have Cu1 vein abutting the clavus<br />

in the forewing, or the junction between the clavus and the marginal vein, rather than clearly<br />

abutting the marginal vein. Additionally, M and Cu veins in the forewing are clearly<br />

adjacent in oxyrhachine forewings and m-cu1 and m-cu2 crossveins are present.<br />

286


Although most oxyrhachine species are morphologically homogenous, certain<br />

characters vary among species. Some species, including O. carinata and O. sulicornis, have<br />

R4+5 and M1+2 veins in the hind wing fused (3 apical cells) while in other species these veins<br />

are not fused (4 apical cells). Apparently, according to Capener (1962a), the number of<br />

species with 3 apical cells and 4 apical cells in the hind wing is about equal. The presence of<br />

cucullate setae in metathoracic tibial row II is also variable among species of Oxyrhachis.<br />

Indeed, Oxyrhachis formerly was split into 6 genera to accommodate the differences in hind<br />

wing venation and pronotal features, including the presence or absence of suprahumeral<br />

horns. Based on a phylogenetic analysis (Fig. 24.12) of three former genera (Gongroneura<br />

Jacobi, Kombazana <strong>Distant</strong>, and Xiphistes Stål) and Oxyrhachis, however, there are too few<br />

morphological differences to defend splitting Oxyrhachis into multiple genera at this time. A<br />

phylogenetic analysis of Oxyrhachis, using generic morphological characters and molecular<br />

methods, is recommended to better determine its taxonomic and phylogenetic limits.<br />

The reduction in rank from subfamily Oxyrhachinae to tribe Oxyrhachini (within the<br />

Centrotinae) by Dietrich et al. (2001a) based on a morphological phylogenetic analysis is<br />

supported by the phylogenetic analysis of the Centrotinae presented here (Fig. 24.1). The<br />

Oxyrhachini are closely related to the tribes Ebhuloidesini, Hypsaucheniini, and Terentiini.<br />

Apparently, the Oxyrhachini are sister group to the Hypsaucheniini. The Ebhuloidesini,<br />

Hypsaucheniini, and Oxyrhachini share similarly shaped female second valvulae and male<br />

clasps, and all have enlarged pleural projections. This diagnostic male clasp was described<br />

as resembling the “head of a snake” by Capener (1962a). Although the Oxyrhachini are<br />

sister group to the Nessorhinini in the phylogenetic analysis of Dietrich et al. (2001a), this<br />

relationship was thought to be an artifact of the small number of centrotines sampled. It is<br />

287


critical that future molecular higher level phylogenetic analyses of the Membracidae include<br />

the Oxyrhachini in order to investigate further their relationship with the morphologically<br />

extreme tribe Hypsaucheniini and predominantly Australian Terentiini.<br />

Genera of the tribe Oxyrhachini<br />

Oxyrhachis Germar, 1833a (type species: Membracis taranda Fabricius by monotypy).<br />

Specimens examined. —Oxyrhachis carinata (Funkhouser), det. A.L. Capener,<br />

AMNH, #00-175b%, #00-175c&; O. delalendei Fairmaire, det. A.L. Capener, AMNH, #00-<br />

175d%, #00-175e&; O. sulcicornis (Thunberg), det. A.L. Capener, NCSU, #81-48a%, #81-<br />

48b&; O. taranda (Fabricius), det. Z.P. Metcalf, NCSU, #99-82a&, #99-97a%, #99-97b&,<br />

#01-260a& —as det. in NCSU, #99-82b%—as det. in USNM, #01-54c%.<br />

288


Fig. <strong>19.</strong>1. Oxyrhachini: pronota (lateral aspects, A-D; and anterior aspects, E-H), heads (I), and<br />

wings (J-K). Bars = 3 mm. A, Oxyrhachis carinata (Funkhouser), #00-175c&. B, O. delalendei<br />

Fairmaire, #00-175d%. C, O. sulcicornis (Thunberg), #81-48a%. D, O. taranda (Fabricius), #99-<br />

97a%. E, O. carinata (Funkhouser), #00-175c&. F, O. delalendei Fairmaire, #00-175d%. G, O.<br />

sulcicornis (Thunberg), #81-48a%. H, O. taranda (Fabricius), #99-82a&. I, O. taranda<br />

(Fabricius), #99-82a&. J, O. taranda (Fabricius), #99-82b%, right forewing. K, O. taranda<br />

(Fabricius), #99-82b%, left hind wing (inverted). fo, foliate lobes.<br />

289


Fig. <strong>19.</strong>2. Oxyrhachini: metathoracic legs (A-B) and maximum<br />

development of abdominal fine-structure (C-D). All scanning<br />

electron micrographs near tergum III. A, Oxyrhachis delalendei<br />

Fairmaire, #00-175e&. B, O. taranda (Fabricius), #99-82a&.<br />

C-D, O. taranda (Fabricius), #01-54c%. i, inornate pit. l,<br />

lateral seta.<br />

290


Fig. <strong>19.</strong>3. Oxyrhachini: female second valvulae (A-D, lateral aspects and closeup of apex),<br />

and male styles (E-F, lateral aspects), aedeagi (G-H, lateral aspects), lateral plates (I-J,<br />

lateral aspects), and subgenital plate (K, ventral aspect). A, Oxyrhachis carinata<br />

(Funkhouser), #00-175c&. B, O. delalendei Fairmaire, #00-175e&. C-D, O. taranda<br />

(Fabricius), #99-82a&. E, O. carinata (Funkhouser), #00-175b%. F, O. taranda<br />

(Fabricius), #99-82b%. G, O. carinata (Funkhouser), #00-175b%. H, O. taranda<br />

(Fabricius), #99-82b%. I, O. carinata (Funkhouser), #00-175b%. J, O. taranda (Fabricius),<br />

#99-82b%. K, O. carinata (Funkhouser), #00-175b%. c, clasp. dl, dorsoapical lobe.<br />

291


20. <strong>Tribe</strong> PIELTAINELLINI, new tribe<br />

New <strong>World</strong>: Neotropical Region<br />

Figs. 20.1-20.2<br />

Type genus: Pieltainellus Peláez, 1970a<br />

Diagnostic characters.— Frontoclypeal lobes indistinct and not extending to apex of<br />

frontoclypeus. Posterior pronotal process not appressed against scutellum, not significantly<br />

extending past or not reaching m-cu3 crossvein in forewing. Scutellum not shortened--with<br />

abdomen removed, notch and apices visible. Forewing with R1 vein perpendicular to<br />

marginal vein. Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic<br />

femur without ab- and adlateral cucullate setae. Metathoracic femur with ab- and adlateral<br />

cucullate setae; tibia with cucullate setal row II single. Female second valvulae not<br />

broadened, narrow near base, curved, with many fine dorsal teeth extending to apex, acute<br />

projections present. Abdominal acanthae (Pieltainellus) distinct, bases heightened, acanthae<br />

multidentate. Anterior tergal borders modified into irregular ridges.<br />

Description.—Length 4.3-5.4 mm. Color tan to dark brown, or combinations<br />

thereof. HEAD (Figs. 20.1 E-F): frontoclypeal margins parallel or slightly converging<br />

ventrally, frontoclypeal lobes indistinct and not extending to apex of frontoclypeus; ocelli<br />

about equidistant from each other and eyes; vertex without toothlike projections. THORAX:<br />

PRONOTUM (Figs. 20.1 A-D): suprahumeral horns present in Spathocentrus (Fig. 20.1 D) and<br />

polymorphic in Pieltainellus; posterior process straight (Fig. 20.1 A) or curved at base (Fig.<br />

20.1 B), not appressed against scutellum, not significantly extending past or not reaching m-<br />

cu3 crossvein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by<br />

292


posterior process, 1 lateral apex or none visible from dorsolateral view; not shortened--with<br />

abdomen removed, notch and apices visible, only slightly extending beyond thorax.<br />

PLEURON: propleural lobe absent, mesopleural lobe not enlarged. FOREWING (Figs. 20.1 G-<br />

H): hyaline or opaque; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1 and<br />

m-cu2 crossveins absent; M and Cu veins fused at base; R and M veins not confluent<br />

preapically; R1 vein perpendicular to marginal vein; forewing without pterostigma; r-m1<br />

crossvein originating near or distad of first division of R vein, bent towards R vein; R, M,<br />

and Cu veins not parallel apically; discoidal cells similar in length; R4+5 vein shape prior to s<br />

crossvein significantly angled or not; base of R2+3 and R4+5 veins truncate. HIND WING: R4+5<br />

and M1+2 veins not fused (4 apical cells). PRO- AND MESOTHORACIC LEGS: tibiae not<br />

foliaceous; mesothoracic tibia without row(s) of cucullate setae; mesothoracic femur without<br />

ab- and adlateral cucullate setae. METATHORACIC LEG (Fig 20.1 I): ventral margin of coxa,<br />

trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate<br />

setae, adlateral cucullate seta preapical; femur without ablateral cucullate seta ventrolaterally;<br />

tibial row I with 19-26 cucullate setae, row II with 16-25 cucullate setae in single row, row<br />

III with 23-32 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2).<br />

ABDOMEN: in anterior aspect (abdomen removed) nearly triangular or flattened; anterior<br />

tergal borders modified into irregular ridges; sternal longitudinal carina absent; paired dorsal<br />

swellings absent; tergum III ventrolateral margin carinate; abdominal setal bases at anterior<br />

tergal borders not enlarged. FEMALE GENITALIA (Figs. 20.2 A-D): second valvulae not<br />

broadened, narrow near base, curved, with many fine dorsal teeth extending to apex, acute<br />

projections present; third valvulae without ventral projections. MALE GENITALIA<br />

(Pieltainellus, Figs. 20.2 E-J): lateral plate with short dorsoapical lobe extending laterally,<br />

293


without ventral lobe; subgenital plate without distinct division; style clasp oriented laterally,<br />

thickened, elliptical, not angled; style shank without significant arch. ABDOMINAL FINE<br />

STRUCTURE (Pieltainellus) (Fig. 20.2 K): acanthae distinct, bases heightened, acanthae<br />

multidentate.<br />

Chromosome numbers.—Unknown.<br />

Distribution.—The tribe Pieltainellini is recorded from the Neotropical Region<br />

(Maes 1998a, McKamey 1998a).<br />

Ecology.— Host plant information for the tribe Pieltainellini is unknown.<br />

Discussion.—The new tribe Pieltainellini is a monophyletic group in the<br />

phylogenetic analysis (Fig. 24.1) and is closely related to the tribes Beaufortianini<br />

Nessorhinini, and Platycentrini. The females of Pieltainellus and Spathocentrus both have<br />

curved second valvulae with acute projections on the dorsal margin and have R1 vein<br />

perpendicular to the marginal vein in the forewing. Moreover, unlike many of their relatives,<br />

the scutellum is fully exposed and is not appressed by the posterior process. In his<br />

description of Pieltainellus, Peláez (1970a) remarked on the morphological similarities<br />

between Pieltainellus and Spathocentrus. The genus Pieltainellus was chosen as the type<br />

genus because both female and male specimens were examined.<br />

Both Pieltainellus and Spathocentrus were placed in the Boocerini by Deitz (1975a).<br />

The Pieltainellini lack extra m-cu crossveins and have an exposed scutellum, characteristics<br />

Deitz used to define the Boocerini. The Pieltainellini, however, lack other boocerini features<br />

including mesothoracic ablateral cucullate setae on the femur and the long ventral lobe of the<br />

male lateral plate.<br />

294


Genera of the tribe Pieltainellini<br />

Pieltainellus Peláez, 1970a (type species: P. boneti Peláez by original designation)<br />

[previously placed in Boocerini (McKamey 1998a)].<br />

Spathocentrus Fowler, 1896d (type species: S. intermedius Fowler by monotypy) [previously<br />

placed in Boocerini (McKamey 1998a)].<br />

Specimens examined.—Pieltainellus sp., det. S.H. McKamey, SHMC, #01-235f&;<br />

P. boneti Peláez, det. L.L. Deitz, AMNH, #72-97c&, #72-129a%; Spathocentrus intermedius<br />

Fowler, holotype, OXUM, #72-296a&—det. S.H. McKamey, SHMC, #00-195a&—as det. in<br />

CNCI, #01-39b&.<br />

295


Fig. 20.1. Pieltainellini: pronota (lateral aspects, A-B; and anterior aspects, C-D), heads<br />

(E-F), wings (G-H), and metathoracic leg (I). Bars = 3 mm. A, Pieltainellus boneti Peláez,<br />

#72-97c&. B, Spathocentrus intermedius Fowler, #00-195a&. C, P. boneti, #72-129a%.<br />

D, S. intermedius, #00-195a&. E, P. boneti, #72-97c&. F, S. intermedius, #00-195a&. G,<br />

P. boneti, #72-129a%, left forewing (inverted). H, S. intermedius, #00-195a&, left<br />

forewing (inverted). I, P. boneti, #72-97c&, left metathoracic leg. fc, frontoclypeus.<br />

296


Fig. 20.2. Pieltainellini: female second valvulae (lateral aspects and<br />

closeup of apex, A-D), and male styles (lateral aspect, E; dorsal aspect,<br />

F; and posterior aspect, G), aedeagus (lateral aspect, H), lateral plate<br />

(lateral aspect, I), and subgenital plate (ventral aspect, J), and maximum<br />

development of abdominal fine-structure (K). Scanning electron<br />

micrograph near tergum III. A-B, Pieltainellus boneti Peláez, #72-97c&.<br />

C-D, Spathocentrus intermedius Fowler, #00-195a&. E-J, P. boneti,<br />

#72-129a%. K, P. boneti, #01-235f&. c, clasp. a, acanthus. d,<br />

dorsoapical lobe. i, inornate pit. l, lateral seta.<br />

297


21. <strong>Tribe</strong> PLATYCENTRINI Haupt, 1929<br />

New <strong>World</strong>: Nearctic and Neotropical Regions<br />

Figs. 21.1-21.3<br />

Type genus: Platycentrus Stål, 1869<br />

Platycentrini Haupt, 1929c [new tribe]: equals Hebesini (Peláez 1970a)[error]; reinstated<br />

as tribe Platycentrini, within subfamily Centrotinae (Deitz 1975a); move to<br />

Membracinae (Kosztarab 1982a)[error]; returned to Centrotinae (Deitz and Dietrich<br />

1993a).<br />

Diagnostic characters.—Frontoclypeal lobes indistinct and not extending to apex of<br />

frontoclypeus. Posterior pronotal process appressed against scutellum, not significantly<br />

extending past or not reaching m-cu3 crossvein in forewing. Scutellum not concealed by<br />

posterior process, shortened--with abdomen removed, at most scutellar apices visible.<br />

Forewing hyaline, with m-cu2 crossvein present and base of R2+3 and R4+5 veins truncate.<br />

Hind wing with R4+5 and M1+2 veins not fused (4 apical cells). Mesothoracic femur with<br />

ablateral cucullate setae. Female second valvulae with gradual broadening before midpoint<br />

and gently tapering after midpoint; narrow near base, not curved, dorsal teeth fine and not<br />

extending to apex. Abdominal acanthae distinct, bases heightened, acanthae multidentate.<br />

Description.—Length 4.5-6 mm. Color brown, tan, mottled or combinations thereof.<br />

HEAD (Fig. 21.1): frontoclypeal margins parallel or slightly converging ventrally,<br />

frontoclypeal lobes indistinct and not extending to apex of frontoclypeus; ocelli about<br />

equidistant from each other and eyes; vertex without toothlike projections. THORAX:<br />

298


PRONOTUM (Figs. 21.1 A-E): suprahumeral horns present or absent; posterior process straight<br />

at base, appressed against scutellum, not significantly extending past or not reaching m-cu3<br />

crossvein in forewing. SCUTELLUM: emarginate with apices acute, not concealed by posterior<br />

process, 1 lateral apex visible from dorsolateral view; shortened--with abdomen removed, at<br />

most only apices visible. PLEURON: propleural lobe absent, mesopleural lobe not enlarged.<br />

FOREWING (Figs. 21.1 H, 21.2 A): hyaline; apical limbus broad; s crossvein distad of r-m2<br />

crossvein; m-cu1 crossvein present (Fig. 21.2 A) or absent; m-cu2 crossvein present; M and<br />

Cu veins fused at base; R and M veins not confluent preapically; veins reticulate in<br />

Tylocentrus (Fig. 21.2 A); R1 vein perpendicular to marginal vein (Tylocentrus, Fig. 21.2 A)<br />

or not (Platycentrus, Fig. 21.1 H), never parallel to longitudinal veins; forewing without<br />

pterostigma; r-m1 crossvein originating anterior to first division of R vein, bent towards R<br />

vein; R, M, and Cu veins parallel apically (Fig. 21.1 H) or not (Fig. 21.2 A); discoidal cells<br />

similar in length (Fig. 21.1 H) or not (Fig. 21.2 A); R4+5 vein shape prior to s crossvein<br />

significantly angled (Fig. 21.1 H) or not (Fig. 21.2 A); base of R2+3 and R4+5 veins truncate.<br />

HIND WING (Fig. 21.1 I): R4+5 and M1+2 veins not fused (4 apical cells). PRO- AND<br />

MESOTHORACIC LEGS: tibiae not foliaceous; mesothoracic tibia without row(s) of cucullate<br />

setae; mesothoracic femur with ablateral cucullate setae, adlateral cucullate setae present in<br />

Tylocentrus but absent in Platycentrus. METATHORACIC LEG (Fig. 21.2 B): ventral margin of<br />

coxa, trochanter, and femur without enlarged setal bases; femur with ab- and adlateral<br />

cucullate setae; femur with ablateral cucullate setae ventrolaterally in Platycentrus; tibia not<br />

foliaceous, row I with 15-21 cucullate setae, row II with 15-36 cucullate setae in single<br />

(Tylocentrus) or irregular or double row (Platycentrus), row III with 17-33 cucullate setae<br />

(irregular in Platycentrus); tarsomere I with 1 cucullate seta in Platycentrus, 2 or more<br />

299


cucullate setae (usually 2) in Tylocentrus. ABDOMEN: in anterior aspect (abdomen<br />

removed) nearly triangular (Tylocentrus) or dorsoventrally flattened (Platycentrus); anterior<br />

tergal borders modified into irregular ridges in Platycentrus; sternal longitudinal carina<br />

absent; paired dorsal swellings absent; tergum III ventrolateral margin carinate; abdominal<br />

setal bases at anterior tergal borders not enlarged. FEMALE GENITALIA (Figs. 21.2 C-F):<br />

second valvulae with gradual broadening before midpoint and gently tapering after midpoint;<br />

narrow near base, not curved, dorsal teeth fine and not extending to apex, acute projections<br />

absent; third valvulae without ventral projections. MALE GENITALIA (Figs. 21.3 A-I): lateral<br />

plate with (Platycentrus, Fig. 21.3 G) or without (Tylocentrus, Fig. 21.3 H) short dorsoapical<br />

lobe extending dorsally, without ventral lobe; subgenital plate (Fig. 21.3 I) without distinct<br />

division; style clasp oriented laterally, thickened, expanding dorsally and laterally with a<br />

sclerotized ridge (Platycentrus) or truncate with an acuminate projection (Tylocentrus), not<br />

angled, without basal thickening; style shank without significant arch. ABDOMINAL FINE<br />

STRUCTURE (Fig. 21.3 J-K): acanthae distinct, bases heightened, acanthae multidentate.<br />

Chromosome numbers.—Unknown.<br />

Distribution.—The tribe Platycentrini is recorded from the Nearctic and Neotropical<br />

Regions (McKamey 1998a), with all members recorded from the Northern Hemisphere.<br />

Ecology.—Members of the tribe Platycentrini are reported only from the host plant<br />

family Leguminosae (Table 26.2). Platycentrus acuticornis is listed as subsocial by Hinton<br />

(1977a).<br />

Discussion.— Haupt (1929c) originally placed the Platycentrini within the subfamily<br />

Stegaspinae (sic: for Stegaspidinae) but misidentified the type genus Platycentrus. Metcalf<br />

and Wade (1965a), Evans (1948b), and Deitz (1975a) assigned the Platycentrini to the<br />

300


Centrotinae. Deitz (1975a) included those genera with multiple m-cu crossveins in the<br />

forewing and with the posterior process abutting a laterally exposed scutellum in the tribe<br />

Platycentrini. Here, these features are also considered diagnostic. A monophyletic<br />

Platycentrini (Figs. 24.1, 24.3), as defined here, is supported by the synapomorphy of the<br />

female second valvulae broadening gradually at midpoint and tapering gently towards the<br />

apex. A phylogenetic analysis of the family Membracidae using two nuclear genes also<br />

resulted in a monophyletic Platycentrini (Platycentrus and Tylocentrus) with high bootstrap<br />

and Bremer support (Cryan et al. 2000a). The Platycentrini are closely related to the New<br />

<strong>World</strong> tribes Nessorhinini and Pieltainellini and the <strong>Old</strong> <strong>World</strong> tribe Beaufortianini.<br />

Two genera formerly placed in the Platycentrini are here referred to the tribes<br />

Monobelini (Monobelus) and Nessorhinini (Orthobelus). See the discussions of these tribes<br />

for evidence supporting the new placement.<br />

Genera of the tribe Platycentrini<br />

Platycentrus Stål, 1869c (type species: P. acuticornis Stål by subsequent designation).<br />

Tylocentrus Van Duzee, <strong>1908</strong>a (type species: T. reticulatus Van Duzee by monotypy).<br />

Specimens examined.— Platycentrus acuticornis Stål, as det. in USNM, #71-82e&,<br />

#71-82f%, #99-167e%—det. W.D. Funkhouser, USNM, #71-299a%, #01-221b%—det. L.M.<br />

Russell, USNM, #99-167d&; Tylocentrus quadricornis Funkhouser, as det. in USNM, #01-<br />

232b&; T. reticulatus Van Duzee, as det. in USNM, #00-195b&, #00-195c%—det. L.M.<br />

Russell, USNM, #00-195k[n].<br />

301


Fig. 21.1. Platycentrini: pronota (lateral aspects, A-B; anterior aspects, C-E),<br />

heads (F-G), and wings (H-I). Bars = 3 mm. A, Platycentrus acuticornis Stål,<br />

#71-82f%. B, Tylocentrus reticulatus Van Duzee, #00-195b&. C, P. acuticornis,<br />

#71-82f%. D, T. reticulatus, #00-195b&. E, T. reticulatus, #00-195c%. F, P.<br />

acuticornis, #71-82f%. G, T. reticulatus, #00-195b&. H, P. acuticornis, #99-<br />

167d&, right forewing. I, P. acuticornis, #99-167d&, left hind wing (inverted).<br />

fcl, frontoclypeal lobes.<br />

302


Fig. 21.2. Platycentrini: wings (A), metathoracic leg (B), and<br />

female second valvulae (lateral aspect and closeup of apex, C-F). A,<br />

Tylocentrus reticulatus Van Duzee, #00-195b&, left forewing<br />

(inverted). B, Platycentrus acuticornis Stål, #71-82f%, right<br />

metathoracic leg (inverted). C-D, P. acuticornis, #99-167d&. E-F,<br />

T. reticulatus, #00-195b&.<br />

303


Fig. 21.3. Platycentrini: male styles (lateral aspects, A-B; and dorsal<br />

aspects, C-D), aedeagi (lateral aspects, E-F), lateral plates (lateral aspects,<br />

G-H), and subgenital plate (ventral aspect, I), and maximum development<br />

of abdominal fine-structure (J-K). All scanning electron micrographs near<br />

tergum III. A, Platycentrus acuticornis Stål, #99-167e%. B, Tylocentrus<br />

reticulatus Van Duzee, #00-195c%. C, P. acuticornis, #99-167e%. D, T.<br />

reticulatus, #00-195c%. E, P. acuticornis, #99-167e%. F, T. reticulatus,<br />

#00-195c%. G, P. acuticornis, #99-167e%. H, T. reticulatus, #00-195c%.<br />

I, T. reticulatus, #00-195c%. J, P. acuticornis #01-221b%. K, T.<br />

quadricornis Funkhouser, #01-232b&. a, acanthus. dl, dorsoapical lobe.<br />

i, inornate pit. c, clasp.<br />

304


22. <strong>Tribe</strong> TERENTIINI Haupt, 1929<br />

<strong>Old</strong> <strong>World</strong>: Australasian and Oceanian, Indomalayan, and Palearctic Regions<br />

Figs. 22.1-22.24<br />

Type genus: Terentius Stål 1866a<br />

Terentiinae Haupt, 1929c [new subfamily] and Terentiini Haupt, 1929c [new tribe]:<br />

subfamily Terentiinae equals Centrotinae and tribe Terentiini moved to Centrotinae<br />

(Metcalf and Wade 1965a); elevated to subfamily Terentiinae (Evans 1966a) [error];<br />

equals Centrotinae (Evans 1966a).<br />

Bulbaucheniini Goding, 1931a [new tribe]: herein equals Terentiini, NEW SYNONYMY.<br />

Funkhouserellini Yuan and Zhang, in Yuan and Chou 2002a [new tribe]: herein equals<br />

Terentiini, NEW SYNONYMY.<br />

Diagnostic characters.—Frontoclypeal margins parallel or slightly converging<br />

ventrally. Frontoclypeal lobes distinct. Posterior pronotal process straight at base, appressed<br />

against scutellum and significantly extending past m-cu3 crossvein in forewing (exception:<br />

posterior process not extending past m-cu3 crossvein in Pyrgonota). Scutellum shortened--<br />

with abdomen removed, at most only scutellar apices visible. Forewing with or without m-<br />

cu1 and m-cu2 crossveins; r-m1 crossvein originating anterior to first split of R vein, parallel<br />

to longitudinal veins (exception: r-m1 crossvein bent strongly towards R vein in Alocebes);<br />

base of R2+3 and R4+5 veins truncate (exceptions: base of R2+3 and R4+5 veins truncate or acute<br />

in Sextius and some species of Bulbauchenia). Hind wing with R4+5 and M1+2 veins not fused<br />

(4 apical cells) (exceptions: R4+5 and M1+2 veins fused in Bucktoniella). Mesothoracic femur<br />

305


without ab- and adlateral cucullate setae. Metathoracic tibial row I cucullate or not; row II in<br />

single row (exceptions: row II irregular or double in Otinotoides, Sertorius and Yangupia).<br />

Male style clasp laterally oriented, thickened dorsally and membranous ventrally, quadrate<br />

(with acuminate apex in Bulbauchenia and Pyrgonota), angled ventrally; style shank with<br />

significant arch following midpoint, and with ventral preapical broadening.<br />

Description.—Length 2.6-8.0 mm. Color black, dark brown, light green, light<br />

yellow, or combinations thereof. HEAD (Figs. 22.5-22.7): frontoclypeal margins parallel or<br />

slightly converging ventrally, frontoclypeal lobes distinct, not extending to apex of<br />

frontoclypeus (exceptions: frontoclypeal lobes extending nearly to apex in Bulbauchenia,<br />

Fig. 22.5 O, Funkhouserella, Figs. 22.6 I-J, and Pyrgonota, Fig. 22.7 C); ocelli about<br />

equidistant from each other and eyes (exception: ocelli closer to eyes than each other in<br />

Pyrgonota, Fig. 22.7 C); vertex without toothlike projections. THORAX: PRONOTUM (Figs.<br />

22.1-22.5): suprahumeral horns present dorsolaterally, absent, or present at apex of median<br />

anterior horn; median anterior horn present in Bulbauchenia (Fig. 22.3 L), Eutryonia (Fig.<br />

22.4 E), Funkhouserella (Figs. 22.4 G-H), and Pyrgonota (Fig. 22.5 A); posterior process<br />

straight at base, appressed against scutellum, signficantly extending past m-cu3 crossvein<br />

(exception: posterior process not extending past m-cu3 crossvein in Pyrgonota). SCUTELLUM<br />

(Fig. 22.23 B): emarginate with apices acute, not concealed by posterior process (exceptions:<br />

scutellum concealed by posterior process in Bulbauchenia, Fig. 22.1 H, and polymorphic in<br />

Sextius); 1 lateral apex visible from dorsolateral view; shortened--with abdomen removed, at<br />

most only apices visible, only slightly extending beyond thorax. PLEURON: propleural lobe<br />

present or absent, mesopleural lobe enlarged or not. FOREWING (Figs. 22.8-22.11): hyaline<br />

or opaque; apical limbus broad (exceptions: apical limbus narrow in Anzac, Fig. 22.9 C, and<br />

306


some species of Funkhouserella, Fig. 22.10 F, and Neosextius); R vein initial division R1+2+3<br />

and R4+5 in Cebes (Fig. 22.9 G), Ceraon (Fig. 22.9 H), Matumuia, and Sarantus (Fig. 22.11<br />

E); s crossvein distad of r-m2 crossvein; m-cu1 and m-cu2 crossveins present or absent; M and<br />

Cu veins fused, adjacent, or separate at base; R and M veins not confluent preapically; R1<br />

perpendicular to marginal vein or not; forewing without pterostigma; r-m1 crossvein<br />

originating anterior to first split of R vein, parallel to longitudinal veins (exception: r-m1<br />

crossvein bent strongly towards R in Alocebes); R, M, and Cu veins parallel apically or not;<br />

R4+5 vein shape prior to s crossvein variable; base of R2+3 and R4+5 veins truncate (exceptions:<br />

base of R2+3 and R4+5 veins truncate or acute in Sextius and some species of Bulbauchenia).<br />

HIND WING (Fig. 22.8 B): R4+5 and M1+2 veins not fused (4 apical cells) (exception: hind wing<br />

with R4+5 and M1+2 fused in Bucktoniella, 3 apical cells). PRO- AND MESOTHORACIC LEGS:<br />

tibiae foliaceous or not; mesothoracic tibia without row(s) of cucullate setae; mesothoracic<br />

femur without ab- and adlateral cucullate setae. METATHORACIC LEGS (Fig. 22.12): ventral<br />

margin of coxa, trochanter, and femur without enlarged setal bases; femur with ab- and<br />

adlateral cucullate setae (exceptions: femur without ab- and adlateral cucullate setae in<br />

Anzac, Goddefroyinella, Pogonotypellus, Sextius; adlateral cucullate setae absent in Cebes,<br />

some species of Funkhouserella, and Pyrgonota, Fig. 22.12 B); femur with or without<br />

ablateral cucullate setae ventrolaterally; tibiae foliaceous or not, row I with 13-40 cucullate<br />

setae or without cucullate setae, row II with 4-56 cucullate setae in single row (exceptions:<br />

row II irregular or double in Otinotoides, Sertorius, and Yangupia), row III with 5-30<br />

cucullate setae; tarsomere I with 1 cucullate seta or none. ABDOMEN: in anterior aspect<br />

(abdomen removed) nearly triangular; anterior tergal borders not modified; sternal<br />

longitudinal carina present or absent; paired dorsal swellings absent; tergum III ventrolateral<br />

307


margin carinate or shelflike; abdominal setal bases at anterior tergal borders enlarged in<br />

Terentius, not dispersed on terga. FEMALE GENITALIA (Figs. 22.13-22.17): second valvulae<br />

shape variable; narrow or broadening near base, curved or not, dorsal teeth variable in size,<br />

acute projections on dorsal margin present or absent, third valvulae without ventral<br />

projections. MALE GENITALIA (Figs. 22.17-22.21): lateral plate with or without (Fig. 22.20<br />

D) short (Fig. 22.20 F) or long (Fig. 22.20 E) dorsoapical lobe extending dorsally or laterally,<br />

without ventral lobe; subgenital plate without distinct division; style clasp laterally oriented,<br />

thickened dorsally and membranous ventrally, quadrate (with acuminate apex in<br />

Bulbauchenia Figs. 22.17 I-J, and Pyrgonota, Fig. 22.18 F), angled ventrally; style shank<br />

with significant arch following midpoint, and with ventral preapical broadening.<br />

ABDOMINAL FINE STRUCTURE (Figs. 22.21-22.24): inornate pits with lateral setae present<br />

(exceptions: inornate pits indistinct in Bulbauchenia, Fig. 22.22 B-D, Funkhouserella, Figs<br />

22.23 C-D, and Pyrgonota, Fig. 22.23 H), acanthae distinct or not; bases heightened or not;<br />

acanthae multidentate or divided into threadlike microtrichia.<br />

Chromosome numbers.—Male 2n= 21 (Table 26.3).<br />

Distribution.—The tribe Terentiini is recorded from the Australasian and Oceanian,<br />

Indomalayan, and Palearctic Regions, although they are primarily Australasian in distribution<br />

(McKamey 1998a). Melichar’s (1905a) records of Acanthuchus trispinifer (Fairmaire) [as<br />

Ophicentrus trispinifex Fairmaire] in Tanzania needs to be verified and is not here included<br />

in the distribution of Acanthuchus.<br />

Ecology.—Members of the tribe Terentiini are reported from the host plant families<br />

Casuarinaceae, Chenopodiaceae, Euphorbiaceae, Gramineae, Lauraceae, Lecythidaceae,<br />

Leguminosae, Malvaceae, Moraceae, Myrtaceae, Plumbaginaceae, Polygonaceae, Proteaceae,<br />

308


Rosaceae, Rutaceae, Solanaceae (Table 26.2). The genus Sextius and the nymphs of<br />

Australian treehoppers are reported to be tended by ants (Table 26.1). In addition, Terentius<br />

and Pyrgonota have been observed providing maternal care in the form of egg guarding<br />

(Stegmann and Linsenmair 2002a).<br />

Discussion.—Haupt (1929c) divided the <strong>Old</strong> <strong>World</strong> Membracidae into three<br />

subfamilies: the Terentiinae, Centrotinae, and Oxyrhachinae (as Oxyrrhachinae). He<br />

originally included the tribes Hypsaucheniini and Terentiini within his subfamily Terentiinae.<br />

Haupt defined the Terentiinae as treehoppers with M and Cu veins in the forewing usually<br />

connected for a short distance and sometimes united by crossveins, and with the forewing<br />

often net-like. The tribe Terentiini, as defined here, is monophyletic in the phylogenetic<br />

analysis (Figs. 24.1, 24.14). All terentiine males observed to this point have a quadrate style<br />

clasp, a synapomorphy for the tribe. Day (1999a) also commented on the homogenous<br />

nature of the male genitalia in Australian membracids. Additionally, all terentiines have the<br />

posterior process appressed against a shortened scutellum, similar to the Gargarini. As seen<br />

in some Gargarini, a few terentiines, including Bulbauchenia and some Sextius species, have<br />

the scutellum concealed by the posterior process. The Terentiini are closely related to the<br />

Ebhuloidesini, Oxyrhachini, and Hypsaucheniiini, and are primarily distributed in Australia.<br />

The classification presented here largely confirms previous studies on the Australian<br />

treehopper fauna. Both Evans (1966a) and Day (1999a) examined the Australian genera and<br />

believed they represent a distinctive group, long isolated from other membracids. Day cited<br />

the distinctive frontoclypeal lobes, the similar shapes in the male and female genitalia, and<br />

uniform wing venation, among other features, as evidence for the monophyly of Australian<br />

genera. A phylogeny of treehoppers based on two nuclear genes (Cryan et al. 2000a)<br />

309


supported the grouping of the Australian genera Ceraon, Eufairmairia, and Sextius (although<br />

included in the analysis, Pyrgonota was not part of this group) using both parsimony and<br />

maximum likelihood methods.<br />

The names Bulbaucheniini Goding, 1931a and Funkhouserellini Yuan and Zhang, in<br />

Yuan Chou, 2002a, are here considered junior synonyms of Terentiini Haupt, 1929c, NEW<br />

SYNONYMIES, based on the phylogenetic analysis (Fig. 24.1). The tribe Bulbaucheniini<br />

was originally placed in the subfamily Membracinae by Goding (1931a) because of the<br />

concealed scutellum and folicaeous tibiae of the type genus Bulbauchenia. Goding<br />

characterized the tribe, consisting only of the type genus, based on the broadly elevated<br />

pronotum with suprahumeral horns at the apex. Strümpel (1972a) believed the<br />

Bulbaucheniini belonged in the subfamily Centrotinae, where it was subsequently placed,<br />

although he was not explicit in his justification. Due to the quadrate shape of the male style<br />

clasp, Bulbauchenia is here placed in the Terentiini.<br />

Yuan and Zhang, in Yuan and Chou (2002a) erected the Funkhouserellini, including<br />

the genera Funkhouserella and Hybandoides, for those treehoppers with the median pronotal<br />

horn inclined anteriorly and without teeth on the mesonotum Hybandoides is here referred<br />

back to the tribe Hypsaucheniini, based on the phylogenetic analysis (Fig. 24.12). Although<br />

no males of Funkhouserella were examined, according to the phylogenetic analysis (Fig.<br />

24.1) this genus is closely related to Bulbauchenia and Pyrgonota based on several<br />

morphological features, including the indistinct abdominal inornate pits and absence of<br />

metathoracic tibia cucullate setal row I. The male style clasp of Pyrgonota, similar to<br />

Bulbauchenia, is quadrate with an acuminate apex. This shape differs significantly from the<br />

cylindrical style clasp of the hypsaucheniines where Pyrgonota was previously placed. In<br />

310


addition, Pyrgonota has cucullate setae in rows II and III of the metathoracic tibia.<br />

Conversely, these rows are non-cucullate in the Hypsaucheniini.<br />

The genera Crito and Otinotoides were formerly placed in the Centrotypini for<br />

reasons that are not clear. They differ from centrotypines, nonetheless, in the style clasp<br />

shape and leg chaetotaxy. Arimanes, Polonius, and Sarantus were previously placed in the<br />

Leptocentrini. The male style clasp of Sarantus is distinctly quadrate and not triangular.<br />

Although males of Arimanes and Polonius were not examined, characteristics of the head,<br />

pronotum, and leg chaetotaxy differentiate them from leptocentrine genera. The remaining<br />

terentiini genera were previously assigned to Centrotinae, incertae sedis (McKamey 1998a,<br />

Day 1999a).<br />

Four NEW COMBINATIONS are proposed here, all referred from the genus<br />

Emphusis Buckton: Bulbauchenia bakeri (Funkhouser), B. rugosa (Funkhouser), B. globosa<br />

(Funkhouser), and B. kurosawai (Hayashi and Endo). These species were originally placed<br />

in Emphusis (Centrotinae: Centrotypini) based on the elevated pronotum and shape of the<br />

posterior process. The genus Emphusis, however, has ab- and adlateral cucullate setae on the<br />

mesothoracic femur and an elliptical clasp as opposed to the characteristic terentiine quadrate<br />

clasp.<br />

311


Genera of the tribe Terentiini<br />

† no specimen examined<br />

* placement based on morphological similarity<br />

Acanthucalis Evans, 1966a (type species: A. macalpini Evans by original designation)<br />

[previously incertae sedis (McKamey 1998a)].*<br />

Acanthuchus Stål, 1866c (type species: Centrotus trispinifer Fairmaire by subsequent<br />

designation) [previously incertae sedis (McKamey 1998a)].<br />

Alocanthella Evans, 1966a (type species: A. fulva Evans by original designation) [previously<br />

incertae sedis (McKamey 1998a)].<br />

Alocebes Evans, 1966a (type species: A. dixoni Evans by original designation), see figs. 72-<br />

74, 196 of Day (1999a: 649, 733) [previously incertae sedis (McKamey 1998a)].†*<br />

Alosextius Evans, 1966a (type species: Acanthuchus carinatus Funkhouser by original<br />

designation) [previously incertae sedis (McKamey 1998a)].<br />

Anzac <strong>Distant</strong>, 1916d (type species: Membracis bipunctata Fabricius by original designation)<br />

[previously incertae sedis (McKamey 1998a)].<br />

Arimanes <strong>Distant</strong>, 1916e (type species: A. doryensis <strong>Distant</strong> by monotypy) [previously<br />

placed in the Leptocentrini (McKamey 1998a)].*<br />

Bucktoniella Evans, 1966a (type species: Acanthuchus pyramidatus Funkhouser by original<br />

designation) [previously incertae sedis (McKamey 1998a)].<br />

Bulbauchenia Schumacher, 1915b (type species: B. taiwanensis Schumacher by original<br />

designation) [previously placed in Bulbaucheniini (McKamey 1998a)].<br />

312


Bunyella Day, 1999a (type species: Acanthuchus dromedarius Kirkaldy by original<br />

designation), see figs. 23, 84-86, 200 of Day (1999a: 633, 657, 734) [previously incertae<br />

sedis (Day 1999a)]. †*<br />

Cebes <strong>Distant</strong>, 1916d (type species: Centrotus transiens Walker by subsequent designation)<br />

[previously incertae sedis (McKamey 1998a)].<br />

Ceraon Buckton, 1903a (type species: Centrotus tasmaniae Fairmaire by subsequent<br />

designation) [previously incertae sedis McKamey 1998a)].<br />

Crito <strong>Distant</strong>, 1916d (type species: C. festivum <strong>Distant</strong> by monotypy) [previously placed in<br />

Centrotypini (McKamey 1998a)].*<br />

Dingkana Goding, 1903a (type species: D. borealis Goding by original designation)<br />

[previously incertae sedis (McKamey 1998a)].<br />

Eufairmairia <strong>Distant</strong>, 1916d (type species: Centrotus decisus Walker by original designation)<br />

[previously incertae sedis (McKamey 1998a)].*<br />

Eufairmairiella Evans, 1966a (type species: Sertorius curvicaudus Goding by original<br />

designation) [previously incertae sedis (McKamey 1998a)].*<br />

Eufrenchia Goding, 1903a (type species: Centrotus falcatus Walker by original designation)<br />

[previously incertae sedis (McKamey 1998a)].<br />

Eutryonia Goding, 1903a (type species: Centrotus monstrifer Walker by monotypy)<br />

[previously incertae sedis (McKamey 1998a)].<br />

Evansiana McKamey, 1994a (type species: Acanthuchus iasis Kirkaldy by original<br />

designation) [previously incertae sedis (McKamey 1998a)].*<br />

Funkhouserella Schmidt, 1926d (type species: Pyrgonota pinguiturris Funkhouser by<br />

original designation) [previously placed in Funkhouserellini (Yuan and Chou 2002a)].<br />

313


Goddefroyinella <strong>Distant</strong>, 1916d (type species: G. indicans <strong>Distant</strong> by monotypy, junior<br />

synonym of G. neglecta (Buckton)) [previously incertae sedis (McKamey 1998a)].<br />

Lubra Goding, 1903a (type species: Oxyrhachis spinicornis Walker by subsequent<br />

designation) [previously incertae sedis (McKamey 1998a)].<br />

Matumuia Day, 1999a (type species: M. laura Day by original designation), see figs. 24, 36,<br />

123-125, 213 of Day (1999a: 633, 684, 736) [previously incertae sedis (Day 1999a)]. †*<br />

Neocanthuchus Day, 1999a (type species: N. tropicus Day by original designation)<br />

[previously incertae sedis (Day 1999a)].*<br />

Neosextius Day, 1999a (type species: N. longinotum Day by original designation), see figs.<br />

26, 30, 43, 132-137, 215 of Day (1999a: 633, 634, 691-692, 736) [previously incertae<br />

sedis (Day 1999a)].†<br />

Otinotoides <strong>Distant</strong>, 1916c (type species: Centrotus pallipes Walker by original designation)<br />

[previously placed in Centrotypini (McKamey 1998a)].*<br />

Pogonella Evans, 1966a (type species: Centrotypus minutus Goding by original designation)<br />

[previously incertae sedis (McKamey 1998a)].*<br />

Pogonotypellus Evans, 1966a (type species: Pogontypus australis Goding by original<br />

designation) [previously incertae sedis (McKamey 1998a)].*<br />

Polonius <strong>Distant</strong>, 1916e (type species: P. biseratensis <strong>Distant</strong> by monotypy) [previously<br />

placed in Leptocentrini (McKamey 1998a)].*<br />

Protinotus Day, 1999a (type species: Otinotus doddi <strong>Distant</strong> by original designation), see<br />

figs. 12, 150-152, 219 of Day (1999a: 632, 703, 737) [previously incertae sedis (Day<br />

1999a)].†*<br />

314


Pyrgonota Stål, 1870c (type species: Centrotus bifoliatus Westwood by subsequent<br />

designation) [previously placed in Hypsaucheniini (Yuan and Chou 2002a)].<br />

Rentzia Day, 1999a (type species: R. yarla Day by original designation), see figs. 10, 26, 32,<br />

42, 153-158, 220 of Day (1999a: 632-634, 704, 707, 737) [previously incertae sedis (Day<br />

1999a)].†*<br />

Rigula Day, 1999a (type species: R. calperum Day by original designation), see figs. 18, 34,<br />

40, 159-164, 221 of Day (1999a: 633-634, 708, 710-711, 737) [previously incertae sedis<br />

(Day 1999a)].†*<br />

Sarantus Stål, 1863c (type species: Sarantus wallacei Stål by monotypy) [previously placed<br />

in Leptocentrini (McKamey 1998a)].<br />

Sertorius Stål, 1866a (type species: Centrotus australis Fairmaire by subsequent designation)<br />

[previously incertae sedis (McKamey 1998a)].<br />

Sextius Stål, 1866c (type species: Centrotus virescens Fairmaire by subsequent designation)<br />

[previously incertae sedis (McKamey 1998a)].<br />

Strzeleckia Day, 1999a (type species: S. montanus Day by original designation), see figs. 26,<br />

30, 41, 174-176, 224 of Day (1999a: 633-634, 719, 738) [previously incertae sedis (Day<br />

1999a)].†*<br />

Terentius Stål, 1866a (type species: T. convexus Stål by subsequent designation).<br />

Undarella Day, 1999a (type species: U. storeyi Day by original designation) [previously<br />

incertae sedis (Day 1999a)].*<br />

Yangupia Day, 1999a (type species: Centrotypus occidentalis Goding by original<br />

designation) [previously incertae sedis (Day 1999a)].*<br />

315


Specimens examined.—Acanthucalis macalpini Evans as det. in ANIC, #00-136i&;<br />

Acanthuchus trispinifer (Fairmaire), as det. in USNM, #00-80g&, #00-80h%—as det. in<br />

ANIC, #00-181o%, #01-43a&; Alocanthella fulva Evans, as det. in ANIC, #01-225b%;<br />

Alosextius carinatus (Funkhouser), as det. in AMSA, #00-136a&; Anzac bipunctatum<br />

(Fabricius), as det. in ANIC, #00-136d&, #00-136e%; Arimanes doryensis <strong>Distant</strong>, as det. in<br />

USNM, #83-334a&; Bucktoniella pyramidatus (Funkhouser), as det. in CNCI, #01-39a%;<br />

Bulbauchenia sp. (probably mirablis), det. M.S. Wallace, USNM, #00-230g♂; B. bakeri<br />

(Funkhouser), [holotype of Emphusis bakeri Funkhouser], USNM—det. D. Flynn, NCSU,<br />

#02-67b(sex?) —det. Z.P. Metcalf, NCSU, #00-221m♀, #02-67a♀, #02-67f♀ —as det. in<br />

NCSU, #01-277a♂, #01-278a♀, #02-67c♀, #02-67d♂, #02-67e(sex?), #02-67g♀, #02-<br />

67h♀, #02-67i♂, #02-67j(sex?)—as det. in USNM, #01-232c%; B. globosa (Funkhouser),<br />

[holotype of Emphusis globosus Funkhouser], USNM; B. mirabilis (Funkhouser), [holotype<br />

of Clonauchenia mirablis Funkhouser], USNM, #01-54a♂; B. rugosa (Funkhouser),<br />

[holotype of Emphusis rugosus Funkhouser], USNM; Cebes transiens (Walker), as det. in<br />

ANIC, #00-80c%, #00-80d&; Ceraon tasmaniae (Fairmaire), det. W.D. Funkhouser, USNM,<br />

#00-80a&—as det. in USNM, #00-80b%, #01-232e%; Crito festivum <strong>Distant</strong>, holotype [as<br />

Crito festivus <strong>Distant</strong>], BMNH; Dingkana borealis Goding, det. W.D. Funkhouser, USNM,<br />

#00-87d&, #00-87e%—as det. in USNM, #01-219c&; Eufairmairia decisa (Walker), as det.<br />

in USNM, #83-333c%, #83-333d&; E. fraterna <strong>Distant</strong>, as det. in ANIC, #00-87k&—as det.<br />

in USNM, #01-22b&; Eufairmairiella sp, as det. in ANIC, #00-87j%; E. curvicauda<br />

(Goding), as det. in USNM, #00-87g%; Eufrenchia falcata (Walker), as det. in ANIC, #00-<br />

87h%, #00-87i&; Eutryonia monstrifera (Walker), as det. in USNM, #00-87a%, #00-87b&,<br />

316


#01-219b&; Evansiana iasis (Kirkaldy), as det. in ANIC, #01-225a&; Funkhouserella<br />

arborea (Funkhouser), [holotype of Pyrgonota arborea Funkhouser], USNM; F. binodis<br />

(Funkhouser), [holotype of Pyrgonota binodis Funkhouser], USNM; F. brevifurca<br />

(Funkhouser), [holotype of Pyrgonota brevifurca Funkhouser], USNM, #01-089e& —as det.<br />

in USNM, #00-228c&; F. bulbiturris (Funkhouser), [holotype of Pyrgonota bulbiturris<br />

Funkhouser], USNM; F. pinguiturris (Funkhouser), [holotype of Pyrgonota pinguiturris<br />

Funkhouser], USNM, #01-89f&; F. sinuata (Funkhouser), [holotype of Pyrgonota sinuata<br />

Funkhouser], USNM; Goddefroyinella neglecta (Buckton), paralectotype, BMNH, #01-69e&<br />

—as det. in ANIC, #01-3b%; Lubra spinicornis (Walker), as det. in ANIC, #00-181l&—as<br />

det. in AMSA, #00-122f%—as det. in USNM, #00-122e&—det. M.S. Wallace, USNM, #00-<br />

122j%; Neocanthuchus tropicus Day, paratype, #01-225c&; Otinotoides sp., as det. in ANIC,<br />

#00-122k&, #00-122l%; O. pallipes (Walker), det. W.D. Funkhouser, AMSA, #00-122g%,<br />

#00-122h&; Pogonella minutus (Goding), as det. in ANIC, #00-136f&, #00-136j%—as det. in<br />

USNM, #00-136g%; Pogonotypellus australis (Goding), as det. in ANIC, #00-136h&;<br />

Polonius froggatti Goding, holotype, USNM, #01-89j&; Pyrgonota sp., USNM, #01-<br />

47b(sex?)—det. M.S. Wallace, USNM, #01-47 (sex?); P. bifoliata (Westwood), as det. in<br />

USNM, #00-230a&, #00-230b%—det. D. Flynn, DJFC, #00-230j&; Sarantus nobilus<br />

Kirkaldy, as det. in ANIC, #00-136b&, #00-136c&; S. wallacei Stål, as det. W.D.<br />

Funkhouser, USNM, #00-122c&—as det. in USNM, #00-122d%, #01-247b&; Sertorius sp.,<br />

as det. in ANIC, #00-122m%; S. australis (Fairmaire), as det. in USNM, #00-122a&—det.<br />

F.W. Goding, USNM, #00-122b%; Sextius kurandae Kirkaldy, as det. in USNM, #01-235b%;<br />

S. virescens (Fairmaire), det. W.D. Funkhouser, USNM, #00-80e%—as det. in USNM, #00-<br />

80f&—as det. in ANIC, #00-80i%; Terentius convexus Stål, as det. in USNM, #99-100h&,<br />

317


#99-100i%, #01-29a%—as det. in ANIC, 00-12a&, 00-12b%; Undarella storeyi Day,<br />

holotype, QMBA—paratype, QMBA, #01-250a&; Yangupia occidentalis (Goding), as det. in<br />

BMNH, #01-296a%, #01-296b%.<br />

318


Fig. 22.1. Terentiini: pronota (lateral aspects). Bars = 3 mm. A, Acanthucalis macalpini Evans,<br />

#00-136i&, reversed from right lateral aspect. B, Acanthuchus trispinifer (Fairmaire), #00-181o%.<br />

C, Alocanthella fulva Evans, #01-225b%. D, Alosextius carinatus (Funkhouser), #00-136a&. E,<br />

Anzac bipunctatum (Fabricius), #00-136e%. F, Arimanes doryensis <strong>Distant</strong>, #83-334a&. G,<br />

Bucktoniella pyramidatus (Funkhouser), #01-39a%. H, Bulbauchenia sp., #00-230g%. I, B. bakeri<br />

(Funkhouser), #00-221m&. J, Cebes transiens (Walker), #00-80d&. K, Ceraon tasmaniae<br />

(Fairmaire), #00-80a&. L, Dingkana borealis Goding, #00-87d&. M, Eufairmairia fraterna<br />

<strong>Distant</strong>, #00-87k&. N, Eufairmairiella sp., #00-87j%. O, Eufrenchia falcata (Walker), #00-87i&.<br />

319


Fig. 22.2. Terentiini: pronota (lateral aspects). Bars = 3 mm. A, Eutryonia monstrifera (Walker), #00-<br />

87a%. B, Evansiana iasis (Kirkaldy), #01-225a&. C, Funkhouserella brevifurca (Funkhouser), #00-<br />

228c&. D, F. pinguiturris (Funkhouser), holotype, #01-89f&. E, Goddefroyinella neglecta (Buckton),<br />

#01-3b%. F, Lubra spinicornis (Walker), #01-122e&. G, Neocanthuchus tropicus Day, paratype, #01-<br />

225c&. H, Otinotoides pallipes (Walker), #00-122h&. I, Pogonella minutus (Goding), #00-136f&. J,<br />

Pogonotypellus australis (Goding), #00-136h&. K, Polonius froggatti Goding, holotype, #01-89j&. L,<br />

Pyrgonota bifoliata (Westwood), #00-230j&. M, Sarantus nobilus Kirkaldy, #00-136c&. N, S.<br />

wallacei Stål, #00-122c&. O, Sertorius australis (Fairmaire), #00-122a&.<br />

320


Fig. 22.3. Terentiini: pronota (lateral aspects A-D, and anterior aspects, E-O). Bars = 3 mm. A,<br />

Sextius virescens (Fairmaire), #00-80f&. B, Terentius convexus Stål, #00-12b%. C, Undarella storeyi<br />

Day, holotype. D, Yangupia occidentalis (Goding), #01-296a%. E, Acanthucalis macalpini Evans,<br />

#00-136i&. F, Acanthuchus trispinifer (Fairmaire), #00-181o%. G, Alocanthella fulva Evans, #01-<br />

225b%. H, Alosextius carinatus (Funkhouser), #00-136a&. I, Anzac bipunctatum (Fabricius), #00-<br />

136e%. J, Arimanes doryensis <strong>Distant</strong>, #83-334a&. K, Bucktoniella pyramidatus (Funkhouser), #01-<br />

39a%. L, Bulbauchenia sp., #00-230g%. M, B. bakeri (Funkhouser), #00-221m&. N, Cebes transiens<br />

(Walker), #00-80d&. O, Ceraon tasmaniae (Fairmaire), #00-80a&. Copyrights: D © 2003, The Natural<br />

History Museum, London.<br />

321


Fig. 22.4. Terentiini: pronota (anterior aspects). A, Dingkana borealis Goding, #00-<br />

87d&. B, Eufairmairia fraterna <strong>Distant</strong>, #00-87k&. C, Eufairmairiella sp., #00-87j%.<br />

D, Eufrenchia falcata (Walker), #00-87i&. E, Eutryonia monstrifera (Walker), #00-<br />

87a%. F, Evansiana iasis (Kirkaldy), #01-225a&. G, Funkhouserella brevifurca<br />

(Funkhouser), #00-228c&. H, F. pinguiturris (Funkhouser), holotype, #01-89f&. I,<br />

Goddefroyinella neglecta (Buckton), #01-3b%. J, Lubra spinicornis (Walker), #01-<br />

122e&. K, Neocanthuchus tropicus Day, paratype, #01-225c&. L, Otinotoides pallipes<br />

(Walker), #00-122h&. M, Pogonella minutus (Goding), #00-136f&. N, Pogonotypellus<br />

australis (Goding), #00-136h&. O, Polonius froggatti Goding, holotype, #01-89j&.<br />

322


Fig. 22.5. Terentiini: pronota (anterior aspects, A-H) and heads (I-O). A, Pyrgonota bifoliata<br />

(Westwood), #00-230j&. B, Sarantus nobilus Kirkaldy, #00-136c&. C, S. wallacei Stål, #00-122c&.<br />

D, Sertorius australis (Fairmaire), #00-122a&. E, Sextius virescens (Fairmaire), #00-80f&. F,<br />

Terentius convexus Stål, #99-100h&. G, Undarella storeyi Day, holotype. H, Yangupia occidentalis<br />

(Goding), #01-296a%. I, Acanthuchus trispinifer (Fairmaire), #00-181o%. J, Alocanthella fulva Evans,<br />

#01-225b%. K, Alosextius carinatus (Funkhouser), #00-136a&. L, Anzac bipunctatum (Fabricius), #00-<br />

136d&. M, Arimanes doryensis <strong>Distant</strong>, #83-334a&. N, Bucktoniella pyramidatus (Funkhouser), #01-<br />

39a%. O, Bulbauchenia sp., #00-230g%. Copyrights: H © 2003, The Natural History Museum,<br />

London. fcl, frontoclypeal lobes.<br />

323


Fig. 22.6. Terentiini: heads. A, Cebes transiens (Walker), #00-80c%. B, Ceraon tasmaniae<br />

(Fairmaire), #00-80a&. C, Dingkana borealis Goding, #00-87d&. D, Eufairmairia fraterna<br />

<strong>Distant</strong>, #00-87k&. E, Eufairmairiella sp., #00-87j%. F, Eufrenchia falcata (Walker), #00-87i&.<br />

G, Eutryonia monstrifera (Walker), #00-87a%. H, Evansiana iasis (Kirkaldy), #01-225a&. I,<br />

Funkhouserella brevifurca (Funkhouser), #00-228c&. J, F. pinguiturris (Funkhouser), holotype,<br />

#01-89f&. K, Goddefroyinella neglecta (Buckton), #01-3b%. L, Lubra spinicornis (Walker), #01-<br />

122e&. M, Neocanthuchus tropicus Day, paratype, #01-225c&. N, Otinotoides pallipes (Walker),<br />

#00-122h&. O, Pogonella minutus (Goding), #00-136f&. fcl, frontoclypeal lobes.<br />

324


Fig. 22.7. Terentiini: heads. A, Pogonotypellus australis (Goding), #00-<br />

136h&. B, Polonius froggatti Goding, holotype, #01-89j&. C,<br />

Pyrgonota bifoliata (Westwood), #00-230j&. D, Sarantus nobilus<br />

Kirkaldy, #00-136c&. E, S. wallacei Stål, #00-122c&. F, Sertorius<br />

australis (Fairmaire), #00-122a&. G, Sextius virescens (Fairmaire), #00-<br />

80f&. H, Terentius convexus Stål, #99-100h&. I, Undarella storeyi Day,<br />

holotype. fcl, frontoclypeal lobes.<br />

325


Fig. 22.8. Terentiini: wings. A, Terentius convexus Stål, #99-100h&,<br />

left forewing (inverted). B, T. convexus, #99-100h&, left hind wing<br />

(inverted). C, Bulbauchenia sp., #00-230g%. D, Acanthucalis macalpini<br />

Evans, #00-136i&, left forewing (inverted). E, Acanthuchus trispinifer<br />

(Fairmaire), #00-80g&.<br />

326


Fig. 22.9. Terentiini: wings. A, Alocanthella fulva Evans, #01-225b%. B,<br />

Alosextius carinatus (Funkhouser), #00-136a&. C, Anzac bipunctatum<br />

(Fabricius), #00-136d&. D, Arimanes doryensis <strong>Distant</strong>, #83-334a&. E,<br />

Bucktoniella pyramidatus (Funkhouser), #01-39a%, left forewing (inverted).<br />

F, Bulbauchenia bakeri (Funkhouser), #00-221m&. G, Cebes transiens<br />

(Walker), #00-80dc%. H, Ceraon tasmaniae (Fairmaire), #00-80a&, left<br />

forewing (inverted). I, Dingkana borealis Goding, #00-87d&. J, Eufairmairia<br />

decisa (Walker), #83-333d&, left forewing (inverted).<br />

327


Fig. 22.10. Terentiini: wings. A, Eufairmairiella sp., #00-87g%. B, Eufrenchia<br />

falcata (Walker), #00-87h%. C, Eutryonia monstrifera (Walker), #00-87b&. D,<br />

Evansiana iasis (Kirkaldy), #01-225a&, left forewing (inverted). E,<br />

Funkhouserella brevifurca (Funkhouser), #00-228c&. F, F. pinguiturris<br />

(Funkhouser), holotype, #01-89f&. G, Goddefroyinella neglecta (Buckton),<br />

paralectotype, #01-69e&, left forewing (inverted). H, Lubra spinicornis (Walker),<br />

#01-122e&, left forewing (inverted). I, Neocanthuchus tropicus Day, paratype,<br />

#01-225c&. J, Otinotoides pallipes (Walker), #00-122h&.<br />

328


Fig. 22.11. Terentiini: wings. A, Pogonella minutus (Goding), #00-136f&. B,<br />

Pogonotypellus australis (Goding), #00-136h&. C, Polonius froggatti Goding,<br />

holotype, #01-89j&, left forewing (inverted). D, Pyrgonota bifoliata<br />

(Westwood), #00-230a&. E, S. wallacei Stål, #00-122c&. F, Sertorius australis<br />

(Fairmaire), #00-122a&. G, Sextius virescens (Fairmaire), #00-80f&. H,<br />

Undarella storeyi Day, holotype, left forewing (inverted). I, Yangupia<br />

occidentalis (Goding), #01-296a%.<br />

329


Fig. 22.12. Terentiini: metathoracic legs. A, Bulbauchenia bakeri<br />

(Funkhouser), #00-221m&. B, Pyrgonota bifoliata (Westwood),<br />

#00-230a&. C, Terentius convexus Stål, #99-100h&, reversed from<br />

right lateral aspect.<br />

330


Fig. 22.13. Terentiini: female second valvulae (lateral aspects and<br />

closeup of apex). A, Acanthucalis macalpini Evans, #00-136i&. B,<br />

Anzac bipunctatum (Fabricius), #00-136d&. C-D, Acanthuchus<br />

trispinifer (Fairmaire), #00-80g&. E-F, Alosextius carinatus<br />

(Funkhouser), #00-136a&. G-H, Bulbauchenia bakeri (Funkhouser),<br />

#00-221m&. I-J, Cebes transiens (Walker), #00-80d&.<br />

331


Fig. 22.14. Terentiini: female second valvulae (lateral aspects and<br />

closeup of apex). A-B, Ceraon tasmaniae (Fairmaire), #00-80a&. C-<br />

D, Dingkana borealis Goding, #00-87d&. E, Eufairmairia decisa<br />

(Walker), #83-333d&. F, Pogonella minutus (Goding), #00-136f&. G-<br />

H, Eufrenchia falcata (Walker), #00-87i&. I-J, Eutryonia monstrifera<br />

(Walker), #00-87b&.<br />

332


Fig. 22.15. Terentiini: female second valvulae (lateral aspects and<br />

closeup of apex). A-B, Funkhouserella brevifurca (Funkhouser), #00-<br />

228c&. C, F. pinguiturris (Funkhouser), holotype, #01-89f&. D-E,<br />

Goddefroyinella neglecta (Buckton), paralectotype, #01-69e&. F-G,<br />

Lubra spinicornis (Walker), #00-122e&. H-I, Otinotoides pallipes<br />

(Walker), #00-122h&. Copyrights: D-E © 2003, The Natural History<br />

Museum, London.<br />

333


Fig. 22.16. Terentiini: female second valvulae (lateral aspects and<br />

closeup of apex). A-B, Pogonotypellus australis (Goding), #00-136h&.<br />

C-D, Pyrgonota bifoliata (Westwood), #00-230a&. E-F, Sarantus<br />

nobilus Kirkaldy, #00-136b&. G-H, S. wallacei Stål, #00-122c&. I-J,<br />

Sertorius australis (Fairmaire), #00-122a&.<br />

334


Fig. 22.17. Terentiini: female second valvulae (lateral aspects and closeup<br />

of apex, A-D) and male styles (lateral aspects, E-P). A-B, Sextius virescens<br />

(Fairmaire), #00-80f&. C-D, Terentius convexus Stål, #99-100h&. E,<br />

Acanthuchus trispinifer (Fairmaire), #00-80h%. F, Alocanthella fulva<br />

Evans, #01-225b%. G, Anzac bipunctatum (Fabricius), #00-136e%. H,<br />

Bucktoniella pyramidatus (Funkhouser), #01-39a%. I, Bulbauchenia sp.,<br />

#00-230g%. J, B. bakeri (Funkhouser), #00-277a%. K, Cebes transiens<br />

(Walker), #00-80c%. L, Ceraon tasmaniae (Fairmaire), #00-80b%. M,<br />

Dingkana borealis Goding, #00-87e%. N, Eufairmairia decisa (Walker),<br />

#83-333c%. O, Eufairmairiella curvicauda (Goding), #00-87g%. P,<br />

Eufrenchia falcata (Walker), #00-87h%. c, clasp.<br />

335


Fig. 22.18. Terentiini: male styles (lateral aspects, A-K) and aedeagi (lateral aspects, L-Q). A,<br />

Eutryonia monstrifera (Walker), #00-87a%. B, Goddefroyinella neglecta (Buckton), #01-3b%.<br />

C, Lubra spinicornis (Walker), #01-122j%. D, Otinotoides pallipes (Walker), #00-122g%. E,<br />

Pogonella minutus (Goding), #00-136g%. F, Pyrgonota bifoliata (Westwood), #00-230b%. G,<br />

Sarantus wallacei Stål, #00-122d%. H, Sertorius australis (Fairmaire), #00-122b%. I, Sextius<br />

virescens (Fairmaire), #00-80e%. J, Terentius convexus Stål, #99-100i%. K, Yangupia<br />

occidentalis (Goding), #01-296a%. L, Alocanthella fulva Evans, #01-225b%. M, Bucktoniella<br />

pyramidatus (Funkhouser), #01-39a%. N, Bulbauchenia bakeri (Funkhouser), #00-277a%. O,<br />

Eufairmairiella curvicauda (Goding), #00-87g%. P, Eutryonia monstrifera, #00-87a%. Q, L.<br />

spinicornis, #01-122j%. Copyrights: K © 2003, The Natural History Museum, London. c,<br />

clasp.<br />

336


Fig. 22.<strong>19.</strong> Terentiini: male aedeagi (lateral aspects, A-F) and lateral<br />

plates (lateral aspects, G-L). A, Otinotoides pallipes (Walker), #00-<br />

122g%. B, Pyrgonota bifoliata (Westwood), #00-230b%, reversed from<br />

right lateral aspect. C, Sarantus wallacei Stål, #00-122d%. D, Sextius<br />

virescens (Fairmaire), #00-80e%. E, Terentius convexus Stål, #99-<br />

100i%. F, Yangupia occidentalis (Goding), #01-296a%. G,<br />

Bucktoniella pyramidatus (Funkhouser), #01-39a%. H, Bulbauchenia<br />

sp., #00-230g%. I, Bulbauchenia bakeri (Funkhouser), #00-277a%. J,<br />

Cebes transiens (Walker), #00-80c%. K, Ceraon tasmaniae<br />

(Fairmaire), #00-80b%. L, Dingkana borealis Goding, #00-87e%.<br />

Copyrights: F © 2003, The Natural History Museum, London. dl,<br />

dorsoapical lobe.<br />

337


Fig. 22.20. Terentiini: male lateral plates (lateral aspects). A,<br />

Eufairmairia decisa (Walker), #83-333c%. B, Eufairmairiella<br />

curvicauda (Goding), #00-87g%. C, Eufrenchia falcata (Walker),<br />

#00-87h%. D, Eutryonia monstrifera (Walker), #00-87a%. E,<br />

Goddefroyinella neglecta (Buckton), #01-3b%. F, Lubra spinicornis<br />

(Walker), #01-122j%. G, Otinotoides pallipes (Walker), #00-122g%.<br />

H, Sarantus wallacei Stål, #00-122d%. I, Sertorius australis<br />

(Fairmaire), #00-122b%. J, Sextius virescens (Fairmaire), #00-80e%.<br />

K, Terentius convexus Stål, #99-100i%. L, Yangupia occidentalis<br />

(Goding), #01-296a%. Copyrights: L © 2003, The Natural History<br />

Museum, London. dl, dorsoapical lobe.<br />

338


Fig. 22.21. Terentiini: male subgenital plates (ventral aspects, A-<br />

D) and maximum development of abdominal fine-structure (E-H).<br />

All scanning electron micrographs near tergum III. A,<br />

Bucktoniella pyramidatus (Funkhouser), #01-39a%. B, Cebes<br />

transiens (Walker), #00-80c%. C, Eufrenchia falcata (Walker),<br />

#00-87h%. D, Otinotoides pallipes (Walker), #00-122g%. E-F,<br />

Acanthuchus trispinifer (Fairmaire), #01-43&. G-H, Anzac<br />

bipunctatum (Fabricius), #00-136e%. a, acanthae. i, inornate pit.<br />

l, lateral seta. m, microtrichia.<br />

339


Fig. 22.22. Terentiini: maximum development of abdominal finestructure.<br />

All scanning electron micrographs near tergum III. A,<br />

Bucktoniella pyramidatus (Funkhouser), #01-39a%. B, Bulbauchenia<br />

mirabilis (Funkhouser), holotype, #01-54a%. C-D, B. bakeri<br />

(Funkhouser), #01-278a&. E, Ceraon tasmaniae (Fairmaire), #01-<br />

232e%. F, Dingkana borealis Goding, #01-219c&. G-H, Eufairmairia<br />

fraterna <strong>Distant</strong>, #01-22b&. i, inornate pit. m, microtrichia.<br />

340


Fig. 22.23. Terentiini: maximum development of abdominal and<br />

pronotal (B) fine-structure. All scanning electron micrographs near<br />

tergum III. A, Eutryonia monstrifera (Walker), #01-219b&. B-D,<br />

Funkhouserella brevifurca (Funkhouser), #01-89e&. E, Lubra<br />

spinicornis (Walker), 00-181l&. F, Otinotoides sp., 00-122k&. G,<br />

Pogonella minutus (Goding), #00-136j%. H, Pyrgonota sp., #01-<br />

47b(sex?). i, inornate pit. m, microtrichia. sc, scutellum.<br />

341


Fig. 22.24. Terentiini: maximum development of abdominal finestructure.<br />

All scanning electron micrographs near tergum III. A,<br />

Sarantus wallacei Stål, #01-247b&. B, Sertorius sp., #00-122m%.<br />

C, Sextius kurandae Kirkaldy, #01-235b%. D, Terentius convexus<br />

Stål, #01-29a%. i, inornate pit. m, microtrichia.<br />

342


Xiphopoeini Capener, 1966a [new tribe].<br />

23. <strong>Tribe</strong> XIPHOPOEINI Capener, 1966<br />

<strong>Old</strong> <strong>World</strong>: <strong>Afrotropical</strong> Region<br />

Figs. 23.1-23.3<br />

Type genus: Xiphopoeus Stål, 1866c<br />

Diagnostic characters.—Frontoclypeal lobes distinct, not extending to apex of<br />

frontoclypeus; vertex with toothlike projections. Pronotum with numerous acute projections<br />

(spines). Mesopleural lobe enlarged. Forewing with m-cu2 crossvein present, discoidal cells<br />

similar in length, r-m1 crossvein originating anterior to first division of R vein, with<br />

pterostigma at or near R1 vein, base of R2+3 and R4+5 veins truncate. Hind wing with R4+5 and<br />

M1+2 veins not fused (4 apical cells). Mesothoracic femur with ab- and adlateral cucullate<br />

setae. Male lateral plate without dorsoapical lobe; clasp of style oriented laterally, apex<br />

membranous, elliptical or circular, angled dorsally. Abdominal tergum III ventrolateral<br />

margin with upcurved groove, abdominal setal bases enlarged, numerous, and dispersed on<br />

terga.<br />

Description.—Length 4.7-6.3 mm. Color brown to dark brown. HEAD (Figs. 23.1<br />

E-F): frontoclypeal margins parallel or slightly converging ventrally, frontoclypeal lobes<br />

distinct and not extending to apex of frontoclypeus; ocelli about equidistant from each other<br />

and eyes; vertex with toothlike projections. THORAX: PRONOTUM (Figs. 23.1 A-D):<br />

pronotum with numerous acute projections (spines); suprahumeral horns present; posterior<br />

process curving dorsally (Xiphopoeus) or straight at base (Negus), appressed against<br />

343


scutellum (Negus) or not (Xiphopoeus), significantly extending past m-cu3 vein in forewing.<br />

SCUTELLUM: emarginate with apices acute, not concealed by posterior process, 2 lateral<br />

apices or 1 visible from dorsolateral view; not shortened--with abdomen removed, notch and<br />

apices visible, only slightly extending beyond thorax or posterior half extending past thorax.<br />

Pleuron: propleural lobe present or absent, mesopleural lobe enlarged. FOREWING (Figs.<br />

23.1 G, I): sub-opaque; apical limbus broad; s crossvein distad of r-m2 crossvein; m-cu1<br />

crossvein absent and m-cu2 crossvein present in at least one wing; M and Cu veins fused at<br />

base; R and M veins not confluent preapically; forewing with pterostigma near R1 vein; R1<br />

vein not perpendicular to marginal vein; r-m1 crossvein originating anterior to first split of R<br />

vein, parallel to longitudinal veins or bent towards R vein; R, M, and Cu veins not parallel<br />

apically; discoidal cells similar in length; base of R2+3 and R4+5 veins truncate. HIND WING<br />

(Fig. 23.1 H): R4+5 and M1+2 veins not fused (4 apical cells). PRO- AND MESOTHORACIC LEGS:<br />

tibiae not foliaceous; mesothoracic tibia without rows of cucullate; mesothoracic femur with<br />

ab- and adlateral cucullate setae. METATHORACIC LEG (Fig. 23.1 J): ventral margin of coxa,<br />

trochanter, and femur without enlarged setal bases; femur with ab- and adlateral cucullate<br />

setae; femur without ablateral cucullate setae ventrolaterally; tibia not foliaceous, row I with<br />

7-18 cucullate setae, row II with 19-33 cucullate setae in irregular or double row, row III<br />

with 13-23 cucullate setae; tarsomere I with 2 or more cucullate setae (usually 2).<br />

ABDOMEN: in anterior aspect (abdomen removed) nearly triangular; anterior tergal borders<br />

not modified; sternal transverse carina present in Negus; paired dorsal swellings absent;<br />

tergum III ventrolateral margin with upcurved groove, abdominal setal bases enlarged,<br />

numerous, and dispersed on terga. FEMALE GENITALIA (Figs. 23.2 A-D): second valvulae<br />

broadened slightly, tapering unevenly to apex, curved or not, dorsal teeth fine, acute<br />

344


projections on dorsal margin present or absent; third valvulae without ventral projections.<br />

MALE GENITALIA (Figs. 23.2 E-K): lateral plate without dorsoapical lobe (Figs. 23.2 I-K),<br />

without ventral lobe; subgenital plate without distinct division; style clasp (Figs. 23.2 E-F)<br />

oriented laterally, membranous, elliptical or circular, angled dorsally; style shank without<br />

significant arch. ABDOMINAL FINE STRUCTURE (Figs. 23.3 B): acanthae indistinct, bases not<br />

heightened, acanthae divided into threadlike microtrichia.<br />

Chromosome numbers.—Unknown.<br />

Distribution.—The tribe Xiphopoeini is recorded from numerous <strong>Afrotropical</strong><br />

countries (McKamey 1998a).<br />

Ecology.—Members of the tribe Xiphopoeini are reported from the host plant<br />

families Euphorbiaceae, Gramineae, and Leguminosae (Table 26.2).<br />

Discussion.—Capener (1966a) placed those African treehoppers with toothlike<br />

projections on the lower margins of the vertex and enlarged mesopleural lobes in the tribe<br />

Xiphopoeini. This tribe is monophyletic in the phylogenetic analysis (Figs. 24.1, 24.7) and is<br />

characterized by Capener’s diagnostic features as well as the presence of numerous enlarged<br />

setal bases dispersed on the abdominal terga. The Xiphopeoini are closely related to the<br />

predominantly <strong>Afrotropical</strong> tribes Leptocentrini and Centrotini, and the Micreunini. The<br />

Centrotini, like the Xiphopoeini, also have enlarged setal bases dispersed on the abdominal<br />

terga although they are less numerous. In addition, both xiphopoeines and centrotines have<br />

an elliptical, dorsally angled, male clasp.<br />

345


Genera of the tribe Xiphopoeini<br />

Negus Jacobi, 1910b (type species: N. asper Jacobi by original designation).<br />

Xiphopoeus Stål, 1866a (type species: Centrotus phantasma Signoret by subsequent<br />

designation).<br />

Specimens examined.—Negus asper Jacobi, det. A.L. Capener, USNM, #99-93c&—<br />

det. A.L. Capener, AMNH, #00-175a%, #00-175j[n]—det. A.L. Capener, PPRI, #01-256e%;<br />

Xiphopoeus sp., det. M.S. Wallace, USNM, #01-61a&, #02-10e[n]; X. erectus <strong>Distant</strong>, det.<br />

W.D. Funkhouser, USNM, #83-333h%; X phantasma Signoret, det. A.L. Capener, PPRI,<br />

#99-315c%, #99-315d&.<br />

346


Fig. 23.1. Xiphopoeini: pronota (lateral aspects, A-B; and anterior aspects, C-D),<br />

heads (E-F), wings (G-I), and metathoracic leg (J). Bars = 3 mm. A, Negus asper<br />

Jacobi, #99-93c&. B, Xiphopoeus phantasma Signoret, #99-315c%. C, N. asper,<br />

#99-93c&. D, X. phantasma, #99-315c%. E, N. asper, #99-93c&. F, X. phantasma,<br />

#99-315c%. G, X. phantasma, #99-315d&, right forewing. H, X. phantasma, #99-<br />

315d&, right hind wing. I, N. asper, #99-93c&, right forewing. J, X. phantasma,<br />

#99-315d&. tp, toothlike processes.<br />

347


Fig. 23.2. Xiphopoeini: female second valvulae (lateral aspects and<br />

closeup of apex, A-D), and male styles (lateral aspects, E-F), aedeagi<br />

(lateral aspects, G-H), lateral plates (lateral aspects, I-J), and subgenital<br />

plate (ventral aspect, K). A-B, Negus asper Jacobi, #99-93c&. C-D,<br />

Xiphopoeus phantasma Signoret, #99-315d&. E, N. asper, #00-175a%.<br />

F, X. phantasma, #99-315c%. G, N. asper, #00-175a%. H, X.<br />

phantasma, #99-315c%. I, N. asper, #00-175a%. J, X. phantasma, #99-<br />

315c%. K, N. asper, #00-175a%. c, clasp.<br />

348


Fig. 23.3 Xiphopoeini: maximum development of pronotal<br />

(A) and abdominal fine structure (B). All abdominal<br />

scanning electron micrographs near tergum III. A-B,<br />

Xiphopoeus sp., #01-61a&. l, lateral seta. m, microtrichia.<br />

349


Introduction<br />

24: PHYLOGENETIC RELATIONSHIPS WITHIN THE SUBFAMILY<br />

CENTROTINAE<br />

The treehopper subfamily Centrotinae accounts for roughly half of the worldwide<br />

membracid diversity at the species and higher-levels. It is the only subfamily with genera<br />

distributed in the <strong>Old</strong> <strong>World</strong> (the <strong>Afrotropical</strong>, Palearctic, Indomalayan, and Australasian/<br />

Oceanian Regions) and New <strong>World</strong> (Nearctic and Neotropical Regions), but no centrotine<br />

tribe (or genus) occurs in both the <strong>Old</strong> and New <strong>World</strong>s. Historically, workers have focused<br />

on taxonomic revisions of centrotines within a particular geographic region (for example,<br />

Capener 1962a, 1968a; Evans 1966a; Ananthasubramanian 1996a; Day 1999a; Yuan and<br />

Chou 2002a). Furthermore, relatively few workers have justified centrotine classifications at<br />

any taxonomic level with quantitative phylogenetic analyses (Strümpel 1972a; Ahmad<br />

1988a; Dietrich and Deitz 1993a; Cryan et al. 2000a; Dietrich et al. 2001a; Yuan and Chou<br />

2002a). Consequently, a large number of centrotine tribes, many described in the early<br />

1900’s, are based largely on symplesiomorphies, and thus, the monophyly of the subfamily<br />

and tribes has not been tested.<br />

These disparities have impeded the development of a stable higher classification and<br />

taxonomic studies of centrotines at the generic and species levels. In addition, the lack of<br />

information on the evolutionary relationships between the <strong>Old</strong> and New <strong>World</strong> centrotines<br />

has hindered investigations on biogeographic patterns within the Membracidae and in<br />

determining the geographic origins of the Membracidae and the Centrotinae. The lack of<br />

common taxa between the New <strong>World</strong> and <strong>Old</strong> <strong>World</strong> has long fueled a debate concerning<br />

the geographic origin of the Membracidae (Dietrich and Deitz 1993a, Wood 1993a, Dietrich<br />

350


et al. 2001a). The first comprehensive phylogenetic analysis of generic representatives from<br />

all 24 centrotine tribes (20 <strong>Old</strong> <strong>World</strong>, 4 New <strong>World</strong>), (sensu McKamey 1998a and Yuan and<br />

Chou 2002a) using morphological characters is presented here.<br />

The objectives of this study are to establish the phylogenetic limits of the Centrotinae<br />

and its included tribes and to determine the evolutionary relationships among these tribes in<br />

order to provide a comprehensive classification and to aid in the investigation of<br />

biogeographical patterns and life history traits. The great number of centrotine genera--<br />

together with the limited morphological data for many--precluded a single comprehensive<br />

phylogenetic analysis. To circumvent this problem, 10 analyses were performed on subsets<br />

of taxa as follows: (1) an overall phylogenetic analysis based on genera representing overall<br />

tribal diversity within Centrotinae; (2-8) phylogenetic analyses based on genera representing<br />

larger tribes; and (9-10) phenetic analyses based on all scorable genera representing larger<br />

tribes.<br />

Methods<br />

Taxon sampling. Overall, 222 taxa representing 213 genera (Table 24.13) were coded<br />

for their morphological characters in the taxonomic database DELTA (DEscription Language<br />

for TAxonomy) version 1.03e (Dallwitz 1980a; Dallwitz et al. 1993a, 1999a). Ingroup taxa<br />

included 208 genera (178 centrotines and 4 centrodontines coded from specimens; 26<br />

centrotine genera coded from published descriptions and illustrations). Taxa in Table 24.13<br />

labeled with only a generic name are represented by more than one species. Knowledge of 8<br />

centrotine genera was insufficient for coding: Aspasiana, Centrobelus, Insitor, Insitoroides,<br />

Megalocentrus, Megaloschema, Saudaraba, and Sinocentrus (all but Saudaraba placed as<br />

351


incertae sedis). Outgroup taxa included the New <strong>World</strong> genera: Nicomia and Tolania<br />

(Nicomiinae), Microcentrus Stål (Stegaspidinae), and Centronodus Funkhouser and<br />

Paracentronodus Sakakibara (Centronodini). The only possible <strong>Old</strong> <strong>World</strong> outgroup is the<br />

genus Darthula Kirkaldy, in the family Aetalionidae (sister group to the Membracidae).<br />

Darthula, however, is not useful for polarizing because it is too distantly related to<br />

centrotines. Generic representatives from 23 of the 24 valid tribes were examined; only the<br />

tribe Choucentrini (Choucentrus) was coded entirely from the literature. In order to lessen<br />

over-generalization of character data, an effort was made to examine the type species of each<br />

available genus. The type species (at least one sex) was examined in 164 of the 178<br />

centrotine genera coded.<br />

Analyses. The number of taxa and characters included and the characters excluded in<br />

each analysis are shown in Table 24.2. In relatively few cases where only one sex of the type<br />

species was available for examination, or where significant morphological diversity occurred<br />

within a genus, another species was coded in addition to the type species and included in the<br />

dataset. With three exceptions, the type species in these instances was used in all of the<br />

phylogenetic analyses. In the Boocerini/Centrodontini analysis, Campylocentrus hamifer<br />

was used as the generic representative. In the Choucentrini/Leptocentrini/Maarbarini<br />

analysis, Otinotus bantuantus and Nilautama minutaspina were chosen as the generic<br />

representatives.<br />

Question marks (?) in the data matrix indicate missing data, inapplicable character<br />

states, and cases where character scoring was ambiguous. With some characters,<br />

polymorphism (sexual, interspecific, or intraspecific) was designated as a hypothesized<br />

intermediate character state. Characters listed in the “other” column of Table 24.2 were<br />

352


excluded because they were highly homoplasious and not informative as tribal or generic<br />

characters for the analyzed taxa. In the analysis of the entire subfamily Centrotinae, six<br />

autapomorphic characters that helped define monotypic tribes or tribes represented by one<br />

genus were retained in the analysis.<br />

In the first analysis, generic representatives of 22 of the 24 valid tribes plus the New<br />

<strong>World</strong> subfamily Centrodontinae were included in an overall phylogenetic analysis of the<br />

subfamily Centrotinae. Where possible, at least two genera from each valid tribe were<br />

included in this analysis. The generic representatives and institutional acronyms used in the<br />

subfamily analysis are given in Table 24.5.<br />

All of the centrotine genera could not be included in this overall analysis due to the<br />

large number of taxa and limited morphological data for some genera (often only one sex<br />

was available). Therefore, separate phylogenetic analyses (2-8) were also completed for<br />

several large tribes and for the generic representatives of the 2 remaining tribes not included<br />

in the overall phylogenetic analysis of the Centrotinae. Thus, many of the remaining<br />

centrotine genera could be confidently placed into tribes. The phylogenetic trees from these<br />

analyses were intended to indicate the monophyly of the tribes and preliminary relationships<br />

among their genera. It should be noted, however, that many of the characters used in the<br />

analyses were selected to delineate tribes and infer relationships among them, rather than<br />

infer generic relationships. Therefore, the addition of further morphological characters that<br />

vary among genera would likely provide even better resolution of generic relationships.<br />

Analyses 2-3 (Table 24.2) investigated the relationships among several basal<br />

centrotine tribes, mostly from the New <strong>World</strong>. The closely related tribes Beaufortianini (new<br />

tribe), Nessorhinini, Pieltainellini (new tribe), and Platycentrini were studied in Analysis 2.<br />

353


All of these tribes except the Beaufortianini are found in the New <strong>World</strong>. The generic<br />

relationships of Boocerini and Centrodontini, two New <strong>World</strong> tribes, were examined in<br />

Analysis 3.<br />

The remaining phylogenetic analyses examined relationships of <strong>Old</strong> <strong>World</strong><br />

centrotines: Analysis 4, included two primarily <strong>Afrotropical</strong> tribes, the Centrotini and<br />

Xiphopoeini; 5, the predominantly Palearctic and Indomalayan tribes Choucentrini,<br />

Leptocentrini, and Maarbarini (new tribe); 6, the Gargarini; 7 the Oxyrhachini and<br />

Hypsaucheniini; and 8, Terentiini (Table 24.2).<br />

DELTA datasets were converted to NEXUS files in DELTA. Phylogenetic analyses<br />

(analyses 1-8) were performed using PAUP* (Phylogenetic Analysis Using Parsimony)<br />

version 4.0b10 for Windows (Swofford 2002a). Character change lists and apomorphy lists<br />

were generated using PAUP*. Due to the size of all the analyses, heuristic analyses were<br />

performed using the tree-bisection-reconnection routine (TBR) with 50 random addition<br />

replicates. Five trees were held at each step of cladogram construction. The number of<br />

changes assigned per branch under ACCTRAN optimization was determined by PAUP*.<br />

Branch lengths are proportional to the number of changes per branch and are used here as<br />

measure of node support.<br />

Two similarity analyses (Analyses 9-10) of several larger tribes using UPGMA were<br />

performed to show overall morphological similarity among genera in a tribe, including those<br />

in which data were too limited for inclusion in the phylogenetic studies. UPGMA was<br />

performed in PAUP*. The distance measure or branch lengths for the UPGMA trees are<br />

proportional to the mean character distance.<br />

354


Morphological Characters. The dataset for the phylogenetic and phenetic analyses<br />

consists of 116 morphological characters (82 binary and 34 multistate) (Table 24.1). Only<br />

adult males and females were coded because too few nymphal specimens were examined to<br />

include characters from the immatures. Many of the characters, especially those of the<br />

forewings, are based on those in Dietrich et al. (2001a). For all analyses, characters were<br />

treated as unordered because polarizations were ambiguous. Characters were assigned equal<br />

weight in all analyses. See the “Introduction” section for a discussion of morphological<br />

characters.<br />

Results and Discussion<br />

Phylogeny of the Centrotinae and character evolution. The results presented here<br />

represent the first comprehensive morphological phylogenetic analysis of the subfamily<br />

Centrotinae. The overall phylogenetic analysis (Analysis 1) resulted in a single most<br />

parsimonious tree (Fig. 24.1) of 665 steps, consistency index (CI) of 0.23, and retention<br />

index (RI) of 0.60. Table 24.3 gives descriptive tree statistics of the other phylogenetic<br />

analyses (Analyses 2-8). In many cases, nodes defining tribes and relationships among tribes<br />

were well supported with numerous character changes-- for example: node 79 (Terentiini),<br />

nodes 82-83 (Ebhuloidesini, Oxyrhachini, Hypsaucheniini, and Terentiini), node 91<br />

(Choucentrini + Maarbarini), node 102 (Leptocentrini), and node 116 (Nessorhinini).<br />

Nevertheless, although only 1 most parsimonious tree was found, in basal portions of the tree<br />

branch support was either low (i.e., nodes 113 and 111) or nodes were supported by mostly<br />

homoplasious characters (i.e., node 118). Indeed, in general, homoplasy was high (CI=0.23)<br />

in this analysis, as one might expect with 69 taxa (Sanderson and Donoghue 1989a). Certain<br />

355


characters, however, such as the shape of the female second valvulae, were homoplasious in<br />

some tribes (i.e., Centrotini) but consistent and informative in others (i.e., Hypsaucheniini).<br />

In a separate analysis using the dataset of Analysis 1, all of the <strong>Old</strong> <strong>World</strong> genera<br />

were constrained for monophyly to determine the extra number of steps needed for a<br />

monophyletic <strong>Old</strong> <strong>World</strong> fauna. Analysis parameters were equal to the above unconstrained<br />

studies. Constraining a monophyletic <strong>Old</strong> <strong>World</strong> centrotine fauna resulted in 65 equally most<br />

parsimonious trees with 671 steps, 6 steps longer than the most parsimonious tree without the<br />

constraint. According to a winning-sites test between the most parsimonious tree<br />

(unconstrained for <strong>Old</strong> <strong>World</strong> monophyly) and the 65 equally parsimonious trees<br />

(constrained for <strong>Old</strong> <strong>World</strong> monophyly), the data did not provide significantly less support<br />

for the constrained analysis compared to the unconstrained analysis (p-values ranged from<br />

0.42-0.09). Despite this result, the unconstrained analysis is favored here not only because it<br />

is more parsimonious, but also because most of the <strong>Old</strong> <strong>World</strong> phylogeny was unresolved in<br />

the constrained study.<br />

As a result of these analyses, 23 centrotine tribes are recognized, including 6 new<br />

tribes; 11 tribal synonymies and 1 subfamily synonymy are proposed, and the tribal<br />

placements of 108 genera are changed. Based on the present phylogeny, Fig. 24.2 and Table<br />

24.14 contrast the existing centrotine tribal classification (sensu Ananthasubramanian 1996a,<br />

McKamey 1998a, and Yuan and Chou 2002a) with the revised classification. The tribal<br />

descriptions give detailed morphological descriptions and updated placements of each<br />

centrotine genus, while the tribal synonymies and discussions give details on the taxonomic<br />

status of each tribal name.<br />

356


The Centrotinae, as defined here, are a monophyletic group based on the phylogenetic<br />

analysis (Fig. 24.1), supporting the findings of Dietrich and Deitz (1993a) and Dietrich et al.<br />

(2001a). All centrotines have abdominal inornate pits, each with an associated lateral seta.<br />

This feature is independently derived in three other treehopper genera: Nicomia<br />

(Nicomiinae), Endoiastus Fowler (Endoiastinae), and Eunusa Conseca (Membracini).<br />

Dietrich et al. (2001a) also listed these pits as a synapomorphy for centrotines. Moreover,<br />

with the exception of the centrodontines, centrotines have a truncate clavus while R, M, and<br />

Cu forewing veins lack “extra” branches. The remaining apomorphies of the Centrotinae<br />

(Table 24.4) are not as reliable due to the limited number of outgroups presented and the<br />

homoplastic nature of these characters. These include r-m1 crossvein bent towards R vein in<br />

the forewing, cucullate setae on dorsal femur absent, and abdominal shape in cross-section<br />

nearly triangular.<br />

Additional apomorphies of Centrotinae listed by Dietrich et al. (2001a) were not<br />

retrieved in the present analyses. Although the initial division of R vein in the forewing as<br />

R1 and Rs and the presence of r-m1 crossvein are diagnostic centrotine characters, they appear<br />

to be plesiomorphic based on the outgroups used here. Of these however, only Microcentrus<br />

has R1 and Rs as the initial division of R vein in the forewing like most centrotines--this<br />

character state is ambiguous for the remaining outgroup taxa.<br />

The Centrotinae topology presented by Dietrich et al. (2001a: Fig. 10) roughly<br />

resembles the tree presented here (Fig. 24.1). In both analyses, the Boocerini, as defined<br />

here, and Tricentrus, are basal to the remaining centrotines. With the exceptions of the<br />

placements of Oxyrhachini and Gargarini in Dietrich et al. (2001a), the two phylogenies are<br />

very similar. The Nessorhinini and Platycentrini form a monophyletic group in both analyses<br />

357


and are the sister group to the Leptocentrini and Centrotini, two closely related tribes in both<br />

trees.<br />

In contrast to morphological studies, a molecular analysis of the Membracidae using<br />

nuclear genes did not consistently result in a monophyletic Centrotinae (Cryan et al. 2000a).<br />

The Centrodontinae (here considered a tribe within Centrotini) and Stegaspidinae often<br />

grouped with the Centrotinae into one of two major membracid lineages. In a combined<br />

analysis with EF-1" and 28S rDNA, the New <strong>World</strong> centrotines arose from the <strong>Old</strong> <strong>World</strong><br />

centrotines, contradictory to the results presented here. Moreover, many of the relevant<br />

nodes were not highly supported based on the molecular data (Cryan et al. 2000a).<br />

Suprahumeral horns are gained and lost numerous times in the Centrotinae. Although<br />

these pronotal horns are sometimes diagnostic at lower levels, they are rarely useful in<br />

defining tribes. This is not surprising considering the polymorphic nature of these horns in<br />

many species. Nevertheless, several centrotine genera have interesting modifications of the<br />

suprahumeral horns. For example, certain genera in the Centrotini (Euceropsila,<br />

Eumocentrulus, Eumonocentrus, Flatyperphyma, Foliatrotus, Mitranotus, Monocentrus, and<br />

Zanzia), Nessorhinini (Nessorhinus and Orekthophora), and Terentiini (Neosextius) have<br />

suprahumeral horns partially fused into a median anterior pronotal horn. These partially<br />

united horns appear to be an intermediate state between separate suprahumeral horns situated<br />

dorsolaterally on the pronotum (as in Centrotus) and a single median anterior pronotal horn<br />

(as in Micreune). Despite these modifications, the current phylogenetic analysis provides<br />

little to confirm this hypothesis. One would expect taxa with the intermediate state to be<br />

found basally on the phylogenetic tree with respect to taxa with a median anterior horn, but<br />

this apparently is never the case. This hypothesized intermediate state arose multiple times<br />

358


in the Centrotinae and even within the tribe Centrotini (Fig. 24.7), but no genera of the<br />

Centrotini have the fully developed median anterior horn. The terentiine genera Eutyronia,<br />

Bulbauchenia, Funkhouserella, and Pyrgonota have a median anterior horn but they are not<br />

closely related to Neosextius (Fig. 24.14). In constrast, the presence of a median anterior<br />

horn is a synapomorphy of the tribes Hypsaucheniini, Micreunini, and Leptobelini, and there<br />

is no evidence of the intermediate state.<br />

An exposed scutellum has long helped to distinguish centrotines from other<br />

membracids, however, Dietrich et al. (2001a) found this condition to be plesiomorphic for<br />

the subfamily. The present study supports this finding and indicates that pronotal<br />

concealment of the scutellum was independently derived in the tribes Centrodontini,<br />

Oxyrhachini, and most Nessorhinini, and also in Insitor (incertae sedis), Monobeloides<br />

(Monobelini), Bulbauchenia and Neosextius (Terentiini), and several gargarine genera<br />

(Cryptaspidia, Gargarina, Madlinus, Mesocentrina). The condition is polymorphic in<br />

Orthobelus (Nessorhinini), Centrotypus (Centrotypini), and Sextius (Terentiini).<br />

Centrotinae tribal relationships. Several suites of characters proved especially<br />

significant in determining centrotine phylogeny. Characters important in elucidating tribal<br />

relationships include the characteristics, especially shape, of the male style clasp; shape of<br />

the female second valvulae; forewing and hind wing characteristics; features of the<br />

scutellum; leg chaetotaxy; and abdominal characteristics.<br />

The centrotines are arranged in two major clades plus the basal tribe Centrodontini<br />

(Fig. 24.1). The New <strong>World</strong> subfamily Centrodontini is the first lineage of the Centrotinae<br />

(Figs. 24.1, 24.5). Thus, Centrodontinae is here considered a junior synonym of the<br />

Centrotinae. Cryan et al.’s (2000a) recent molecular analyses using nuclear data consistently<br />

359


placed centrodontines near centrotine genera in the phylogenetic tree and recovered the<br />

Centrodontini clade consistently with 98-100% bootstrap support. Nevertheless, the<br />

Centrodontini are here tentatively placed within the Centrotinae. Although the<br />

centrodontines have inornate pits, each with an associated lateral seta (the synapomorphy for<br />

the Centrotinae), they differ significantly from other centrotines in forewing venation and leg<br />

chaetotaxy. Relationships within the Centrodontini are well resolved (Fig. 24.5).<br />

Apparently, Nodonica, the only centrodontine found in South America, is the sister group to<br />

the North American centrodontines, differing significantly from the latter in leg chaetotaxy<br />

and features of the male and female genitalia. Character 113 (abdominal inornate pits with<br />

lateral setae) was coded as ambiguous (?) for Nodonica because a specimen was not<br />

examined, and it is appropriate to score this character with a high power dissecting scope or<br />

scanning electron microscope.<br />

The next higher clade following the Centrodontini (Figs. 24.1-24.2) contains genera<br />

most recently placed in the Abelini, Antialcidini, Boocerini, Coccosterphini, Gargarini,<br />

Platycentrini, Nessorhinini, Leptocentrini, Madlinini, and Tricentrini (Ananthasubramanian<br />

1996a, McKamey 1998a, and Yuan and Chou 2002a). Based on the present results, the<br />

existing classification is clearly unacceptable, with numerous polyphyletic and paraphyletic<br />

tribes, forcing the placement of many genera into different tribes and the creation of new taxa<br />

and new synonymies. In most of the genera of this clade, the male subgenital plate has a<br />

distinct division near the base.<br />

The new tribe Monobelini contains genera previously placed in Boocerini and<br />

Nessorhinini (both sensu McKamey 1998a) (Figs. 24.1-24.2). The tribe Monobelini is the<br />

basal lineage of this first major centrotine clade and is one of two tribes confined to the<br />

360


Caribbean Islands. Monobelus and Monobeloides both have extra cucullate setae at the distal<br />

end of the femur and are more similar morphologically to each other than to<br />

Brachycentrotus. Brachycentrotus, the sister group to Monobelus and Monobeloides, lacks<br />

extra cucullate setae at the end of the hind femur. The Abelini Goding, 1930a, and Boocerini<br />

Goding, 1892a (sensu McKamey 1998a, in part), together form a monophyletic group (Figs.<br />

24.1-24.2, 24.5), rendering Abelini a junior synonym of Boocerini. The boocerines are<br />

defined by the long ventral lobe of the male lateral plate. A similar relationship, with Bremer<br />

support of 2, was recovered in the morphological analysis of Dietrich et al (2001a).<br />

However, phylogenetic analyses using nuclear data (Cryan et al. 2000a) did not result in a<br />

monophyletic Abelini and Boocerini sensu McKamey (1998a). Although generic<br />

relationships are well resolved, the strict consensus tree (Fig. 24.5) of the Boocerini indicates<br />

a basal polytomy. This lack of resolution may be due to missing data, because no males of<br />

Centriculus were available. Amblycentrus and Brachybelus, a monophyletic group, differ<br />

from other boocerines in hind wing venation, features of the male genitalia, and leg<br />

chaetotaxy.<br />

The monophyletic group of genera forming a sister group to the Boocerini (Fig. 24.1)<br />

includes a large number of tribes under the existing classification (Ananthasubramanian<br />

1996a, McKamey 1998a, and Yuan and Chou 2002a), but with the exceptions of the<br />

monotypic tribes Aleptocentrini and Madlinini, none of these are monophyletic (Figs 24.1-<br />

24.2). Therefore, based on the phylogenetic analyses (Figs. 24.1-24.2, 24.10), five tribes--<br />

Antialcidini Yuan and Zhang, in Yuan and Chou, 2002a; Aleptocentrini Thirumalai and<br />

Ananthasubramanian, 1985a; Madlinini Boulard, 1995d; Tricentrini Ahmad and Yasmeen,<br />

1972a; and Coccosterphini <strong>Distant</strong>, <strong>1908</strong>g--are all junior synonyms of Gargarini <strong>Distant</strong>,<br />

361


<strong>1908</strong>g. Molecular analyses of the Membracidae (Cryan et al. 2000a) consistently resulted in<br />

a monophyletic relationship between Gargara and Tricentrus with high bootstrap support. In<br />

contrast, Dietrich et al.’s (2001a) morphological analysis did not produce a monophyletic<br />

Gargara and Tricentrus. A UPGMA analysis including the remaining genera placed in the<br />

Gargarini (Fig. 24.16) also produced a single gargarine group based on overall similarity.<br />

Many of the generic relationships of the Gargarini are still unresolved (Fig. 24.10).<br />

Three morphologically distinct gargarines, however, Aleptocentrus, Yasa, and Parayasa, are<br />

consistently positioned at the base of the tree. The Gargarini, although morphologically<br />

heterogenous in some features, are united based on the expanding frontoclypeus, by the<br />

posterior process appressed against the scutellum, and the shortened scutellum (Figs. 24.1-<br />

24.2, 24.10). In the hind wing, R4+5 and M1+2 veins are fused (3 apical cells) in all genera<br />

except Aleptocentrus and Yasa. The Gargarini include the two largest centrotine genera,<br />

Tricentrus with 223 species, and Gargara with 184 (McKamey 1998a). Primarily distributed<br />

in the Indomalayan and Palearctic regions, the Gargarini are the descendants of one of the<br />

two major invasions of centrotines from the New <strong>World</strong> to the <strong>Old</strong> <strong>World</strong>. See the<br />

“Biogeography” chapter for a more detailed discussion of this dispersal.<br />

The next major clade accounts for most of the centrotine diversity at the tribal and<br />

generic levels. Similar to the other major clade, many of the tribes based on McKamey<br />

(1998a) and Yuan and Chou (2002a) are para- or polyphyletic resulting in new synonymies<br />

and the reassignment of genera. Furthermore, the recognition of several monotypic tribes is<br />

supported from the analysis in this major clade. The Centrocharesini, Oxyrhachini,<br />

Leptobelini, Ebhuloidesini, and Micreunini all have strong support based on convincing<br />

synapomorphies justifying their retainment as tribes (see the relevant tribal descriptions).<br />

362


As in its sister clade, the basal lineage of this second large assembly of tribes is a<br />

New <strong>World</strong> clade. The phylogenetic analyses agree with the recent placement of the<br />

Nessorhinini (formerly a subfamily) as a tribe within Centrotinae (Dietrich et al. 2001a).<br />

Furthermore, Callicentrus and Nessorhinus were monophyletic in the molecular phylogenetic<br />

analysis of the Membracidae using two nuclear genes (Cryan et al. 2000). Here, the<br />

nessorhinines (sensu McKamey 1998a) are polyphyletic (Fig. 24.1-24.2), with several genera<br />

formerly placed in the Platycentrini and Boocerini forming a monophyletic group with the<br />

type genus Nessorhinus and several other genera previously placed in the Nessorhinini (Fig.<br />

24.3). All of these genera, along with the Monobelini, are restricted to the Caribbean Islands.<br />

The internal phylogeny of the Nessorhinini is well resolved (Fig. 24.3) and is split<br />

into two groups. A morphologically homogenous group is represented by Nessorhinus and<br />

Goniolomus while a more heterogenous group is represented by Callicentrus and Orthobelus<br />

(Figs. 24.1, 24.3). These two groups differ in forewing characteristics and shape of the male<br />

and female genitalia. Despite the two clades, all nessorhines have anterior dorsal swellings<br />

on the abdomen and long blade-shaped female second valvulae with large dorsal teeth. A<br />

UPGMA analysis (Fig. 24.17) including the genus Spathenotus resulted in the same two<br />

groupings. The Platycentrini sensu McKamey (1998a) are also polyphyletic but Platycentrus<br />

and Tylocentrus (Fig. 24.3) form a monophyletic group supported by the shape of the female<br />

ovipositor, and are the sister group to the Nessorhinini. This grouping of Platycentrus and<br />

Tylocentrus is also supported by molecular phylogenetic analysis (Cryan et al. 2000a). The<br />

Pieltainellini, a new tribe proposed to accommodate elements of the Boocerini sensu<br />

McKamey (1998a), are found in Mexico and are the sister group to a majority of the <strong>Old</strong><br />

<strong>World</strong> centrotines.<br />

363


The first <strong>Old</strong> <strong>World</strong> lineage in the second major centrotine clade are a group of<br />

genera formerly placed in the Leptocentrini sensu McKamey (1998a) (Fig. 24.2), here<br />

considered polyphyletic. This group of genera form the Beaufortianini (Figs. 24.2-24.3), a<br />

new tribe based on the phylogenetic analysis. Imporcitor, distributed in the Palearctic and<br />

Indomalayan Regions, is basal to Centrolobus, Centruchus, Beaufortiana, Mabokiana, and<br />

Dukeobelus, a clade primarily distributed in the <strong>Afrotropical</strong> Region but with a few<br />

Indomalayan and Palearctic components. Beaufortianines have a long dorsoapical lobe on<br />

the male lateral plate, although the lobe is lost in the genus Centruchus. Many of the<br />

characters of this group are intermediate between features found in the New <strong>World</strong> tribes and<br />

a majority of the <strong>Old</strong> <strong>World</strong> centrotines. A UPGMA analysis (Fig. 24.16) that included the<br />

genus Centrotusoides grouped the beaufortianines together based on overall similarity.<br />

A substantial clade of genera including the Centrocharesini, Ebhuloidesini,<br />

Oxyrhachini, Hypsaucheninii, and the Terentiini (Fig. 24.1) all lack mesothoracic ab- and<br />

adlateral cucullate setae on the femur, and with the exception of the Centrocharesini, they all<br />

have a reduced number (0 or 1) of cucullate setae on the first metathoracic tarsomere. The<br />

Centrocharesini is a highly derived tribe with numerous autapomorphies, including acute<br />

projections on the pronotum and abdomen, and foliaceous tibiae. The monophyly of the<br />

clade Oxyrhachini + Ebhuloidesini + Hypsaucheniini is strongly supported by a number of<br />

characters. The female second valvulae are all short and broad with an undulating dorsal<br />

margin, the male style clasp is cylindrical in most genera, they lack metathoracic ab- and<br />

adlateral cucullate setae on the hind femur, and their mesopleural lobes are enlarged.<br />

The tribe Ebhuloidesini Goding, 1931a, senior synonym of Ebhulini Yuan, in Yuan<br />

and Chou 2002a, consists of only its nominative genus Ebhul. Sister group to the<br />

364


Oxyrhachini + Hypsaucheniini (Fig. 24.1), this tribe has the first division of R vein in the<br />

forewing as R1+2+3 and R4+5 rather than R1 and Rs. The Ebhuloidesini are a distinct lineage in<br />

the phylogenetic analysis (Fig. 24.1), supporting Yuan and Chou’s (2002a) findings. The<br />

placement of Oxyrhachini as a monotypic tribe within the Centrotinae is consistent with the<br />

findings of Dietrich et al. (2001a) (Fig 24.1). Oxyrhachines have paired dorsal swellings on<br />

the abdomen that are larger on the posterior segments and have Cu1 vein abutting the clavus<br />

in the forewing, not the marginal vein. Several Oxyrhachis species, representatives of<br />

generic synonyms of Oxyrhachis, form a monophyletic group (Fig. 24.12) in the analysis,<br />

partly justifying these synonymies.<br />

The Hypsaucheniini, as defined here, are monophyletic in the phylogenetic analysis,<br />

and largely correspond to McKamey’s (1998a) catalog with the exception of Pyrgonota, here<br />

placed in the Terentiini. Yuan and Chou (2002a) placed the genus Hybandoides in the<br />

Funkhouserellini (here a synonym of Terentiini) but here it is referred back to the<br />

Hypsaucheniini (McKamey 1998a). All hypsaucheniines have a median anterior pronotal<br />

horn. With the exception of Gigantorhabdus, hypsaucheniines have an anomalous<br />

longitudinal vein in the forewing that may represent a distinct branch of R vein. The generic<br />

relationships of the Hypsaucheniini are largely unresolved (Fig. 24.12) with the exception of<br />

the clade including Hybanda, Gigantorhabdus, and Pyrgauchenia. This group of genera has<br />

conelike projections on the female third valvulae and have the m-cu3 crossvein in the<br />

forewing basad of the fork of M vein.<br />

Bulbaucheniini Goding, 1931a, and Funkhouserellini Yuan and Zhang, in Yuan and<br />

Chou 2002a, are junior synonyms of Terentiini Haupt, 1929c, based on the phylogenetic<br />

analysis (Figs. 24.1-24.2, 24.14). The type genera of the two former tribes form a<br />

365


monophyletic group with Terentius (Figs. 24.1, 24.14). Other genera here placed in<br />

Terentiini were previously incertae sedis or placed in the tribes Centrotypini or<br />

Leptocentrini, which in the sense of McKamey (1998a) are here considered polyphyletic<br />

(Fig. 24.2). The Terentiini, as defined here, form a sister group to the Ebhuloidesini +<br />

Oxyrhachini + Hypsaucheniini (Fig. 24.1). The Australasian genera Eufairmairia, Ceraon,<br />

and Sextius were a monophyletic group in a molecular analysis of the Membracidae (Cryan et<br />

al. 2000a). A UPGMA analysis (Fig. 24.17) grouped all of the genera here listed within<br />

Terentiini together based on morphological similarity. Day’s (1999a) WPGMA analysis<br />

grouped the Australian membracids into 3 clusters plus the genus Goddefroyinella. Many of<br />

the genera from the present UPGMA analysis cluster in a similar manner.<br />

Terentiines have the posterior pronotal process appressed against the scutellum and<br />

all males have a quadrate style clasp, a unique clasp shape among all centrotines. Although<br />

many of the the basal relationships of the Terentiini are unresolved (Fig. 24.14), some<br />

terminal generic relationships are well defined. Anzac, Neosextius, Goddefroyinella, and<br />

Sextius are a closely related group of genera with reticulate wing venation. Cebes, Sarantus,<br />

and Ceraon all have the first division of R vein as R1+2+3 and R4+5 rather than R1 and Rs in the<br />

forewing and lack cucullate setae in row I of the metathoracic tibia. The inornate abdominal<br />

pits of Bulbauchenia, Funkhouserella, and Pyrgonota are not distinct and the apex of their<br />

male style clasp is acuminate.<br />

The next large monophyletic clade contains the tribes (as defined here) Boccharini,<br />

Leptobelini, Choucentrini, Leptocentrini, Lobocentrini, Xiphopoeini, Micreunini,<br />

Centrotypini, and Centrotini. With the exception of some Centrotini genera, all the members<br />

366


of this clade have indistinct abdominal acanthae with their bases not significantly heightened.<br />

All of these tribes, in addition, except the Lobocentrini, have membranous male style clasps.<br />

Four genera previously placed in the Leptocentrini sensu McKamey (1998a) (Fig.<br />

24.2), form the new tribe Lobocentrini. Three of these genera, Lobocentrus, Arcuatocornum,<br />

and Truncatocornum, form a monophyletic group in the phylogenetic analysis (Fig. 24.1-<br />

24.2) and Amphilobocentrus grouped with these genera based on morphological similarity in<br />

a UPGMA analysis (Fig. 24.17). Lobocentrines have numerous cucullate setae, arranged<br />

irregularly, in row II of the metathoracic tibia and have a dorsoventrally oriented male style<br />

clasp that is rounded with an acuminate projection. Elaphiceps and Tyrannotus, here placed<br />

Centrotinae, incertae sedis, form a monophyletic assemblage with the Lobocentrini (Figs.<br />

24.1-24.2) because their clasps are similar, but are not included in the Lobocentrini because<br />

they differ significantly in leg chaetotaxy and features of the female genitalia.<br />

The new tribe Boccharini consists of two genera, Bocchar and Lanceonotus, formerly<br />

of Leptocentrini sensu McKamey (1998a) (Fig. 24.2). The monophyly of the Boccarhini<br />

(Figs. 24.1-24.2) is supported by a unique male clasp that is elliptical or circular with a<br />

preapical ventral extension. The sister group of the Boccharini is composed of a large<br />

number of genera (8 tribes), all with ab- and adlateral cucullate setae on the metathoracic<br />

femur. The Leptobelini, a monotypic tribe (Figs. 24.1-24.2), are a distinct lineage with a<br />

cucullate setal row on the mesothoracic tibia and an acuminate scutellum. Choucentrus,<br />

Evanchon, and Dograna comprise the Choucentrini, a monophyletic assemblage (Fig. 24.9)<br />

of centrotines lacking crossvein s in the forewing. They are closely related to the Maarbarini,<br />

a new tribe consisting of genera formerly incertae sedis or placed in the Centrotini,<br />

Centrotypini, or Leptocentrini (Fig. 24.2). Males of Dograna (no other choucentrine males<br />

367


were examined) and the Maarbarini have a triangular style clasp with a basal thickening.<br />

Most maarbarines have a long acuminate scutellum and parallel, curving longitudinal veins<br />

in the forewing. The phylogeny of this monophyletic group of genera (Figs. 24.1-24.2, 24.9)<br />

is well resolved. The most basal genus, Telingana, differs from other maarbarines in<br />

scutellar characteristics and forewing venation.<br />

Members of the tribes Leptocentrini, Xiphopoeini, Micreunini, Centrotypini, and<br />

Centrotini, as defined here, have: a scutellum that extends only slightly beyond the thorax,<br />

metathoracic tibia with cucullate setal row II double or irregular in most genera, abdominal<br />

tergal borders not modified into irregular ridges, and the abdominal setal bases are usually<br />

enlarged. Indeed, previous molecular (Cryan et al. 2000a) and morphological analyses<br />

(Dietrich et al. 2001a) of the Membracidae also indicated a close relationship between the<br />

Leptocentrini and Centrotini.<br />

As mentioned previously, Leptocentrini sensu McKamey (1998a) is polyphyletic in<br />

the present analysis (Fig. 24.2). The Leptocentrini defined here, however, are a<br />

monophyletic group of genera (Figs. 24.1-24.2, 24.9). Included in this tribe is the genus<br />

Demanga, type genus of the Demangini Yuan and Zhang, in Yuan and Chou, 2002a, here<br />

considered a junior synonym of the Leptocentrini <strong>Distant</strong>, <strong>1908</strong>g. The UPGMA analysis<br />

(Fig. 24.17) produced a single leptocentrine group based on overall morphological similarity.<br />

Leptocentrines have a triangular style clasp (except Periaman) and broadened second<br />

valvulae.<br />

Members of the monophyletic group of tribes including the Xiphopoeini, Micreunini,<br />

Centrotypini, and Centrotini, all have elliptical or circular male style clasps. The<br />

Xiphopoeini, found only in the <strong>Afrotropical</strong> Region, are a monophyletic group (Fig. 24.7),<br />

368


characterized by the presence of toothlike projections on the lower margin of the vertex and<br />

enlarged setal bases dispersed on the abdominal terga. The Micreunini, a monotypic tribe<br />

(Fig. 24.1), have a long median anterior pronotal horn with suprahumeral horns at its tip.<br />

The Centrotypini, a polyphyletic group sensu McKamey (1998a), consists here of two<br />

genera, Centrotypus and Emphusis. Their monophyly is supported by rounded or blunt<br />

scutellar apices, a condition unique to this tribe.<br />

The Centrotini is the largest tribe in the subfamily Centrotinae in terms of genera,<br />

with 47. It is monophyletic, as defined here, based on phylogenetic analyses of selected<br />

genera (Figs. 24.1, 24.7). The UPGMA analysis of all genera of Centrotini resulted in a<br />

single group. The phylogenetic tree of the tribe (Fig. 24.7) is fairly well resolved.<br />

Predominantly <strong>Afrotropical</strong>, the Centrotini are characterized by their reduced hind wing<br />

venation where R4+5 and M1+2 veins are fused (3 apical cells). Furthermore, many members<br />

of the tribe have R1 vein represented by a pterostigma in the forewing and many lack distinct<br />

frontoclypeal lobes. Centrotus, the type genus, is somewhat enigmatic in its morphology.<br />

Occupying a basal position in the phylogenetic tree (Fig. 24.7), its frontoclypeal lobes are<br />

distinct and it lacks a pterostigma on the forewing.<br />

Summary<br />

An overall phylogenetic analysis of the subfamily Centrotinae using 116<br />

morphological characters resulted in a single most parsimonious tree showing numerous<br />

poly- or paraphyletic tribes as delimited by existing classifications (Ananthasubramanian<br />

1996a, McKamey 1998a, and Yuan and Chou 2002a). Based on this overall analysis, 11<br />

tribal synonymies and 1 subfamily synonymy are proposed, 6 new tribes are described, and<br />

369


the included genera are placed into a total of 23 centrotine monophyletic tribes (see tribal<br />

descriptions). Tribal relationships were supported with many character changes. The<br />

subfamily Centrotinae is a monophyletic group supported by the synapomorphy of the<br />

presence of abdominal inornate pits, each with a lateral seta. The phylogenetic analysis of<br />

the subfamily resulted in two major clades, each with New <strong>World</strong> and <strong>Old</strong> <strong>World</strong><br />

components, plus the New <strong>World</strong> tribe Centrodontini.<br />

Apparently, centrotines invaded the <strong>Old</strong> <strong>World</strong> twice (Fig. 24.1). One invasion<br />

included the ancestors of the tribe Gargarini while the other invasion included the ancestors<br />

of the remaining <strong>Old</strong> <strong>World</strong> centrotine tribes. Characters important in elucidating tribal<br />

relationships include features of the male and female genitalia, the wings, the scutellum, the<br />

abdomen; and leg chaetotaxy.<br />

A significant number of the 216 known centrotine genera are poorly represented in<br />

collections--some being known from only one sex or even a single specimen. Here, all but 9<br />

genera were placed in tribes supported by quantitative phylogenetic analyses of<br />

morphological features, or in cases where data were limited, on phenetic overall similarity.<br />

370


Table 24.1. Character list.<br />

Head:<br />

1. Width: (1) less than distance between humeral angles of pronotum; (2) greater than or equal to distance<br />

between humeral angles of pronotum.<br />

2. Frontoclypeus: (1) without median longitudinal carina; (2) with median longitudinal carina.<br />

3. Frontoclypeal lobes: (1) indistinct (Fig. 0.1 C); (2) distinct (Fig. 0.1 D).<br />

4. Frontoclypeal lobes: (1) not extending to apex of frontoclypeus (Fig. 0.1 D); (2) extending to near apex of<br />

frontoclypeus (Fig. 0.1 C).<br />

5. Frontoclypeal margins: (1) distinctly converging (Fig. 4.1 C); (2) parallel or converging only slightly<br />

ventrally (Fig. 0.1 D); (3) broadly expanding towards apex (Fig. 10.4 G); (4) abruptly expanding near<br />

apex ( Fig. 11.2 B).<br />

6. Ocelli: (1) closer to eyes than each other (Fig. 18.2 F); (2) about equidistant from each other and eyes (Fig.<br />

0.1 C).<br />

7. Vertex: (1) without multiple toothlike projections on lower margins (Fig. 0.1 D); (2) with multiple toothlike<br />

projections on lower margins (Figs 23.1 E-F).<br />

Pronotum/Scutellum<br />

8. Posterior pronotal process: (1) lacking (Fig. 3.1 A); (2) produced posteriorly (Fig. 3.1 C). [Coding state 1<br />

makes character #’s 9-12, and 14 inapplicable.]<br />

9. Posterior process: (1) not originating from median anterior horn (not significantly raised above scutellum)<br />

(Fig. 0.1 A); (2) originating from median anterior horn (significantly raised above scutellum) (Fig. 0.11<br />

A).<br />

10. Posterior process: (1) not significantly extending past m-cu3 crossvein in forewing (Fig. 1.1 A); (2)<br />

significantly extending past m-cu3 crossvein (Fig. 1.1 D).<br />

11. Posterior process (shape at base): (1) straight (Fig. 1.1 A); (2) curved dorsally (Fig. 1.1 B).<br />

12. Posterior process (contact with scutellum): (1) not appressed against scutellum (Fig. 0.1 A); (2) appressed<br />

against scutellum (for the entire length of the scutellum) (Fig. 0.1 B).<br />

371


Table 24.1 cont’d.<br />

13. Posterior process (dorsolateral concealment of scutellum by posterior process): (1) both lateral scutellar<br />

apices or median acuminate point clearly visible from dorsolateral view (Fig. 0.2 E); (2) 1 lateral apex<br />

clearly visible from dorsolateral view (Fig. 0.1 B).<br />

14. Extent of posterior pronotal process relative to scutellum: (1) extended over but not completely concealing<br />

scutellum (Fig. 0.3 A); (2) polymorphic; (3) completely concealing scutellum (Fig. 0.3 C). [Character<br />

state #2 is here considered an intermediate state between states #1 and #3. In the genus Sextius<br />

(Terentiini), for example, some specimens in the same species have the scutellum concealed, while in<br />

others it is visible. Coding state 2 makes character #13 inapplicable.]<br />

15. Suprahumeral horns: (1) absent (Fig. 1.1 M); (2) polymorphic; (3) present at base of pronotum (Fig. 1.1 K);<br />

(4) present but partially fused into a median anterior horn (Figs. 6.5 D-E, G); (5) present on tip of<br />

median anterior horn (Fig. 16.1 B). [The bifurcate process at the tip of the median anterior horn in<br />

some treehoppers, for example in many Hypsaucheniini, is here considered homologous to<br />

suprahumeral horns (character state #5); see discussions within phylogenetic analysis for<br />

morphological progression of this character.]<br />

16. Acute pronotal projections or spines: (1) absent (Fig. 0.1 B); (2) present (Figs. 23.1 B, D; Figs. 4.2 I-J).<br />

[Acute projections, or spines, on the pronotum, here considered homologous, have been derived<br />

independently in Centrocharesini, Xiphopoeini, several Centrotini (Anchonobelus, Anchonastes,<br />

Anchonomonoides, Barsumas, Barsumoides, Eumocentrulus, Flatyperphyma, Hamma, Mitranotus),<br />

several gargarines (Madlinus, Eucoccosterphus, Coccosterphus), and the genera Daimon, Jingkara,<br />

and Maguva. With the exception of Daimon, the presence of pronotal spines is confined to <strong>Old</strong> <strong>World</strong><br />

centrotines.]<br />

17. Median anterior pronotal horn: (1) absent; (2) present (Fig. 16.1 B).<br />

18. Scutellar keel: (1) present; (2) absent.<br />

<strong>19.</strong> Scutellar posterior margin (if visible): (1) acuminate (always exposed, and without median groove (Fig. 0.2<br />

E); (2) emarginate (notched) (Fig. 0.3 B); (3) acuminate with posterior medial groove . [Coding state 1<br />

or 3 makes character #20 inapplicable.]<br />

372


Table 24.1 cont’d.<br />

20. Scutellar apices (posterior margin notched): (1) acute (Fig. 0.3 B); (2) rounded or blunt (Fig. 0.2 B).<br />

21. Scutellum length (viewed ventrally, with abdomen removed): (1) not shortened--full notch or acuminate<br />

point visible (Figs. 0.2 A-B); (2) shortened, at most apices visible (Figs. 0.2 C-D)<br />

22. Scutellar extension: (1) only slightly extending past thorax (Fig. 0.3 A); (2) posterior half of scutellum<br />

Pleuron<br />

extending past thorax (Fig. 0.2 E).<br />

23. Propleural lobe: (1) absent; (2) present (Fig. 0.3 D).<br />

24. Mesopleural lobe: (1) not enlarged; (2) enlarged (Fig. 0.3 D). [In centrotines the mesopleural lobe is<br />

Forewing<br />

consistently present, but is substantially enlarged in some.]<br />

25. Clavus: (1) acuminate (Fig. 5.2 E); (2) truncate (Fig. 0.4 A).<br />

26. Pigmentation of wing: (1) mostly hyaline (Fig. 0.1 A); (2) mostly translucent with darker areas (Fig. 11.1 A-<br />

B).<br />

27. Apical limbus: (1) narrow (Fig. 5.2 A); (2) broad (Fig. 0.4 A).<br />

28. Degree that wing (in repose) is concealed by posterior process: (1) not concealed (Fig. 0.1 A); (2) wing<br />

partially concealed.<br />

29. Ratio of wing width to length: (1) < 0.30 (Fig. 11.1 H); (2) 0.30 > 0.40 (Fig. 0.4 A); (3) ≥ 0.40 (Fig. 10.6<br />

A).<br />

30. M and Cu (number of branches): (1) 3 veins reaching marginal vein (i.e., M 2-branched, Cu unbranched)<br />

(Fig. 0.4 A); (2) with 4 branches reaching marginal vein (M apparently 3-branched) (Fig. 2 D of<br />

Dietrich et al. 2001a); (3) with 5 or more branches reaching marginal vein.<br />

31. Crossvein s: (1) present (Fig. 0.4 A); (2) absent (Fig. 8.1 G). [Coding state 2 makes character #32<br />

inapplicable.]<br />

373


Table 24.1 cont’d.<br />

32. Position of s-crossvein relative to r-m2 crossvein: (1) distad (Fig. 0.4 A); (2) directly dorsal to or very close<br />

to r-m2 crossvein (Fig. 7.1 G).<br />

33. Vein R (number of branches): (1) with 3 or fewer branches reaching marginal vein (Fig. 0.4 A); (2) with 4<br />

branches reaching marginal vein (Fig. 2 D of Dietrich et al. 2001a); (3) with 5 or more branches<br />

reaching marginal vein.<br />

34. Vein R initial division: (1) R1 and RS (Fig. 0.4 A); (2) R1+2+3 and R4+5 (Fig. 9.1 D).<br />

35. Cu1 vein: (1) distally abutting clavus (Fig. 0.4 A); (2) distally abutting marginal vein (Fig. 1.2 I).<br />

36. Crossvein r-m1: (1) present (Fig. 0.4 A); (2) absent. [Coding state 2 makes character #’s 49 and 50<br />

inapplicable.]<br />

37. Crossvein m-cu1: (1) present on at least one wing (Fig. 0.4 A); (2) absent. [This crossvein, as well as m-cu2<br />

crossvein, is sometimes only found on either the right or left wing.]<br />

38. Crossvein m-cu2: (1) present in at least one wing (Fig. 0.4 A); (2) absent. [This crossvein, usually closely<br />

associated with crossvein r-m1 in centrotines, is equivalent to “m-cu1 crossvein” of Dietrich et al.<br />

2001a.]<br />

39. Position of m-cu3 crossvein: (1) distad of fork of vein M (Fig. 0.4 A); (2) basad of fork of vein M (Fig. 10.8<br />

I). [This crossvein is equivalent to “m-cu2 crossvein” of Dietrich et al. 2001a.]<br />

40. M and Cu veins: (1) fused, often for considerable distance (Fig. 2.1 H); (2) adjacent with distinct line<br />

between veins (Fig. 0.4 A); (3) separate (Fig. 7.1 G).<br />

41. R and M veins (apical fusion): (1) not confluent preapically (Fig. 0.4 A); (2) R4+5 confluent with M distad of<br />

its fork (Fig. 4.1 D). [Coding state 2 makes character #32 inapplicable because r-m2 crossvein is<br />

absent when R and M veins are confluent].<br />

42. Additional r-m crossveins: (1) present (Fig. 11.3 C); (2) absent.<br />

43. Anomalous basal r-m crossvein: (1) absent; (2) present (Fig. 11.3 C).<br />

44. Reticulate venation: (1) absent; (2) present (Fig. 5.2 A).<br />

45. Pterostigma: (1) absent (Fig. 0.4 A); (2) present (Fig. 4.1 D). [Coding state 1 makes character #46<br />

inapplicable.]<br />

374


Table 24.1 cont’d.<br />

46. Pterostigma placement: (1) at or near R1 (Fig. 4.1 D); (2) distad of R1 (marginal vein often ambiguous) (Fig.<br />

10.8 F).<br />

47. R1 vein represented by large pterostigma: (1) absent; (2) present (Fig. 0.4 A). [Coding state #2 makes<br />

character #48 inapplicable because R1 vein is not visible.]<br />

48. R1 vein: (1) parallel for considerable distance with longitudinal veins (Fig. 15.2 G); (2) weakly bent towards<br />

marginal vein (Fig. 0.4 A); (3) perpendicular to marginal vein (Fig. 3.4 A).<br />

49. Origin of r-m1 crossvein: (1) arising before initial division of R vein (Fig. 0.4 A); (2) arising near or distad<br />

of initial division of R vein in at least one wing (Fig. 7.1 G).<br />

50. Shape of r-m1 crossvein: (1) bent towards R vein (Fig. 10.5 F); (2) parallel to longitudinal veins (Fig. 1.2 I);<br />

(3) bent nearly to a right angle (Fig. 11.3 C).<br />

51. Longitudinal veins: (1) strongly curving together in unison apically (Fig. 15.3 E); (2) not strongly curving<br />

together in unison apically (Fig. 0.4 A).<br />

52. Longitudinal veins: (1) not parallel apically (Fig. 8.1 G); (2) parallel apically (Fig. 13.4 A).<br />

53. Relative length of discoidal cells: (1) not similar in length (Fig. 1.2 I); (2) similar in length (Fig. 10.5 F).<br />

54. R4+5 vein shape prior to s: (1) not significantly angled (Fig. 0.4 A); (2) significantly angled (Fig. 10.5 F).<br />

55. Base of R2+3 and R4+5 veins: (1) truncate (Fig. 0.4 A); (2) polymorphic; (3) acute (Fig. 10.5 F).<br />

Hind wing<br />

56. Veins: (1) R4+5 and M1+2 veins not fused (4 apical cells) (Fig. 0.4 C); (2) R4+5 and M1+2 vein fused for short<br />

Legs<br />

distance basally (4 apical cells) (Fig. 5.2 F); (3) R4+5 and M1+2 veins free near apex (4 apical cells) (Fig.<br />

4.1 E); (4) r-m and m-cu crossveins absent (2 apical cells); (5) R4+5 and M1+2 veins fused (3 apical<br />

cells)(Fig. 0.4 B); (6) R4+5 vein apparently absent (2 apical cells) (Fig. 3.3 F); (7) polymorphic (genus<br />

Oxyrhachis only). [State #7 is polymorphic between #1 and #5.]<br />

57. Front, middle, and hind tibia shape: (1) not foliaceous (Fig. 0.6 A); (2) foliaceous (Fig. 0.7 A).<br />

375


Table 24.1 cont’d.<br />

58. Prothoracic femur ablateral and adlateral cucullate setae: (1) absent; (2) present.<br />

59. Mesothoracic tibia with longitudinal row(s) of cucullate setae: (1) absent; (2) present (Fig. 3.4 H).<br />

60. Mesothoracic femur ablateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B).<br />

61. Mesothoracic femur adlateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B). [Coding state 1 makes<br />

character #62 inapplicable.]<br />

62. Mesothoracic leg femur adlateral cucullate setae: (1) apical (Fig. 0.7 B); (2) preapical.<br />

Metathoracic leg<br />

63. Ventral setal bases of coxa: (1) small and raised or nearly flat with little or no projection; (2) enlarged,<br />

raised, and often spinelike.<br />

64. Ventral setal bases of trochanter: (1) small and raised or nearly flat with little or no projection (Fig. 0.6 A);<br />

(2) enlarged, raised, and often spinelike; (3) very large spines (Fig. 0.6 D).<br />

65. Ventral setal bases of femur: (1) small and raised or nearly flat with little or no projection (Fig. 0.6 A); (2)<br />

enlarged, raised, and often spinelike (Fig. 0.6 D).<br />

66. Cucullate setae on dorsal femur: (1) absent; (2) present (Fig. 17.3 A). [Coding state 1 makes character #67<br />

inapplicable.]<br />

67. Cucullate setae position on dorsal femur: (1) apical (Fig. 17.3 A); (2) in a longitudinal row; (3) scattered.<br />

68. Femur ablateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B). [Coding state 1 makes character #69<br />

inapplicable.]<br />

69. Femur ablateral cucullate setae position: (1) apical (Fig. 0.7 B); (2) preapical.<br />

70. Femur adlateral cucullate setae: (1) absent; (2) present (Fig. 0.7 B-C). [Coding state 1 makes character #71<br />

inapplicable.]<br />

71. Femur adlateral cucullate setae position: (1) apical (Fig. 0.7 B); (2) preapical (Fig. 14.2 A).<br />

72. Femur ablateral ventrolateral cucullate setae in male: (1) absent; (2) polymorphic; (3) present.<br />

73. Femur ablateral ventrolateral cucullate setae in female: (1) absent; (2) polymorphic; (3) present (Fig. 17.3<br />

A).<br />

376


Table 24.1 cont’d.<br />

74. Tarsomere I apical cucullate setae: (1) absent (Fig. <strong>19.</strong>2 B); (2) 1 seta (Fig. 0.7 E, Fig. 11.4 F); (3) 2 or more<br />

setae (Fig. 0.7 D, Fig. 2.1 J).<br />

75. Tibia setal row I: (1) non-cucullate (Fig. 22.12 B, Fig. 0.6 C, Fig. 0.7 A); (2) cucullate (Fig. 0.5 A-C).<br />

76. Tibia setal row II: (1) non-cucullate (Fig. 0.7 A); (2) cucullate (Figs. 0.6 A-B). [Coding state 1 makes<br />

character #77 inapplicable.]<br />

77. Tibia setal row II: (1) mostly single row (Fig. 0.6 A); (2) polymorphic; (3) irregular or double row (Fig. 0.6<br />

B).<br />

78. Tibia setal row III: (1) cucullate (Fig. 0.5 A); (2) non-cucullate.<br />

Abdomen<br />

79. Shape (cross-section): (1) dorsoventrally flattened; (2) nearly triangular.<br />

80. Sternum III and/or IV transverse carina: (1) absent; (2) present (Fig. 6A of Dietrich et al. 2001a).<br />

81. Sternum longitudinal median carina: (1) absent; (2) polymorphic; (3) present on at least one segment (Fig.<br />

0.8 B).<br />

82. Number of inornate pits along side of abdominal segments: (1) 3 or fewer per segment (Fig. 5.4 G); (2) 4 or<br />

more per segment (Fig. 0.8 E).<br />

83. Paired dorsal swellings or remnants of swellings: (1) absent (Fig. 0.8 E); (2) larger anteriorly (Fig. 0.8 C);<br />

(3) larger posteriorly (Fig. 0.8 D).<br />

84. Enlarged setal bases: (1) absent; (2) present (Figs. 0.8 A, E; Fig. 10.17 D). [Coding state 1 makes character<br />

#85 inapplicable.]<br />

85. Enlarged setal bases position: (1) only on tergal borders (Fig. 0.8 E, Fig. 10.17 D); (2) extending to tergal<br />

segment, sparse; (3) extending to tergal segment, numerous (Fig. 0.8 A).<br />

86. Tergum III ventrolateral margin: (1) carinate (Fig. 5 A of Dietrich et al. 2001a); (2) shelflike (Fig. 5 B of<br />

Dietrich et al. 2001a); (3) upcurved groove (Fig. 5 C of Dietrich et al. 2001a).<br />

87. Tergal borders: (1) not extensively modified (Fig. 0.8 E); (2) modified into irregular ridges (Fig. 0.3 A).<br />

377


Table 24.1 cont’d.<br />

Female<br />

88. Second valvulae shape: (1) significant broadening absent (Fig. 5.3 A); (2) short and broad with undulation<br />

on dorsal margin (Fig. 11.5); (3) abrupt slight broadening (Fig. 22.13 A); (4) gradual broadening (Fig.<br />

22.13 C); (5) broad throughout with very slight increase and decrease after midpoint (Fig. 21.2 C-F).<br />

[Coding states 1 or 2 makes character #’s 89 and 90 inapplicable.]<br />

89. Second valvulae shape (broadening): (1) widest before or near midpoint (Fig. 22.13 C); (2) widest past<br />

midpoint (Fig. 4.2 A).<br />

90. Second valvulae dorsal margin: (1) tapering evenly after broadening (Fig. 0.9 D); (2) tapering unevenly<br />

after broadening (Fig. 22.13 A).<br />

91. Second valvulae width near base: (1) narrow (Fig. 5.3 A); (2) broad or broadening (0.9 D).<br />

92. Second valvulae curvature: (1) not curved (Fig. 3.5 E); (2) curved (concave) (Fig. 3.5 I).<br />

93. Second valvulae teeth development: (1) teeth absent or indiscernible (Fig. 0.9 D); (2) fine and distinct (Fig.<br />

1.4 D); (3) large (Fig. 18.5 J). [Coding state 1 makes character #94 inapplicable].<br />

94. Second valvulae teeth: (1) present to tip of apex (Fig. 3.6 F); (2) absent apically (Fig. 22.14 H).<br />

95. Second valvulae acute projections: (1) absent (Fig. 18.5 H); (2) present (Fig. 18.5 J). [Acute projections on<br />

the second valvulae are usually triangular and apparently not homologous to dorsal teeth.]<br />

96. Third valvulae large ventral projections: (1) absent; (2) present (Fig. 11.6 A-D).<br />

97. Third valvulae apical cleft or groove: (1) not distinct; (2) distinct (Fig. 0.9 D).<br />

Male<br />

98. Pygofer with dorsal projection: (1) absent; (2) present (Fig. 11.7 H).<br />

99. Pygofer with lateral plate: (1) apparently absent; (2) free distally (Fig. 6 D of Dietrich et al. 2001a); (3)<br />

entirely free (Fig. 0.9 A).<br />

100. Lateral plate dorsoapical posterior lobe: (1) absent (Fig. 1.6 B); (2) present (Fig. 0.9 A). [Coding state 1<br />

makes character #’s 101 and 102 inapplicable.]<br />

101. Lateral plate dorsoapical lobe length: (1) short (Fig. 0.9 A); (2) long (Fig. 1.6 A).<br />

378


Table 24.1 cont’d.<br />

102. Lateral plate dorsoapical lobe shape: (1) angled dorsally (Fig. 0.9 A); (2) angled laterally (Fig. 11.7 D); (3)<br />

angled ventrally (Fig. 3.8 F).<br />

103. Lateral plate ventral lobe: (1) absent; (2) small lobe present; (3) long and large lobe present (Fig. 3.8 C).<br />

104. Subgenital plate: (1) distinct division absent (Fig. 2.2 I); (2) distinct division present (Fig. 3.8 I).<br />

105. Style clasp overall shape: (1) rounded with acuminate projection (Fig. 10.13 N); (2) truncate with<br />

acuminate projection (Figs. 18.7. A-B); (3) elliptical or circular (Figs. 7.3 A-B); (4) expanding<br />

dorsoventrally and laterally with a sclerotized ridge (Figs. 1.5 C-K); (5) cylindrical (Fig. 3.7 H); (6)<br />

quadrate (Fig. 22.18 A-K); (7) triangular (Fig. 0.9 A); (8) rounded at apex with preapical ventral<br />

extension (2.2 E-F). [Here,<br />

the clasp is defined as the apical portion of the style, which is often flattened or expanded.]<br />

106. Style clasp thickness: (1) thickened (Figs. 18.6 E, M); (2) thickened dorsally, membranous ventrally; (3)<br />

membranous (Fig. 0.9 B-C).<br />

107. Style clasp orientation: (1) dorsoventrally flattened or curving dorsally (Fig. 0.9 C); (2) oriented laterally<br />

(Figs. 0.9 A-B).<br />

108. Style clasp basal thickening: (1) absent; (2) present (Fig. 15.5 A-D).<br />

109. Style clasp angle (viewed laterally): (1) angled ventrally (Fig. 1.5 D); (2) angled dorsally (Fig. 7.3 A); (3)<br />

not angled (Fig. 18.6 J).<br />

110. Style clasp with acuminate apex: (1) absent; (2) blunt (Fig. 0.9 A); (3) acute (Fig. 15.5 D).<br />

111. Style shank ventral margin: (1) without preapical broadening; (2) with preapical broadening (Figs. 0.9 A,<br />

2.2 E, 22.18 A).<br />

112. Style shank shape (viewed laterally): (1) without significant arch (Fig. 0.9 C); (2) apex of arch at midpoint<br />

of style shank (Fig. 0.9 A); (3) apex of arch just prior to style clasp (Fig. 9.2 A).<br />

379


Table 24.1 cont’d.<br />

Abdominal fine structure<br />

113. Inornate pits and associated lateral setae: (1) absent (Fig. 6 C of Dietrich et al. 2001a); (2) present (Figs.<br />

0.8 E, 0.10 B-D); (3) setae present, pits indistinct (Fig. 22.22 C). [Coding state 1 makes character #82<br />

inapplicable].<br />

114. Acanthae development: (1) distinct (Figs. 0.10 A, 0.10 C); (2) indistinct, acanthae blending together (Fig.<br />

0.10 B).<br />

115. Acanthae base development: (1) heightened and broad (Fig. 0.10 C); (2) not significantly heightened or<br />

broadened (Fig. 0.10 A).<br />

116. Acanthae/microtrichia development: (1) single acanthae without ornamentation (Fig. 0.10 D); (2) acanthae<br />

multidentate (Fig. 0.10 A); (3) acanthae divided into threadlike microtrichia (Fig. 0.10 B).<br />

380


Table 24.2. Number of taxa and characters for phylogenetic (PAUP*) and phenetic (UPGMA) analyses.<br />

Characters in the “other” column were excluded because they were highly homoplasious and not informative as<br />

tribal or generic characters for the analyzed taxa.<br />

INCLUDED EXCLUDED<br />

Analysis no. no. Constant Parsimony- Other<br />

1. PAUP*:<br />

Centrotinae<br />

(overall)<br />

2. PAUP*:<br />

Beaufortianini,<br />

Nessorhinini,<br />

Pieltainellini,<br />

Platycentrini<br />

3. PAUP*:<br />

Boocerini,<br />

Centrodontini<br />

4. PAUP*:<br />

Centrotini,<br />

Xiphopoeini<br />

5. PAUP*:<br />

Choucentrini,<br />

Leptocentrini,<br />

Maarbarini<br />

6. PAUP*:<br />

Gargarini<br />

7. PAUP*:<br />

Hypsaucheniini,<br />

Oxyrhachini<br />

8. PAUP*:<br />

Terentiini<br />

9. UPGMA:<br />

Centrotini,<br />

Beaufortianini,<br />

Gargarini,<br />

Lobocentrini<br />

10. UPGMA:<br />

Leptocentrini,<br />

Nessorhinini,<br />

Terentiini<br />

genera<br />

characters<br />

381<br />

uninformative<br />

69 109 69, 98 (see text) 42, 44,<br />

57, 93,<br />

30 77 7, 9, 17, 20, 31, 35,<br />

39, 41, 43, 46, 47, 51,<br />

57, 58, 62, 63, 65, 68,<br />

69, 76, 78, 85, 96, 98,<br />

108, 110, 111<br />

23 86 7, 9, 16, 17, 20, 31, 32,<br />

35, 41, 43, 46, 51, 52,<br />

69, 85, 90, 96, 98, 108,<br />

110, 111<br />

41 81 5, 9, 10, 17, 20, 28, 31,<br />

32, 35, 39, 43, 46, 51,<br />

57, 58, 63, 65, 68, 69,<br />

76, 78, 82, 96, 98, 103<br />

104, 108<br />

32 74 5, 7, 14, 16, 20, 24, 28,<br />

35, 39, 43, 46, 57, 58,<br />

63, 65, 68-70, 76, 78,<br />

80, 85, 96, 98<br />

35 71 7, 9, 17, 20, 22, 24, 28,<br />

31, 32, 35, 37, 43, 51,<br />

52, 57, 68, 69, 70, 76,<br />

78, 80, 82, 85, 90, 96,<br />

98, 108, 110, 111<br />

17 68 7, 9, 13, 20, 22, 28, 31,<br />

32, 41, 45-47, 51, 52,<br />

55, 58, 62, 63, 69, 71-<br />

73, 80, 81, 84-87, 89,<br />

90, 95, 103, 104, 108,<br />

110, 111<br />

28 73 5, 7, 9, 13, 16, 20, 22,<br />

31, 32, 39, 41, 43, 46,<br />

47, 51, 58, 62, 63, 65,<br />

69, 71, 72, 76, 85, 96,<br />

98, 103, 104, 108<br />

22-24, 32, 36,<br />

56, 82, 84,<br />

89, 103<br />

22, 28, 36,<br />

46, 62, 63,<br />

80, 84<br />

6, 14, 36, 62,<br />

70, 71, 74,<br />

102<br />

9, 17, 23, 37,<br />

41, 44, 47,<br />

56, 71, 75,<br />

82, 83, 89,<br />

90, 103, 116<br />

12, 23, 36,<br />

41, 44, 47,<br />

49, 60, 61,<br />

62, 72-74, 75,<br />

102, 112<br />

4, 16, 36, 53,<br />

54, 65, 77,<br />

82, 92, 100,<br />

114, 115<br />

12, 36, 45,<br />

50, 55, 73,<br />

78, 80, 81,<br />

83, 84, 87<br />

91 115 -- -- 94<br />

76 115 -- -- 94<br />

94<br />

42, 44<br />

42<br />

--<br />

93, 94<br />

--<br />

--<br />

42, 57


Table 24.3. Summary of phylogenetic analyses 1-8.<br />

Analysis Fig. #’s<br />

SCT (Strict consensus tree)<br />

MPT (Most parsimonious<br />

tree)<br />

EPT (Equally parsimonious<br />

tree)<br />

1. Centrotinae<br />

(overall)<br />

2. Beaufortianini,<br />

Nessorhinini,<br />

Pieltainellini,<br />

Platycentrini<br />

3. Boocerini,<br />

Centrodontini<br />

4. Centrotini,<br />

Xiphopoeini<br />

382<br />

no.<br />

of<br />

MPT<br />

trees<br />

Steps Consistency<br />

index (CI)<br />

24.1 (MPT) 1 665 0.23 0.60<br />

24.3 (SCT), 24.4 (EPT) 2 268 0.36 0.57<br />

24.5 (SCT), 24.6 (EPT) 2 209 0.50 0.64<br />

24.7 (SCT), 24.8 (EPT) 4 277 0.37 0.62<br />

5. Choucentrini,<br />

Leptocentrini,<br />

Maarbarini<br />

24.9 (MPT) 1 207 0.43 0.69<br />

6. Gargarini 24.10 (SCT), 24.11<br />

(EPT)<br />

28 224 0.38 0.60<br />

7. Hypsaucheniini, 24.12 (SCT), 24.13 25 150 0.55 0.71<br />

Oxyrhachini<br />

(EPT)<br />

8. Terentiini 24.14 (SCT), 24.15<br />

(EPT)<br />

4 224 0.42 0.60<br />

Retention<br />

index (RI)


Fig. 24.1. Phylogenetic relationships within Centrotinae (Analysis 1, PAUP*).<br />

Single most parsimonious tree with branch lengths indicating numbers of assigned<br />

character changes. Nodes are labeled by number below or above each branch<br />

(CI=0.23, RI=0.60, length 665).<br />

383


Table 24.4. List of apomorphies for Analysis 1 (Fig. 24.1).<br />

Characters are listed with states in parentheses; non-homoplastic<br />

changes are marked by an asterisk (*).<br />

Node 134 (Centrotinae) 50(1), 66(1), 79(2), 113(2)<br />

Node 133 25(2), 26(1), 27(2), 74(3),<br />

87(2), 101(1)<br />

Node 132 49(2), 54(2), 67(1)*, 81(3),<br />

90(2), 104(2)<br />

Node 131 (Monobelini) 4(2), 100(1), 102(2), 105(2),<br />

114(2)<br />

Node 130 10(2), 37(1), 53(1), 55(3),<br />

66(2), 72(3), 73(3)<br />

Node 129 60(2), 61(2), 89(2), 92(2),<br />

106(3)<br />

Node 128 (Boocerini) 13(1), 21(1), 48(3), 88(3),<br />

103(3)*, 109(1), 115(1)<br />

Node 127 4(2), 39(2)*, 56(5), 58(2)*,<br />

95(2)<br />

Node 126 12(1), 71(2), 105(5)<br />

Node 125 6(1), 45(2), 47(2), 59(2), 88(1)<br />

Node 124 (Gargarini) 5(3)*, 55(3), 77(3), 87(1)<br />

Node 123 3(2), 56(5)<br />

Node 122 46(2),* 83(2), 84(2), 86(2),<br />

95(2)<br />

Node 121 29(3), 97(2)<br />

Node 120 63(2), 64(2), 65(2), 101(2),<br />

115(1)<br />

Node 119 16(2), 26(2), 53(1), 116(1)<br />

Node 118 15(3), 105(4), 107(2), 115(1),<br />

116(2)<br />

Node 117 38(1), 52(2), 97(2)<br />

Node 116 (Nessorhinini) 10(2), 14(3), 40(2), 50(2),<br />

83(2), 86(2), 105(2), 112(2)<br />

Node 115 4(2), 6(1), 45(2), 70(1), 80(2),<br />

86(3), 107(1)<br />

Node 114 37(1), 38(2), 81(3), 92(2),<br />

116(3)<br />

Node 113 12(1), 21(1)<br />

Node 112 (Pieltainellini) 48(3), 49(2), 71(2), 92(2),<br />

95(2), 102(2), 105(3)<br />

Node 111 3(2), 53(1)<br />

Node 110 (Beaufortianini) 101(2), 109(1)<br />

Node 109 50(2), 83(2), 95(2)<br />

Node 108 10(2), 88(3), 105(7), 116(3)<br />

Node 107 13(1), 22(2), 54(2)<br />

Node 106 55(3), 106(3), 109(2), 114(2),<br />

115(2)<br />

Node 105 (Boccharini) 88(4), 91(2), 100(1), 105(8)*,<br />

111(2)<br />

Node 104 60(2), 61(2), 77(3), 112(2)<br />

Node 103 22(1), 50(2), 54(1), 55(1),<br />

84(2), 87(1)<br />

Node 102 (Leptocentrini) 40(2), 48(3), 52(2), 81(3),<br />

86(2), 91(2), 109(1), 110(2),<br />

111(2)<br />

Node 101 88(4), 97(2)<br />

Node 100 11(2), 53(2), 90(2), 105(3)<br />

Node 99 (Centrotini) 13(2), 56(5), 85(2)*, 114(1)<br />

Node 98 3(1), 4(2), 48(3), 49(2), 50(1),<br />

54(2), 55(2)<br />

Node 97 45(2), 47(2)<br />

Node 96 26(2), 45(2), 86(3), 89(2),<br />

92(2), 95(2), 97(2), 112(1)<br />

Node 95 3(1), 11(1), 32(2), 53(1),<br />

54(2), 81(3), 88(1)<br />

384<br />

Node 94 (Centrotypini) 13(2), 20(2)*, 37(1), 40(2),<br />

45(1), 49(2), 84(1), 86(2),<br />

112(2)<br />

Node 93 32(2), 49(2), 101(2)<br />

Node 92 3(1), 11(2), 77(1), 88(1),<br />

92(2), 108(2)*, 109(1), 110(3)<br />

Node 91 (Maarbarini) 27(1), 48(1), 50(2), 51(2)*,<br />

52(2)<br />

Node 90 3(2), 26(2), 55(1), 92(1), 95(2)<br />

Node 89 11(1), 13(2), 97(2)<br />

Node 88 81(2), 86(2), 97(2), 104(2),<br />

105(1), 107(1)<br />

Node 87 48(1), 50(2), 54(1), 60(2),<br />

61(2), 88(1)<br />

Node 86 (Lobocentrini) 10(1), 40(2), 48(3), 53(2),<br />

62(2), 71(2), 77(3), 86(1),<br />

95(2), 114(2), 115(2)<br />

Node 85 13(2), 26(2), 74(2)<br />

Node 84 24(2), 26(2), 70(1), 75(1),<br />

82(1), 87(1), 90(2)<br />

Node 83 21(2), 37(1), 74(2), 105(5),<br />

106(2), 109(1), 112(3), 115(2)<br />

Node 82 3(1), 15(1), 68(1), 76(1),<br />

88(2)*, 102(2), 106(3), 116(2)<br />

Node 81 23(2), 38(1), 50(3)*, 78(2),<br />

82(2), 112(1)<br />

Node 80 (Hypsaucheniini) 3(2), 5(4)*, 17(2), 43(2)*,<br />

48(1)<br />

Node 79 (Terentiini) 12(2), 48(1), 50(2), 70(2),<br />

91(2), 105(6)*, 111(2)<br />

Node 78 40(3), 52(2), 97(2)<br />

Node 77 26(1), 86(2), 88(1)<br />

Node 76 52(1), 66(2), 75(2), 82(2),<br />

91(1), 95(2), 114(2)<br />

Node 75 38(1), 54(2), 74(1)<br />

Node 74 26(1), 28(2), 68(1), 70(1)<br />

Node 73 4(2), 15(5), 17(2), 24(1),<br />

110(3), 113(3)*, 114(2)<br />

Node 72 23(2), 37(2)<br />

Microcentrus 15(2), 38(1), 48(1), 88(3),<br />

91(2), 97(2), 102(3), 116(2)<br />

Centronodus 2(2), 10(2), 15(3), 21(1),<br />

23(2), 30(3), 33(2), 60(2),<br />

61(2), 74(3), 79(2), 91(1),<br />

92(2), 99(2)<br />

Paracentronodus 2(2), 30(3), 33(3)*, 38(1),<br />

100(1)<br />

Nicomia 4(2), 25(2), 27(2), 59(1),<br />

75(1), 99(3), 105(5), 113(2),<br />

115(1)<br />

Tolania 15(3), 36(2)*, 40(1), 77(3),<br />

114(2)<br />

Centrodontus, Centrodontini 14(3), 29(3), 56(5), 63(2),<br />

64(2), 65(2), 68(1), 70(1),<br />

75(1), 76(1), 78(2), 82(1),<br />

92(2), 102(2)<br />

Brachycentrotus 29(3), 56(4)*, 82(1)<br />

Monobelus 21(1), 22(2), 83(2), 88(3),<br />

97(2)<br />

Monobeloides 14(3), 28(2), 49(1), 81(1),<br />

92(2), 100(2), 104(1)<br />

Amblycentrus 13(2), 29(3)<br />

Brachybelus 56(6)*, 65(2)<br />

Boocerus 10(2), 11(2), 15(3), 55(3),<br />

92(1), 112(3)<br />

Abelus 2(1), 81(2), 101(2), 107(2)


Table 24.4 cont’d.<br />

Ischnocentrus 71(1), 102(3)<br />

Aleptocentrus 6(1), 48(1)<br />

Parayasa 45(2), 81(1), 101(2), 104(1),<br />

105(3), 107(2)<br />

Pantaleon 15(3), 26(2), 54(1), 81(2),<br />

106(1), 114(2)<br />

Gargara --<br />

Tricentrus 15(2), 45(2), 64(3), 100(1),<br />

106(1)<br />

Coccosterphus --<br />

Madlinus 3(1), 14(3), 27(1), 77(1)<br />

Platycentrus, Platycentrini 60(2), 71(2), 72(3), 73(3),<br />

74(2), 77(3), 79(1), 88(5)*<br />

Callicentrus 26(2), 48(1), 97(1), 105(4)<br />

Orthobelus 14(2), 53(1), 100(1), 109(2),<br />

112(1)<br />

Goniolomus 28(2), 49(2), 50(1), 101(2)<br />

Nessorhinus 15(4), 52(1), 95(2)<br />

Pieltainellus 15(2), 79(1)<br />

Spathocentrus 11(2), 26(2), 54(2)<br />

Imporcitor 21(2), 27(1), 48(3), 49(2),<br />

92(2), 97(2)<br />

Beaufortiana 37(1)<br />

Dukeobelus 15(1), 26(2)<br />

Centrochares, Centrocharesini 5(1)*, 11(2), 16(2), 41(2)*,<br />

45(2), 47(2), 49(2), 56(3)*,<br />

64(2), 65(2), 77(3), 80(2),<br />

83(2), 86(2), 89(2), 96(2)*,<br />

100(1), 110(2)<br />

Ebhul, Ebhuloidesini 11(2), 21(1), 34(2), 37(2),<br />

49(2), 56(5)<br />

Oxyrhachis, Oxyrhachini 12(2), 14(3), 15(2), 26(1),<br />

35(2), 40(2), 56(7)*, 83(3)*,<br />

116(1)<br />

Hypsauchenia 15(5), 21(1), 29(1), 97(2)<br />

Hypsolyrium 49(2)<br />

Ceraon 34(2), 48(2), 90(1), 101(2)<br />

Eufairmairia 74(1), 88(4)<br />

Sertorius 54(2), 77(3)<br />

Terentius 15(1), 24(1), 29(3), 48(2),<br />

84(2), 92(2), 97(1)<br />

Anzac 15(1), 27(1), 29(3), 88(4),<br />

90(1), 115(1), 116(2)<br />

Sextius 14(2), 35(2), 55(2), 89(2),<br />

91(1), 92(2), 101(2)<br />

Bulbauchenia 14(3), 29(1), 74(2)<br />

Funkhouserella 27(1), 88(4), 97(2)<br />

Pyrgonota 6(1), 10(1), 70(1)<br />

Elaphiceps 3(1), 4(2), 9(2), 15(5), 17(2),<br />

26(2), 32(2), 55(2), 89(2),<br />

101(2), 103(2)<br />

Tyrannotus 11(2), 15(2), 72(3), 87(1),<br />

88(4), 91(2), 102(3)<br />

Lobocentrus 22(1), 49(2), 81(1), 92(2),<br />

97(1), 101(2)<br />

Arcuatocornum 11(2), 53(1), 87(1)<br />

Truncatocornum 95(1)<br />

Bocchar 15(2), 37(1), 53(2)<br />

Lanceonotus 11(2), 26(2), 48(1), 55(2)<br />

Leptobelus, Leptobelini 9(2), 15(5), 17(2), 19(1),<br />

59(2), 72(3), 73(3), 97(2),<br />

103(2), 105(3)<br />

Dograna, Choucentrini 13(2), 22(1), 31(2)*, 45(2),<br />

60(1), 61(1), 111(2)<br />

385<br />

Maarbarus 4(2), 19(1)<br />

Indicopleustes 10(1)<br />

Pogon 3(1), 88(3), 95(1)<br />

Pogontypus 29(3), 49(1), 92(2)<br />

Awania 10(1), 15(1), 72(3)<br />

Leptocentrus 29(1), 73(2), 81(2)<br />

Umfilianus 13(2), 15(2), 38(1), 49(2),<br />

53(2)<br />

Xiphopoeus, Xiphopoeini 7(2)*, 16(2), 24(2), 38(1),<br />

48(1), 85(3)*, 100(1)<br />

Micreune, Micreunini 4(2), 6(1), 15(5), 17(2), 52(2),<br />

62(2), 71(2), 101(2), 105(7),<br />

110(2)<br />

Centrotypus 12(2), 14(2), 40(3), 53(2),<br />

100(1)<br />

Emphusis 54(1), 95(1), 97(1)<br />

Centrotus 72(2)*, 73(2), 91(2), 101(2),<br />

115(1), 116(2)<br />

Capeneralus 40(2)<br />

Anchon 13(1), 86(2), 88(1), 92(2),<br />

95(2), 114(2)<br />

Takliwa 116(1)


Table 24.5. List of taxa in the overall phylogenetic analysis (1) of the Centrotinae<br />

(alphabetized by genus).<br />

Abelus inermis (Lethierry), USNM; A. luctuosus Stål, NCSU, USNM; Amblycentrus<br />

pubescens Fowler, USNM; Anchon sp., USNM; A. limbatum Schmidt, USNM; A. nodicornis<br />

(Germar), USNM, PPRI, A. ulniforme Buckton, USNM; A. ximenes Capener, MNHN; Anzac<br />

bipunctatum (Fabricius), ANIC; Arcuatocornum sp., LBOB; Awania sp., CASC; A. typica<br />

<strong>Distant</strong>, PPRI, MNHN; Beaufortiana distanti (Funkhouser), PPRI; B. viridis (Capener),<br />

AMNH, USNM; Bocchar confusus (<strong>Distant</strong>), USNM; B. montanum Jacobi, SMTD, USNM;<br />

Boocerus gilvipes Stål, NCSU, USNM; Brachycentrotus punctatus (Metcalf and Bruner),<br />

NCSU; B. rufinervis Ramos, USNM; Brachybelus sp., NCSU; B. cruralis Stål, USNM;<br />

Bulbauchenia sp. (probably mirablis), USNM; B. bakeri (Funkhouser), USNM, NCSU; B.<br />

globosa (Funkhouser), USNM; B. mirabilis (Funkhouser), USNM; B. rugosa (Funkhouser),<br />

USNM; Callicentrus ignipes (Walker), BMNH, USNM; Capeneralus lobatus (Capener),<br />

PPRI; C. subnodosus (Jacobi), PPRI; Centrochares horrifica (Westwood), USNM.<br />

Centrodontus atlas (Goding), NCSU, USNM; C. atlas atlas (Goding), USNM; C. atlas<br />

paucivenosus Cook, NCSU; Centronodus denticulus Funkhouser, NCSU; C. rochalimai<br />

Fonseca, NCSU; Centrotus cornutus (Linnaeus), LSUK, NCSU, USNM; Centrotypus sp.,<br />

NCSU; C. assamensis (Fairmaire), SHMC; C. flexuosus (Fabricius), USNM; Ceraon<br />

tasmaniae (Fairmaire), USNM; Coccosterphus sp., SHMC; C. minutus (Fabricius), USNM,<br />

BMNH; C. obscurus <strong>Distant</strong>, USNM; Dograna suffulta <strong>Distant</strong>, PPRI, CASC; Dukeobelus<br />

simplex (Walker), USNM, PPRI; Ebhul varium (Walker), USNM; Elaphiceps cervus<br />

Buckton, USNM; E. javanensis Funkhouser, USNM; Emphusis obesa (Fairmaire), NCSU,<br />

USNM; Eufairmairia decisa USNM; E. fraterna <strong>Distant</strong>, ANIC, USNM; Funkhouserella<br />

arborea (Funkhouser), USNM; F. binodis (Funkhouser), USNM; F. brevifurca<br />

(Funkhouser), USNM; F. bulbiturris (Funkhouser), USNM; F. pinguiturris (Funkhouser),<br />

USNM; F. sinuata (Funkhouser), USNM; Gargara aenea <strong>Distant</strong>, NCSU; G. fraterna<br />

<strong>Distant</strong>, NCSU; G. genistae (Fabricius), NCSU, AMNH, USNM; G. nyanzai Funkhouser,<br />

NCSU; Goniolomus tricorniger Stål, USNM; Hypsauchenia hardwickii (Kirby), USNM,<br />

MNHN; Hypsolyrium uncinatum (Stål), USNM; Imporcitor typicus <strong>Distant</strong>, BMNH;<br />

Indicopleustes albomaculata <strong>Distant</strong>, BMNH; Ischnocentrus sp., NCSU; I. inconspicuous<br />

Buckton, USNM; I. niger Stål, USNM; Lanceonotus basilicus Capener, PPRI; L. defloccatus<br />

Capener, PPRI; Leptobelus dama (Germar), USNM; L. metuendus (Walker), USNM;<br />

Leptocentrus sp., USNM; L. bos (Signoret) USNM, PPRI, MNHN; L. reponens (Walker),<br />

NCSU; L. taurus (Fabricius), NCSU. Lobocentrus falco (Buckton), USNM; L. zonatus Stål,<br />

USNM; Maarbarus sp., USNM; M. bubalus (Kirby), BMNH; Micreune formidanda Walker,<br />

USNM; Microcentrus caryae, NCSU; Monobeloides stuarti Ramos, NCSU, SHMC;<br />

Monobelus sp., NCSU; M. biguttatus (Fabricius), USNM; M. flavidus (Fairmaire), USNM;<br />

Nessorhinus gibberulus Stål, USNM, N. gracilis Metcalf and Bruner, NCSU; N. vulpes<br />

Amyot and Serville, USNM; Nicomia sp., BMNH; N. cicadoides (Walker), BMNH, MNHN;<br />

Orthobelus sp., det., USNM, O. urus (Fairmaire), USNM; Oxyrhachis carinata<br />

(Funkhouser), AMNH; O. delalendei Fairmaire, AMNH; O. sulcicornis (Thunberg), NCSU;<br />

O. taranda (Fabricius), NCSU; Pantaleon dorsalis (Matsumura), USNM, SHMC; P.<br />

montiferum (Walker), BMNH; Paracentronodus sp., NCSU; Parayasa elegantula <strong>Distant</strong>,<br />

USNM; P. typica <strong>Distant</strong>, USNM; Pieltainellus sp., SHMC; P. boneti Peláez, AMNH;<br />

386


Platycentrus acuticornis Stål, USNM; Pogon incurvatum Buckton, BMNH; Pogontypus sp.,<br />

USNM; P. complicatus (Melichar), BMNH; P. horvathi <strong>Distant</strong>, BMNH; Pyrgonota sp.,<br />

USNM; P. bifoliata (Westwood), USNM, DJFC; Sertorius sp., ANIC; S. australis<br />

(Fairmaire), USNM; Sextius kurandae Kirkaldy, USNM; S. virescens (Fairmaire), USNM,<br />

ANIC; Spathocentrus intermedius, OXUM, SHMC, CNCI; Takliwa carteri Funkhouser,<br />

PPRI, MNHN; Terentius convexus Stål, USNM, ANIC; Tolania sp., NCSU, MNHN;<br />

Tricentrus curvicornis Funkhouser, NCSU; T. fairmairei (Stål), USNM; Truncatocornum<br />

sp., LBOB; Tyrannotus tyrannicus Capener, PPRI, MNHN; Umfilianus declivis <strong>Distant</strong>,<br />

USNM; Xiphopoeus sp., USNM; X. erectus <strong>Distant</strong>, USNM; X phantasma Signoret, PPRI.<br />

387


Fig. 24.2. Phylogenetic relationships within Centrotinae (Analysis 1, PAUP*) with<br />

“existing” tribal names based on Ananthasubramanian (1996a), McKamey (1998a), and<br />

Yuan and Chou (2002a). “Revised” tribal classification based on the current study are<br />

shown at far right.<br />

388


Fig. 24.3. Phylogenetic relationships within Beaufortianini, Nessorhinini,<br />

Pieltainellini, and Platycentrini (Analysis 2, PAUP*). Strict consensus of 2 equally<br />

parsimonious trees (CI=0.36, RI=0.57, length 268).<br />

389


Fig. 24.4. Phylogenetic relationships within Beaufortianini, Nessorhinini,<br />

Pieltainellini, and Platycentrini (Analysis 2, PAUP*). One of 2 equally<br />

parsimonious trees with branch lengths indicating numbers of assigned character<br />

changes. Nodes are labeled by number below or above each branch.<br />

390


Table 24.6. List of apomorphies for Analysis 2 (Fig. 24.4).<br />

Characters are listed with states in parentheses; non-homoplastic<br />

changes are marked by an asterisk (*).<br />

Node 51 15(3), 105(4), 107(2), 115(1)<br />

Node 50 38(1), 49(1)<br />

Node 49 (Platycentrini) 60(2), 88(5)*<br />

Node 48 (Nessorhinini) 10(2), 14(3), 40(2), 83(2),<br />

86(2), 93(3), 112(2)<br />

Node 47 4(2), 6(1), 45(2), 80(2), 86(3),<br />

105(2), 107(1)<br />

Node 46 15(1), 29(1), 48(1)<br />

Node 45 53(1), 71(2)<br />

Node 44 70(1)*, 97(2)<br />

Node 43 24(2), 37(1), 38(2), 50(2),<br />

52(2), 81(3), 92(2)<br />

Node 42 53(1), 97(2)<br />

Node 41 75(1), 81(1)<br />

Node 40 12(1), 21(1), 48(3), 92(2)<br />

Node 39 (Pieltainellini) 71(2), 94(1), 95(2), 102(2),<br />

105(3)<br />

Node 38 (Beaufortianini) 3(2), 53(1), 101(2), 109(1)<br />

Node 37 48(2), 49(1), 50(2), 83(2)<br />

Node 36 92(1), 95(2)<br />

Node 35 10(2), 116(3)<br />

Node 34 94(1)<br />

Node 33 71(2), 81(2), 86(2), 104(2)<br />

Pieltainellus 15(2), 79(1)<br />

Spathocentrus 11(2), 26(2), 54(2)<br />

Imporcitor 21(2), 27(1), 93(3), 97(2)<br />

Maguva 11(2), 16(2), 26(2), 105(3)<br />

Mabokiana 10(2), 54(2)<br />

Beaufortiana 37(1), 93(3)<br />

Dukeobelus 15(1), 26(2)<br />

Centrolobus 11(2), 13(1)<br />

Centruchus 5(3), 38(1), 53(2), 91(2),<br />

97(2), 100(1)<br />

Platycentrus 52(2), 71(2), 72(3), 73(3),<br />

74(2), 77(3), 79(1), 97(2)<br />

Tylocentrus 15(2), 48(3), 53(1), 54(2),<br />

61(2), 87(1), 100(1), 105(2)<br />

Callicentrus 48(1)<br />

Orthobelus 14(2)*, 26(1), 94(1), 100(1),<br />

105(2), 109(2)*, 112(1),<br />

116(3)<br />

Daimon 4(2), 14(1), 16(2), 45(2),<br />

54(2), 55(2)*, 86(3)<br />

Marshallella 15(2), 37(2)<br />

Goniolomus 28(2), 49(2), 52(2), 101(2)<br />

Nessorhinus 15(4), 50(2), 95(2)<br />

Spinodarnoides --<br />

Orekthoptera 15(4), 26(2), 40(1), 80(1),<br />

81(3), 100(1)<br />

Paradarnoides 6(2), 29(2), 50(2), 112(1)<br />

391


Fig. 24.5. Phylogenetic relationships within Boocerini and Centrodontini<br />

(Analysis 3, PAUP*). Strict consensus of 2 equally parsimonious trees<br />

(CI=0.50, RI=0.64, length 209).<br />

392


Fig. 24.6. Phylogenetic relationships within Boocerini and Centrodontini<br />

(Analysis 3, PAUP*). One of 2 equally parsimonious trees with branch<br />

lengths indicating numbers of assigned character changes. Nodes are<br />

labeled by number below each branch<br />

393


Table 24.7. List of apomorphies for Analysis 3 (Fig. 24.6).<br />

Characters are listed with states in parentheses; non-homoplastic<br />

changes are marked by an asterisk (*).<br />

Node 42 50(1), 54(2), 66(1), 67(1)*,<br />

79(2), 101(1), 102(2), 113(2)<br />

Node 41 25(2), 26(1), 27(2), 74(3),<br />

81(3), 87(2), 104(2)<br />

Node 40 4(2), 93(3), 100(1), 105(2)*,<br />

114(2)<br />

Node 39 10(2), 37(1)*, 53(1), 55(3),<br />

66(2), 72(3)*, 73(3)*, 94(2)<br />

Node 38 60(2), 61(2), 92(2), 102(1),<br />

106(3)<br />

Node 37 (Boocerini) 21(1), 48(3)*, 88(3), 103(3)*,<br />

109(1)*, 115(1)<br />

Node 36 13(1), 89(2)*<br />

Node 35 4(2), 39(2)*, 56(5), 58(2)*,<br />

95(2)<br />

Node 34 12(1)*, 88(1), 105(5)<br />

Node 33 10(2), 11(2), 15(3), 71(2),<br />

94(2), 112(3)<br />

Node 32 3(2), 49(1), 50(2), 53(1),<br />

93(1), 107(2)<br />

Node 31 6(1), 45(2), 47(2), 59(2)<br />

Node 30 81(2), 107(2)<br />

Node 29 5(3)*, 55(3), 77(3), 83(2),<br />

86(2), 87(1), 95(2), 97(2)<br />

Node 28 (Centrodontini) 14(3), 15(3), 29(3), 44(2),<br />

56(5), 57(2)*, 75(1), 82(1)<br />

Node 27 68(1)*, 70(1)*, 76(1)*,<br />

78(2)*, 92(2)<br />

Node 26 23(2), 24(2)*, 56(2)<br />

Nodonica 4(2), 40(2), 99(1)*<br />

Centrodontus 15(1), 49(1), 64(2)*, 65(2),<br />

101(2)<br />

Multareis 15(2), 29(2), 56(3)*<br />

Multareoides 6(1)<br />

Brachycentrotus 29(3), 56(4)*, 82(1)<br />

Monobelus 21(1), 83(2), 88(3), 93(2),<br />

97(2)<br />

Monobeloides 14(3), 49(1), 81(1), 92(2),<br />

100(2), 104(1)<br />

Gargara 3(2), 29(3), 56(5)<br />

Aleptocentrus 6(1), 48(1)<br />

Centriculus 29(1), 59(2), 81(1), 92(1)<br />

Amblycentrus 13(2), 29(3)<br />

Brachybelus 56(6)*, 65(2)<br />

Ischnocentrus 102(3)<br />

Abelus 8(1), 71(2), 101(2)<br />

Psilocentrus 6(2), 95(2), 112(2)<br />

Boocerus 55(3), 88(3), 92(1)<br />

Campylocentrus 11(1), 13(2), 54(1), 86(2),<br />

106(1), 112(2)<br />

Ophicentrus 6(1), 15(1), 26(2), 45(2),<br />

47(2), 71(1), 81(1)<br />

394


Fig. 24.7. Phylogenetic relationships within Centrotini and Xiphopoeini<br />

(Analysis 4, PAUP*). Strict consensus of 4 equally parsimonious trees<br />

(CI=0.37, RI=0.62, length 277).<br />

395


Fig. 24.8. Phylogenetic relationships within Centrotini and Xiphopoeini<br />

(Analysis 4, PAUP*). One of 4 equally parsimonious trees with branch<br />

lengths indicating numbers of assigned character changes. Nodes are<br />

labeled by number below or above each branch.<br />

396


Table 24.8. List of apomorphies for Analysis 4 (Fig. 24.8).<br />

Characters are listed with states in parentheses; non-homoplastic<br />

changes are marked by an asterisk (*).<br />

Node 68 11(2), 85(2)*, 88(3)<br />

Node 67 (Centrotini) 56(5)*, 100(2), 114(1)<br />

Node 66 3(1), 4(2), 48(3), 49(2), 50(1),<br />

54(2), 55(2), 91(1)<br />

Node 65 45(2), 47(2)*<br />

Node 64 13(1), 86(2), 114(2)<br />

Node 63 90(1)<br />

Node 62 94(1)<br />

Node 61 112(1)<br />

Node 60 89(2)<br />

Node 59 11(1), 86(1)<br />

Node 58 13(2), 38(1)<br />

Node 57 55(1)<br />

Node 56 101(2)<br />

Node 55 55(3)<br />

Node 54 41(2), 97(2)<br />

Node 53 40(2)<br />

Node 52 88(1), 90(2), 92(2)<br />

Node 51 13(2), 15(4), 93(3)<br />

Node 50 45(1), 114(1)<br />

Node 49 95(2), 112(2)<br />

Node 48 26(2), 93(1)<br />

Node 47 26(2), 55(1)<br />

Node 46 13(2), 15(4), 16(2), 86(1)<br />

Node 45 16(2), 55(3)<br />

Node 44 29(3), 41(2), 112(1)<br />

Node 43 13(2)<br />

Node 42 (Xiphopoeini) 7(2)*, 16(2), 24(2)*, 26(2),<br />

38(1), 45(2), 85(3)*, 86(3),<br />

112(1)<br />

Xiphopoeus 13(1), 48(1), 89(2), 91(1),<br />

92(2), 94(1), 95(2), 97(2)<br />

Negus 11(1), 12(2), 22(2), 23(2),<br />

29(3), 50(1), 54(2), 80(2)<br />

Centrotus 72(2)*, 73(2)*, 101(2),<br />

115(1), 116(2)<br />

Capeneralus 40(2)<br />

Takliwa 93(1), 116(1)*<br />

Anchonomonoides 88(1)<br />

Hamma 53(1), 94(1)<br />

Barsumas 26(2), 41(1), 42(1), 44(2),<br />

114(1)<br />

Barsumoides 11(1), 37(1)<br />

Stalobelus 37(1)<br />

Monanchon 41(2)<br />

Mitranotus --<br />

Eumocentrulus --<br />

Tricoceps 4(1), 29(3)<br />

Anchon --<br />

Anchonastes 16(2), 86(1)<br />

Paraxiphopoeus 29(1), 77(1), 88(3)<br />

Monocentrus 26(2), 77(2)*, 94(2),<br />

Eumonocentrus 11(1), 112(2)<br />

Zanzia 29(3), 75(1), 95(2)<br />

Bleccia 81(2)<br />

Platybelus --<br />

Jacobiana 29(3), 112(2)<br />

Tiberianus 4(1), 15(2), 86(2),<br />

Capeneriana 13(2)<br />

Dagonotus --<br />

Vecranotus --<br />

Farcicaudia 53(1)<br />

Promitor 13(2), 15(1), 29(3), 81(3),<br />

89(1), 91(2), 94(2)<br />

397


Fig. 24.9. Phylogenetic relationships within Choucentrini, Leptocentrini,<br />

and Maarbarini (Analysis 5, PAUP*). Single most parsimonious tree with<br />

branch lengths indicating numbers of assigned character changes. Nodes<br />

are labeled by number below each branch (CI=0.43, RI=0.69, length 207).<br />

398


Table 24.9. List of apomorphies for Analysis 5 (Fig. 24.9).<br />

Characters are listed with states in parentheses; non-homoplastic<br />

changes are marked by an asterisk (*).<br />

Node 57 15(3), 49(2), 105(7)*,<br />

106(3)*, 107(2)*, 109(1)*,<br />

110(2), 111(2), 112(2)*,<br />

114(2)<br />

Node 56 (Leptocentrini) 40(2), 48(3)*, 77(3), 84(2),<br />

101(1)<br />

Node 55 3(2), 52(2), 54(1)<br />

Node 54 49(1)<br />

Node 53 53(2), 81(3)<br />

Node 52 72(3)<br />

Node 51 49(1)<br />

Node 50 15(1)<br />

Node 49 40(1), 73(3)*<br />

Node 48 48(2)<br />

Node 47 13(2), 15(3), 53(1)<br />

Node 46 97(1)<br />

Node 45 13(2)<br />

Node 44 10(1), 53(1), 88(3)<br />

Node 43 32(2), 86(1), 87(2), 88(1),<br />

91(1), 92(2), 108(2)*, 110(3)*<br />

Node 42 (Maarbarini) 22(2), 111(1)<br />

Node 41 27(1), 51(2)*, 52(2)<br />

Node 40 13(2), 26(2)<br />

Node 39 11(2), 19(1), 97(1)<br />

Node 38 92(1), 95(2)<br />

Node 37 3(2), 26(2)<br />

Node 36 10(1),<br />

Node 35 (Choucentrini) 11(2), 31(2)*, 50(1), 55(3),<br />

60(1), 61(1), 114(1)<br />

Node 34 45(2)*, 48(2)<br />

Choucentrus --<br />

Evanchon 3(2), 6(1), 27(1), 74(2), 86(2)<br />

Dograna 13(2), 97(1)<br />

Telingana 6(1), 29(3), 36(2)<br />

Pogon 88(3), 92(1)<br />

Pogontypus 3(2), 29(3), 49(1), 95(2)<br />

Maarbarus 4(2), 55(3)<br />

Parapogon 29(3), 50(1)<br />

Pogonotus 6(1), 49(1)<br />

Bathoutha --<br />

Indicopleustes 19(2)<br />

Hemicentrus 8(1), 50(1)<br />

Leptocentrus 29(1), 73(2)*, 81(2)<br />

Otinotus 13(2), 21(2), 86(1)<br />

Umfilianus 13(2), 15(2), 38(1)<br />

Nilautama 10(1), 50(1), 81(2)<br />

Dacaratha 62(2)<br />

Awania --<br />

Occator 6(1)<br />

Joveriana 29(1)<br />

Uroxiphus 40(1), 42(1), 81(1)<br />

Demanga 49(2)<br />

Yaponotus 11(2)<br />

Periaman 12(2), 40(2), 49(2), 84(1),<br />

100(1), 105(3)*, 110(1),<br />

111(1)<br />

Trioxiphus 62(2), 72(2)*, 81(2)<br />

399


Fig. 24.10. Phylogenetic relationships within Gargarini (Analysis 6,<br />

PAUP*). Strict consensus of 28 equally parsimonious trees (CI=0.38,<br />

RI=0.60, length 224).<br />

400


Fig. 24.11. Phylogenetic relationships within Gargarini (Analysis 6,<br />

PAUP*). One of 28 equally parsimonious trees with branch lengths<br />

indicating numbers of assigned character changes. Nodes are labeled by<br />

number below, above, or to the side of each branch.<br />

401<br />

Node 38


Table 24.10. List of apomorphies for Analysis 6 (Fig. 24.11).<br />

Characters are listed with states in parentheses; non-homoplastic<br />

changes are marked by an asterisk (*).<br />

Node 60 (Gargarini) 5(3)*, 21(2), 55(3), 88(1)<br />

Node 59 3(2), 29(3)<br />

Node 58 48(2), 56(5), 77(3)<br />

Node 57 83(2)*, 84(2)<br />

Node 56 15(3), 114(2)<br />

Node 55 40(2), 88(3), 106(1)<br />

Node 54 81(3), 95(2)<br />

Node 53 86(2), 97(2)<br />

Node 52 16(2)*, 26(2), 53(1), 93(3),<br />

115(1), 116(1)*<br />

Node 51 63(2), 64(2)*, 65(2)<br />

Node 50 3(1), 14(3), 77(1)<br />

Node 49 45(2), 46(2)*<br />

Node 48 100(1)<br />

Node 47 15(3), 29(2), 40(2)<br />

Node 46 3(1), 100(2)<br />

Node 45 45(1), 106(1)<br />

Node 44 81(2), 101(1), 114(2)<br />

Node 43 40(1), 54(1), 93(1)<br />

Node 42 3(2)<br />

Node 41 54(1)<br />

Node 40 55(1), 83(3)*<br />

Node 39 86(2), 93(1)<br />

Node 38 --<br />

Node 37 64(3), 106(1), 115(1)<br />

Node 36 3(1), 14(3), 26(2), 59(2),<br />

114(2)<br />

Aleptocentrus 6(1), 42(1), 48(1)<br />

Yasa 39(2), 93(3), 94(2), 95(2)<br />

Parayasa 29(2), 42(1), 45(2), 104(1),<br />

105(3)*, 107(2)<br />

Maurya 54(1), 92(1)<br />

Antialcidas 45(2), 77(2), 81(3)<br />

Machaerotypus 97(2)<br />

Gargara 101(1)<br />

Eucoccosterphus 27(1), 42(1), 45(2), 48(1),<br />

58(2), 84(1), 95(1), 104(1),<br />

105(4)*, 106(1), 107(2),<br />

109(1)<br />

Coccosterphus --<br />

Madlinus 27(1)<br />

Gargarina 29(2)<br />

Xanthosticta 63(2), 65(2), 77(1), 93(3),<br />

95(1)<br />

Kanada 77(1), 81(1)<br />

Cryptaspidia 29(2), 53(1), 86(1)<br />

Mesocentrina 48(3), 95(1)<br />

Sipylus 29(2)<br />

Tricentrus 15(2), 63(2), 65(2), 97(2)<br />

Butragulus 55(2), 115(1)<br />

Tricentroides 86(2), 94(2)<br />

Cryptoparma 10(2), 53(1), 64(3)<br />

Thelicentrus 101(1)<br />

Nondenticentrus 55(2)<br />

Subrincator 77(1)<br />

Tribulocentrus 53(1)<br />

Pantaleon 26(2), 86(2)<br />

Tsunozemia 55(2), 81(1), 97(2)<br />

402


Fig. 24.12. Phylogenetic relationships within Hypsaucheniini and<br />

Oxyrhachini (Analysis 7, PAUP*). Strict consensus of 25 equally<br />

parsimonious trees (CI=0.55, RI=0.71, length 150).<br />

403


Fig. 24.13. Phylogenetic relationships within Hypsaucheniini and Oxyrhachini<br />

(Analysis 7, PAUP*). One of 25 equally parsimonious trees with branch lengths<br />

indicating numbers of assigned character changes. Nodes are labeled by number<br />

below each branch.<br />

404


Table 24.11. List of apomorphies for Analysis 7 (Fig. 24.13).<br />

Characters are listed with states in parentheses; non-homoplastic<br />

changes are marked by an asterisk (*).<br />

Node 29 21(2), 23(2), 37(1), 78(2)*<br />

Node 28 (Oxyrhachini) 12(2), 14(3)*, 15(3), 26(1),<br />

35(2)*, 40(2), 42(2), 49(1),<br />

83(3)*, 93(2), 97(2), 112(2)*,<br />

116(1)*<br />

Node 27 50(2), 56(5)<br />

Node 26 76(1)<br />

Node 25 (Hypsaucheniini) 3(2), 5(3)*, 17(2)*, 43(2),<br />

50(3)*, 57(1), 76(1)<br />

Node 24 5(4), 44(2), 48(1), 112(1)<br />

Node 23 15(5)*, 21(1), 49(1)<br />

Node 22 29(1), 94(1)<br />

Node 21 5(2), 10(1), 12(2), 21(2),<br />

39(2)*, 96(2) 99(2)<br />

Node 20 6(1)*, 34(2), 43(1), 57(2),<br />

98(2)*<br />

Oxyrhachis delalandei 94(1), 102(1)<br />

Oxyrhachis sulcicornis --<br />

Oxyrhachis 15(2), 56(7)*<br />

Oxyrhachis carinata --<br />

Hybandoides 10(1), 27(1), 34(2), 96(2)<br />

Hypsolyrium --<br />

Jingkara 11(2), 34(2), 40(3)*, 48(2),<br />

93(2)<br />

Hypsauchenia 97(2)<br />

Hybanda 44(1), 105(3)*<br />

Gigantorhabdus 5(4), 10(2), 37(2), 50(2),<br />

93(2), 116(1)<br />

Pyrgauchenia 3(1), 101(2), 102(1), 113(3)*<br />

405


Fig. 24.14. Phylogenetic relationships within Terentiini (Analysis 8,<br />

PAUP*). Strict consensus of 4 equally parsimonious trees (CI=0.42,<br />

RI=0.60, length 224).<br />

406


Fig. 24.15. Phylogenetic relationships within Terentiini (Analysis 8,<br />

PAUP*). One 4 equally parsimonious trees with branch lengths<br />

indicating numbers of assigned character changes. Nodes are labeled by<br />

number below, above, or to the side of each branch.<br />

407<br />

Node 33


Table 24.12. List of apomorphies for Analysis 8 (Fig. 24.15).<br />

Characters are listed with states in parentheses; non-homoplastic<br />

changes are marked by an asterisk (*).<br />

Node 49 (Terentiini) 3(2)*, 54(2), 70(2), 86(2),<br />

92(2), 105(6)*, 111(2)*<br />

Node 48 15(3), 38(2), 102(1), 116(3)<br />

Node 47 66(2), 114(2)<br />

Node 46 37(1), 40(3), 95(2)<br />

Node 45 48(1), 86(1)<br />

Node 44 24(2), 88(4), 91(2), 92(1)<br />

Node 43 29(3)<br />

Node 42 54(1)<br />

Node 41 37(1)<br />

Node 40 38(1), 75(1), 82(1), 88(3),<br />

94(2)<br />

Node 39 28(2)*, 44(2), 68(1), 70(1),<br />

74(1), 97(1)<br />

Node 38 35(2), 54(1), 89(2)*, 90(2),<br />

91(1), 101(2)<br />

Node 37 15(1), 27(1), 29(3), 88(4),<br />

93(1), 115(1), 116(2)<br />

Node 36 94(2)<br />

Node 35 40(2), 52(2), 54(1)<br />

Node 34 34(2), 38(2), 48(2), 101(2)<br />

Node 33 --<br />

Node 32 4(2), 15(5), 17(2), 24(1),<br />

26(2), 90(2), 110(3)*,<br />

113(3)*, 114(2)<br />

Node 31 23(2), 37(2), 74(1)<br />

Dingkana 95(2)<br />

Alosextius 53(2), 67(3)<br />

Sertorius 24(2), 48(1), 77(3), 92(1)<br />

Terentius 15(1), 29(3), 54(1), 97(1)<br />

Eutryonia 15(5), 17(2), 40(2), 100(1)<br />

Bucktoniella 40(2), 53(2), 56(5), 82(1),<br />

115(1)<br />

Acanthuchus --<br />

Alocanthella --<br />

Lubra 40(3), 52(2)<br />

Anzac --<br />

Neosextius 14(3), 15(4), 38(2)<br />

Goddefroyinella 23(2), 40(3), 48(2), 97(2)<br />

Sextius 14(2)*, 92(2)<br />

Bulbauchenia 14(3), 29(1)*<br />

Funkhouserella 27(1), 44(2), 88(4), 93(3)<br />

Pyrgonota 6(1), 10(1), 70(1), 97(1)<br />

Eufrenchia --<br />

Cebes 52(1), 70(1), 88(4)<br />

Ceraon 26(2), 40(3)<br />

Sarantus 56(2)*, 90(2), 94(1)<br />

408


Fig. 24.16. Phenetic relationships within Lobocentrini, Beaufortianini,<br />

Gargarini, and Centrotini (Analysis 9, UPGMA). Branch lengths<br />

indicate mean character distance. Asterisks indicate genera not included<br />

in the phylogenetic analyses because of limited data.<br />

409


Fig. 24.17. Phenetic relationships within Nessorhinini, Leptocentrini, and<br />

Terentiini (Analysis 10, UPGMA). Branch lengths indicate mean<br />

character distance. Asterisks indicate genera not included in the<br />

phylogenetic analyses because of limited data.<br />

410


Table 24.13. Data matrix.<br />

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Abelus 1 1 1 1 2 1 1 1 ? ? ? ? ? ? 1 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Acanthophyes decens 1 1 1 1 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Acanthucalis macalpini 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Acanthuchus trispinifer 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 3 1<br />

Afraceronotus quinquefasciatus 1 1 1 2 2 2 1 2 1 2 1 1 1 1 1 1 1 2 2 1 1 ? 1 1 2 1 2 1 2 1<br />

Aleptocentrus notabilis 1 1 1 1 3 1 1 2 1 1 1 2 2 1 1 ? 1 2 2 1 ? 1 ? ? 2 ? 2 1 2 1<br />

Alocanthella fulva 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 3 1<br />

Alocebes dixoni 1 1 2 1 2 2 1 2 ? 2 1 2 2 1 3 ? 1 2 ? ? ? 1 ? ? 2 1 2 1 2 1<br />

Alosextius carinatus 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Amblycentrus pubescens 1 1 1 2 2 2 1 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 3 1<br />

Amphilobocentrus bifasciatus 1 1 ? 1 2 2 1 2 1 1 2 1 ? 1 3 ? 1 2 2 1 1 2 ? ? 2 ? 2 1 2 ?<br />

Ananthasubramanian tomentosus 1 1 2 1 2 2 1 2 1 2 1 1 ? 1 3 ? 1 2 2 1 1 ? ? ? 2 1 2 1 2 1<br />

Anchon 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Anchonastes hastatus 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 2 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Anchonobelus aries 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 2 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Anchonomonoides expansus 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 2 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Antialcidas 1 1 2 1 3 2 1 2 1 1 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 ? 1<br />

Anzac bipunctatum 1 1 2 1 2 2 1 2 1 2 1 2 2 1 1 1 1 2 2 1 2 1 1 2 2 1 1 2 3 1<br />

Arcuatocornum sp. 1 1 2 1 2 2 1 2 1 1 2 1 2 1 3 1 1 2 2 1 1 2 1 1 2 2 2 1 2 1<br />

Arimanes doryensis 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 2 2 1 2 1<br />

Aurinotus auricornis 1 1 1 1 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Awania 1 1 2 1 2 2 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Barsumas 1 1 1 2 2 2 1 2 1 2 2 1 2 1 3 2 1 2 2 1 1 1 1 1 2 2 ? 1 3 1<br />

Barsumoides 1 1 1 2 2 2 1 2 1 2 1 1 2 1 3 2 1 2 2 1 1 1 1 1 2 1 2 1 3 1<br />

Bathoutha indicans 1 1 2 1 2 2 1 2 1 1 2 1 1 1 3 1 1 2 1 ? 1 2 1 1 2 2 1 1 ? 1<br />

Beaufortiana 1 1 2 1 2 2 1 2 1 1 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Bleccia fastidiosus 1 1 1 2 2 2 1 2 1 2 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Bocchar 1 1 2 1 2 2 1 2 1 2 1 1 1 1 2 1 1 2 2 1 1 2 1 1 2 1 2 1 2 1<br />

Boocerus gilvipes 1 1 1 1 2 2 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Brachybelus 1 1 1 2 2 2 1 2 1 1 1 2 1 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Brachycentrotus 1 1 1 2 2 ? 1 2 1 1 1 2 2 1 1 1 1 2 2 1 2 1 1 1 2 1 2 1 3 1<br />

Bucktoniella pyramidatus 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 3 1<br />

Bulbauchenia sp. 1 1 2 2 2 2 1 2 1 2 1 2 ? 3 5 1 2 2 2 ? 2 1 1 1 2 2 2 1 1 1<br />

Bulbauchenia bakeri 1 1 2 2 2 2 1 2 ? 2 1 2 ? 3 3 1 1 2 2 1 2 ? 1 1 2 1 2 1 2 1<br />

Bunyella dromedarius 1 1 2 1 2 2 1 2 ? 2 1 2 ? 1 3 ? 1 2 ? ? ? 1 ? ? 2 ? ? 1 ? 1<br />

Butragulus flavipes 1 1 2 1 3 2 1 2 1 1 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Callicentrus ignipes 1 1 1 1 2 2 1 2 1 2 1 2 ? 3 3 1 1 2 ? ? 2 1 1 1 2 2 2 1 2 1<br />

Camelocentrus yunnanensis 1 1 2 1 2 2 1 2 1 2 2 1 ? 1 3 ? 1 2 ? ? ? ? ? ? 2 ? 2 1 3 1<br />

Campylocentrus hamifer 1 1 2 1 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Campylocentrus obscuripennis 1 1 2 1 2 2 1 2 1 2 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 ? 1<br />

Capeneralus 1 1 1 2 2 2 1 2 1 ? 2 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Capeneriana tenuicornis 1 1 1 2 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Cebes transiens 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1<br />

Centriculus 1 1 1 1 2 2 1 2 1 1 1 2 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 1 1<br />

Centrochares horrifica 1 1 2 1 1 2 1 2 1 2 2 1 2 1 3 2 1 2 2 1 1 1 1 2 2 2 2 1 2 1<br />

Centrodontus 1 1 1 1 2 2 1 2 1 ? 1 2 ? 3 1 1 1 2 ? ? 2 1 1 1 1 2 1 1 3 ?<br />

Centrolobus africanus 1 1 2 1 2 2 1 2 1 ? 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 ? 1<br />

Centronodus 1 2 1 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 1 1 2 1 1 2 1 1 2 3<br />

Centrotosuoides muiri 1 1 2 1 3 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 1 1 1 2 2 1 2 1 3 1<br />

Centrotus cornutus 1 1 2 1 2 2 1 2 1 2 2 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Centrotypus 1 1 1 1 2 2 1 2 1 2 1 2 ? 2 3 1 1 2 2 2 1 1 1 1 2 2 2 1 2 1<br />

Centruchus 1 1 2 1 3 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 2 2 1 2 1 2 1<br />

Ceraon tasmaniae 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 2 2 1 2 1<br />

Choucentrus 1 1 ? 1 2 2 1 2 1 2 2 1 ? 1 3 ? 1 2 2 1 ? ? ? ? 2 ? 2 1 2 1<br />

Coccosterphus 1 1 2 1 3 2 1 2 1 1 1 2 2 1 1 2 1 2 2 1 2 1 1 1 2 2 2 1 3 1<br />

Cornutobelus mutabilis 1 1 1 2 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Crito festivum 1 1 2 1 2 2 1 2 1 2 1 2 ? 1 3 ? 1 2 ? ? ? 1 ? ? 2 ? 2 1 2 1<br />

Cryptaspidia pubera 1 1 1 1 3 2 1 2 1 1 1 2 ? 3 1 1 1 2 2 1 2 1 1 1 2 2 2 1 2 1<br />

Cryptoparma parva 1 1 1 1 3 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Dacaratha 1 1 2 1 2 2 1 2 1 2 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Daconotus projectus 1 1 1 2 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 3 1<br />

Dagonotus lectus 1 1 1 2 2 2 1 2 1 1 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Daimon serricorne 1 1 1 2 2 2 1 2 1 2 1 2 2 1 3 2 1 2 2 1 2 1 1 1 2 2 2 1 2 1<br />

Demanga sookana 1 1 2 1 2 2 1 2 ? ? 1 1 1 1 1 1 1 2 ? ? 1 ? 1 1 2 1 2 1 ? 1<br />

Dingkana borealis 1 1 2 1 2 2 1 2 1 2 1 2 2 1 1 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Distanobelus sericeus 1 1 1 2 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Dograna suffulta 1 1 1 1 2 2 1 2 1 2 2 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Dukeobelus simplex 1 1 2 1 2 2 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Ebhul varium 1 1 1 1 2 2 1 2 1 ? 2 1 2 1 1 1 1 2 2 1 1 1 1 2 2 2 2 1 2 1<br />

Elaphiceps 1 1 1 2 2 2 1 2 2 2 1 1 1 1 5 1 2 2 2 1 1 2 1 1 2 2 2 1 2 1<br />

Emphusis obesa 1 1 1 1 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 2 1 1 1 1 2 2 2 1 2 1<br />

411


Table 24.13 cont’d. Data matrix.<br />

3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Abelus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 1 1 1 1 2 2<br />

Acanthophyes decens 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 3 5 1 1 1 2<br />

Acanthucalis macalpini 1 1 1 1 1 1 2 2 1 1 1 2 1 1 ? ? 1 2 1 2 1 1 2 2 1 1 1 1 1 1<br />

Acanthuchus trispinifer 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 1 1 1 1 1 1 1 1<br />

Afraceronotus quinquefasciatus 1 1 1 1 1 1 2 2 1 2 1 1 1 1 2 1 2 ? 2 1 1 1 2 2 3 5 1 1 1 2<br />

Aleptocentrus notabilis 1 1 1 1 ? 1 2 2 1 1 1 1 1 1 1 ? 1 1 2 1 1 1 ? 2 3 1 ? ? ? ?<br />

Alocanthella fulva 1 1 1 1 1 1 2 2 1 1 1 1 1 1 1 ? 1 1 1 2 1 1 1 1 1 1 1 1 1 1<br />

Alocebes dixoni 1 1 1 1 ? 1 1 2 1 3 1 2 1 1 1 ? 1 1 1 1 1 ? 2 1 1 1 ? ? ? ?<br />

Alosextius carinatus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 2 2 1 1 1 1 1 1<br />

Amblycentrus pubescens 1 1 1 1 1 1 2 2 2 1 1 2 1 1 1 ? 1 3 2 1 1 1 2 2 1 5 1 2 1 2<br />

Amphilobocentrus bifasciatus 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 1 ? 1 3 1 1 1 1 2 1 1 1 ? ? ? ?<br />

Ananthasubramanium tomentosum 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 1 ? 1 3 2 1 1 1 2 2 1 1 ? ? ? ?<br />

Anchon 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Anchonastes hastatus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Anchonobelus aries 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 3 5 1 1 2 2<br />

Anchonomonoides expansus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 3 5 1 1 1 2<br />

Antialcidas 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 1 1 2 2 1 1 1 2 2 3 5 1 1 1 2<br />

Anzac bipunctatum 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 ? 1 1 1 2 1 1 1 2 1 1 2 1 1 1<br />

Arcuatocornum sp. 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 1 2 1 1 1 1 1 1 1 1 1 2<br />

Arimanes doryensis 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 1 1 1 1<br />

Aurinotus auricornis 1 1 1 1 1 1 2 1 1 2 1 2 1 1 2 1 2 ? 1 1 1 1 2 2 1 5 1 1 1 2<br />

Awania 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 1 2 1 2 1 1 1 1 1 1 1 2<br />

Barsumas 1 1 1 1 1 1 2 ? 1 1 1 1 1 2 2 1 2 ? 2 1 1 1 2 2 3 5 1 1 1 2<br />

Barsumoides 1 ? 1 1 1 1 1 ? 1 1 2 2 1 1 2 1 2 ? 2 1 1 1 2 2 3 5 1 1 1 2<br />

Bathoutha indicans 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 2 2 2 2 1 2 1 1 1 1 1 2<br />

Beaufortiana 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 1 1 1 1 1 1 1 ?<br />

Bleccia fastidiosus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Bocchar 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 ? 1 2 1 1 1 1 2 2 3 1 1 1 1 1<br />

Boocerus gilvipes 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 3 2 1 1 1 2 2 3 1 1 1 1 2<br />

Brachybelus 1 1 1 1 1 1 2 2 2 1 1 2 1 1 1 ? 1 3 2 1 1 1 2 2 1 6 1 2 1 2<br />

Brachycentrotus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 2 1 1 1 2 2 1 4 1 1 1 1<br />

Bucktoniella pyramidatus 1 1 1 1 1 1 ? 2 1 2 1 1 1 1 1 ? 1 1 1 2 1 1 2 2 1 5 1 1 1 1<br />

Bulbauchenia sp. 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 2 1 1 1<br />

Bulbauchenia bakeri 1 1 1 1 1 1 1 1 1 1 1 2 1 1 ? ? 1 1 1 2 1 ? ? 2 2 1 1 1 1 1<br />

Bunyella dromedarius 1 1 1 1 ? 1 2 2 1 2 1 2 1 1 1 ? 1 ? 1 2 1 1 2 2 1 1 ? ? ? ?<br />

Butragulus flavipes 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 2 1 2 2 1 1 1 2 2 2 5 1 1 1 2<br />

Callicentrus ignipes 1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 ? 1 1 1 2 1 2 2 1 1 1 1 1 1 1<br />

Camelocentrus yunnanensis 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 1 ? 1 3 2 1 1 1 2 2 1 1 ? ? ? ?<br />

Campylocentrus hamifer 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 3 1 2 1 1 1 1 1 1 1 1 1 2<br />

Campylocentrus obscuripennis 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 2 1 1 1 1 2 3 1 1 1 1 2<br />

Capeneralus 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 2 1 1 1 2 2 2 5 1 1 1 2<br />

Capeneriana tenuicornis 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 ? 2<br />

Cebes transiens 1 ? 1 2 1 1 1 2 1 2 1 1 1 1 1 ? 1 ? 1 2 1 1 1 1 1 1 2 1 1 1<br />

Centriculus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 3 2 1 1 1 2 2 1 1 1 1 2 2<br />

Centrochares horrifica 1 ? 1 ? 1 1 2 2 1 1 2 1 1 1 2 1 2 ? 2 1 1 1 ? ? ? 3 2 1 1 1<br />

Centrodontus 1 ? ? ? 1 1 2 2 1 1 1 1 1 2 1 ? 1 ? 1 ? 1 1 ? ? ? 5 2 1 1 1<br />

Centrolobus africanus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 1 1 1 1 1 1 1 1<br />

Centronodus 1 ? 2 ? 1 1 2 2 1 1 1 1 1 2 1 ? 1 ? ? ? 1 1 ? ? ? 1 1 1 1 2<br />

Centrotosuoides 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 ? 1 2 2 1 1 1 2 2 1 1 1 1 1 1<br />

Centrotus cornutus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 2 1 1 5 1 1 1 2<br />

Centrotypus 1 2 1 1 1 1 ? 2 1 3 1 2 1 1 1 ? 1 2 2 2 1 1 2 2 1 1 1 1 1 2<br />

Centruchus 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 2 1 1 1 1 1 1 1<br />

Ceraon tasmaniae 1 1 1 2 1 1 1 2 1 3 1 1 1 1 1 ? 1 2 1 2 1 2 1 1 1 1 1 1 1 1<br />

Choucentrus 2 ? 1 1 1 1 2 2 1 ? 1 2 1 1 1 ? 1 1 2 1 1 1 ? ? 3 1 ? ? ? ?<br />

Coccosterphus 1 ? 1 1 1 1 2 2 1 1 ? 2 1 1 1 ? 1 2 2 1 1 1 1 2 3 5 1 1 1 2<br />

Cornutobelus mutabilis 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Crito festivum 1 1 1 1 1 1 1 2 1 3 1 2 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 ? ? ? ?<br />

Cryptaspidia pubera 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 2 1 2 2 1 1 1 1 2 3 5 1 1 2 2<br />

Cryptoparma parva 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 2 1 2 2 1 1 1 1 1 1 5 1 1 1 2<br />

Dacaratha 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 1 2 1 2 2 1 1 1 1 1 1 2<br />

Daconotus projectus 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 ? 1 1 1 1 2 2 2 5 1 1 1 2<br />

Dagonotus lectus 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Daimon serricorne 1 1 1 1 1 1 1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 2 1 1 1 1 1<br />

Demanga sooknana 1 1 1 1 1 1 2 2 1 1 1 2 1 1 ? ? 1 3 2 ? 1 ? ? ? ? 1 1 1 1 2<br />

Dingkana borealis 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 1 2 1 1 1 1 1 1<br />

Distanobelus sericeus 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 2 ? 1 1 1 1 2 2 2 5 1 1 1 2<br />

Dograna suffulta 2 ? 1 1 1 1 2 2 1 1 1 2 1 1 2 1 1 2 2 1 1 1 ? ? ? 1 1 1 1 1<br />

Dukeobelus simplex 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 1 1 1 1 1 1 1 1<br />

Ebhul varium 1 1 1 2 1 1 2 2 1 1 1 1 1 1 1 ? 1 2 2 1 1 1 1 1 1 5 2 1 1 1<br />

Elaphiceps 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 1 1 1 1 1 2 2 1 1 1 1 1<br />

Emphusis obesa 1 2 1 1 1 1 1 2 1 2 1 2 1 1 1 ? 1 2 2 2 1 1 1 1 1 1 1 1 1 2<br />

412


Table 24.13 cont’d. Data matrix.<br />

6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Abelus 2 1 1 1 1 1 ? 2 1 2 2 1 1 3 2 2 1 1 2 1 2 2 1 1 ? 1 2 1 ? ?<br />

Acanthophyes decens 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 3 2 1<br />

Acanthucalis macalpini 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 2 2 2 1 1 2 1 1 ? ? ? ? ? 1 3 1 2<br />

Acanthuchus trispinifer 1 ? 1 1 1 1 ? 2 1 2 1 1 1 2 2 2 1 1 2 1 1 2 1 1 ? 1 1 4 1 1<br />

Afraceronotus quinquefasciatus 2 1 1 1 1 1 ? 2 1 2 1 1 ? 3 2 2 3 1 2 ? ? 2 ? ? ? 2 1 ? ? ?<br />

Aleptocentrus notabilis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Alocanthella fulva 1 ? 1 1 1 1 ? 2 1 2 1 1 ? 2 2 2 1 1 2 1 1 ? 1 1 ? 1 1 ? ? ?<br />

Alocebes dixoni ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Alosextius carinatus 1 ? 1 1 1 2 3 2 1 2 1 ? 1 2 2 2 1 1 2 1 1 ? 1 1 ? ? 1 1 ? ?<br />

Amblycentrus pubescens 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 3 2 1 1 ? 1 2 3 2 2<br />

Amphilobocentrus bifasciatus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Ananthasubramanium tomentosus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Anchon 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 1 ? ?<br />

Anchonastes hastatus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 1 ? ?<br />

Anchonobelus aries 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 3 2 2<br />

Anchonomonoides expansus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 1 ? ?<br />

Antialcidas 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 2 1 2 1 3 2 2 2 1 1 1 3 2 2<br />

Anzac bipunctatum 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 1 1 2 1 1 2 1 1 ? 1 1 ? 1 1 4 1 1<br />

Arcuatocornum sp. 2 2 1 1 1 1 ? 2 1 2 2 1 1 2 2 2 3 1 2 1 2 2 1 1 ? 1 1 1 ? ?<br />

Arimanes doryensis 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 2 2 2 1 1 2 1 1 2 1 1 ? ? 1 4 ? ?<br />

Aurinotus auricornis 2 1 1 1 1 1 ? 2 1 2 1 1 ? 3 2 2 3 1 2 ? ? 2 ? ? ? 2 1 ? ? ?<br />

Awania 2 1 1 1 1 1 ? 2 1 2 1 3 1 3 2 2 3 1 2 1 3 2 1 2 1 2 1 3 1 1<br />

Barsumas 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 3 1 2<br />

Barsumoides 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 2 1 1 2 1 2 ? 2 1 3 1 2<br />

Bathoutha indicans 2 1 1 1 1 1 ? 2 1 2 1 1 ? ? 2 2 1 1 2 1 1 2 1 1 ? 1 2 ? ? ?<br />

Beaufortiana 1 ? 1 1 1 1 ? 2 1 ? ? 1 1 3 2 2 1 1 2 1 1 2 2 1 ? 1 2 1 ? ?<br />

Bleccia fastidiosus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 2 2 1 2 2 1 1 3 2 1<br />

Bocchar 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 4 1 1<br />

Boocerus gilvipes 2 1 1 1 1 1 ? 2 1 2 2 1 1 3 2 2 1 1 2 1 3 2 1 1 ? 1 2 3 2 2<br />

Brachybelus 2 1 1 1 2 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 3 2 1 1 ? 1 2 3 2 2<br />

Brachycentrotus 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 3 1 1 1 ? 1 2 1 ? ?<br />

Bucktoniella pyramidatus 1 ? 1 1 1 1 ? 2 1 2 1 1 ? 2 2 2 1 1 2 1 1 1 1 1 ? 1 1 ? ? ?<br />

Bulbauchenia sp. 1 ? 1 1 1 1 ? 2 1 2 1 1 ? 2 1 2 1 1 2 1 1 ? 1 1 ? 1 1 ? ? ?<br />

Bulbauchenia bakeri 1 ? 1 1 1 1 ? 2 1 2 1 1 1 ? 1 2 1 1 2 1 1 ? 1 1 ? 1 1 3 2 2<br />

Bunyella dromedarius ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 ? 1 ? ? ? ? ? ? ? ? ? ? ? ?<br />

Butragulus flavipes 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 2 2 1 1 1 1 ? ?<br />

Callicentrus ignipes 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 ? 2 1 1 2 1 3 2 2 1 ? 2 2 1 ? ?<br />

Camelocentrus yunnanensis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Campylocentrus hamifer 2 2 1 1 1 1 ? 2 1 2 2 1 1 ? 2 2 1 1 2 1 3 2 1 1 ? 2 2 1 ? ?<br />

Campylocentrus obscuripennis 2 2 1 1 1 1 ? 2 1 2 2 1 ? 3 2 2 1 1 2 1 1 2 1 1 ? 2 2 ? ? ?<br />

Capeneralus 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 1 2<br />

Capeneriana tenuicornis 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 ? 1 1 ? ? ?<br />

Cebes transiens 1 ? 1 1 1 1 ? 2 1 1 ? 1 1 2 1 2 1 1 2 1 1 ? 1 1 ? ? 1 4 1 1<br />

Centriculus 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 3 1 2<br />

Centrochares horrifica 1 ? ? 2 2 1 ? 2 1 1 ? 1 1 3 1 2 3 1 2 2 1 1 2 1 ? 2 1 3 2 2<br />

Centrodontus 1 ? 2 2 2 1 ? 1 ? 1 ? 1 1 2 1 1 ? 2 2 1 1 1 1 1 ? 1 1 1 ? ?<br />

Centrolobus africanus 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 1 1 2 1 1 2 2 1 ? 1 2 1 ? ?<br />

Centronodus 2 1 1 1 1 2 2 2 1 2 1 1 1 3 2 2 1 1 2 1 1 ? 1 1 ? 1 1 1 ? ?<br />

Centrotosuoides muiri 1 ? 1 1 1 2 2 2 1 2 2 ? 1 3 2 2 1 1 2 1 1 2 2 1 ? 2 2 1 ? ?<br />

Centrotus cornutus 2 1 1 1 1 1 ? 2 1 2 1 2 2 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 1 2<br />

Centrotypus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 1 1 ? 2 1 1 ? ?<br />

Centruchus 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 2 1 ? 1 2 1 ? ?<br />

Ceraon tasmaniae 1 ? 1 1 1 1 ? 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 1 ? 1 1 3 1 1<br />

Choucentrus ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 ? 1 ? ? ? ? ? ? ? ? ? ? ? ?<br />

Coccosterphus 2 1 2 2 2 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 2 2 1 2 1 1 ? ?<br />

Cornutobelus mutabilis 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 1 2<br />

Crito festivum ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 ? 1 ? ? ? ? ? ? ? ? ? ? ? ?<br />

Cryptaspidia pubera 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 2 2 1 1 1 1 ? ?<br />

Cryptoparma parva 2 1 1 3 1 1 ? 2 1 2 1 3 ? 3 2 2 3 1 2 1 3 2 3 2 1 1 1 ? ? ?<br />

Dacaratha 2 2 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 2 1 3 2 1 2 1 2 1 4 1 1<br />

Daconotus projectus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 1 2<br />

Dagonotus lectus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 ? ? ?<br />

Daimon serricorne 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 3 1 2 1 1 2 1 1 2 2 1 ? 3 2 1 ? ?<br />

Demanga sooknana 2 1 1 1 1 1 ? 2 1 2 1 3 ? 3 2 2 3 1 2 ? ? ? ? ? ? 2 ? ? ? ?<br />

Dingkana borealis 1 ? 1 1 1 1 ? 2 1 2 1 1 3 2 2 2 1 1 2 1 2 2 1 1 ? 2 1 1 ? ?<br />

Distanobelus sericeus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 1 ? ?<br />

Dograna suffulta 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 1 ? ?<br />

Dukeobelus simplex 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 2 1 ? 1 2 1 ? ?<br />

Ebhul varium 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 ? ? 1 2 1 1 1 1 1 ? 1 1 2 ? ?<br />

Elaphiceps 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 2 2 1 1 ? 2 2 3 2 1<br />

Emphusis obesa 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 1 1 ? 2 1 1 ? ?<br />

413


Table 24.13 cont’d. Data matrix.<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6<br />

Abelus 1 2 2 1 1 1 1 1 3 2 2 1 3 2 5 3 2 1 1 1 1 1 2 1 1 3<br />

Acanthophyes decens 2 1 2 1 1 1 1 1 3 2 1 1 1 ? 3 3 2 1 2 1 1 1 2 2 2 3<br />

Acanthucalis macalpini 2 1 1 ? 1 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Acanthuchus trispinifer 2 1 2 1 1 1 2 1 3 2 1 1 1 1 6 2 2 1 1 1 2 3 2 1 2 3<br />

Afraceronotus quinquefasciatus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Aleptocentrus notabilis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Alocanthella fulva ? ? ? ? ? ? ? 1 3 2 1 1 1 1 6 2 2 1 1 1 2 3 2 ? ? ?<br />

Alocebes dixoni ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Alosextius carinatus 1 2 2 1 1 1 2 ? ? ? ? ? ? ? 6 2 2 1 1 1 2 3 2 ? ? ?<br />

Amblycentrus pubescens 1 2 2 1 2 1 1 1 3 2 1 1 3 2 1 3 1 1 1 1 1 1 2 1 1 3<br />

Amphilobocentrus bifasciatus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Ananthasubramanium tomentosus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Anchon 1 2 2 1 2 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 2 2 3<br />

Anchonastes hastatus 1 2 1 ? 2 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 2 2 3<br />

Anchonobelus aries 1 1 2 1 1 1 1 1 3 2 2 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Anchonomonoides expansus 1 1 2 2 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 ? ? ?<br />

Antialcidas 1 2 2 1 1 1 1 1 3 2 2 1 1 2 1 1 1 1 3 1 1 1 2 ? ? ?<br />

Anzac bipunctatum 2 1 1 ? 1 1 1 1 3 2 1 1 1 ? 6 2 2 1 1 1 2 3 2 1 1 2<br />

Arcuatocornum sp. 1 1 1 ? 2 1 2 1 3 2 1 1 1 2 1 1 1 1 3 1 1 1 2 ? ? ?<br />

Arimanes doryensis 2 1 ? ? 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Aurinotus auricornis ? ? ? ? ? ? ? 1 3 2 1 1 1 ? 3 3 2 1 2 1 1 ? 2 ? ? ?<br />

Awania 2 1 1 ? 1 1 1 1 3 2 1 1 1 1 7 3 2 1 ? 2 2 ? 2 2 2 3<br />

Barsumas 1 1 2 2 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 1 2 3<br />

Barsumoides 1 1 2 2 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 2 3<br />

Bathoutha indicans ? ? ? ? ? ? ? 1 3 2 2 1 1 1 7 3 2 2 1 3 1 2 2 ? ? ?<br />

Beaufortiana 1 1 3 1 2 1 1 1 3 2 2 1 1 1 4 1 2 1 1 1 1 1 2 1 1 2<br />

Bleccia fastidiosus 1 1 2 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 ? ? ?<br />

Bocchar 2 1 2 2 1 1 1 1 3 1 ? ? 1 1 8 3 2 1 2 1 2 1 2 ? ? ?<br />

Boocerus 1 1 2 2 1 1 1 1 3 2 1 1 3 2 5 3 1 1 1 1 1 3 2 1 1 3<br />

Brachybelus 1 2 2 1 2 1 1 1 3 2 1 1 3 2 1 3 1 1 1 1 1 1 2 ? ? ?<br />

Brachycentrotus 1 1 3 1 1 1 1 1 3 1 ? ? 1 2 2 1 1 1 3 1 1 1 2 ? ? ?<br />

Bucktoniella pyramidatus ? ? ? ? ? ? ? 1 3 2 1 1 1 1 6 2 2 1 1 1 2 3 2 1 1 3<br />

Bulbauchenia ? ? ? ? ? ? ? 1 3 2 1 1 1 1 6 2 2 1 1 3 2 3 3 2 2 3<br />

Bulbauchenia bakeri 1 1 2 2 1 1 1 1 3 2 1 1 1 1 6 2 2 1 1 3 2 3 3 2 2 3<br />

Bunyella dromedarius ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Butragulus flavipes 1 2 2 1 2 1 1 1 3 1 ? ? 1 2 1 3 1 1 3 1 1 1 2 1 1 3<br />

Callicentrus ignipes 1 2 3 2 1 1 1 1 3 2 1 1 1 1 4 1 2 1 3 1 1 2 2 ? ? ?<br />

Camelocentrus yunnanensis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Campylocentrus hamifer 1 2 1 ? 1 1 1 1 3 2 1 1 3 2 5 1 2 1 1 1 1 2 2 ? ? ?<br />

Campylocentrus obscuripennis ? ? ? ? ? ? ? 1 3 2 1 1 3 2 5 3 2 1 1 1 1 3 2 ? ? ?<br />

Capeneralus 1 1 2 2 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? 3<br />

Capeneriana tenuicornis ? ? ? ? ? ? ? 1 3 2 2 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Cebes transiens 2 1 2 2 1 1 2 1 3 2 2 1 1 1 6 2 2 1 1 1 2 3 2 ? ? ?<br />

Centriculus 1 1 2 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 1 1 3<br />

Centrochares horrifica 1 1 2 2 1 2 1 1 3 1 ? ? 1 1 7 1 2 1 3 2 1 1 2 1 1 3<br />

Centrodontus 1 2 2 1 1 1 1 1 3 2 2 2 1 1 1 1 1 1 3 1 1 1 2 1 2 3<br />

Centrolobus africanus 1 1 2 2 2 1 1 ? 3 2 2 1 1 1 4 1 2 1 1 1 1 1 2 ? ? ?<br />

Centronodus 1 2 2 2 1 1 1 1 2 2 2 1 1 1 1 1 1 1 3 1 1 1 1 ? ? ?<br />

Centrotosuoides muiri 2 1 2 2 1 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Centrotus cornutus 2 1 2 2 1 1 1 1 3 2 2 1 1 1 3 3 2 1 2 1 1 2 2 1 1 2<br />

Centrotypus 1 2 2 2 2 1 2 1 3 1 ? ? 1 1 3 3 2 1 2 1 1 2 2 2 2 3<br />

Centruchus 2 1 2 2 2 1 2 1 3 1 ? ? 1 1 4 1 2 1 1 1 1 1 2 1 1 3<br />

Ceraon tasmaniae 2 1 2 2 1 1 2 1 3 2 2 1 1 1 6 2 2 1 1 1 2 3 2 1 2 3<br />

Choucentrus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Coccosterphus 1 2 3 1 2 1 2 1 3 2 2 1 1 2 1 3 1 1 3 1 1 1 2 1 1 1<br />

Cornutobelus mutabilis 1 1 2 2 1 1 2 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 ? ? ?<br />

Crito festivum ? ? ? ? ? ? ? ? ? ? ? ? ? ? 6 2 2 ? 1 ? 2 ? ? ? ? ?<br />

Cryptaspidia pubera 1 2 1 ? 2 1 1 1 3 1 ? ? 1 2 1 3 1 1 3 1 1 1 2 2 2 3<br />

Cryptoparma parva ? ? ? ? ? ? ? 1 3 2 2 1 1 2 1 3 1 1 3 1 1 1 2 ? ? ?<br />

Dacaratha 2 1 2 2 1 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 2 3<br />

Daconotus projectus 1 1 1 ? 2 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Dagonotus lectus ? ? ? ? ? ? ? 1 3 2 2 1 1 1 3 3 2 1 2 1 1 1 2 ? ? ?<br />

Daimon serricorne 1 2 3 2 1 1 2 1 3 2 1 1 1 1 4 1 2 1 3 1 1 2 2 1 1 2<br />

Demanga sooknana ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Dingkana borealis 1 2 2 1 2 1 2 1 3 2 1 2 1 1 6 2 2 1 1 1 2 3 2 1 2 2<br />

Distanobelus sericeus 1 1 2 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 ? ? ?<br />

Dograna suffulta 1 2 2 1 1 1 1 1 3 2 2 1 1 1 7 3 2 2 1 3 2 2 2 ? ? ?<br />

Dukeobelus simplex 1 1 2 1 2 1 1 1 3 2 2 1 1 1 4 1 2 1 1 1 1 1 2 1 1 2<br />

Ebhul varium 1 1 1 ? 1 1 1 1 3 2 1 2 1 1 5 3 2 1 1 1 1 3 2 1 2 2<br />

Elaphiceps 1 1 1 ? 1 1 2 1 3 2 2 1 2 2 1 1 1 1 3 1 1 1 2 1 1 3<br />

Emphusis obesa 1 2 2 2 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 2 2 3<br />

414


Table 24.13 cont’d. Data matrix.<br />

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Erecticornia 1 1 1 1 3 2 1 2 1 1 1 2 ? 1 3 ? 1 2 2 1 ? 1 ? ? ? 1 2 1 2 1<br />

Euceropsila primus 1 1 1 2 2 2 1 2 1 2 1 1 1 1 4 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Eucoccosterphus 1 1 2 1 3 2 1 2 1 1 1 2 2 1 1 2 1 2 2 1 2 1 1 1 2 2 1 1 3 1<br />

Eufairmairia 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1<br />

Eufairmairiella 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1<br />

Eufrenchia falcata 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1<br />

Eumocentrulus 1 1 1 2 2 2 1 2 1 2 2 1 2 1 4 2 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Eumonocentrus 1 1 1 2 2 2 1 2 1 2 1 ? 2 1 4 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Eutryonia monstrifera 1 1 2 1 2 2 1 2 1 2 1 2 2 1 5 1 2 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Evanchon 1 1 2 1 2 1 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 1 1 2 1<br />

Evansiana iasis 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1<br />

Farcicaudia nitida 1 1 1 2 2 2 1 2 1 2 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Flatyperphyma flavocristatus 1 1 1 2 2 2 1 2 1 2 1 1 2 1 4 2 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Flexanotus albescens 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Foliatrotus elephas 1 1 1 2 2 2 1 2 1 2 1 1 2 1 4 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Funkhouserella brevifurca 1 1 2 2 2 2 1 2 ? ? 1 2 2 1 5 1 2 2 2 1 2 ? 2 1 2 2 2 1 1 1<br />

Funkhouserella pinguiturris 1 1 2 2 2 2 1 2 1 2 1 ? 2 1 5 1 2 2 2 1 2 1 2 1 2 2 1 1 2 1<br />

Gargara 1 1 2 1 3 2 1 2 1 1 1 2 2 1 1 1 1 2 2 1 2 1 1 1 2 1 2 1 3 1<br />

Gargarina carinata 1 1 1 1 3 2 1 2 1 1 1 2 ? 3 1 ? 1 2 ? ? ? 1 ? ? 2 ? 2 1 2 1<br />

Gigantorhabdus enderleini 1 1 2 1 4 1 1 2 1 2 1 2 2 1 5 1 2 2 2 1 2 1 2 2 2 2 2 1 1 1<br />

Goddefroyinella neglecta 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 2 2 2 1 2 2 2 1<br />

Goniolomus tricorniger 1 1 1 2 2 1 1 2 1 2 1 2 ? 3 3 1 1 2 ? ? 2 1 1 1 2 1 2 2 2 1<br />

Hamma 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 2 1 2 2 1 1 1 1 1 2 1 2 1 3 1<br />

Hemicentrus 1 1 1 1 2 2 1 1 ? ? ? ? ? ? 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Hybanda anodonta 1 1 2 1 2 2 1 2 1 1 1 2 2 1 ? 1 2 2 2 1 2 1 2 2 2 2 2 1 1 1<br />

Hybandoides 1 1 2 1 3 2 1 2 1 1 1 1 2 1 1 1 2 2 2 1 2 1 2 2 2 2 1 1 2 1<br />

Hypsauchenia hardwickii 1 1 2 1 4 2 1 2 1 2 1 1 2 1 5 1 2 2 2 1 1 1 2 2 2 2 2 1 1 1<br />

Hypsolyrium uncinatum 1 1 2 1 4 2 1 2 1 ? 1 1 2 1 1 1 2 2 2 1 2 1 2 2 2 2 2 1 2 1<br />

Imporcitor typicus 1 1 2 1 2 2 1 2 1 1 1 1 2 1 3 1 1 2 2 1 2 1 1 1 2 1 1 1 2 1<br />

Indicopleustes albomaculata 1 1 2 1 2 2 1 2 1 1 2 1 1 1 3 1 1 2 2 1 1 2 1 1 2 2 1 1 2 1<br />

Ischnocentrus 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Jacobiana 1 1 1 2 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 3 1<br />

Jingkara hyalipunctata 1 1 2 1 4 2 1 2 1 2 2 1 2 1 5 2 2 2 2 1 1 1 2 2 2 2 2 1 2 1<br />

Joveriana 1 1 2 1 2 2 1 2 1 2 1 1 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 1 1<br />

Kallicrates bellicornis 1 1 1 2 2 2 1 2 1 2 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 3 1<br />

Kanada irvinei 1 1 2 1 3 2 1 2 1 1 1 2 2 1 1 1 1 2 2 1 2 1 1 1 2 1 2 1 3 1<br />

Lanceonotus 1 1 2 1 2 2 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 2 1 1 2 2 2 1 2 1<br />

Leprechaunus 1 1 1 2 2 2 1 2 1 1 2 1 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 3 1<br />

Leptobelus 1 1 2 1 2 2 1 2 2 2 1 1 1 1 5 1 2 2 1 ? 1 2 1 1 2 1 2 1 2 1<br />

Leptocentrus 1 1 2 1 2 2 1 2 1 2 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 1 1<br />

Leptoceps viniculum 1 1 2 1 2 2 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Lobocentrus 1 1 2 1 2 2 1 2 1 1 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Lubra spincornis 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1<br />

Maarbarus 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 1 1 2 1 ? 1 2 1 1 2 1 1 1 2 1<br />

Mabokiana teocchii 1 1 2 1 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 ? 1 1 2 1 2 1 2 1<br />

Machaerotypus sibiricus 1 1 2 1 3 2 1 2 1 1 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 3 1<br />

Madlinus seychellensis 1 1 1 1 3 2 1 2 1 1 1 2 ? 3 1 2 1 2 2 1 2 1 1 1 2 2 1 1 3 1<br />

Maguva nigra 1 1 2 1 2 2 1 2 1 1 2 1 2 1 3 2 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Marshallella rubripes 1 1 1 1 2 2 1 2 1 2 1 2 ? 3 2 1 1 2 ? ? 2 1 1 1 2 ? 2 1 2 1<br />

Matonotus 1 1 1 2 2 2 1 2 1 2 2 1 2 1 3 ? 1 2 2 1 ? ? ? ? ? ? 2 1 2 1<br />

Matumuia 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 ? 1 2 ? ? ? 1 ? ? 2 ? 2 1 1 1<br />

Maurya 1 1 2 1 3 2 1 2 1 1 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 3 1<br />

Menthogonus badhami 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Mesocentrina pyramidata 1 1 1 1 3 2 1 2 1 1 1 2 ? 3 1 1 1 2 ? ? 2 1 1 1 2 2 2 1 3 1<br />

Micreune formidanda 1 1 1 2 2 1 1 2 1 2 1 1 1 1 5 1 2 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Microcentrus caryae 1 1 1 1 2 2 1 2 1 1 1 2 2 1 2 1 1 2 2 1 2 1 1 1 1 2 1 1 2 1<br />

Mitranotus albofascipennis 1 1 1 2 2 2 1 2 1 2 2 1 2 1 4 2 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Monanchon monanchonus 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Monobeloides stuarti 1 1 1 2 2 2 1 2 1 2 1 2 ? 3 1 1 1 2 2 1 2 1 1 1 2 1 2 2 2 1<br />

Monobelus 1 1 1 2 2 2 1 2 1 2 1 2 2 1 1 1 1 2 2 1 1 2 1 1 2 1 2 1 2 1<br />

Monocentrus 1 1 1 2 2 2 1 2 1 2 2 1 2 1 4 1 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Multareiodes 1 1 1 1 2 1 1 2 1 ? 1 2 ? 3 3 1 1 2 ? ? 2 1 2 2 1 2 1 1 3 ?<br />

Multareis 1 1 1 1 2 2 1 2 1 ? 1 2 ? 3 2 1 1 2 ? ? 2 1 2 2 1 2 1 1 2 ?<br />

Negus asper 1 1 2 1 2 2 2 2 1 2 1 2 2 1 3 2 1 2 2 1 1 2 2 2 2 2 2 1 3 1<br />

Neocanthuchus tropicus 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1<br />

Neocentrus rufus 1 1 2 ? 2 2 1 2 1 1 1 1 ? 1 1 ? 1 2 2 1 ? ? ? ? 2 ? 2 1 2 1<br />

Neomachaerotypus eguchii 1 1 2 ? 3 2 ? 2 1 1 1 2 ? 1 3 ? 1 2 ? ? ? ? ? ? 2 ? 2 1 ? 1<br />

Neosextius 1 1 2 1 2 2 1 2 1 2 1 2 ? 3 4 ? 1 2 ? ? ? 1 ? ? 2 1 1 ? ? 1<br />

Nessorhinus 1 1 1 2 2 1 1 2 1 2 1 2 ? 3 4 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Nicomia 2 1 1 2 2 2 1 1 ? ? ? ? ? ? 1 1 1 1 3 ? 1 1 1 1 2 1 2 1 2 2<br />

Nilautama minutaspina 1 1 2 1 2 2 1 2 1 1 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Nilautama typica 1 1 2 1 2 2 1 2 1 ? 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Nodonica bispinigera 1 1 1 2 2 2 1 2 1 1 1 2 ? 3 3 1 1 2 ? ? 2 ? ? ? 1 2 1 1 ? ?<br />

Nondenticentrus 1 1 1 1 3 2 1 2 1 1 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

415


Table 24.13 cont’d. Data matrix.<br />

3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Erecticornia 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 2 2 1 2 2 1 1 1 2 2 2 5 ? ? ? ?<br />

Euceropsila primus 1 ? 1 1 1 1 2 2 1 2 ? 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Eucoccosterphus 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 2 3 5 1 2 1 2<br />

Eufairmairia 1 1 1 1 1 1 1 2 1 3 1 2 1 1 1 ? 1 1 1 2 1 2 1 1 1 1 2 1 1 1<br />

Eufairmairiella 1 1 1 1 1 1 1 2 1 3 1 2 1 1 1 ? 1 1 1 2 1 1 1 1 1 1 ? 1 1 1<br />

Eufrenchia falcata 1 1 1 1 1 1 1 1 1 2 1 2 1 1 1 ? 1 1 1 2 1 2 1 1 1 1 2 1 1 1<br />

Eumocentrulus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 1 5 1 1 1 2<br />

Eumonocentrus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Eutryonia monstrifera 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 1 1 1 1<br />

Evanchon 2 ? 1 1 1 1 2 2 1 1 2 2 1 1 2 1 2 ? 2 1 1 1 ? 2 3 5 1 1 1 1<br />

Evansiana iasis 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 1 2 1 1 1 1 1 1<br />

Farcicaudia nitida 1 ? 1 1 1 1 2 2 1 1 2 2 1 1 2 1 2 ? 2 1 1 1 1 2 3 5 1 1 1 2<br />

Flatyperphyma flavocristatus 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 1 5 1 1 1 2<br />

Flexanotus albescens 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Foliatrotus elephas 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Funkhouserella brevifurca 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ? ? 1 1 1 ? 1 ? ? ? ? 1 1 1 1 1<br />

Funkhouserella pinguiturris 1 1 1 1 1 1 2 1 1 1 1 1 1 2 1 ? 1 1 1 2 1 1 ? ? 1 1 2 1 1 1<br />

Gargara 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 2 1 1 1 2 2 3 5 1 1 1 2<br />

Gargarina carinata 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 1 ? 1 2 2 1 1 1 1 2 3 5 ? ? ? ?<br />

Gigantorhabdus enderleini 1 1 1 2 1 1 2 1 2 1 1 1 1 2 1 ? 1 1 1 2 1 1 ? 1 1 1 2 1 1 1<br />

Goddefroyinella neglecta 1 1 ? 1 ? 1 1 1 1 3 1 1 1 2 1 ? 1 2 1 2 1 1 1 1 1 1 2 1 1 1<br />

Goniolomus tricorniger 1 1 1 1 1 1 2 1 1 2 1 2 1 1 2 1 1 2 2 1 1 2 2 1 1 1 1 1 1 1<br />

Hamma 1 ? 1 1 1 1 2 2 1 1 2 2 1 1 2 1 2 ? 2 1 1 1 1 2 3 5 1 1 1 2<br />

Hemicentrus 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 2 1 1 1 1 2 1 1 1 1 1 2<br />

Hybanda anodonta 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 ? 1 1 1 3 1 1 1 1 1 1 1 1 1 1<br />

Hybandoides 1 1 1 2 1 1 1 1 ? 1 1 1 2 1 1 ? 1 2 2 3 1 1 1 1 1 1 1 1 1 1<br />

Hypsauchenia hardwickii 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 ? 1 1 1 3 1 1 ? 1 1 1 1 1 1 1<br />

Hypsolyrium uncinatum 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 ? 1 1 2 3 1 1 ? 1 1 1 1 1 1 1<br />

Imporcitor typicus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 3 2 1 1 1 1 1 1 1 1 1 1 1<br />

Indicopleustes albomaculata 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 2 2 2 2 1 2 1 1 1 1 1 2<br />

Ischnocentrus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 1 1 1 1 2 2<br />

Jacobiana 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 1 5 1 1 1 2<br />

Jingkara hyalipunctata 1 1 1 2 1 1 1 1 1 3 1 1 2 2 ? ? 1 2 1 3 1 1 ? ? ? 1 1 1 1 1<br />

Joveriana 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 ? 2 1 2 2 1 1 1 1 1 1 2<br />

Kallicrates bellicornis 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Kanada irvinei 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 2 1 2 2 1 1 1 2 2 3 5 1 1 ? ?<br />

Lanceonotus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 1 1 1 1 1 2 2 1 1 1 1 1<br />

Leprechaunus 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Leptobelus 1 ? 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 2 1 1 1 1 2 3 1 1 1 2 2<br />

Leptocentrus 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 1 2 1 2 1 1 1 1 1 1 1 2<br />

Leptoceps viniculum 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 2 1 1 1 1 2 2 2 1 1 1 1 2<br />

Lobocentrus 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 2 2 1 1 2 1 1 1 1 1 1 2<br />

Lubra spinicornis 1 1 1 1 1 1 1 2 1 3 1 2 1 1 1 ? 1 1 1 2 1 2 1 2 1 1 1 1 1 1<br />

Maarbarus 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 2 2 2 2 1 2 3 1 1 1 1 2<br />

Mabokiana teocchii 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 1 2 1 1 1 1 1 1<br />

Machaerotypus sibiricus 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 2 2 1 1 1 2 2 3 5 1 1 1 2<br />

Madlinus seychellensis 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 2 1 1 1 1 2 3 5 1 1 1 2<br />

Maguva nigra 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 1 1 1 1 1 1 1 1<br />

Marshallella rubripes 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 2 1 2 1 2 1 1 1 1 1 1 1 1<br />

Matonotus 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 3 5 ? ? ? ?<br />

Matumuia 1 1 1 2 ? 1 1 2 1 3 1 2 1 1 1 ? 1 2 1 2 1 2 2 1 1 1 ? ? ? ?<br />

Maurya 1 1 1 1 1 1 2 ? 1 1 1 2 1 1 1 ? 1 2 2 1 1 1 2 1 3 5 1 1 1 2<br />

Menthogonus badhami 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Mesocentrina pyramidata 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 2 1 3 2 1 1 1 2 2 3 5 1 1 2 2<br />

Micreune formidanda 1 2 1 1 1 1 2 2 1 1 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 1 1 1 1 2<br />

Microcentrus caryae 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 2 1 1 1 1 1 1 1<br />

Mitranotus albofascipennis 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 1 5 1 1 1 2<br />

Monanchon monanchonus 1 ? 1 1 1 1 2 2 1 1 2 2 1 1 2 1 2 ? 2 1 1 1 2 2 1 5 1 1 1 2<br />

Monobeloides stuarti 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 ? 1 2 1 1 1 1 1 2 3 1 1 1 1 1<br />

Monobelus 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 ? 1 2 2 1 1 1 1 2 3 1 1 1 1 1<br />

Monocentrus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Multareiodes 1 ? ? ? 1 1 ? ? 1 1 1 1 1 2 1 ? 1 ? ? ? 1 1 ? ? ? 2 2 1 1 1<br />

Multareis 1 ? ? ? 1 1 ? ? 1 1 1 1 1 2 1 ? 1 ? 2 ? 1 1 ? ? ? 3 2 1 1 1<br />

Negus asper 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 2 1 1 1 1 2 2 1 1 1 1 1 2<br />

Neocanthuchus tropicus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 1 1 1 1<br />

Neocentrus rufus 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 1 ? 1 2 1 2 1 1 2 1 1 1 ? ? ? ?<br />

Neomachaerotypus eguchii 1 1 1 1 1 1 2 1 ? ? 1 2 1 1 1 ? 1 1 1 1 1 1 2 2 3 5 ? ? ? ?<br />

Neosextius 1 ? 1 1 1 1 1 2 ? 1 1 1 1 2 1 ? 1 1 1 2 1 ? ? ? ? 1 ? ? ? ?<br />

Nessorhinus 1 1 1 1 1 1 ? 1 1 2 1 2 1 1 2 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1<br />

Nicomia 1 1 2 2 1 1 2 2 1 2 1 2 1 1 ? ? 1 2 2 2 1 1 ? ? ? 1 1 1 1 2<br />

Nilautama minutaspina 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 2 1 1 2 2 1 1 1 1 1 1 2<br />

Nilautama typica 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 2 1 3 2 1 1 2 2 1 1 1 1 1 1 2<br />

Nodonica bispinigera 1 ? ? ? ? ? 2 2 1 2 1 1 ? 2 1 ? ? ? ? ? 1 1 ? ? ? 5 ? ? ? ?<br />

Nondenticentrus 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 2 2 1 1 1 2 2 2 5 1 1 1 2<br />

416


Table 24.13 cont’d. Data matrix.<br />

6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Erecticornia ? ? 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Euceropsila primus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 1 2 2 1 1 ? ? ?<br />

Eucoccosterphus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 2 1 ? 2 1 1 ? ?<br />

Eufairmairia 1 ? 1 1 1 1 ? 2 1 2 1 1 1 1 1 2 1 1 2 1 1 1 1 1 ? 2 1 4 1 2<br />

Eufairmairiella 1 ? 1 1 1 1 ? 2 1 2 1 1 1 2 2 2 1 1 2 1 1 1 1 1 ? 2 1 ? ? ?<br />

Eufrenchia falcata 1 ? 1 1 1 1 ? 2 1 2 1 1 1 2 1 2 1 1 2 1 1 ? 1 1 ? ? 1 3 1 1<br />

Eumocentrulus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 1 1<br />

Eumonocentrus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 1 ? ?<br />

Eutryonia monstrifera 1 ? 1 1 1 1 ? 2 1 2 1 1 1 2 2 2 1 1 2 1 1 2 1 1 ? 1 1 1 ? ?<br />

Evanchon 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 2 2 2 1 1 2 1 1 1 2 1 ? 2 2 1 ? ?<br />

Evansiana iasis 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 2 2 2 1 1 2 ? ? ? ? ? ? 1 1 ? ? ?<br />

Farcicaudia nitida 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 2 1<br />

Flatyperphyma flavocristatus 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 2 ? ? ? ? ? ? 1 ? ? ? ?<br />

Flexanotus albescens 2 1 1 1 1 1 ? 2 1 2 1 ? 1 ? 2 2 3 1 2 1 1 2 1 2 2 2 1 3 1 1<br />

Foliatrotus elephas 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 1 ? ?<br />

Funkhouserella brevifurca 1 ? 1 1 1 1 ? 2 1 1 ? ? 1 2 1 2 1 1 2 1 1 ? 1 1 ? 1 ? 3 1 2<br />

Funkhouserella pinguiturris 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 1 1 2 1 1 2 1 1 ? 1 1 ? 1 1 4 1 2<br />

Gargara 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 2 2 1 2 1 1 ? ?<br />

Gargarina carinata ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Gigantorhabdus enderleini 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 1 ? 2 2 1 1 2 1 1 ? 1 1 2 ? ?<br />

Goddefroyinella neglecta 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 1 1 2 1 1 2 1 1 1 1 1 ? 1 1 3 2 2<br />

Goniolomus tricorniger 1 ? 1 1 1 1 ? 2 1 1 ? 1 1 3 2 2 1 1 2 2 1 2 2 1 ? 3 2 1 ? ?<br />

Hamma 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 3 1 2<br />

Hemicentrus 2 1 1 1 1 1 ? 2 1 2 1 1 ? 3 2 2 3 1 2 1 1 2 1 2 1 2 1 4 1 1<br />

Hybanda anodonta 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 1 ? 2 2 1 1 2 1 1 ? 1 1 2 ? ?<br />

Hybandoides 1 ? 1 1 2 1 ? 1 ? 1 ? 1 1 2 1 1 ? 2 2 1 1 2 1 1 ? 1 1 2 ? ?<br />

Hypsauchenia hardwickii 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 1 ? 2 2 1 1 2 1 1 ? 1 1 2 ? ?<br />

Hypsolyrium uncinatum 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 1 ? 2 2 1 1 2 1 1 ? 1 1 2 ? ?<br />

Imporcitor typicus 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 1 ? ?<br />

Indicopleustes albomaculata 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 1 ? ?<br />

Ischnocentrus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 3 2 1 1 ? 1 2 1 ? ?<br />

Jacobiana 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 2 1<br />

Jingkara hyalipunctata 1 ? 1 1 1 1 ? 1 ? 1 ? ? 1 2 1 1 ? 2 2 1 1 2 1 1 ? 1 1 2 ? ?<br />

Joveriana 2 1 1 1 1 1 ? 2 1 2 1 3 ? 3 2 2 3 1 2 1 3 2 1 2 1 2 1 4 1 1<br />

Kallicrates bellicornis 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 3 1 1<br />

Kanada irvinei ? ? 1 1 1 1 ? 2 1 2 1 ? 1 ? 2 2 1 1 2 1 1 2 2 2 1 2 1 1 ? ?<br />

Lanceonotus 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 4 1 1<br />

Leprechaunus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 1 2 ? 2 1 3 2 2<br />

Leptobelus 2 1 1 1 1 1 ? 2 1 2 1 3 3 3 2 2 3 1 2 1 1 2 1 1 ? 1 2 3 1 1<br />

Leptocentrus 2 1 1 1 1 1 ? 2 1 2 1 1 2 3 2 2 3 1 2 1 2 2 1 2 1 2 1 4 1 1<br />

Leptoceps viniculum 2 1 1 1 1 1 ? 2 1 2 1 ? ? 3 2 2 3 1 ? ? ? ? ? ? ? ? ? ? ? ?<br />

Lobocentrus 2 2 1 1 1 1 ? 2 1 2 2 1 1 3 2 2 3 1 2 1 1 2 1 1 ? 1 2 1 ? ?<br />

Lubra spinicornis 1 ? 1 1 1 1 ? 2 1 2 1 1 1 2 2 2 1 1 2 1 1 2 1 1 ? 1 1 4 1 1<br />

Maarbarus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 1 ? ?<br />

Mabokiana teocchii 1 ? 1 1 1 1 ? 2 1 2 2 1 ? 3 2 2 1 1 ? ? ? 2 ? ? ? 2 ? ? ? ?<br />

Machaerotypus sibiricus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 2 2 1 1 1 3 2 2<br />

Madlinus seychellensis 2 1 2 2 2 1 ? 2 1 2 1 1 1 3 2 2 1 1 ? ? ? ? ? ? ? 2 1 ? ? ?<br />

Maguva nigra 1 ? 1 1 1 1 ? 2 1 2 2 1 1 3 2 2 1 1 2 1 2 2 2 1 ? 2 2 1 ? ?<br />

Marshallella rubripes 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 1 2 1 1 2 1 1 2 2 1 ? 2 2 1 ? ?<br />

Matonotus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Matumuia ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 ? 1 ? ? ? ? ? ? ? ? ? ? ? ?<br />

Maurya 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 2 2 1 1 1 1 ? ?<br />

Menthogonus badhami 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 1 1 2 1 1 2 1 2 ? 2 ? 3 2 1<br />

Mesocentrina pyramidata 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 2 1 3 2 2 2 1 2 1 1 ? ?<br />

Micreune formidanda 2 2 1 1 1 1 ? 2 1 2 2 1 1 3 2 2 3 1 2 1 3 2 1 2 1 3 1 1 ? ?<br />

Microcentrus caryae 1 ? 1 1 1 2 2 2 1 2 1 1 1 2 2 2 1 1 1 1 1 ? 1 1 ? 1 1 3 1 ?<br />

Mitranotus albofascipennis 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 ? ? ? 2 ? ? ? 1 ? ? ? ?<br />

Monanchon monanchonus 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 ? ? ? 2 ? ? ? 2 ? ? ? ?<br />

Monobeloides stuarti 1 ? 1 1 1 2 1 2 1 2 1 3 3 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 1 ? ?<br />

Monobelus 1 ? 1 1 1 2 1 2 1 2 1 3 3 3 2 2 1 1 2 1 3 2 2 1 ? 1 2 3 1 2<br />

Monocentrus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 2 1 2 1 1 2 1 2 2 2 1 1 ? ?<br />

Multareiodes 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 1 ? 2 2 1 1 1 1 1 ? 1 1 1 ? ?<br />

Multareis 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 1 ? 2 2 1 1 1 1 1 ? 1 1 1 ? ?<br />

Negus asper 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 2 1 2 1 2 3 3 1 3 1 2<br />

Neocanthuchus tropicus 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 2 2 2 1 1 2 ? ? ? ? ? ? 1 1 ? ? ?<br />

Neocentrus rufus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Neomachaerotypus eguchii ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Neosextius ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Nessorhinus 1 ? 1 1 1 1 ? 2 1 1 ? 1 1 3 2 2 1 1 2 2 1 2 2 1 ? 3 2 1 ? ?<br />

Nicomia 2 1 1 3 1 2 3 2 1 2 1 1 1 3 1 2 1 1 1 1 1 2 1 1 ? 1 1 4 1 ?<br />

Nilautama minutaspina 2 1 1 1 1 1 ? 2 1 2 1 3 1 3 2 2 3 1 2 1 2 2 1 2 1 2 1 4 1 1<br />

Nilautama typica 2 1 1 1 1 1 ? 2 1 2 1 3 1 3 2 2 3 1 ? ? ? 2 ? 2 1 ? 1 ? ? ?<br />

Nodonica bispinigera ? ? ? ? ? ? ? 2 ? 2 ? ? ? ? 1 2 ? 1 ? ? ? ? ? ? ? ? ? 1 ? ?<br />

Nondenticentrus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 2 2 ? 1 1 1 ? ?<br />

417


Table 24.13 cont’d. Data matrix.<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6<br />

Erecticornia ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Euceropsila primus ? ? ? ? ? ? ? 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 ? ? ?<br />

Eucoccosterphus 1 2 3 1 1 1 2 1 3 2 2 1 1 1 4 1 2 1 1 1 1 1 2 1 1 1<br />

Eufairmairia 2 1 2 2 1 1 2 1 3 2 1 1 1 1 6 2 2 1 1 1 2 3 2 1 2 3<br />

Eufairmairiella ? ? ? ? ? ? ? 1 3 2 2 1 1 1 6 2 2 1 1 1 2 3 2 ? ? ?<br />

Eufrenchia falcata 2 1 2 2 1 1 2 1 3 2 1 1 1 1 6 2 2 1 1 1 2 3 2 ? ? ?<br />

Eumocentrulus 1 1 2 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 ? ? 3<br />

Eumonocentrus 1 2 3 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 1 2 3<br />

Eutryonia monstrifera 1 2 2 1 1 1 2 1 3 1 ? ? 1 1 6 2 2 1 1 1 2 3 2 1 2 3<br />

Evanchon 1 2 3 2 1 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 1 2 3<br />

Evansiana iasis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Farcicaudia nitida 1 1 2 1 1 1 2 1 3 2 2 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Flatyperphyma flavocristatus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Flexanotus albescens 1 1 2 1 1 1 1 ? ? ? ? ? ? ? 3 ? ? ? ? ? ? ? 2 ? ? ?<br />

Foliatrotus elephas 1 1 3 1 2 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 ? ? ?<br />

Funkhouserella brevifurca 1 1 2 2 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3 2 2 3<br />

Funkhouserella pinguiturris 2 1 3 2 1 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3 ? ? ?<br />

Gargara 1 2 2 1 2 1 2 1 3 2 1 1 1 2 1 3 1 1 3 1 1 1 2 1 2 3<br />

Gargarina carinata ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Gigantorhabdus enderleini 1 1 2 1 1 2 1 2 2 2 1 2 1 1 5 3 2 1 1 1 1 1 2 1 2 1<br />

Goddefroyinella neglecta 1 1 2 1 1 1 2 1 3 2 2 1 1 1 6 2 2 1 1 1 2 ? 2 ? ? ?<br />

Goniolomus tricorniger 1 1 3 2 1 1 2 1 3 2 2 1 1 1 2 1 1 1 3 1 1 2 2 ? ? ?<br />

Hamma 1 1 2 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Hemicentrus 2 1 ? ? 1 ? ? 1 3 2 1 1 1 1 7 3 2 1 1 2 2 2 2 2 2 3<br />

Hybanda anodonta 1 1 1 ? 1 2 1 1 2 2 1 2 1 1 3 3 2 1 1 1 1 1 2 ? ? ?<br />

Hybandoides 1 1 1 ? 1 2 1 1 3 2 1 2 1 1 5 3 2 1 1 1 1 3 2 1 2 2<br />

Hypsauchenia hardwickii 1 1 1 ? 1 1 2 1 3 2 1 2 1 1 5 3 2 1 1 1 1 1 2 1 2 2<br />

Hypsolyrium uncinatum 1 1 1 ? 1 1 1 1 3 2 1 2 1 1 5 3 2 1 1 1 1 1 2 1 2 2<br />

Imporcitor typicus 1 2 3 2 1 1 2 1 3 2 2 1 1 1 4 1 ? 1 1 1 1 1 2 ? ? ?<br />

Indicopleustes albomaculata 1 1 2 2 2 1 1 1 3 2 2 1 1 1 7 3 2 2 1 3 1 2 2 ? ? ?<br />

Ischnocentrus 1 2 2 1 1 1 1 1 3 2 1 3 3 2 5 3 1 1 1 1 1 1 2 1 1 3<br />

Jacobiana 1 1 2 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 2 2 3<br />

Jingkara hyalipunctata 1 1 2 2 1 1 1 ? ? ? ? ? ? ? 5 3 2 ? ? ? 1 ? 2 ? ? ?<br />

Joveriana 2 1 2 2 1 1 ? 1 3 2 1 1 1 1 7 3 2 1 1 2 2 2 2 ? ? ?<br />

Kallicrates bellicornis 1 1 2 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 2 2 3<br />

Kanada irvinei 1 2 1 ? 2 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Lanceonotus 2 1 2 1 1 1 1 1 3 1 ? ? 1 1 8 3 2 1 2 1 2 1 2 2 2 3<br />

Leprechaunus 1 1 2 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 ? ? ?<br />

Leptobelus 1 1 2 2 1 1 2 1 3 2 2 1 2 1 3 3 2 1 2 1 1 2 2 2 2 3<br />

Leptocentrus 2 1 2 2 1 1 2 1 3 2 1 1 1 1 7 3 2 1 1 2 2 2 2 2 2 3<br />

Leptoceps viniculum ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Lobocentrus 1 2 1 ? 2 1 1 1 3 2 2 1 1 2 1 1 1 1 3 1 1 1 2 2 2 3<br />

Lubra spinicornis 2 1 2 1 1 1 2 1 3 2 1 1 1 1 6 2 2 1 1 1 2 3 2 1 2 3<br />

Maarbarus 1 2 2 2 1 1 1 1 3 2 2 1 1 1 7 3 2 2 1 3 1 2 2 ? ? 3<br />

Mabokiana teocchii ? ? ? ? ? ? ? ? ? ? ? ? ? ? 4 1 2 1 ? 1 1 ? 2 ? ? ?<br />

Machaerotypus sibiricus 1 2 2 1 1 1 2 1 3 2 2 1 1 2 1 1 1 1 3 1 1 1 2 ? ? ?<br />

Madlinus seychellensis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Maguva nigra 1 2 2 2 1 1 1 1 3 2 2 1 1 2 3 1 2 1 1 1 1 1 2 ? ? ?<br />

Marshallella rubripes 1 2 3 2 1 1 2 1 3 2 1 1 1 1 4 1 2 1 3 1 1 2 2 1 1 2<br />

Matonotus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Matumuia ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Maurya 1 1 2 1 1 1 1 1 3 2 2 1 1 2 1 3 1 1 3 1 1 1 2 2 2 3<br />

Menthogonus badhami 1 1 2 1 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Mesocentrina pyramidata 1 2 1 ? 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Micreune formidanda 1 2 2 2 2 1 2 1 3 2 2 1 1 1 7 3 2 1 2 2 1 1 2 2 2 3<br />

Microcentrus caryae 2 1 1 ? 1 1 2 1 3 2 2 3 1 1 1 1 1 1 3 1 1 1 1 1 2 2<br />

Mitranotus albofascipennis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Monanchon monanchonus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Monobeloides stuarti 1 2 3 2 1 1 1 1 3 2 1 2 1 1 2 1 1 1 3 1 1 1 2 ? ? ?<br />

Monobelus 1 1 2 2 1 1 2 1 3 1 ? ? 1 2 2 1 1 1 3 1 1 1 2 2 2 3<br />

Monocentrus 1 2 3 2 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Multareiodes 1 2 2 1 1 1 1 1 3 2 1 2 1 1 1 1 1 1 3 1 1 1 2 1 2 3<br />

Multareis 1 2 2 1 1 1 1 1 3 2 1 2 1 1 1 1 1 1 3 1 1 1 2 1 2 3<br />

Negus asper 2 1 2 2 1 1 1 1 3 1 ? ? 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Neocanthuchus tropicus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Neocentrus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Neomachaerotypus eguchii ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Neosextius ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Nessorhinus 1 1 3 2 2 1 2 1 3 2 1 1 1 1 2 1 1 1 3 1 1 2 2 1 1 2<br />

Nicomia 2 1 2 2 1 1 1 1 3 2 2 1 1 ? 5 1 1 1 3 1 1 1 2 1 1 3<br />

Nilautama minutaspina 2 1 1 ? 1 1 2 1 3 2 1 1 1 1 7 3 2 1 1 2 2 2 2 2 2 3<br />

Nilautama typica ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Nodonica bispinigera 1 1 2 ? 1 ? ? ? 1 ? ? ? ? ? 1 ? 1 1 ? ? ? ? ? ? ? ?<br />

Nondenticentrus 1 2 2 1 2 1 1 1 3 2 2 1 1 2 1 1 1 1 3 1 1 1 2 1 2 3<br />

418


Table 24.13 cont’d. Data matrix.<br />

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Occator erectus 1 1 ? ? 2 1 1 2 1 1 1 1 ? 1 1 ? 1 2 ? ? ? ? ? ? 2 ? 2 1 2 1<br />

Ophicentrus notandus 1 1 2 1 2 1 1 2 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Orekthophora cornuta 1 1 1 2 2 1 1 2 1 2 1 2 ? 3 4 1 1 2 ? ? 2 1 1 1 2 2 2 1 1 1<br />

Orthobelus 1 1 1 1 2 2 1 2 1 2 1 2 2 2 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Otinotoides 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 1 1<br />

Otinotus ammon 1 1 1 1 2 2 1 2 1 1 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 ? 1<br />

Otinotus bantuantus 1 1 2 1 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Oxyrhachis 1 1 1 ? 2 2 1 2 1 2 1 2 ? 3 2 1 1 2 2 1 2 1 2 2 2 1 2 1 2 1<br />

Oxyrhachis carinata 1 1 1 ? 2 2 1 2 1 2 1 2 ? 3 3 1 1 2 ? ? ? 1 2 2 2 1 2 1 2 1<br />

Oxyrhachis delalandei 1 1 1 ? 2 2 1 2 1 2 1 2 ? 3 3 1 1 2 ? ? ? 1 2 2 2 1 2 1 2 1<br />

Oxyrhachis sulcicornis 1 1 1 ? 2 2 1 2 1 2 1 2 ? 3 3 1 1 2 ? ? ? 1 2 2 2 1 2 1 2 1<br />

Pantaleon 1 1 2 1 3 2 1 2 1 1 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 2 2 1 2 1<br />

Paracentronodus 1 2 1 1 2 2 1 2 1 2 2 2 2 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 2 3<br />

Paradarnoides 1 1 1 2 2 2 1 2 1 2 1 2 ? 3 1 1 1 2 ? ? 2 1 1 1 2 1 2 1 2 1<br />

Parapogon kandyiana 1 1 1 1 2 2 1 2 1 2 2 1 1 1 3 1 1 2 1 ? 1 2 1 1 2 1 1 1 3 1<br />

Paraxiphopoeus 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 2 2 1 1 1<br />

Parayasa 1 1 2 1 3 2 1 2 1 1 1 2 2 1 1 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Peltzerella borneensis 1 1 2 1 2 2 1 2 1 2 1 ? 2 1 3 1 1 2 2 1 ? 1 1 1 2 1 2 1 ? 1<br />

Periaman 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Pieltainellus 1 1 1 1 2 2 1 2 1 1 1 1 2 1 2 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Platybelus flavus 1 1 1 2 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Platycentrus acuticornis 1 1 1 1 2 2 1 2 1 1 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Pogonella minutus 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Pogon incurvatum 1 1 1 1 2 2 1 2 1 ? 1 1 2 1 3 1 1 2 2 1 1 2 1 1 2 2 1 1 2 1<br />

Pogonotus indicus 1 1 2 ? 2 1 1 2 1 2 2 1 ? 1 3 ? 1 2 1 ? 1 2 ? ? 2 ? 1 1 2 1<br />

Pogonotypellus australis 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 3 1<br />

Pogontypus 1 1 2 1 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 2 1 1 2 2 1 1 3 1<br />

Polonius froggatti 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 ? 1 1 1 2 2 2 1 2 1<br />

Promitor nominatus 1 1 1 2 2 2 1 2 1 1 1 1 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 3 1<br />

Protinotus doddi 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 ? 1 2 ? ? ? 1 ? ? 2 1 2 1 2 1<br />

Psilocentrus 1 1 1 1 2 2 1 2 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Pyrgauchenia 1 1 1 1 2 1 1 2 1 1 1 2 2 1 5 1 2 2 2 1 2 1 2 2 2 2 2 1 1 1<br />

Pyrgonota 1 1 2 2 2 1 1 2 1 1 1 2 2 1 5 1 2 2 2 1 2 1 2 1 2 2 2 1 2 1<br />

Rachinotus marshalli 1 1 2 1 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 1 1<br />

Rentzia 1 1 2 1 2 2 1 2 1 2 1 2 ? 1 3 ? 1 2 ? ? ? 1 ? ? 2 2 2 1 1 1<br />

Rexicornia elegans 1 1 1 2 2 2 1 2 1 2 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Rigula 1 1 2 1 2 2 1 2 1 2 1 2 ? 1 3 ? 1 ? ? ? ? 1 ? ? 2 1 2 1 2 1<br />

419


Table 24.13 cont’d. Data matrix.<br />

3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Occator erectus 1 1 1 1 ? 1 2 2 1 ? 1 2 1 1 1 ? 1 3 1 2 1 2 1 1 1 1 ? ? ? ?<br />

Ophicentrus notandus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 1 2 1 1 1 2 1 1 1 1 1 2<br />

Orekthophora cornuta 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

Orthobelus 1 1 1 1 1 1 1 ? 1 2 1 2 1 1 1 ? 1 2 1 2 1 2 1 1 1 1 1 1 1 1<br />

Otinotoides 1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 ? 1 1 1 2 1 1 2 2 1 1 1 1 1 1<br />

Otinotus ammon 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 2 1 1 1 2 1 2 2 1 1 1 1 2<br />

Otinotus bantuantus 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 1 2 1 2 1 1 1 1 1 1 1 2<br />

Oxyrhachis 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1 ? 1 2 1 ? 1 1 ? ? 1 7 2 1 1 1<br />

Oxyrhachis carinata 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1 ? 1 2 1 2 1 1 1 1 1 5 2 1 1 1<br />

Oxyrhachis delalandei 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1 ? 1 2 1 1 1 1 1 2 1 1 2 1 1 1<br />

Oxyrhachis sulcicornis 1 1 1 1 2 1 1 1 1 2 1 2 1 1 1 ? 1 2 1 2 1 1 1 1 1 5 2 1 1 1<br />

Pantaleon 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 2 1 1 1 2 1 3 5 1 1 1 2<br />

Paracentronodus 1 ? 3 ? 1 1 2 1 1 2 1 1 1 1 1 ? 1 ? ? ? 1 1 ? ? ? 1 1 1 2 2<br />

Paradarnoides 1 1 1 1 1 1 2 1 1 2 1 2 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1<br />

Parapogon kandyiana 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 2 1 2 2 1 2 1 1 1 1 1 2<br />

Paraxiphopoeus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Parayasa 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 1 1 2 2 1 1 1 ? 2 3 5 1 1 1 2<br />

Peltzerella borneensis 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 2 1 1 2 2 1 1 1 1 1 1 2<br />

Periaman 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 2 2 2 1 2 1 1 1 1 1 1 1 2<br />

Pieltainellus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 3 2 1 1 1 2 1 1 1 1 1 1 1<br />

Platybelus flavus 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Platycentrus acuticornis 1 1 1 1 1 1 ? 1 1 1 1 2 1 1 1 ? 1 2 1 1 1 2 2 1 1 1 1 1 1 2<br />

Pogonella minutus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 1 1 1 1<br />

Pogon incurvatum 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 2 2 2 2 1 2 1 1 1 1 1 2<br />

Pogonotus indicus 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 1 2 2 2 1 2 1 1 ? ? ? ?<br />

Pogonotypellus australis 1 1 1 1 1 1 1 2 1 3 1 2 1 1 1 ? 1 1 1 2 1 1 2 1 1 ? 1 1 1 1<br />

Pogontypus 1 2 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 1 2 2 2 1 2 1 1 1 1 1 2<br />

Polonius froggatti 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 1 1 1 1<br />

Promitor nominatus 1 ? 1 1 1 1 2 2 1 1 2 2 1 1 2 1 2 ? 2 1 1 1 2 2 3 5 1 1 1 2<br />

Protinotus doddi 1 1 1 1 ? ? 2 2 1 2 1 2 1 1 1 ? 1 2 ? 2 1 1 1 2 1 1 ? ? ? ?<br />

Psilocentrus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 1 1 1 1 2 2<br />

Pyrgauchenia 1 1 1 ? 1 1 1 1 2 1 1 1 ? 2 1 ? 1 1 1 3 1 1 ? ? 1 1 2 1 1 1<br />

Pyrgonota 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 1 1 1 1<br />

Rachinotus marshalli 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Rentzia 1 1 1 ? 1 1 1 2 1 3 1 2 1 1 1 ? 1 1 1 2 1 2 1 2 1 1 ? ? ? ?<br />

Rexicornia elegans 1 ? 1 1 1 1 2 2 1 2 2 2 1 1 2 1 2 ? 2 1 1 1 2 2 3 5 1 1 1 2<br />

Rigula 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 1 1 1 1 ? ? ? ?<br />

420


Table 24.13 cont’d. Data matrix.<br />

6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Occator erectus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Ophicentrus notandus 2 1 1 1 1 1 ? 2 1 2 1 1 ? 3 2 2 1 1 2 2 1 2 1 1 ? 1 2 ? ? ?<br />

Orekthophora cornuta 1 ? 1 1 1 1 ? 2 1 2 2 1 1 3 2 2 1 1 2 1 3 2 2 1 ? 3 2 ? ? ?<br />

Orthobelus 1 ? 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 3 2 2 1 ? 2 2 1 ? ?<br />

Otinotoides 1 ? 1 1 1 1 ? 2 1 2 1 1 1 2 2 2 3 1 2 1 1 ? 1 1 ? ? 1 1 ? ?<br />

Otinotus ammon 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 1 ? ?<br />

Otinotus bantuantus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 1 1 1 4 1 1<br />

Oxyrhachis 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 ? 1 ? ? 2 2 1 1 2 3 1 ? 1 1 2 ? ?<br />

Oxyrhachis carinata 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 1 ? 2 2 1 1 2 3 1 ? 1 1 2 ? ?<br />

Oxyrhachis delalandei 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 2 1 2 2 1 1 2 3 1 ? 1 1 2 ? ?<br />

Oxyrhachis sulcicornis 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 2 1 2 2 1 1 2 3 1 ? 1 1 2 ? ?<br />

Pantaleon 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 2 2 2 2 1 2 1 1 ? ?<br />

Paracentronodus 2 1 1 1 1 2 3 2 1 2 1 1 1 3 2 2 1 1 1 1 1 ? 1 1 ? 1 1 4 ? ?<br />

Paradarnoides 1 ? 1 1 1 1 ? 2 1 2 2 1 1 3 2 2 1 1 2 2 1 2 2 1 ? 3 2 1 ? ?<br />

Parapogon kandyiana 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 1 ? ?<br />

Paraxiphopoeus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 1 2 2 2 1 3 2 2<br />

Parayasa 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 1 ? 1 1 1 ? ?<br />

Peltzerella borneensis 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 2 ? ? 2 ? ? ? 2 ? ? ? ?<br />

Periaman 2 1 1 1 1 1 ? 2 1 2 1 3 3 3 2 2 3 1 2 1 3 2 1 1 ? 2 1 4 1 2<br />

Pieltainellus 1 ? 1 1 1 1 ? 2 1 2 2 1 1 3 2 2 1 1 1 1 1 2 1 1 ? 1 2 1 ? ?<br />

Platybelus flavus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 2 1<br />

Platycentrus acuticornis 1 ? 1 1 1 1 ? 2 1 2 2 3 3 2 2 2 3 1 1 1 1 2 1 1 ? 1 2 5 1 1<br />

Pogonella minutus 1 ? 1 1 1 1 ? 2 1 2 1 1 1 2 2 2 1 1 2 1 1 1 1 1 ? 1 1 3 1 1<br />

Pogon incurvatum 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 3 1 1<br />

Pogonotus indicus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Pogonotypellus australis 1 ? 1 1 1 1 ? 1 ? 1 ? ? 1 2 1 2 1 1 2 1 1 ? 1 1 ? ? 1 3 1 1<br />

Pogontypus 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 1 ? ?<br />

Polonius froggatti 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 2 2 2 1 ? 2 ? ? ? ? ? ? 1 ? ? ? ?<br />

Promitor nominatus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 1 2 2 1 1 3 1 1<br />

Protinotus doddi ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Psilocentrus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 2 2 1 1 ? 1 2 1 ? ?<br />

Pyrgauchenia 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 2 1 1 ? 2 2 1 1 ? 1 1 ? 1 1 2 ? ?<br />

Pyrgonota 1 ? 1 1 1 1 ? 2 1 1 ? 1 1 ? 1 2 1 1 2 1 1 ? 1 1 ? 1 1 3 ? ?<br />

Rachinotus marshalli 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 1 2 2 2 1 3 2 2<br />

Rentzia ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 ? 1 ? ? ? ? ? ? ? ? ? ? ? ?<br />

Rexicornia elegans 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 2 ? ? ? ? ? ? 2 ? ? ? ?<br />

Rigula ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 ? 1 ? ? ? ? ? ? ? ? ? ? ? ?<br />

421


Table 24.13 cont’d. Data matrix.<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6<br />

Occator erectus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Ophicentrus notandus ? ? ? ? ? ? ? 1 3 2 1 1 3 2 5 3 2 1 1 1 1 3 2 ? ? ?<br />

Orekthophora cornuta ? ? ? ? ? ? ? 1 3 1 ? ? 1 1 2 1 1 1 3 ? 1 2 2 ? ? ?<br />

Orthobelus 1 2 3 1 1 1 2 1 3 1 ? ? 1 1 2 1 2 1 2 1 1 1 2 1 1 3<br />

Otinotoides 1 1 2 2 1 1 1 1 3 2 2 1 1 1 6 2 2 1 1 1 2 3 2 1 1 3<br />

Otinotus ammon 1 2 2 1 2 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Otinotus bantuantus 2 1 2 2 1 1 2 1 3 ? ? ? ? ? 7 3 2 1 1 2 2 2 2 ? ? ?<br />

Oxyrhachis 1 1 2 ? 1 1 ? 1 3 2 1 ? 1 1 5 3 2 1 1 1 1 ? 2 1 2 1<br />

Oxyrhachis carinata 1 1 2 2 1 1 2 1 3 2 1 2 1 1 5 3 2 1 1 1 1 2 2 ? ? ?<br />

Oxyrhachis delalandei 1 1 2 1 1 1 2 1 3 2 1 1 1 1 5 3 2 1 1 1 1 2 2 ? ? ?<br />

Oxyrhachis sulcicornis 1 1 2 2 1 1 ? 1 3 2 1 2 1 1 5 3 2 1 1 1 1 2 2 ? ? ?<br />

Pantaleon 1 2 1 ? 2 1 1 1 3 2 1 1 1 2 1 1 1 1 3 1 1 1 2 2 2 3<br />

Paracentronodus 2 1 2 2 1 1 1 1 2 1 ? ? 1 1 1 1 1 1 3 1 1 1 1 ? ? ?<br />

Paradarnoides 1 1 3 2 1 1 1 1 3 2 1 1 1 1 2 1 1 1 3 1 1 1 2 ? ? ?<br />

Parapogon kandyiana 1 1 2 2 2 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? 2 ? ? ?<br />

Paraxiphopoeus 1 2 1 ? 2 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 ? ? ?<br />

Parayasa 1 2 2 1 1 1 1 1 3 2 2 1 1 1 3 3 2 1 3 1 1 1 2 ? ? ?<br />

Peltzerella borneensis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Periaman 2 1 2 2 1 1 2 1 3 1 ? ? 1 1 3 3 2 1 1 1 1 2 2 ? ? ?<br />

Pieltainellus 1 2 2 1 2 1 1 1 3 2 1 2 1 1 3 1 2 1 3 1 1 1 2 1 1 2<br />

Platybelus flavus 1 1 2 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Platycentrus acuticornis 1 1 2 2 1 1 2 1 3 2 1 1 1 1 4 1 2 1 3 1 1 1 2 1 1 2<br />

Pogonella minutus 1 1 3 2 1 1 2 1 3 2 1 1 1 1 6 2 2 1 1 1 2 3 2 1 2 3<br />

Pogon incurvatum 1 1 2 1 1 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? 2 ? ? ?<br />

Pogonotus indicus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Pogonotypellus australis 2 1 2 2 1 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Pogontypus 1 2 2 2 2 1 2 ? ? ? ? ? ? ? 7 3 2 2 1 3 1 2 2 2 2 3<br />

Polonius froggatti ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Promitor nominatus 2 1 2 2 1 1 2 1 3 2 2 1 1 1 3 3 2 1 2 1 1 1 2 ? ? ?<br />

Protinotus doddi ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Psilocentrus 1 2 2 1 2 1 1 1 3 2 1 1 3 2 5 3 2 1 1 1 1 2 2 ? ? ?<br />

Pyrgauchenia 1 1 1 ? 1 2 1 2 2 2 2 1 1 1 5 3 2 1 1 1 1 1 3 1 2 2<br />

Pyrgonota 2 1 2 2 1 1 1 1 3 2 1 1 1 1 6 2 2 1 1 3 2 3 3 2 2 3<br />

Rachinotus marshalli 1 2 2 2 1 1 2 1 3 2 2 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Rentzia ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Rexicornia elegans ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Rigula ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

422


Table 24.13 cont’d. Data matrix.<br />

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Sarantus wallacei 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1<br />

Sarantus nobilus 1 2 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 1 1<br />

Sertorius 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1<br />

Sextius 1 1 2 1 2 2 1 2 1 2 1 2 2 2 3 1 1 2 2 1 2 1 1 2 2 1 2 2 2 1<br />

Sinodemanga 1 1 2 ? 2 2 1 2 1 1 1 1 1 1 1 ? 1 2 2 1 ? ? ? ? 2 ? 2 1 2 1<br />

Sipylus 1 1 2 1 3 2 1 2 1 1 1 2 2 1 1 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Spalirises rugosa 1 1 1 2 2 2 1 2 1 2 2 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Spathenotus tridentatus 1 1 1 ? 2 1 1 2 1 2 1 2 ? 3 ? 1 1 2 ? ? ? 1 ? ? ? ? 2 2 ? 1<br />

Spathocentrus intermedius 1 1 1 1 2 2 1 2 1 1 2 1 2 1 3 1 1 2 2 1 1 1 1 1 2 2 2 1 2 1<br />

Spinodarnoides typus 1 1 1 2 2 1 1 2 1 2 1 2 ? 3 1 1 1 2 2 1 2 1 1 1 2 1 2 1 1 1<br />

Stalobelus 1 1 1 2 2 2 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Streonus tenebrosus 1 1 1 2 2 2 1 2 1 2 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Strzeleckia montanus 1 1 2 1 2 2 1 2 1 2 1 2 ? 1 1 ? 1 2 ? ? ? 1 ? ? 2 ? 2 1 2 1<br />

Subrincator tonkinensis 1 1 1 1 3 2 1 2 1 1 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Takliwa carteri 1 1 1 2 2 2 1 2 1 2 2 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Telingana 1 1 1 1 2 1 1 2 1 2 1 1 1 1 3 1 1 2 2 1 1 2 1 1 2 1 2 1 3 1<br />

Terentius convexus 1 1 2 1 2 2 1 2 1 2 1 2 2 1 1 1 1 2 2 1 2 1 1 1 2 1 2 1 3 1<br />

Thelicentrus xizangensis 1 1 ? ? ? ? ? 2 1 1 1 2 ? 1 3 ? 1 2 ? ? ? ? ? ? 2 ? 2 1 2 1<br />

Tiberianus 1 1 1 1 2 2 1 2 1 1 1 1 2 1 2 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Tolania 2 1 1 1 2 2 1 1 ? ? ? ? ? ? 3 1 1 1 3 ? 1 1 1 1 1 1 1 1 2 2<br />

Tribulocentrus zhenbaensis 1 1 1 ? ? 2 ? 2 1 1 1 2 2 1 3 ? 1 2 ? ? ? ? ? ? 2 1 2 1 2 1<br />

Tricentroides orcus 1 1 1 1 3 2 1 2 1 1 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 ? 1<br />

Tricentrus 1 1 2 1 3 2 1 2 1 1 1 2 2 1 2 1 1 2 2 1 2 1 1 1 2 1 2 1 3 1<br />

Tricoceps 1 1 1 1 2 2 1 2 1 2 2 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 3 1<br />

Trioxiphus 1 1 2 1 2 2 1 2 1 2 1 1 2 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Truncatocornum sp. 1 1 2 1 2 2 1 2 1 1 1 1 2 1 3 1 1 2 2 1 1 2 1 1 2 2 2 1 2 1<br />

Tsunozemia paradoxa 1 1 2 1 3 2 1 2 1 1 1 2 2 1 3 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Tylocentrus 1 1 1 1 2 2 1 2 1 1 1 2 2 1 2 1 1 2 2 1 2 1 1 1 2 1 2 1 2 1<br />

Tyrannotus tyrannicus 1 1 2 1 2 2 1 2 1 2 2 1 1 1 2 1 1 2 2 1 1 2 1 1 2 1 2 1 2 1<br />

Umfilianus declivis 1 1 2 1 2 2 1 2 1 ? 1 1 2 1 2 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Undarella storeyi 1 1 2 1 2 2 1 2 1 2 ? ? 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 1 2 1<br />

Uroxiphus maculiscutum 1 1 2 1 2 2 1 2 1 2 1 1 2 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Vecranotus sinuatus 1 1 1 2 2 2 1 2 1 2 1 1 1 1 3 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Xanthosticta pygmaea 1 1 2 1 3 2 1 2 1 1 1 2 2 1 1 1 1 2 2 1 2 1 1 1 2 1 2 1 3 1<br />

Xiphopoeus 1 1 2 1 2 2 2 2 1 2 2 1 1 1 3 2 1 2 2 1 1 1 1 2 2 2 2 1 2 1<br />

Yangupia occidentalis 1 1 2 1 2 2 1 2 1 2 1 2 2 1 3 1 1 2 2 1 2 1 1 2 2 1 2 2 ? 1<br />

Yaponotus villiersi 1 1 2 1 2 2 1 2 1 2 2 1 1 1 1 1 1 2 2 1 1 1 1 1 2 1 2 1 2 1<br />

Yasa greeni 1 1 2 1 3 2 1 2 1 1 1 2 2 1 1 1 1 2 2 1 2 1 1 1 2 1 2 1 3 1<br />

Zanzia vanderplanki 1 1 1 2 2 2 1 2 1 1 2 1 2 1 4 1 1 2 2 1 1 1 1 1 2 1 2 1 3 1<br />

Zigzagicentrus bannaensis 1 1 2 ? 2 2 1 2 1 2 2 1 ? 1 3 ? 1 2 ? ? ? ? ? ? 2 ? 2 1 2 1<br />

423


Table 24.13 cont’d. Data matrix.<br />

3 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 6<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Sarantus wallacei 1 1 1 2 1 1 1 2 1 2 1 2 1 1 1 ? 1 2 1 2 1 2 ? 1 1 2 1 1 1 1<br />

Sarantus nobilus 1 1 1 2 1 1 1 2 1 3 1 2 1 1 1 ? 1 ? 1 2 1 2 2 1 1 1 1 1 1 1<br />

Sertorius 1 1 1 1 1 1 1 2 1 3 1 2 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 1 1 1 1<br />

Sextius 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 ? 1 1 1 2 1 1 1 ? 2 1 2 1 1 1<br />

Sinodemanga 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 1 ? 1 3 2 1 1 1 2 1 1 1 ? ? ? ?<br />

Sipylus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 2 1 2 2 1 1 1 2 2 3 5 1 1 1 2<br />

Spalirises rugosa 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Spathenotus tridentatus 1 1 1 1 ? 1 2 1 ? ? 1 1 1 1 ? ? ? ? 1 2 1 2 1 1 1 1 ? ? ? ?<br />

Spathocentrus intermedius 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 3 2 1 1 1 2 2 1 1 1 1 1 1<br />

Spinodarnoides typus 1 2 1 1 1 1 2 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1<br />

Stalobelus 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Streonus tenebrosus 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Strzeleckia montanus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 1 2 1 1 1 2 1 1 ? ? ? ?<br />

Subrincator tonkinensis 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 2 2 1 1 1 2 2 3 5 1 1 1 2<br />

Takliwa carteri 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Telingana 1 2 1 1 1 2 2 2 1 1 1 2 1 1 1 ? 1 1 ? 2 1 1 1 2 1 1 1 1 1 2<br />

Terentius convexus 1 1 1 1 1 1 1 2 1 3 1 2 1 1 1 ? 1 2 1 2 1 1 1 1 1 1 1 1 1 1<br />

Thelicentrus xizangensis 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 2 2 1 2 2 1 1 1 2 1 1 5 ? ? ? ?<br />

Tiberianus 1 1 1 1 1 1 2 ? 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 1 5 1 1 1 2<br />

Tolania 1 1 2 2 1 2 2 2 1 1 1 2 1 1 1 ? 1 2 ? ? 1 1 ? ? ? 1 1 1 2 2<br />

Tribulocentrus zhenbaensis 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 1 ? 1 2 2 1 1 1 1 1 3 5 ? ? ? ?<br />

Tricentroides orcus 1 1 1 1 1 1 2 2 1 2 1 2 1 1 2 2 1 2 2 1 1 ? 2 1 3 5 1 1 1 2<br />

Tricentrus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 2 1 2 2 1 1 1 2 2 3 5 1 ? 1 2<br />

Tricoceps 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Trioxiphus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 ? ? 1 2 1 2 1 2 1 1 1 1 1 1 1 2<br />

Truncatocornum sp. 1 1 1 1 1 1 2 2 1 2 1 2 1 1 1 ? 1 3 1 2 1 1 2 1 1 1 1 1 1 2<br />

Tsunozemia paradoxa 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 2 1 1 1 2 1 2 5 1 ? ? 2<br />

Tylocentrus 1 1 1 1 1 1 2 1 1 1 1 2 1 2 1 ? 1 3 1 1 1 1 1 2 1 1 1 1 1 2<br />

Tyrannotus tyrannicus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 1 1 2 1 1 1 1 1 1 1 1 1 2<br />

Umfilianus declivis 1 1 1 1 1 1 2 1 1 2 1 2 1 1 1 ? 1 3 2 2 1 2 2 1 1 1 1 1 1 2<br />

Undarella storeyi 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 ? 1 1 1 2 1 1 1 2 1 1 1 1 1 1<br />

Uroxiphus maculiscutum 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 ? 1 3 1 2 1 2 2 1 1 1 1 1 1 2<br />

Vecranotus sinuatus 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 1 2 ? 2 1 1 1 2 2 3 5 1 1 1 2<br />

Xanthosticta pygmaea 1 1 1 1 1 1 2 2 1 1 1 2 1 1 2 2 1 2 2 1 1 1 2 2 3 5 1 1 1 2<br />

Xiphopoeus 1 1 1 1 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 1 1 1 1 1 2<br />

Yangupia occidentalis 1 1 1 1 1 1 2 2 1 3 1 2 1 1 1 ? 1 1 1 2 1 1 1 1 1 1 1 1 1 1<br />

Yaponotus villiersi 1 1 1 1 1 1 2 2 1 1 1 2 1 1 1 ? 1 2 1 2 1 2 2 1 1 1 1 1 1 2<br />

Yasa greeni 1 ? 1 1 1 1 2 2 2 1 2 2 1 1 ? ? 1 3 2 1 1 1 2 2 ? 1 1 1 1 2<br />

Zanzia vanderplanki 1 1 1 1 1 1 2 ? 1 1 1 2 1 1 1 ? 2 ? 2 1 1 1 2 2 2 5 1 1 1 2<br />

Zigzagicentrus bannaensis 1 1 1 1 1 1 2 2 1 ? 1 2 1 1 1 ? 1 3 1 2 1 1 1 1 1 1 ? ? ? ?<br />

424


Table 24.13 cont’d. Data matrix.<br />

6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 9<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0<br />

Sarantus wallacei 1 ? 1 1 1 1 ? 2 1 2 1 1 1 2 1 2 1 1 2 1 1 1 1 1 ? 1 1 3 1 2<br />

Sarantus nobilus 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 2 2 2 1 1 2 1 1 ? 1 1 ? ? 1 4 1 1<br />

Sertorius 1 ? 1 1 1 2 2 2 1 2 1 1 1 2 2 2 3 1 2 1 1 2 1 1 ? 2 1 1 ? ?<br />

Sextius 1 ? 1 1 1 1 ? 1 ? 1 ? 1 1 1 1 2 1 1 2 1 1 1 1 1 ? 1 1 3 2 2<br />

Sinodemanga ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Sipylus 2 1 1 3 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 2 2 1 2 1 1 ? ?<br />

Spalirises rugosa 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 1 1<br />

Spathenotus tridentatus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 3 ? ? ? ?<br />

Spathocentrus intermedius 1 ? 1 1 1 1 ? 2 1 2 2 ? 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 1 ? ?<br />

Spinodarnoides typus 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 ? 2 2 1 1 2 ? ? 2 ? ? ? 3 2 ? ? ?<br />

Stalobelus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 3 1 1<br />

Streonus tenebrosus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 1 ? ?<br />

Strzeleckia montanus ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 2 ? 1 ? ? ? ? ? ? ? ? ? ? ? ?<br />

Subrincator tonkinensis 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 2 2 2 2 1 1 1 1 ? ?<br />

Takliwa carteri 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 1 2<br />

Telingana 2 1 1 1 1 1 ? 2 1 2 1 ? ? 3 2 2 1 1 2 1 1 2 1 1 ? 1 2 ? ? ?<br />

Terentius convexus 1 ? 1 1 1 2 2 2 1 2 1 1 1 2 2 2 1 1 2 1 1 2 1 2 1 2 1 1 ? ?<br />

Thelicentrus xizangensis ? ? 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? ?<br />

Tiberianus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 3 2 1<br />

Tolania 2 1 1 3 1 2 3 2 1 2 1 1 1 3 2 2 3 1 1 1 1 ? 1 1 ? 1 1 4 1 ?<br />

Tribulocentrus zhenbaensis ? ? 1 1 1 ? ? ? ? ? ? ? ? ? 2 2 3 1 ? ? ? ? ? ? ? ? ? ? ? ?<br />

Tricentroides orcus 2 2 1 1 1 1 ? 2 1 2 1 ? 3 3 2 2 3 1 2 1 3 2 2 2 1 2 1 1 ? ?<br />

Tricentrus 2 1 2 3 2 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 2 2 1 2 1 1 ? ?<br />

Tricoceps 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 2 1 3 1 1<br />

Trioxiphus 2 2 1 1 1 1 ? 2 1 2 2 2 3 3 2 2 3 1 2 1 2 2 1 2 1 2 1 4 1 1<br />

Truncatocornum sp. 2 2 1 1 1 1 ? 2 1 2 2 ? 1 2 2 2 3 1 2 ? ? 2 1 1 ? 1 2 1 ? ?<br />

Tsunozemia paradoxa 2 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 1 1 2 2 2 1 1 1 1 ? ?<br />

Tylocentrus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 1 5 1 1<br />

Tyrannotus tyrannicus 2 1 1 1 1 1 ? 2 1 2 1 3 1 3 2 2 1 1 2 1 2 2 1 1 ? 2 1 4 1 1<br />

Umfilianus declivis 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 3 2 1 2 1 2 1 4 1 1<br />

Undarella storeyi 1 ? 1 1 1 1 ? 2 1 2 1 ? 1 2 2 2 1 1 2 ? ? ? ? ? ? 2 1 ? ? ?<br />

Uroxiphus maculiscutum 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 3 1 2 1 1 2 1 2 1 2 1 4 1 1<br />

Vecranotus sinuatus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 2 1 1 3 2 1<br />

Xanthosticta pygmaea 2 1 2 1 2 1 ? 2 1 2 1 1 1 3 2 2 1 1 2 1 3 2 2 2 1 1 1 1 ? ?<br />

Xiphopoeus 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 2 2 3 1 2 1 1 2 1 2 3 3 1 3 2 2<br />

Yangupia occidentalis 1 ? 1 1 1 1 ? 2 1 2 1 1 ? 2 2 2 3 1 2 1 1 2 1 1 ? 2 1 ? ? ?<br />

Yaponotus villiersi 2 1 1 1 1 1 ? 2 1 2 1 3 3 3 2 2 3 1 2 1 3 2 1 2 1 2 1 4 1 1<br />

Yasa greeni 2 1 1 1 1 1 ? 2 1 2 1 ? 1 3 2 2 1 1 2 1 1 2 1 1 ? 1 1 1 ? ?<br />

Zanzia vanderplanki 2 1 1 1 1 1 ? 2 1 2 1 1 1 3 1 2 3 1 2 1 1 2 1 2 2 2 1 1 ? ?<br />

Zigzagicentrus bannaensis ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

425


Table 24.13 cont’d. Data matrix.<br />

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1<br />

9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1<br />

1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6<br />

Sarantus wallacei 2 1 2 1 1 1 2 1 3 2 2 1 1 1 6 2 2 1 1 1 2 3 2 1 2 3<br />

Sarantus nobilus 2 1 2 2 1 1 2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Sertorius 1 1 2 1 2 1 2 1 3 2 1 1 1 1 6 2 2 1 1 1 2 3 2 2 2 3<br />

Sextius 1 2 2 1 1 1 1 1 3 2 2 1 1 1 6 2 2 1 1 1 2 3 2 1 2 3<br />

Sinodemanga ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Sipylus 1 2 1 ? 2 1 1 1 3 1 ? ? 1 2 1 1 1 1 3 1 1 1 2 ? ? ?<br />

Spalirises 1 1 2 1 1 1 1 1 3 2 2 1 1 1 3 3 2 1 2 1 1 1 2 ? ? ?<br />

Spathenotus tridentatus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Spathocentrus intermedius 1 2 2 1 2 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Spinodarnoides typus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Stalobelus 1 1 2 2 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 ? ? 3<br />

Streonus tenebrosus 1 2 3 2 2 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Strzeleckia montanus ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

Subrincator tonkinensis 1 2 2 1 2 1 1 1 3 2 1 1 1 2 1 1 1 1 3 1 1 1 2 2 2 3<br />

Takliwa carteri 1 1 1 ? 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 2 2 1 2 1<br />

Telingana ? ? ? ? ? ? ? 1 3 2 2 1 1 1 7 3 2 2 1 3 1 2 2 2 2 3<br />

Terentius convexus 1 2 2 1 2 1 1 1 3 2 1 1 1 1 6 2 2 1 1 1 2 3 2 2 2 3<br />

Thelicentrus xizangensis 1 2 2 1 2 ? ? ? 3 2 1 1 1 2 1 ? 1 1 3 ? 1 1 ? ? ? ?<br />

Tiberianus 1 1 2 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Tolania 2 1 2 1 1 1 1 1 2 2 2 1 1 ? 1 1 1 1 3 1 1 1 1 2 2 3<br />

Tribulocentrus zhenbaensis ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 ? 1 1 3 ? 1 1 ? ? ? ?<br />

Tricentroides orcus 1 2 2 2 2 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Tricentrus 1 2 1 ? 2 1 2 1 3 1 ? ? 1 2 1 1 1 1 3 1 1 1 2 1 1 3<br />

Tricoceps 1 1 2 1 1 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Trioxiphus 2 1 2 2 1 1 2 1 3 2 1 1 1 1 7 3 2 1 1 2 2 2 2 2 2 3<br />

Truncatocornum sp. 1 1 1 ? 1 1 2 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Tsunozemia paradoxa 1 2 1 ? 2 1 2 ? ? ? ? ? ? ? 1 ? 1 1 3 1 1 1 2 ? ? ?<br />

Tylocentrus 1 1 2 2 1 1 1 1 3 1 ? ? 1 1 2 1 2 1 3 1 1 1 2 1 1 2<br />

Tyrannotus tyrannicus 2 1 2 2 1 1 2 1 3 2 1 3 1 2 1 1 1 1 3 1 1 1 2 1 1 3<br />

Umfilianus declivis 2 1 1 ? 1 1 2 1 3 2 1 1 1 1 7 3 2 1 1 2 2 2 2 ? ? ?<br />

Undarella storeyi ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Uroxiphus maculiscutum 2 1 2 2 1 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Vecranotus sinuatus 1 1 2 1 1 1 1 1 3 2 2 1 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Xanthosticta pygmaea 1 2 3 1 1 1 1 1 3 2 2 1 1 2 1 3 1 1 3 1 1 1 2 ? 2 3<br />

Xiphopoeus 1 2 2 1 2 1 2 1 3 1 ? ? 1 1 3 3 2 1 2 1 1 1 2 2 2 3<br />

Yangupia occidentalis ? ? ? ? ? ? ? 1 3 2 1 1 1 1 6 2 2 1 1 1 2 3 2 ? ? ?<br />

Yaponotus villiersi 2 1 2 2 1 1 2 1 3 2 1 1 1 1 7 3 2 1 1 2 2 2 2 ? ? ?<br />

Yasa greeni 1 2 3 2 2 1 1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 2 ? ? ?<br />

Zanzia vanderplanki 1 2 3 1 2 1 1 1 3 2 1 1 1 1 3 3 2 1 2 1 1 1 2 ? ? ?<br />

Zigzagicentrus bannaensis ? ? ? ? ? ? ? ? 3 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?<br />

426


Table 24.14. Summary of taxonomic changes<br />

based on phylogenetic analyses 1-8.<br />

Existing classification (Dietrich et al. 2001a,<br />

Yuan and Chou 2002a)<br />

CENTRODONTINAE<br />

ABELINI<br />

BOOCERINI<br />

BULBAUCHENIINI<br />

FUNKHOUSERELLINI<br />

TERENTIINI<br />

ANTIALCIDINI<br />

COCCOSTERPHINI<br />

MADLININI<br />

TRICENTRINI<br />

GARGARINI<br />

DEMANGINI<br />

LEPTOCENTRINI<br />

CENTROCHARESINI<br />

CENTROTINI<br />

CENTROTYPINI<br />

CHOUCENTRINI<br />

EBHULINI<br />

HYPSAUCHENIINI<br />

LEPTOBELINI<br />

MICREUNINI<br />

NESSORHININI<br />

<strong>OXYRHACHINI</strong><br />

PLATYCENTRINI<br />

XIPHOPOEINI<br />

427<br />

Revised classification presented here<br />

Centrotinae:<br />

Centrodontini<br />

Boocerini<br />

Terentiini<br />

Gargarini<br />

Leptocentrini<br />

Ebhuloidesini<br />

Centrocharesini<br />

Centrotini<br />

Centrotypini<br />

Choucentrini<br />

Hypsaucheniini<br />

Leptobelini<br />

Micreunini<br />

Nessorhinini<br />

Oxyrhachini<br />

Platycentrini<br />

Xiphopoeini<br />

Lobocentrini<br />

Maarbarini<br />

Monobelini<br />

Pieltainellini<br />

Beaufortianini<br />

Boccharini<br />

moved to<br />

Centrotinae<br />

new<br />

synonymies<br />

names<br />

unchanged<br />

new tribes


25: BIOGEOGRAPHY OF THE CENTROTINAE AND MEMBRACIDAE<br />

Introduction: Origins of the Membracidae<br />

Where and when did treehoppers originate? This question is an outstanding and<br />

controversial topic for three reasons: (1) the current geographic distribution of treehoppers,<br />

with one large cosmopolitan subfamily, but the eight other subfamilies all restricted to the<br />

New <strong>World</strong>; (2) the limited fossil record of treehoppers; and, (3) the lack of phylogenetic<br />

understanding for the Membracidae (only recently elucidated) and the Centrotinae<br />

(elucidated in this work). Following a review of our knowledge in these three areas, the<br />

biogeographic patterns within the subfamily Centrotinae are, for the first time, placed in a<br />

phylogenetic context.<br />

Geographic patterns. The current distribution of major treehopper lineages is<br />

intriguing. Except for a few introductions by man--Spissistilus to Hawaii (Zimmerman<br />

1948a); Centrotus and Gargara to North America (Metcalf and Wade 1965a, McKamey<br />

1998a); and Stictocephala to Europe (Goidanich 1946a, McKamey 1998a)--no membracid<br />

tribe (and thus no species or genus) occurs in both the <strong>Old</strong> <strong>World</strong> and the New.<br />

Nevertheless, the largest membracid subfamily, Centrotinae, occurs in all major regions of<br />

the <strong>Old</strong> <strong>World</strong> (The <strong>Afrotropical</strong>, Australasian/Oceanian, Indomalayan, and Palearctic<br />

Regions) as well as the New <strong>World</strong> (Nearctic and the Neotropical Regions). All of the other<br />

eight membracid subfamilies occur only in the New <strong>World</strong>. This overall pattern lead Wood<br />

(1993) to believe that treehoppers arose in tropical Gondwana prior to its breakup, with the<br />

<strong>Old</strong> <strong>World</strong> and New <strong>World</strong> membracids diversifying after the continents separated.<br />

Similarly, Strümpel (1972a) postulated that the membracids arose in Gondwana, but that the<br />

428


Centrotinae reached the New <strong>World</strong> from Asia by way of the Bering Land Bridge in the<br />

Pleistocene.<br />

In contrast, the center of origin theory, a controversial method based solely on<br />

distribution (Futuyma 1998a), suggests a New <strong>World</strong> origin of the family. Areas of origin<br />

include regions that contain the largest number of species and the most morphological<br />

diversity (Cranston and Naumann 1991a). South Asia, for example, is believed to be the<br />

center of origin for vespid wasps (Hymenoptera: Vespidae) because it is the only area where<br />

all the subfamilies are found (Briggs 1995a). With treehoppers, the Neotropical Region<br />

contains more species, genera, tribes, and subfamilies than any other region (McKamey<br />

1998a) and thus is arguably the most morphologically diverse, and, under the center of origin<br />

theory, the most likely area of origin. Nonetheless, this method can not distinguish between<br />

primary and secondary areas of diversification.<br />

Fossils. While a number of hemipteran families have a relatively rich fossil record<br />

(Labandeira and Seposki 1993a), the only known fossils assignable to the family<br />

Membracidae with certainty are undescribed representatives of the subfamily Stegaspidinae<br />

from amber of the Dominican Republic (Schlee 1990a, Poinar 1992a, McKamey 1998a).<br />

Dominican amber was deposited during the Eocene-Miocene, 57.8 to 5.3 million years ago<br />

(mya), long after the vicariance of Gondwana. Perhaps further membracid fossils await<br />

discovery, but meanwhile, the limited records provide a minimum age of 57.8 to 5.3 million<br />

years for the Stegaspidinae, and suggest a Tertiary origin for Membracidae, perhaps in the<br />

New <strong>World</strong>.<br />

Phylogeny. Recent phylogenetic studies provide a broad outline of evolutionary<br />

relationships among New <strong>World</strong> membracids, but phylogeny within the cosmopolitan<br />

429


subfamily Centrotinae--so critical to addressing biogeographical patterns among treehoppers-<br />

-was largely neglected until the present study. Both morphological and molecular data (Deitz<br />

and Dietrich 1993a, Dietrich and Deitz 1993a, Cryan et al. 2000a, Dietrich et al. 2001a)<br />

suggest that the Membracidae arose in the Neotropics, but the time of origin is difficult to<br />

pinpoint with neither a substantial fossil record nor divergence times calculated from<br />

molecular data. Phylogenetic analyses have consistently placed four subfamilies as the first<br />

membracid lineages. These groups--Endoiastinae, Stepaspidinae, Nicomiinae, and<br />

Centronodinae--are largely confined to the Neotropics.<br />

To summarize, evidence from phylogeny, fossils, and geography (region of greatest<br />

morphological diversity) all favor a Neotropical origin for the family Membracidae.<br />

Furthermore, fossils provide a minimum age of 57.8 to 5.3 million years for the<br />

Stegaspidinae (one of four basal membracid lineages), pointing toward a Tertiary origin for<br />

the family.<br />

Biogeographic patterns of the Centrotinae<br />

The Centrotinae account for roughly half of all treehopper diversity at the tribal,<br />

generic, and species levels. As noted above, centrotines are found in all major<br />

zoogeographic regions. While a few tribes are widely distributed, many occur primarily in<br />

one or two major regions. The distinctive fauna of the <strong>Afrotropical</strong>, Indomalayan,<br />

Australasian/Oceanian, and Caribbean Regions are especially notable. Indeed, all but one of<br />

the <strong>Old</strong> <strong>World</strong> centrotine tribes have representative genera found in the Indomalayan Region<br />

(Fig. 25.1).<br />

430


How did treehoppers acquire their <strong>Old</strong> <strong>World</strong> distribution if it is assumed that<br />

membracids arose in the Tertiary Neotropics, when the southern continents had already<br />

drifted far apart? If the centrotine distribution were to be explained by vicariance, their<br />

phylogeny should, to some extent, reflect the historical splitting of the land masses and their<br />

historical proximity to one another. The geologic history of the continents followed here is<br />

based on McLoughlin (2001a). North America and Africa separated roughly 180-165 mya.<br />

Madagascar + India separated from Africa approximately 165 mya, and from Antarctica and<br />

Australia about 132 mya. Africa diverged from South America 135-105 mya and India and<br />

Madagascar separated from each other 95-84 mya. By the early Tertiary (65 mya), New<br />

Zealand was widely separated from Australia. South America, Australia, and Antarctica<br />

were more or less connected from 60-35 mya.<br />

The evolutionary relationships of the Centrotinae (Fig. 25.1) do not coincide with the<br />

historical relationships of the continents. Centrotines found in former Gondwanan regions<br />

such as Africa, Australia, and South America, are not closely related (Fig. 25.1). The<br />

Terentiini, placed relatively basally in the phylogeny (Fig. 25.1) and primarily Australasian<br />

in distribution, show no close relationship with South American centrotines. Aside from a<br />

single record of the genus Gargara (Gargarini) (Day 1999a), the only tribe on continental<br />

Australia is the Terentiini. Terentiines are the sister group to a primarily Palearctic and<br />

Indomalayan clade of centrotines, Ebhuloidesini + Oxyrhachini + Hypsaucheniini.<br />

Furthermore, the immediate basal lineage of the Terentiini are the Centrocharesini, found in<br />

the Palearctic and Indomalayan Regions (Fig. 25.1). With the exception of the<br />

Centrodontini, the only tribe with South American elements, the Boocerini, are the sister<br />

group of the Gargarini, which are predominantly Palearctic and Indomalayan in distribution.<br />

431


The highly derived (Fig. 25.1) and primarily <strong>Afrotropical</strong> tribes Centrotini and Xiphopoeini<br />

are distantly related to the Australasian Terentiini and to South American centrotines.<br />

Additionally, no centrotines are apparently native to Madagascar or New Zealand<br />

based on extensive collecting in recent times (Capener 1968a; Eyles 1970a, 1971a; Wise<br />

1977a), suggesting either that they went extinct on both islands or perhaps that these islands<br />

were isolated before treehoppers reached the <strong>Old</strong> <strong>World</strong>. Had treehoppers originated before<br />

the breakup of South America and Africa, however, they would likely have colonized both<br />

New Zealand and Madagascar. Moreover, centrotines of several tribes have been described<br />

from India. If treehoppers were present in Gondwana prior to its breakup, they would likely<br />

be present in Madagascar also, because of its historical proximity to India up to 85 mya.<br />

Treehoppers likely invaded India in the Cenozoic either when it collided with Asia<br />

approximately 45 mya ago (McLoughlin 2001a) or when it is thought to have briefly<br />

contacted Africa (Hedges 2001a). The cuckoo wasps (Hymenoptera: Chrysididae) show a<br />

similar relationships to centrotines. No higher chrysidid taxa found on different Gondwanan<br />

continents are closely related, and thus it is believed that the cuckoo wasps evolved following<br />

the Gondwanan breakup (Briggs 1995a).<br />

Based on the phylogeny presented here (Fig. 24.1, Fig. 25.1), centrotines originated in<br />

the New <strong>World</strong>, dispersed to the <strong>Old</strong> <strong>World</strong> twice, and subsequently underwent explosive<br />

radiations. All suitable outgroups for the Centrotinae (Fig. 24.1) are from the New <strong>World</strong>.<br />

Furthermore, the first centrotines are apparently from the New <strong>World</strong>, ancestors of the<br />

Centrodontini (Fig. 25.1), a disjunct tribe located in South and North America. Apparently,<br />

one centrotine invasion of the <strong>Old</strong> <strong>World</strong> eventually gave rise to the predominantly<br />

Indomalayan and Palearctic Gargarini--the other invasion gave rise to most of the remaining<br />

432


centrotine species, with more than half distributed in the <strong>Afrotropical</strong> and the<br />

Australasian/Oceanian Regions. Although the first <strong>Old</strong> <strong>World</strong> invasion (Fig. 24.1: node 124,<br />

Gargarini) is supported by 4 character changes, the second (Fig 24.1: node 111) is supported<br />

by only 2 character changes.<br />

Centrotinae biogeographical patterns and scenarios<br />

Biogeographical patterns of New <strong>World</strong> centrotines. The first centrotines were from<br />

the New <strong>World</strong>, ancestors of the Centrodontini (Fig. 25.1), a disjunct tribe located in South<br />

and North America. The genera Multareis, Multareoides, and Centrodontus are confined to<br />

creosote bush in the southwestern United States and northern Mexico, the apparent center of<br />

diversification of the centrodontines, while Nodonica has been found only in the South<br />

American countries of Brazil, Ecuador, and Peru. Most New <strong>World</strong> centrotines are located<br />

in Central America and Mexico (31 spp.), and the Caribbean islands (66 spp.) (McKamey<br />

1998a, Dietrich et al. 2001a). Just 5 genera and 12 centrotine species, all in the Boocerini<br />

and Centrodontini, are found in South America. Based on these numbers, the early<br />

centrotines likely arose in North America and later invaded South America. Nonetheless,<br />

even though South American centrotines are few, phylogenetic analyses of the Boocerini and<br />

Centrodontini (Fig. 24.5) do not rule out a South American origin for centrotines. Nodonica,<br />

the basal genus of Centrodontini, is found in South America, and the basal relationships of<br />

the Boocerini are unresolved. Ramos (1988a), however, noted a close relationship among<br />

Central American, Mexican, and Caribbean centrotines.<br />

Apparently, there were two centrotine invasions to what are now the Caribbean<br />

Islands from mainland Neotropical centrotines, one eventually giving rise to the Monobelini<br />

433


and the other giving rise to the Nessorhinini, both tribes endemic to the Caribbean Region<br />

(Fig. 25.1). The distribution of these centrotines is likely explained by dispersal rather than<br />

vicariance due to the high endemism of the Caribbean fauna and the absence of nessorhinines<br />

and monobelines in the mainland Neotropics. The Caribbean membracid fauna would likely<br />

resemble a cross-section of the mainland Neotropical fauna if there had been an ancient<br />

vicariance of land masses, with a higher diversity at the generic and subfamily levels.<br />

Therefore, it is more likely that ancestors of the Centrodontini dispersed into the Caribbean<br />

Region giving rise to the Monobelini (Fig. 25.1). The same ancestors apparently also gave<br />

rise to the Boocerini. The common ancestor of the Mexican tribe Platycentrini likely made<br />

the second invasion into the Antillean region, eventually giving rise to the Nessorhinini (Fig.<br />

25.1).<br />

The mechanism for these dispersals is unclear due to the controversial geologic<br />

history of the Antillean region (Iturralde-Vinent and MacPhee 1999a, Hedges 2001a). It is<br />

generally agreed that the Caribbean Islands were formed by volcanism as a result of<br />

subduction of the North American plate beneath the Caribbean plate in the mid-Cretaceous<br />

(Hedges 2001a). As a result of this event, it is likely that North America and South America<br />

were connected by a “proto Antillean” land arc or land bridge consisting largely of present<br />

day Antillean land masses in the late Cretaceous, approximately 70-80 mya. This land bridge<br />

could have been an avenue of dispersal to the Caribbean islands. Researchers disagree on the<br />

timing and permanency of this land bridge and which islands were continuously above water.<br />

If this was a mechanism for dispersal, however, why didn’t more centrotine higher level taxa<br />

disperse to these areas? One possibility is that the ancestral centrotines were isolated in<br />

various areas of North America.<br />

434


Another possibility is an early Tertiary dispersal following the extraterrestrial impact<br />

believed responsible for massive terrestrial and marine extinctions 65 mya. At that time, the<br />

continuous land bridge connecting North and South America was beginning to dissolve<br />

leaving an island archipelago (Briggs 1995a). Dispersal via more temporary land bridges,<br />

rafting, or other means, to these newly formed islands would better explain the endemic<br />

Caribbean centrotine fauna. While a permanent land bridge would permit more animals to<br />

disperse, island chains would act as filter, allowing some taxa to colonize while acting as a<br />

barrier to others (Hedges 2001a). Vertebrate fauna are also low in taxonomic diversity at<br />

higher levels in the Caribbean but some genera have a large number of species, similar to<br />

centrotines (Hedges 2001a). Many researchers believe that approximately 65 mya, at the<br />

border of the Cretaceous and Tertiary, an extraterrestrial object impacted the Yucatan<br />

peninsula of Mexico resulting in a mass extinction of numerous marine organisms, dinosaurs,<br />

mammals, insects, and plants (Labandeira et al. 2002a). The side effects to the fauna would<br />

have been widespread, including massive tsunamis and hurricanes, perhaps destroying all<br />

Antillean fauna (Hedges 2001a). It is possible that any Caribbean centrotines that had<br />

dispersed via a permanent land bridge prior to the impact would have also been exterminated.<br />

This would favor a dispersal following the 65 mya impact event.<br />

Biogeographic patterns of <strong>Old</strong> <strong>World</strong> centrotines. Apparently, there were two<br />

centrotine colonizations of the <strong>Old</strong> <strong>World</strong> (Fig. 25.1); one eventually giving rise to the<br />

predominantly Indomalayan and Palearctic Gargarini and another giving rise to most of the<br />

remaining centrotine species, with more than half of these distributed in the <strong>Afrotropical</strong> and<br />

the Australasian/Oceanian Regions. Interestingly, the most basal <strong>Old</strong> <strong>World</strong> groups, the<br />

tribes Gargarini and Beaufortianini, are also very widely distributed (Fig. 25.1). If the <strong>Old</strong><br />

435


<strong>World</strong> Centrotinae had reached the <strong>Old</strong> <strong>World</strong> by dispersal after the extraterrestrial impact<br />

(based on the earlier dispersal times to Caribbean and the fossil record), how was this<br />

accomplished seeing that the Gondwanan continents by this time were well separated? Four<br />

possible scenarios are considered here.<br />

Firstly, as a result of a sea level drop in the late Cretaceous, southern South America,<br />

Antarctica, and Australia were joined from approximately 60 to 35 mya (Briggs 1995a,<br />

McLoughlin 2001a). This passage has been hypothesized as the Tertiary dispersal route for<br />

marsupials, birds, reptiles, invertebrates, and angiosperms from southern South America to<br />

Australia (Briggs 1995a). There is no evidence, however, from current centrotine<br />

distributions or the present phylogenetic analysis (Fig. 25.1) to support centrotines dispersing<br />

to the <strong>Old</strong> <strong>World</strong> via South America to Australia. The South American centrotines<br />

(Centrodontini and Boocerini) are not closely related to Australasian centrotines (all<br />

Terentiini except one record of Gargara) (Fig. 25.1). Additionally, as noted above, most<br />

New <strong>World</strong> centrotines are located in Central and North America and the Caribbean, not<br />

southern South America. This scenario is therefore unlikely for either of the two invasions.<br />

Dispersal to the <strong>Afrotropical</strong> Region from the New <strong>World</strong> is a second possibility.<br />

Still, there are only a few species of Gargarini in the <strong>Afrotropical</strong> Region, a primarily<br />

Indomalayan and Palearctic tribe (Fig. 25.1). The first <strong>Old</strong> <strong>World</strong> tribe of the other<br />

centrotine invasion is the Beaufortianini (Fig. 25.1). Their immediate ancestor is the New<br />

<strong>World</strong> tribe Pieltainellini, found in the mainland Neotropics. The tribe Beaufortianini<br />

consists of <strong>Afrotropical</strong> and Indomalayan genera but the basal lineage is the genus<br />

Imporcitor, found in the Palearctic and Indomalayan Regions. It is possible that both<br />

invasions dispersed from the Africa to India, which is thought to have been joined with<br />

436


Somalia in northeast Africa in the late Cretaceous (Briggs 1995). Both invasions could have<br />

colonized the Indomalayan and Palearctic Regions following India’s collision with Asia,<br />

approximately 45 mya (McLoughlin 2001a).<br />

The distribution of the gargarine genus Madlinus provides some support for this<br />

scenario. Madlinus, which is closely related to Coccosterphus, has been found only on the<br />

Seychelle Islands. The Seychelles were closely associated with India until 65 mya.<br />

Coccosterphus and its relatives are mostly confined to India. Based on the above scenario,<br />

the ancestors of Madlinus were subsequently confined to the Seychelles after its split with<br />

India 65 mya. The presence of Madlinus in the Seychelles is evidence for an ancient<br />

dispersal of the gargarine lineage to India via Africa, considering the great distance between<br />

India and the Seychelles today and the relative proximity of the Seychelles to Madagascar,<br />

which is devoid of membracids. Nevertheless, the presence of Madlinus on the Seychelles--<br />

the only membracid collected there besides Leptocentrus--could also be explained by a recent<br />

long distance dispersal from India.<br />

Other factors discredit an initial dispersal through the <strong>Afrotropical</strong> Region. In the<br />

Tertiary, the New <strong>World</strong> and Africa were separated by a long distance seemingly making<br />

dispersal by any means, whether rafting or by wind, difficult. The largest centrotine genus,<br />

Tricentrus, here placed in the Gargarini, is absent from the <strong>Afrotropical</strong> Region. Presumably<br />

some Tricentrus would be present in the <strong>Afrotropical</strong> Region, if treehoppers migrated from<br />

the New <strong>World</strong> to India through Africa. Also, the late Cretaceous connection between India<br />

and northeastern Africa may have been earlier than the hypothesized origin of membracids<br />

following the Cretaceous/Tertiary boundary. Moreover, the immediate <strong>Old</strong> <strong>World</strong> lineages<br />

following the Beaufortianini in the tree (Fig. 25.1) are primarily distributed in the<br />

437


Indomalayan, Palearctic, and Australasian/Oceanian Regions with very few genera present in<br />

<strong>Afrotropical</strong> Region. Finally, as mentioned previously, centrotines distributed in Gondwanan<br />

areas are not closely related, further excluding a Gondwanan vicariant event and dispersal<br />

through Africa.<br />

Thirdly, it is possible that both <strong>Old</strong> <strong>World</strong> invasions were from east to west over the<br />

Bering Land Bridge to Asia. This bridge connected North America and Asia beginning in<br />

the mid- to late Cretaceous, and from time to time throughout the Tertiary, as a result of<br />

continental convergence (Briggs 1995a). The geographic distributions of the larger<br />

centrotine lineages support this scenario. The Gargarini, the eventual descendants of the one<br />

invasion, are predominantly distributed in the Palearctic and Indomalayan Regions. The<br />

genus Imporcitor, the first lineage of the Beaufortianini (Fig. 24.1) (the first <strong>Old</strong> <strong>World</strong> tribe<br />

resulting from the other invasion), has been recorded in India, Taiwan, and Japan (McKamey<br />

1998a). As noted previously, all but one of the <strong>Old</strong> <strong>World</strong> centrotine tribes have<br />

representative genera found in the Indomalayan Region (Fig. 25.1). Evans (1966a) noted that<br />

the Indomalayan Region may be the center of origin for the Centrotinae considering the large<br />

number of species found there. Therefore, based on the phylogeny and known distributions<br />

of the centrotine tribes (Fig. 25.1), the Indomalayan Region appears to be a likely center of<br />

diversification and “jumping-off point” for centrotine dispersals to other zoogeographic<br />

regions, notably Australia and the <strong>Afrotropical</strong> Region.<br />

Strümpel (1972a) also believed that centrotines used the Bering Land Bridge as a<br />

dispersal route. However, he thought the Membracidae arose in Gondwana and that the<br />

Centrotinae reached the New <strong>World</strong> from Asia by way of the Bering Land Bridge in the<br />

438


Pleistocene. This would imply a more derived position for the New <strong>World</strong> centrotine tribes<br />

which is not supported by the current phylogenetic analysis (Fig. 25.1).<br />

The center of diversification for the Gargarini, the immediate descendants of one of<br />

the <strong>Old</strong> <strong>World</strong> Invasions, is clearly the Indomalayan Region (Fig. 25.1). All gargarine<br />

genera except one, Butragulus (McKamey 1998a) are found in the Indo-Malaysian Region.<br />

Furthermore, 17 of the 28 gargarine genera are restricted to this Region (McKamey 1998a).<br />

Based on the phylogenetic tree (Fig. 25.1), ancestors of the Australian treehoppers<br />

(Terentiini) likely arrived from the Indomalayan and Palearctic Regions. Apparently<br />

numerous angiosperm families now present in Australia invaded from southeast Asia in the<br />

early Tertiary (Briggs 1995a). It is possible that treehoppers followed these angiosperms into<br />

Australia. Other Australian insects, including the ground beetles (Coleoptera: Carabidae)<br />

and some scarabs (Scarabaeidae: Dynastinae), likely dispersed into Australia from southeast<br />

Asia (Briggs 1995a). According to Hall (1998a), northern Australia and Asia (present day<br />

Philippines) collided approximately 25 mya, which probably resulted in a temporary land<br />

connection. The ant genus Tetraponera likely invaded Australia from Asia 20 mya using this<br />

land bridge (Ward 2001a). It is possible that terentiine ancestors all used this temporary land<br />

bridge. Nonetheless, it is clear that Australia was the center of diversification for the<br />

Terentiini; all but 3 of the 40 terentiine genera are found in the Australasian/Oceanian<br />

Region.<br />

The center of diversification for the tribe Maarbarini is the Indomalayan Region (Fig.<br />

25.1) with all of the genera recorded from either India or Sri-Lanka or both (McKamey<br />

1998a). The derived position of this tribe on the phylogeny (Fig. 24.1, 25.1) and its<br />

immediate Indomalayan and Palearctic ancestors and relatives provide further evidence that<br />

439


treehoppers invaded India after it collided with Asia in the mid-Cretaceous. One would<br />

expect a closer relationship between maarbarines and <strong>Afrotropical</strong> and/or Australian tribes if<br />

maarbarine ancestors had colonized India when it was closer to or contiguous with the other<br />

Gondwanan continents in the late Cretaceous.<br />

Ancestors of the <strong>Afrotropical</strong> centrotines (Xiphopoeini and Centrotini, Fig. 25.1)<br />

likely would have arrived more recently from Indomalayan ancestors. The ancestors of these<br />

derived tribes may have dispersed into Africa approximately 23 mya in the Miocene when<br />

Africa collided with Asia. The Leptocentrini, the lineage basal to both these tribes, is widely<br />

distributed in the <strong>Old</strong> <strong>World</strong> and has significant components in the <strong>Afrotropical</strong> and<br />

Indomalayan Regions. All of the genera in the Centrotini, the largest centrotine tribe, are<br />

found in the <strong>Afrotropical</strong> Region, with a few genera (notably the basal genus Centrotus) also<br />

occurring in the Australasian/Oceanian, Indomalayan, and Palearctic Regions (McKamey<br />

1998a). The <strong>Afrotropical</strong> Region, therefore, appears to be the center of diversification for<br />

this large tribe. The Centrotini are a derived lineage with reduced hind wing venation (Fig.<br />

25.1). Their derived position and large distance from New <strong>World</strong> centrotines in the<br />

phylogenetic tree (Fig. 24.1, 25.1) is evidence against a historic Gondwanan relationship with<br />

Neotropical centrotines.<br />

A fourth possibility involves dispersal from west to east across a North Atlantic Land<br />

Bridge that is thought to have connected the Laurasian continents in the North Atlantic from<br />

the Mesozoic to the Eocene (57.8 mya) (Briggs 1995a). This route was a possible alternative<br />

to the Bering Land Bridge or perhaps a parallel dispersal route to the <strong>Old</strong> <strong>World</strong>.<br />

Nevertheless, if ancestral centrotines arose in tropical North America, dispersal to the <strong>Old</strong><br />

440


<strong>World</strong>--particularly to the Indomalayan Region--across the North Atlantic route would<br />

involve a far greater distance than the Bering Land Bridge.<br />

Discussion. Of the four scenarios presented here, dispersal across the Bering Land<br />

Bridge is most compelling. A number of other organisms are thought to have migrated<br />

between North America and Asia via the Bering Land Bridge in the late Cretaceous and early<br />

Tertiary. The use of this bridge as a dispersal route to explain disjunct distributions has been<br />

hypothesized for placental mammals, salamanders, dinosaurs, and freshwater fish (Briggs<br />

1995a). Although most dispersals over the Bering Land Bridge are thought to have occurred<br />

from Asia to North America, there are several examples of organisms dispersing from North<br />

America to Asia (Briggs 1995a). The freshwater fish family Esocidae (pikes), distributed<br />

today in eastern North America and eastern Asia, apparently migrated a long distance from<br />

North America to Asia based on fossil evidence (Briggs 1995a). Researchers believe that<br />

numerous aquatic insects lineages used the land bridge as a connection between Asia and<br />

North America. The trichopteran genus Chimarra is thought to have dispersed from South<br />

America to Asia in the early Tertiary (Briggs 1995a).<br />

Further evidence in support of dispersal across the Bering Land Bridge includes<br />

records of similar floras in eastern Asia and eastern North America (Briggs 1995a).<br />

Numerous plant genera and families show disjunct distributions among Asia and North<br />

America. Apparently, angiosperms migrated back and forth between the two continents<br />

using the land bridge as a dispersal route. The initial dispersal was apparently eastern but<br />

later there were migrations of plants back to Asia from North America (Briggs 1995a). The<br />

presence of angiosperms would have provided a constant food source for dispersing<br />

treehoppers from North America to Asia.<br />

441


Evidence from plant biogeography supports a possible treehopper migration from<br />

North America to the Bering Land Bridge. In the early Tertiary, the dominant vegetation in<br />

temperate latitudes consisted mainly of deciduous plants. At the beginning of the Eocene,<br />

the time when the earliest known treehoppers (fossil stegaspidines) have been found, the<br />

climate was the warmest of the entire Cenozoic, allowing tropical animals, such as<br />

treehoppers, to invade to the north. Tropical and temperate vegetation spread northward due<br />

to this worldwide warming trend (Briggs 1995a). Several plant families, including<br />

Cactaceae, Liliaceae, Loasaceae, Nyctaginaceae, Martyniaceae, Tecophilaceae, and<br />

Zygophyllaceae, migrated northward from South America in the early Tertiary representing<br />

the beginnings of colonization of North America by South American tropical flora (Briggs<br />

1995a). Indeed, centrotines have been recorded from the families Liliaceae, Nyctaginaceae,<br />

and most notably the Zygophyllaceae (Table 26.2). The tribe Centrodontini, the first<br />

centrotine lineage (Fig. 25.1), is the only treehopper group known to feed on the<br />

Zygophyllaceae. A northward migration of treehoppers from North America to the Bering<br />

Land Bridge is supported by these plant migrations.<br />

Assuming the Bering Land Bridge was the dispersal route for both <strong>Old</strong> <strong>World</strong><br />

invasions (Fig. 25.1), the treehoppers likely dispersed to the <strong>Old</strong> <strong>World</strong> and diversified in<br />

isolation without migrating back to North America. No centrotines are currently found in<br />

northern North America; the predominant North American treehopper subfamily is the<br />

Smiliinae. Centrotines may have gone extinct in these areas or migrated to southern refugia<br />

as a result of Pleistocene glaciations. Similarly, modern day continental Europe has only<br />

three native centrotine species but may have had more prior to the Pleistocene glaciations.<br />

Depauperate fauna in Europe may be due to extreme climatic conditions during the<br />

442


Pleistocene glaciation. Both eastern and western North America have close to 20% more<br />

genera of trees and shrubs endemic to their area than Europe. This discrepancy in floral<br />

diversity has been attributed to the east/west oriented mountains in Europe that may have<br />

prevented the migration of trees into lower, warmer latitudes during the glaciations of the<br />

Quaternary. In North America, the major mountain ranges run north/south. Here, the woody<br />

plants could migrate ahead of the glaciers without any barriers (Reid 1935a). According to<br />

Huntley (1993a), the harsh environments and climates of the Quaternary period eliminated<br />

many European forest taxa. These climatic effects could also have severely reduced<br />

treehopper numbers.<br />

Summary and Conclusions<br />

According to the fossil record and recent phylogenetic analyses, Membracidae likely<br />

originated in the New <strong>World</strong> during the Tertiary, possibly near the time of the hypothesized<br />

extraterrestrial impact 65 mya. Other evidence for a Tertiary origin include the absence of<br />

treehoppers in Madagascar and New Zealand, the historic connection of India with<br />

Madagascar and the high species richness of India (including the tribe Maarbarini), and the<br />

distantly related centrotine faunas of the <strong>Afrotropical</strong> Region, Australia, and South America.<br />

These observations do not correspond to patterns that would be expected if centrotines<br />

originated in Gondwana, prior to the splitting of the land masses. The highly endemic<br />

Monobelini and Nessorhinini of the Caribbean occupy a basal position in the phylogenetic<br />

analysis. The hypothesized dispersal of their ancestors to the Caribbean over an island<br />

archipelago at the Cretaceous/Tertiary border also supports a treehopper origin near this time.<br />

443


Centrotines are found in all major zoogeographic regions: The <strong>Afrotropical</strong>, the<br />

Nearctic, Neotropical, Palearctic, Indomalayan, and Australasian/Oceanian Regions. While a<br />

few tribes are widely distributed, many occur primarily in one or two major zoogeographic<br />

regions. The distinctive fauna of the Indomalayan, Australian/Oceanian, <strong>Afrotropical</strong>, and<br />

Caribbean regions are especially notable. All of the <strong>Old</strong> <strong>World</strong> centrotine tribes, except the<br />

Xiphopoeini, have representatives in the Indomalayan Region.<br />

Based on the phylogenetic analysis presented here, the early centrotines, apparently<br />

widely abundant in North America, dispersed twice to the Caribbean and twice to the <strong>Old</strong><br />

<strong>World</strong>. Indeed, each of the two major centrotine clades has a basal lineage that dispersed to<br />

the Caribbean Region and also a more derived clade that dispersed to the <strong>Old</strong> <strong>World</strong>.<br />

Although the pathways and methods of dispersal are unclear, the repetitive pattern of<br />

dispersals in the two groups suggests that the timing, routes, and mechanisms may have been<br />

similar in each clade. It is possible that the dispersals to the <strong>Old</strong> <strong>World</strong> occurred over the<br />

Bering Land Bridge, accounting for the Indomalayan and Palearctic distributions of basal<br />

centrotine lineages. Based on the phylogeny and known distributions of the centrotine tribes,<br />

the Indomalayan Region is the most plausible center of diversification and “jumping-off<br />

point” for centrotine dispersals to other zoogeographic regions, notably Australasian and<br />

<strong>Afrotropical</strong> Regions.<br />

444


Figure 25.1. Distributions of centrotine tribes. Geographic regions are noted on<br />

the tribal phylogeny (modified from Fig. 24.1). Asterisks (*) denote obvious<br />

centers of generic diversification for those taxa known from multiple geographic<br />

regions. Plus signs (+) denote the region of the basal genus, if apparent.<br />

445


26: CENTROTINE ANT ASSOCIATIONS, HOST PLANTS, AND CHROMOSOME<br />

Introduction<br />

NUMBERS<br />

Although primarily recognized for their exaggerated morphological characteristics,<br />

treehoppers are also known for their complex life history patterns including ant-mutualisms,<br />

maternal care, sound communication, and host plant specialization. Wood summarized<br />

behavioral patterns in the New <strong>World</strong> Membracidae (1993a), and Ananthasubramanian and<br />

Ananthakrishnan (1975a, 1975b), Ananthasubramanian (1996a), and Capener (1962a, 1968a)<br />

discussed similar characteristics for Indian and African membracids, respectively.<br />

Ant-membracid mutualisms, where ants feed on the excreted treehopper honeydew<br />

and in exchange provide the homopterans defense against natural enemies, are well<br />

documented (Ananthasubramanian 1996a, Hölldobler and Wilson 1990a, Panda 1968a).<br />

Ant-attendance is common in both <strong>Old</strong> <strong>World</strong> (Table 26.1) and New <strong>World</strong> Membracidae<br />

(Wood 1993a).<br />

Wood (1993a) described different levels of maternal care in treehoppers. Maternal<br />

care occurs in four of the seven New <strong>World</strong> subfamilies and in approximately half of the<br />

tribes in the highly derived subfamilies Membracinae and Smiliinae. In addition to egg<br />

guarding, some New <strong>World</strong> groups aggressively defend their offspring from predators and<br />

parasitoids (Wood 1993a, McKamey and Deitz 1996a).<br />

The life history traits of the Centrotinae, a group primarily distributed in the <strong>Old</strong><br />

<strong>World</strong>, have not been examined in an evolutionary context. Firstly, it is unclear if ant-<br />

attendance is an ancestral trait for centrotines and if ant-attendance and maternal care (egg<br />

446


guarding) are correlated. Secondly, there are many questions regarding the relationship<br />

between centrotines and their host plants. What were the original centrotine host plant<br />

families and what are the subsequent patterns of host plant exploitation? Baseline<br />

information on centrotine host plant families is presented here. Finally, centrotine<br />

chromosome data was gathered to determine the likely ancestral chromosome number, what<br />

derivations occurred, and the usefulness of chromosomes as phylogenetic characters.<br />

In order to examine these evolutionary patterns, centrotine behavioral and host plant<br />

patterns, as well as male chromosome numbers, are tabulated by genus and tribe and are<br />

optimized as unweighted characters on a tribal phylogeny (modified from Fig. 24.1).<br />

Although Ananthasubramanian (1996a) provided a summary of aggregation behaviors<br />

among the Centrotinae, data are lacking for too many taxa to establish evolutionary trends.<br />

Methods<br />

Published records of centrotine genera reported to be ant-attended, host plant<br />

families, and male chromosome numbers are summarized in Tables 26.1-26.3. Sources are<br />

given in each table. The phylogeny of the 23 centrotine tribes was modified from the tree in<br />

Fig. 24.1 to serve as a framework for mapping the ecological, behavioral, and chromosomal<br />

features. Ant-attendance, maternal care in the form of egg guarding, host plant families, and<br />

chromosome numbers were treated as unweighted characters (i.e., each host plant family was<br />

treated as a separate character in the analysis) and scored for each tribe in DELTA (Dallwitz<br />

et al. 1999a). Characters were scored as present if at least one genus in a tribe was reported<br />

as having the trait in the literature. For example, although the genus Coccosterphus is the<br />

only gargarine genus listed to feed on the family Nyctaginaceae, this host character was<br />

447


scored as present for the tribe Gargarini. Host plant information is unknown for the tribes<br />

Choucentrini, Micreunini, and Pieltainellini and these were scored with a question mark (?).<br />

Otherwise, if a host plant family is not recorded for a tribe, it was scored as absent. <strong>Tribe</strong>s<br />

and genera without published information on ant-attendance or chromosome numbers were<br />

scored with a question mark (?). The presence or absence of each of these characters for the<br />

23 centrotine tribes was optimized in the parsimony program Winclada (Nixon 1999a) using<br />

the fast optimization procedure. The gain and loss of these characters were then mapped<br />

onto the tribal phylogeny (Figs. 26.1-26.3).<br />

Chromosome numbers for Chinese taxa follow Tian and Yuan (1997a: Table 1)<br />

except that Tricentrus acuticornis Funkhouser should be male 2n=10 (1997a: 156); some<br />

numbers in Yuan and Chou’s (2002a) review are ambiguous.<br />

Results and Discussion<br />

Ant-attendance and Maternal Care. Ant-attendance has been reported from 28<br />

centrotine genera and 11 of 23 centrotine tribes: Beaufortianini, Boocerini, Centrocharesini,<br />

Ebhuloidesini, Hypsaucheniini, Maarbarini, Oxyrhachini, and the four largest tribes in terms<br />

of genera, Centrotini, Gargarini, Leptocentrini, and Terentiini (Table 26.1). The tribe<br />

Gargarini has the largest number of ant-attended genera with 8, although “all” Australasian<br />

(Terentiini) and South African (including some Beaufortianini, Boccharini, Centrotini,<br />

Leptocentrini, Oxyrhachini, and Xiphopoeini) nymphs are said to be ant-attended. The New<br />

<strong>World</strong> tribe Centrodontini is the only centrotine group reported in the literature as not<br />

attended by ants (Dietrich et al. 2001a).<br />

448


Ancestral state reconstruction using parsimony resulted in a single derivation of ant-<br />

attendance in the common ancestor of Monobelini + Boocerini + Gargarini and the remaining<br />

19 centrotine tribes (Fig. 26.1). Ant-attendance, however, is an ambiguous trait in the 11<br />

tribes (denoted with a “?’ in Fig. 26.1) where attendance information is unknown.<br />

Therefore, although ant-attendance is ambiguous for many centrotine tribes, it appears to be<br />

an ancestral character for a majority of the Centrotinae.<br />

Lin (2003a), in a study of the treehopper subfamily Membracinae, concluded that ant-<br />

attendance precedes the derivation of maternal care (egg guarding) but that the gain of<br />

maternal care is accompanied by the loss of ant-attendance. These findings supported the<br />

hypothesis of Wood (1984a) that egg guarding in treehoppers is correlated with the absence<br />

of ant-attendance. Conversely, according to Tallamy and Schaefer (1997a), maternal care in<br />

the Hemiptera is frought with increased costs to the mother and young including increased<br />

exposure to predators and lower fecundity. Thus, many hemipteran groups have acquired<br />

traits such as ant-attendance to lower these costs.<br />

The results presented here for the Centrotinae (Fig. 26.1) do not reflect either of these<br />

conclusions. Maternal care in the form of egg guarding appears to be apomorphic in the<br />

Centrotinae. <strong>Tribe</strong>s within the well supported clade Ebhuloidesini + Oxyrhachini +<br />

Terentiini + Hypsaucheniini + Centrocharesini all have ant-attended genera (Table 26.1) and<br />

are the only centrotines known to exhibit maternal care in the form of egg-guarding (Fig.<br />

26.1) (Stegmann and Linsenmair 2002a). (Hinton 1977a listed Platycentrus acuticornis as<br />

subsocial but it is unclear from the figure if the female is guarding nymphs or eggs. Thus, for<br />

the purposes of this work, Platycentrus is not considered to show maternal care in the form<br />

of egg guarding). This common trait, unique to these tribes, provides independent support of<br />

449


their relatedness. In centrotines, therefore, ant-attendance and maternal care in the form of<br />

egg guarding appear to occur concurrently. Cryan (1999a) also found sociality and ant-<br />

attendance to occur together on a phylogenetic tree of the Membracidae derived from<br />

combined morphological and molecular data. Nevertheless, as found in the Membracinae<br />

(Lin 2003a), maternal care is preceded by ant-attendance on the centrotine phylogenetic tree<br />

(Fig. 26.1).<br />

Apparently, females of some Membracinae, a derived membracid subfamily,<br />

developed the trait of defending eggs and did not require additional ant defense (Lin 2003a),<br />

but the females of some Centrotinae, a more primitive membracid subfamily, guard their<br />

eggs and have ant herders that provide additional defense. Clearly, further data on the life<br />

history of centrotines is needed to further elucidate the relationships between maternal care<br />

and ant-attendance.<br />

Host plants. Centrotines are documented from 105 different host plant families<br />

(Table 26.2). Based on ancestral state reconstruction by parsimony, most of the plant family<br />

derivations in the phylogenetic tree (Fig. 26.2) are concentrated at the tips, suggesting many<br />

centrotine taxa only recently adapted to these hosts. Apparent losses of host plants could<br />

reflect the absence of a plant family in a tribe’s geographic range. These patterns, especially<br />

in the large tribes Gargarini, Terentiini, Leptocentrini, and Centrotini, suggest an increasing<br />

trend towards generalization in host use although there are many examples of novel<br />

adaptations of hosts in centrotine tribes. Despite this observable trend in host generalization<br />

in centrotine tribes, these patterns should be examined based on generic-level data to avoid<br />

over-generalizations on centrotine/host relationships.<br />

450


Excluding the New <strong>World</strong> tribe Centrodontini, most centrotine tribes are extremely<br />

polyphagous. The North American genera of the Centrodontini, Centrodontus, Multareis,<br />

and Multareoides, feed only on a single plant species, the creosote bush, Larrea divaricata<br />

tridentata (DC) Felger and Lowe, in the family Zygophyllaceae. Twelve of 23 centrotine<br />

tribes, however, have at least 5 or more known host plant families. Three of the four largest<br />

centrotine tribes in numbers of genera have the most reported host plant families (Table 26.2,<br />

Fig. 26.2). Sixty plant families are listed for the Gargarini, 54 for the Leptocentrini, and 40<br />

for the Centrotini. Within the Gargarini, the genus Gargara is known from 35 host plant<br />

families and Tricentrus is known from 44 families. The species Centrotus cornutus<br />

(Centrotini) is recorded from 16 different plant families: Aceraceae, Betulaceae, Compositae,<br />

Corylaceae, Cornaceae, Ericaceae, Euphorbiaceae, Fagaceae, Juglandaceae, Leguminosae,<br />

Moraceae, Onagraceae, Pinaceae, Rhamnaceae, Rosaceae, and Salicaceae (Table 26.2).<br />

Wood (1993a) also noted the widespread polyphagy in tropical <strong>Old</strong> <strong>World</strong> centrotines and<br />

Central and South American membracids. In contrast, most North American temperate<br />

membracids are found on a single host genus (Wood 1993a).<br />

In addition to being polyphagous, many centrotines show adaptations to novel plant<br />

families. Forty plant families are hosts for only a single centrotine genus or tribe. Centrotus<br />

(Centrotini) is the only centrotine genus found on the plant families Aceraceae, Cornaceae,<br />

Corylaceae, Onagraceae, while Gargarini is the only centrotine tribe reported to feed on<br />

Alangiaceae, Cannabaceae, Coriariaceae, Elaeagnaceae, Hamamelidaceae, Myristicaceae,<br />

Nyctaginaceae, Oleaceae, Rhizophoraceae, Saxifragaceae, and Thymelaeaceae. The tribe<br />

Nessorhinini, a primitive group based on the phylogenetic analysis (Fig. 24.1), is the only<br />

centrotine group found on the Malpighiaceae. These patterns suggest recent adaptations by<br />

451


tribes to plant hosts, however, in most cases, the same tribes include genera that also feed on<br />

a number of other host plant families. Conversely, the Leptocentrini and Gargarini share 37<br />

host plant families even though they are not closely related (Fig. 24.1), while the more<br />

closely related Centrotini and Leptocentrini share 23 host plant families. These patterns may<br />

reflect convergent adaptations to host plants.<br />

The Leguminosae (hosts for 42 centrotine genera, 13 tribes), Solanaceae (22 genera,<br />

10 tribes), Euphorbiaceae (19 genera, 8 tribes), and Compositae (18 genera, 7 tribes), are<br />

exploited at more basal positions in the tree and appear to be favored centrotine hosts.<br />

Moreover, the Solanaceae and Leguminosae are likely the two original host plant families<br />

(Fig. 26.2) for most centrotines except the Centrodontini. More than half of the centrotine<br />

tribes have genera reported to feed on the host plant family Leguminosae. Ancestral state<br />

reconstruction by parsimony indicates 2 independent gains of legume feeding and 5 losses,<br />

with the most prominent gain in the common ancestor of Monobelini + Boocerini +<br />

Gargarini and the remaining 19 centrotine tribes (Fig. 26.2). With the exception of<br />

Ebhuloidesini, all tribes in the clade Centrocharesini + Terentiini + Ebhuloidesini +<br />

Oxyrhachini + Hypsaucheniini include some genera that feed on the Euphorbiaceae.<br />

Several closely related tribes feed on the same host plant family(s), providing<br />

independent support of their relatedness. For example, the related tribes Lobocentrini,<br />

Leptobelini, Maarbarini, Leptocentrini, and Centrotini all have genera that feed on plants<br />

within the family Fagaceae. Furthermore, only the Gargarini and the related Monobelini are<br />

known to feed on the family Araceae.<br />

Male Chromosome Numbers. Chromosome numbers have only been examined in 8<br />

centrotine tribes, the male number being reported universally. Therefore, many ambiguous<br />

452


gains were plotted using ancestral state optimization. Data is insufficent to conclude on the<br />

usefulness of male chromosome numbers as phylogenetic characters in Centrotinae.<br />

Nevertheless, 2n=21 may have been the original centrotine chromosome number (Fig. 26.3).<br />

Indeed, Kirillova’s (1987a) review gave 2n=21 as the mode among all treehoppers and 17 as<br />

the mode among leafhoppers (Cicadellidae). This chromosome number is apparently lost in<br />

the Ebhuloidesini, Hypsaucheniini, and Centrotini. Furthermore, the large tribe Gargarini<br />

independently acquired 5 different male chromosome numbers. The closely related tribes<br />

Centrotini, Maarbarini, and Leptocentrini all have genera with a male chromosome number<br />

of 2n=19, while the Ebhuloidesini and Hypsaucheniini have a number of 2n=17, providing<br />

independent corroboration of their relatedness. The sex chromosome system in centrotines is<br />

primarily XO:XX although Tian and Yuan (1997a) report a XY:XX system in two gargarine<br />

species: Nondenticentrus curvispineus Chou and Yuan and Tricentrus acuticornis<br />

Funkhouser.<br />

453


Table 26.1. Centrotine genera reported to be tended by ants with citation. Note: not all species within the<br />

genus are necessarily ant attended.<br />

<strong>Tribe</strong>: Genus (citation)<br />

BEAUFORTIANINI: Dukeobelus (Capener 1952b).<br />

BOOCERINI: Ischnocentrus (Loye 1992a; Olmstead and Wood 1990a).<br />

CENTROCHARESINI: Centrochares: (Stegmann and Linsenmair 2002a).<br />

CENTROTINI: Anchon (Ananthasubramanian 1984a, 1987a; Ayyar 1937a; Capener 1953b; Lamborn,<br />

1914a); Centrotus (Green 1900a); Leprechaunus (Capener 1950a); Monocentrus (Kenne and Dejean<br />

1997a).<br />

EBHULOIDESINI: Ebhul (Azhar 1992a, Funkhouser 1951a).<br />

GARGARINI: Butragulus (Hayashi and Endo 1985b); Coccosterphus (Ananthasubramanian and<br />

Ananthakrishnan 1975a); Eucoccosterphus (Ananthasubramanian and Ananthakrishnan 1975a);<br />

Chitra and Ananthasubramanian 1999a); Gargara (Hayashi and Endo 1985b; Ananthasubramanian<br />

and Ananthakrishnan 1975a); Enslin 1911a, 1911b; Funkhouser 1919d, 1951a; Panda 1968a; Weiss<br />

and Dickerson 1921a); Machaerotypus (Hayashi and Endo 1985b); Parayasa (Ananthasubramanian<br />

and Ananthakrishnan 1975a; Ananthasubramanian 1987a); Tsunozemia (Hayashi and Endo 1985b);<br />

Tricentrus (Ananthasubramanian and Ananthakrishnan 1975a); Funkhouser 1919d).<br />

HYPSAUCHENIINI: Gigantorhabdus (Ushijima and Nagai 1979a); Hybandoides (Stegmann and<br />

Linsenmair 2002a); Hypsauchenia (Funkhouser 1951a); Pyrgauchenia (Melichar 1914b).<br />

LEPTOCENTRINI: Hemicentrus (Melichar 1914b); Leptocentrus (Ananthasubramanian and<br />

Ananthakrishnan 1975a; Ananthasubramanian and Ramachandran 1990a; Boulard 1969a; Dejean and<br />

Bourgoin 1998a; Funkhouser 1951a; Kenne and Dejean 1997a; Panda 1968a; Panda and Behura<br />

1957a; Lamborn 1914a); Otinotus (Ananthasubramanian and Ananthakrishnan 1975a; Behura 1951a,<br />

1955a, 1962a; Behura and Panda 1959a; Behura and Sengupta 1951a; Behura and Sinha 1951a;<br />

Panda 1968a; Panda and Behura 1956a).<br />

MAARBARINI: Telingana (Ananthasubramanian and Ananthakrishnan 1975a).<br />

<strong>OXYRHACHINI</strong>: Oxyrhachis (Adenuga and Adeboyeku 1987a; Gersani and Degen 1988a; Lamborn<br />

1914a; Panda 1968a; Panda and Behura 1957a; Singh 1986a; Thakur 1973a).<br />

TERENTIINI: Cebes (Cookson and New 1980a); Sextius (Buckley 1982a, 1983a; Cookson and New<br />

1980a; Froggatt 1902a; Goding 1903a; Kitching and Filshie 1974a; Hölldobler and Wilson 1990a);<br />

Terentius (Kitching 1987a); all Australian nymphs and adults (Carver et al. 1991a; Evans 1966a;<br />

Tillyard 1926d).<br />

South African nymphs (all ?) (Jacobs 1985a).<br />

454


Table 26.2. List of host plant families and treehopper genera. Numbers correspond to labels in Fig. 25.2. Host<br />

plant families are based on the website: http://www.rbgkew.org.uk/data/vascplnt.html and Brummitt (1992a).<br />

Treehopper host plant data taken from: Ahmad 1975a, 1976a, 1978a, 1988a; Alma 1999a; Ananthasubramanian<br />

1987a, 1996a; Ananthasubramanian and Ananthkrishnan 1975a; Ananthasubramanian et al. 1990a; Ayyanna et<br />

al. 1978a; Ballou 1935a, 1936b; Behura 1951a, 1962a; de Bergevin 1934b; Boulard 1966a, 1968b, 1968d,<br />

1969a, 1969c, 1971c, 1979i, 1979j, 1983b; Capener 1951a, 1962a, 1966a, 1968a, 1968b, 1968c, 1971a, 1972a,<br />

1972b, 1972c; Chatterjee 1933c; Chatterjee and Bose 1933a; Cheo 1935b; Davli et al. 1992a; Day 1999a;<br />

Dietrich et al. 2001a; Funkhouser 1919a, 1919d, 1927b, 1935b; Goding 1893d; Gunji and Nagai 1994a;<br />

Günthart 1987b; Hargreaves 1937a; Hayashi and Endo 1985b; Helmore 1982a; Hoffmann 1942a; Jankovic<br />

1975a; Kirkaldy 1906c; Koningsberger 1915a; Krauss 1965a; Lamborn 1914a; Lodos and Kalkandelen 1981a;<br />

Loye 1992a; Matsumura 1912a; Melichar 1914b; Mohammad and Ahmad 1991a, 1995a; Morley 1905b; Okáli<br />

and Janský 1998a; Panda and Behura 1957a; Peláez 1941b; Plummer 1935a; Ramos 1957a, 1979a; Rao et al.<br />

1988a; Raut and Bhattacharya 1999a; Richter 1942c; Smithers 1985a; Swezey 1942a; Wolcott 1941a; Yousuf et<br />

al. 1997a; Yuan and Chou 2002a.<br />

Host plant family <strong>Tribe</strong> (Genus)<br />

1. Aceraceae Centrotini (Centrotus)<br />

2. Actinidiaceae Leptobelini (Leptobelus)<br />

3. Adiantaceae Leptocentrini (Leptocentrus)<br />

4. Alangiaceae Gargarini (Tricentrus)<br />

5. Alliaceae Leptocentrini (Otinotus); Maarbarini (Telingana)<br />

6. Amaranthaceae Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus); Oxyrhachini<br />

(Oxyrhachis)<br />

7. Anacardiaceae Boocerini (Campylocentrus); Centrotypini (Centrotypus); Gargarini (Tricentrus);<br />

Leptocentrini (Hemicentrus, Leptocentrus, Otinotus); Monobelini (Monobelus);<br />

Nessorhinini (Nessorhinus)<br />

8. Annonaceae Hypsaucheniini (Gigantorhabdus); Leptocentrini (Leptocentrus, Otinotus)<br />

9. Apocynaceae Centrotini (Monocentrus); Gargarini (Tricentrus); Leptocentrini (Leptocentrus,<br />

Otinotus)<br />

10. Araceae Gargarini (Tricentrus); Monobelini (Monobelus)<br />

11. Araliaceae Gargarini (Machaerotypus); Leptocentrini (Leptocentrus)<br />

12. Aristolochiaceae Leptobelini (Leptobelus)<br />

13. Asclepiadaceae Boocerini (Campylocentrus); Gargarini (Tricentrus); Leptocentrini (Leptocentrus,<br />

Otinotus)<br />

14. Balanitaceae Oxyrhachini (Oxyrhachis)<br />

15. Balsaminaceae Leptocentrini (Otinotus)<br />

16. Betulaceae Centrotini (Centrotus); Gargarini (Butragulus, Gargara, Machaerotypus, Tricentrus)<br />

17. Bignoniaceae Gargarini (Coccosterphus, Gargara, Tricentrus); Leptocentrini (Otinotus); Oxyrhachini<br />

(Oxyrhachis)<br />

18. Bixaceae Leptocentrini (Leptocentrus)<br />

<strong>19.</strong> Bombacaceae Leptocentrini (Hemicentrus, Leptocentrus); Gargarini (Tricentrus)<br />

20. Bromeliaceae Centrotini (Hamma)<br />

21. Buddlejaceae Oxyrhachini (Oxyrhachis)<br />

22. Cannabaceae Gargarini (Gargara)<br />

23. Capparaceae Leptocentrini (Leptocentrus, Otinotus)<br />

24. Caprifoliaceae Maarbarini (Telingana)<br />

25. Caricaceae Centrotini (Hamma, Monocentrus)<br />

26. Casuarinaceae Gargarini (Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini<br />

(Oxyrhachis); Terentiini (Acanthuchus, Terentius)<br />

27. Celastraceae Gargarini (Gargara, Parayasa); Leptocentrini (Periaman)<br />

28. Chenopodiaceae Terentiini (Acanthucalis)<br />

29. Combretaceae Centrotini (Distanobelus, Platybelus); Gargarini (Gargara); Leptocentrini<br />

(Leptocentrus, Otinotus, Umfilianus); Monobelini (Monobelus) Continued.<br />

455


Table 26.2 cont’d.<br />

Host plant family Genus<br />

30. Compositae Centrotini (Anchon, Centrotus, Distanobelus, Leprechaunus); Gargarini (Butragulus,<br />

(Asteraceae) Coccosterphus, Gargara, Machaerotypus, Tricentrus, Tsunozemia); Hypsaucheniini<br />

(Hypsauchenia, Hypsolyrium, Jingkara); Leptobelini (Leptobelus); Leptocentrini<br />

(Leptocentrus, Otinotus); Monobelini (Monobeloides); Oxyrhachini (Oxyrhachis)<br />

31. Connaraceae Leptocentrini (Leptocentrus)<br />

32. Convolvulaceae Boocerini (Campylocentrus); Centrotini (Anchon); Leptobelini (Leptobelus),<br />

Leptocentrini (Leptocentrus)<br />

33. Coriariaceae Gargarini (Tricentrus)<br />

34. Cornaceae Centrotini (Centrotus)<br />

35. Corylaceae Centrotini (Centrotus)<br />

36. Cruciferae Gargarini (Gargara); Leptocentrini (Otinotus)<br />

37. Cucurbitaceae Boocerini (Campylocentrus)<br />

38. Cupressaceae Maarbarini (Telingana)<br />

39. Dryopteridaceae Maarbarini (Telingana)<br />

40. Ebenaceae Gargarini (Gargara, Machaerotypus); Oxyrhachini (Oxyrhachis)<br />

41. Elaeagnaceae Gargarini (Erecticornia, Gargara, Maurya, Tricentrus)<br />

42. Ericaceae Centrotini (Centrotus); Gargarini (Butragulus, Machaerotypus)<br />

43. Euphorbiaceae Centrocharesini (Centrochares); Centrotini (Anchon, Centrotus, Eumonocentrus,<br />

Hamma, Monocentrus); Gargarini (Coccosterphus, Eucoccosterphus, Gargara, Sipylus,<br />

Tricentrus); Hypsaucheniini (Hypsauchenia, Hypsolyrium); Leptocentrini<br />

(Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis); Terentiini (Pyrgonota, Terentius);<br />

Xiphopoeini(Xiphopoeus)<br />

44. Fagaceae Centrotini (Centrotus); Gargarini (Erecticornia, Gargara, Machaerotypus, Maurya,<br />

Tricentrus); incertae sedis (Elaphiceps); Leptobelini (Leptobelus); Leptocentrini<br />

(Leptocentrus); Lobocentrini (Arcuatocornum, Truncatocornum); Maarbarini<br />

(Telingana)<br />

45. Flacourtiaceae Ebhuloidesini (Ebhul); Leptocentrini (Hemicentrus, Otinotus)<br />

46. Gnetaceae Leptobelini (Leptobelus)<br />

47. Gramineae Boocerini (Campylocentrus); Centrotini (Anchon); Gargarini (Tricentrus); Leptocentrini<br />

(Leptocentrus); Maarbarini (Telingana); Oxyrhachini (Oxyrhachis); Terentiini<br />

(Pogonella, Strzeleckia); Xiphopoeini (Xiphopoeus)<br />

48. Guttiferae Boocerini (Ischnocentrus); Gargarini (Tricentrus); Leptocentrini (Otinotus)<br />

49. Hamamelidaceae Gargarini (Tricentrus) Continued.<br />

50. Hernandiaceae Leptocentrini (Leptocentrus)<br />

51. Juglandaceae Centrotini (Centrotus); Gargarini (Machaerotypus, Tricentrus)<br />

52. Labiatae Leptocentrini (Leptocentrus, Otinotus); Nessorhinini (Nessorhinus)<br />

53. Lauraceae Boccharini (Lanceonotus); Ebhuloidesini (Ebhul); Gargarini (Gargara); Leptocentrini<br />

(Hemicentrus, Otinotus); Oxyrhachini (Oxyrhachis); Terentiini (Acanthuchus)<br />

54. Lecythidaceae Terentiini (Terentius)<br />

55. Leguminosae Beaufortianini (Centruchus); Centrocharesini (Centrochares); Centrotini<br />

(Fabaceae); (Acanthophyes, Anchon, Anchonobelus, Centrotus, Cornutobelus, Distanobelus,<br />

(Leguminosae- Eumonocentrus, Hamma, Monocentrus, Rachinotus, Stalobelus, Tiberianus, Tricoceps);<br />

Caesalpinioideae); Gargarini (Butragulus, Coccosterphus, Eucoccosterphus, Gargara, Machaerotypus,<br />

(Leguminosae- Parayasa, Tricentrus); Hypsaucheniini (Jingkara); Leptobelini (Leptobelus);<br />

Mimosoideae); Leptocentrini (Hemicentrus, Leptocentrus, Otinotus); Monobelini (Monobelus);<br />

(Leguminosae- Nessorhinini (Nessorhinus); Oxyrhachini (Oxyrhachis); Platycentrini (Platycentrus,<br />

Papilionoideae) Tylocentrus); Terentiini (Acanthuchus, Anzac, Cebes, Ceraon, Eufairmairia, Eufrenchia,<br />

Pogonella, Sarantus, Sextius); Xiphopoeini (Xiphopoeus)<br />

56. Liliaceae Centrotini (Anchon, Tricoceps); Gargarini (Gargara); Leptocentrini (Leptocentrus)<br />

57. Lythraceae Gargarini (Eucoccosterphus, Gargara, Tricentrus); Leptocentrini (Otinotus)<br />

58. Magnoliaceae Hypsaucheniini (Hypsauchenia); Leptocentrini (Leptocentrus, Otinotus, Periaman)<br />

59. Malpighiaceae Nessorhinini (Nessorhinus, Orthobelus) Continued.<br />

456


Table 26.2 cont’d.<br />

Host plant family Genus<br />

60. Malvaceae Centrotini (Hamma); Gargarini (Gargara, Tricentrus); Hypsaucheniini (Jingkara);<br />

Leptocentrini (Leptocentrus); Nessorhinini (Nessorhinus); Terentiini (Alosextius)<br />

61. Melastomataceae Boocerini (Ischnocentrus); Ebhuloidesini (Ebhul), Gargarini (Gargara, Sipylus,<br />

Tricentrus); Hypsaucheniini (Pyrgauchenia); Leptocentrini (Leptocentrus,<br />

Nilautama)<br />

62. Meliaceae Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus)<br />

63. Moraceae Centrotini (Centrotus, Eumonocentrus); Centrotypini (Centrotypus); Ebhuloidesini<br />

(Ebhul); Gargarini (Eucoccosterphus, Gargara, Machaerotypus, Tricentrus);<br />

Leptocentrini (Leptocentrus, Otinotus); Monobelini (Monobelus); Nessorhinini<br />

(Nessorhinus); Oxyrhachini (Oxyrhachis); Terentiini (Pogonotypellus)<br />

64. Moringaceae Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus)<br />

65. Myristicaceae Gargarini (Tricentrus)<br />

66. Myrtaceae Gargarini (Tricentrus); Leptocentrini (Otinotus); Nessorhinini (Nessorhinus);<br />

Oxyrhachini (Oxyrhachis); Terentiini (Sextius, Acanthuchus, Ceraon, Eufairmairia,<br />

Eufairmairiella, Eufrenchia)<br />

67. Nyctaginaceae Gargarini (Coccosterphus)<br />

68. Olacaceae Centrotini (Anchon, Monocentrus)<br />

69. Oleaceae Gargarini (Gargara, Tricentrus)<br />

70. Onagraceae Centrotini (Centrotus)<br />

71. Orchidaceae Leptocentrini (Leptocentrus)<br />

72. Oxalidaceae Centrotini (Zanzia); Gargarini (Tricentrus)<br />

73. Palmae Centrotini (Monocentrus); Leptocentrini (Leptocentrus)<br />

74. Passifloraceae Leptocentrini (Leptocentrus)<br />

75. Phytolaccaceae Boocerini (Campylocentrus); Nessorhinini (Nessorhinus)<br />

76. Pinaceae Centrotini (Centrotus); Gargarini (Gargara, Machaerotypus, Maurya, Tricentrus)<br />

77. Piperaceae Centrotini (Monocentrus); Gargarini (Tricentrus); Leptocentrini (Leptocentrus)<br />

78. Plumbaginaceae Terentiini (Pogonella)<br />

79. Polygonaceae Centrotini (Tricoceps); Gargarini (Gargara, Tricentrus); Leptocentrini<br />

(Leptocentrus); Terentiini (Cebes)<br />

80. Proteaceae Beaufortianini (Dukeobelus); Oxyrhachini (Oxyrhachis); Terentiini (Acanthuchus,<br />

Otinotoides, Pogonella, Sertorius, Terentius)<br />

81. Ranunculaceae Centrotini (Anchon)<br />

82. Rhamnaceae Centrotini (Acanthophyes, Centrotus, Distanobelus); Centrotypini (Centrotypus);<br />

Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini<br />

(Oxyrhachis)<br />

83. Rhizophoraceae Gargarini (Tricentrus)<br />

84. Rosaceae Centrotini (Anchon, Centrotus, Daconotus); Gargarini (Butragulus, Machaerotypus,<br />

Maurya, Pantaleon, Tricentrus); Leptobelini (Leptobelus); Maarbarini (Telingana);<br />

Terentiini (Acanthuchus)<br />

85. Rubiaceae Boocerini (Campylocentrus); Centrotini (Euceropsila, Eumonocentrus, Hamma,<br />

Monocentrus); Centrotypini (Centrotypus); Ebhuloidesini (Ebhul); Gargarini<br />

(Eucoccosterphus, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Nessorhinini<br />

(Nessorhinus)<br />

86. Rutaceae Centrotini (Hamma, Monocentrus); Gargarini (Gargara, Machaerotypus);<br />

Leptocentrini (Leptocentrus, Otinotus); Nessorhinini (Nessorhinus); Terentiini<br />

(Pogonella)<br />

87. Salicaceae Centrotini (Centrotus); Gargarini (Gargara, Machaerotypus, Tricentrus);<br />

Hypsaucheniini (Hypsauchenia)<br />

88. Salvadoraceae Leptocentrini (Leptocentrus)<br />

89. Santalaceae Centrotypini (Centrotypus); Gargarini (Eucoccosterphus, Coccosterphus, Gargara,<br />

Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Maarbarini (Pogon);<br />

Oxyrhachini (Oxyrhachis) Continued.<br />

457


Table 26.2 cont’d.<br />

Host plant family Genus<br />

90. Sapindaceae Centrotini (Anchon); Gargarini (Tricentrus)<br />

91. Sapotaceae Monobelini (Brachycentrotus)<br />

92. Saxifragaceae Gargarini (Antialcidas, Pantaleon)<br />

93. Solanaceae Beaufortianini (Beaufortiana); Boocerini (Ischnocentrus); Centrotini (Anchon,<br />

Eumonocentrus); Gargarini (Coccosterphus, Eucoccosterphus, Gargara, Parayasa,<br />

Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Maarbarini (Telingana);<br />

Monobelini (Monobelus); Nessorhinini (Nessorhinus); Oxyrhachini (Oxyrhachis);<br />

Terentiini (Neocanthuchus, Oxyrhachis, Pogonella, Pogonotypellus, Rentzia, Sarantus,<br />

Terentius)<br />

94. Sterculiaceae Centrotini (Eumonocentrus, Hamma, Monocentrus, Stalobelus); Leptocentrini<br />

(Leptocentrus); Oxyrhachini (Oxyrhachis)<br />

95. Styracaceae Hypsaucheniini (Hypsauchenia); Leptobelini (Leptobelus)<br />

96. Tamaricaceae Gargarini (Gargara); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini (Oxyrhachis)<br />

97. Theaceae Centrotini (Stalobelus); Gargarini (Machaerotypus, Tricentrus)<br />

98. Thymelaeaceae Gargarini (Gargara); Hypsaucheniini (Jingkara)<br />

99. Tiliaceae Centrotini (Anchon, Eumonocentrus, Hamma, Leprechaunus, Monocentrus); Gargarini<br />

(Butragulus, Gargara, Tricentrus); Leptocentrini (Leptocentrus, Otinotus)<br />

100. Ulmaceae Centrotini (Anchon, Leprechaunus, Monocentrus); Gargarini (Butragulus, Gargara,<br />

Machaerotypus, Tricentrus); Leptocentrini (Otinotus); Oxyrhachini (Oxyrhachis)<br />

101. Urticaceae Centrotini (Anchon, Mitranotus, Monocentrus); Leptocentrini (Leptocentrus, Otinotus)<br />

102. Verbenaceae Gargarini (Gargara, Tricentrus); Leptocentrini (Leptocentrus, Otinotus); Oxyrhachini<br />

(Oxyrhachis)<br />

103. Vitaceae Gargarini (Gargara, Tricentrus); Nessorhinini (Nessorhinus)<br />

104. Zingiberaceae Centrotini (Kallicrates)<br />

105. Zygophyllaceae Centrodontini (Centrodontus, Multareis, Multareoides)<br />

458


Table 26.3. Chromosome numbers (2n) of male centrotines.<br />

Male 2n Taxa and citations<br />

2n=10 Gargarini: Tricentrus (Tian and Yuan 1997a).<br />

2n=13 Gargarini: Tricentrus (Tian and Yuan 1997a).<br />

2n=17 Centrotini: Anchon (Kirillova 1988a; Parida and Dalua 1981a).<br />

Ebhuloidesini: Ebhul (Tian and Yuan 1997a).<br />

Hypsaucheniini: Jingkara (Tian and Yuan 1997a).<br />

2n=19 Centrotini: Centrotus (Halkka 1959a, 1962a; Kirillova 1988a).<br />

Gargarini: Coccosterphus (Bhattacharya and Manna 1973a; Kirillova 1988a); Gargara<br />

(Bhattacharya and Manna 1967a, 1973a; Halkka 1959a, 1962a; Kirillova 1988a;<br />

Menon 1958a; Parida and Dalua 1981a; Ray-Chaudhuri et al. 1967a; Tian and<br />

Yuan 1997a); Tricentrus (Ahmad and Yasmeen 1980a; Bhattacharya and Manna<br />

1973a; Kirillova 1988a; Parida and Dalua 1981a; Tian and Yuan 1997a).<br />

Ebhuloidesini: Ebhul (Tian and Yuan 1997a).<br />

Leptocentrini: Leptocentrus substitutus (Halkka 1962a; Menon 1959a).<br />

Maarbarini: Telingana (Kirillova 1988a; Sharma et al. 1964a).<br />

2n=20 Gargarini: Nondenticentrus (Tian and Yuan 1997a).<br />

2n=21 Boocerini: Boocerus (Halkka 1964a; Kirillova 1988a).<br />

Gargarini: Coccosterphus (Bhattacharya and Manna 1967a); Pantaleon (Tian and Yuan<br />

1997a); Tricentrus (Kirillova 1988a; Parida and Dalua 1981a; Tian and Yuan<br />

1997a).<br />

Leptocentrini: Hemicentrus (Tian and Yuan 1997a); Leptocentrus (Banerjee 1958a;<br />

Bhattacharya and Manna 1967a, 1973a; Halkka 1959a; Kirillova 1988a; Parida<br />

and Dalua 1981a; Rao 1956a; Tian and Yuan 1997a); Otinotus (Bhattacharya and<br />

Manna 1967a, 1973a; Halkka 1959a, 1962a; Kirillova 1988a; Menon 1958a;<br />

Parida and Dalua 1981a).<br />

Maarbarini: Pogon (Sharma et al. 1964a); Telingana (Sharma et al. 1964a).<br />

Oxyrhachini: Oxyrhachis (Abrar and Ahmad 1975a; Banerjee 1958a; Bhattacharya and<br />

Manna 1967a, 1973a; Biswas and Bhattacharya 1989a; Halkka 1959a, 1962a;<br />

Kirillova 1988a; Menon 1958a; Parida and Dalua 1981a; Rao 1956a; Sharma et<br />

al. 1964a; Tian and Yuan 1997a).<br />

Terentiini: Eufairmairia (Whitten 1965a; Kirillova 1988a); Sextius (Kirillova 1988a;<br />

Whitten 1965a).<br />

2n=23 Gargarini: Tricentrus (Tian and Yuan 1997a).<br />

459


Fig. 26.1. Ant attendance and maternal care in centrotines. The gain or loss of each<br />

trait was mapped on the tribal phylogeny tree using fast optimization in Winclada.<br />

Question marks (?) represent missing data.<br />

460


Fig. 26.2. Host plant families of centrotines. The gain (indicated below branches) or loss<br />

(indicated above branches) of each host plant family was mapped on the tribal phylogeny<br />

using fast optimization in Winclada. Numbers on the branches identify host plant families<br />

in Table 26.2. Question marks represent missing data.<br />

461


Fig. 26.3. Male chromosome numbers in centrotines. The gain (indicated below<br />

branches) or loss (indicated above branches) of each was mapped on the tribal<br />

phylogeny using fast optimization in Winclada. Question marks (?) represent<br />

missing data.<br />

462


CONCLUSIONS<br />

The treehopper subfamily Centrotinae is the only treehopper group found worldwide.<br />

Predominantly <strong>Old</strong> <strong>World</strong> in distribution, this subfamily accounts for roughly half of the<br />

membracid diversity at the tribal, generic, and species levels. Although centrotines are<br />

cosmopolitan in distribution, there is no centrotine tribe (or genus) found in both the <strong>Old</strong> and<br />

New <strong>World</strong>s.<br />

Despite their diversity, the Centrotinae have been poorly studied. Historically,<br />

workers have focused their work on centrotines within a particular geographic region (for<br />

example, Capener 1962a, 1968a; Evans 1966a; Ananthasubramanian 1996a; Day 1999a;<br />

Yuan and Chou 2002a) and few have justified classifications based on quantitative<br />

phylogenetic analyses. These disparities have impeded the development of a stable higher<br />

classification and taxonomic studies of centrotines at the generic and species levels. The<br />

objectives of this study were to establish the phylogenetic limits of the Centrotinae and its<br />

included tribes, to determine the evolutionary relationships among these tribes in order to<br />

provide a sound and comprehensive classification, to advance investigations of<br />

biogeographical patterns and life history traits, and to develop a tribal key to facilitate<br />

identification of the centrotine assemblage.<br />

An overall phylogenetic analysis of the 24 existing tribes plus 5 outgroups, using 116<br />

morphological characters, resulted in a single most parsimonious tree with 2 major clades<br />

(each with New and <strong>Old</strong> <strong>World</strong> components) plus the basal New <strong>World</strong> tribe Centrodontini.<br />

Numerous tribes, as defined in earlier classifications, were rendered polyphyletic or<br />

paraphyletic. Eight further phylogenetic analyses confirmed the monophyly of the larger<br />

463


tribes, and, along with two phenetic analyses, helped to place the remaining genera. The<br />

subfamily Centrotinae is a monophyletic group supported by the synapomorphy of the<br />

presence of abdominal inornate pits, each with a lateral seta. Characters important in<br />

elucidating tribal relationships include features of: the male and female genitalia, the fore-<br />

and hind wings, the scutellum, leg chaetotaxy; and abdominal characteristics using scanning<br />

electron microscopy.<br />

Based on the overall analysis, 11 tribal synonymies and 1 subfamily synonymy are<br />

proposed: Abelini, junior synonym of Boocerini; Acanthophyesaria, junior synonym of<br />

Centrotini; Ebhulini, junior synonym of Ebhuloidesini; Aleptocentrini, Antialcidini,<br />

Coccosterphini, Madlinini, and Tricentrini, all junior synonyms of Gargarini; Demangini,<br />

junior synonym of Leptocentrini; Bulbaucheniini and Funkhouserellini, junior synonyms of<br />

Terentiini; and Centrodontinae, junior synonym of Centrotinae. Furthermore, 6 new tribes<br />

are described: the Beaufortianini, Boccharini, Lobocentrini, and Maarbarini, all from the <strong>Old</strong><br />

<strong>World</strong>, and Monobelini, and Pieltainellini from the New <strong>World</strong>. The 216 included centrotine<br />

genera are placed into a total of 23 centrotine monophyletic tribes. Two genera from the<br />

phylogenetic analysis, Elaphiceps and Tyrannotus, are placed as Centrotinae, incertae sedis,<br />

although they are closely related to the Lobocentrini. Seven genera that were not examined<br />

are placed as Centrotinae, incertae sedis: Aspasiana, Centrobelus, Insitor, Insitoroides,<br />

Megalocentrus, Megaloschema, and Sinocentrus.<br />

Brachytalis, formerly in Nessorhinini, is placed as Membracidae, incertae sedis.<br />

Additionally, a lectotype of Butragulus flavipes (Uhler) is designated. The new combinations<br />

Hybanda bulbicornis (Funkhouser), referred from Funkhouserella, and Bulbauchenia bakeri<br />

(Funkhouser), B. rugosa (Funkhouser), B. globosa (Funkhouser), and B. kurosawai (Hayashi<br />

464


and Endo), all referred from the Emphusis Buckton, are proposed. Deitzius<br />

Ananthasubramanian is a junior objective synonym of Ananthasubramanium McKamey,<br />

both of which are replacement names for Paranotus Ananthasubramanian, preoccupied. A<br />

taxonomic key to the 23 centrotine tribes is included. The descriptions of the 23 tribes<br />

include diagnoses, descriptions, notes on ecology and distribution, and discussions of<br />

phylogeny and morphological characters.<br />

Numerous centrotine genera are poorly represented in collections with some known<br />

from only one sex or even a unique specimen. All but 9 of the 216 genera were here placed<br />

in tribes based on phylogenetic analyses of morphological features, or in cases where data<br />

were limited, based on overall morphological similarity.<br />

The broader impacts of this work extend beyond systematics to related areas of<br />

biological inquiry. The phylogenetically based classification presented here has greater<br />

predictive value than prior classifications that included numerous para-or polyphyletic tribes.<br />

Furthermore, the phylogenetic hypotheses outlined provide a sound foundation for exploring<br />

patterns in host plant associations, ant-attendance, maternal care, acoustic communication,<br />

and biogeography.<br />

Based on the phylogenetic analyses, centrotines colonized the <strong>Old</strong> <strong>World</strong> twice. One<br />

invasion included the ancestors of the tribe Gargarini while the other invasion included the<br />

ancestors of the remaining 16 <strong>Old</strong> <strong>World</strong> centrotine tribes. It seems possible that these<br />

dispersals from the New <strong>World</strong> to the <strong>Old</strong> occurred over the Bering Land Bridge, accounting<br />

for the Indomalayan and Palearctic distributions of the basal centrotine lineages. According<br />

to the fossil record and recent phylogenetic analyses of the Membracidae, treehoppers likely<br />

originated in the New <strong>World</strong> in the Tertiary, possibly near the time of the hypothesized<br />

465


extraterrestrial impact 65 mya. Other evidence for a Tertiary origin includes the absence of<br />

treehoppers in Madagascar and New Zealand, the historic connection of India with<br />

Madagascar and the high species richness of India, and the distantly related centrotine faunas<br />

of Africa, Australia, and South America. These observations do not favor an ancient<br />

vicariant event, for example the splitting of Gondwana, that isolated the <strong>Old</strong> and New <strong>World</strong><br />

treehopper faunas. The highly endemic Monobelini and Nessorhinini of the Caribbean<br />

occupy a basal position in the phylogenetic analysis. The hypothesized dispersal of their<br />

ancestors to the Caribbean over an island archipelago at the Cretaceous/Tertiary border also<br />

supports a treehopper origin near this time.<br />

Centrotines have been reported from 105 different host plant families, notably the<br />

Leguminosae, Solanaceae, Compositae, and Euphorbiaceae. Eleven of 23 centrotine tribes<br />

have genera that are ant-attended and the Centrocharesini + Ebhuloidesini + Oxyrhachini +<br />

Hypsaucheniini + Terentiini are the only centrotine group known to exhibit maternal care by<br />

egg guarding. Although male chromosome numbers of many centrotine tribes are unknown,<br />

many of the tribes reported have 2n=21. The reported range in males is 2n= 10-23.<br />

Armed with the revised classification presented here and the distributional data<br />

summarized by recent workers (McKamey 1998a, Day 1999a, Yuan and Chou 2002a), it is<br />

possible to identify hotspots of centrotine diversity or endemism--areas that merit special<br />

attention in efforts to preserve global biodiversity. The New <strong>World</strong> tribes Nessorhinini and<br />

Monobelini, for example, are endemic to the Caribbean. Likewise, Queensland, Australia, is<br />

a hotspot of diversity for the Terentiini. It is hoped that the improved identification tools<br />

provided here will encourage further collecting, stimulate systematic studies at the generic<br />

and species levels, and facilitate molecular research at all taxonomic levels.<br />

466


REFERENCES CITED<br />

Abrar, I., and I. Ahmad. 1975a. Comparative karyotypes of Oxyrhachis taranda (Fabricius) and O. serratus<br />

[serrata] Ahmad & Abrar 1974 (Membracoidea: Oxyrhachinae). Proc. Entomol. Soc. Karachi 4-5:<br />

32-39.<br />

Adenuga, A. O., and K. Adeboyeku. 1987a. Notes on selected crop plants. Insect Sci. & Its Applic. 8(2):<br />

239-243.<br />

Agassiz, J. L. R., W. E. Erichson, and E. F. Germar. 1846a. Hemiptera. (Addenda et corrigenda).<br />

Nomenclator Zoologicus 1846: 1-16.<br />

Ahmad, I. 1975a. A Revision of the Superfamily Membracoidea of Pakistan. [U.S. Dep. Agric.] First<br />

[Annual] Tech. Rep. FG-Pa-245 (PK-ARS 56) (University of Karachi). 47 pp. + map.<br />

Ahmad, I. 1976a. A Revision of the Superfamily Membracoidea of Pakistan. [U.S. Dep. Agric.] Second Ann.<br />

Tech. Rep. FG-Pa-245 (PK-ARS 56) (University of Karachi). 74 pp. + map.<br />

Ahmad, I. 1978a. A Revision of the Superfamily Membracoidea of Pakistan. [U.S. Dep. Agric.] Fourth Ann.<br />

Tech. Rep. FG-Pa-245 (PK-ARS 56) (University of Karachi). [i] + 69 pp. + map.<br />

Ahmad, I. 1988a. A cladistic analysis of Tricentrini (Homoptera: Auchenorrhyncha: Membracidae) with a note<br />

on their origin, distribution and food plants. pp. 473-484. In Vidano, C., and A. Arzone (eds.). 6th<br />

Auchenorrhyncha Meeting, Turin, Italy, September 7-11, 1987, Proceedings. Consiglio Nazionale<br />

delle Ricerche, Incremento Produttivita` Risorse Agricole (CNR-IPRA), Torino. 652 pp.<br />

Ahmad, I., and F. A. Mohammad. 1990a. Redescription of the species of Otinotus elongatus complex<br />

(Hemiptera: Membracidae: Centratinae [sic: Centrotinae]: Leptocentrini) with two new species from<br />

Sind and Punjab in Pakistan, a key to all the Otinotus species from Indo-Pakistan subcontinent and<br />

their cladistic analysis. Indian J. Zool. Spectrum 1(2: 30-41): 43-59.<br />

Ahmad, I., and F. A. Mohammad. 1998a. The Otinotus rufescens complex: redescription of O. rufescens and<br />

O. transversus with two new species from Pakistan and notes on their phylogenetic relationships<br />

(Hemiptera Membracidae). Boll. Soc. Entomol. Italiana 130(1): 27-40.<br />

Ahmad, I., and N. Yasmeen. 1972a. A revision of the genus Tricentrus Stal [Stål] from Pakistan.<br />

467


Ahmad, I., and N. Yasmeen. 1979b. New species and records of the Tricentrus projectus group (Homoptera:<br />

Membracidae: Tricentrini) from Pakistan, Azad Kashmir and Bangladesh, with phylogenetic<br />

considerations. Pacific Insects 20(2-3): 257-278.<br />

Ahmad, I., and N. Yasmeen. 1980a. The chromosomes of five species of the genus Tricentrus Stal [Stål]<br />

(Membracidae, Centrotinae, Tricentrini). Natur. Sci. 2(3): 69-74.<br />

Alma, A. 1999a. Indagini sulle popolazioni di Auchenorrinchi in zone umide del lago di Viverone (Piemonte,<br />

Italia) (Rhynchota Hemiptera). [Investigations on the populations of Auchenorrhyncha in the wet<br />

zones of the lake of Viverone (Piedmont, Italy) (Rhynchota Homoptera).] Boll. Soc. Entomol. Italiana<br />

131(3): 209-217.<br />

Amyot, C. J. B., and A. Serville. 1843a. Histoire naturelle des insectes Hémiptères. [Deuxième partie.<br />

Homoptères. Homoptera Latr. pp. 455-676]. Libraire Encyclopédique de Roret, Paris, France.<br />

i-lxxvi + 676 pp.<br />

Ananthasubramanian, K. S. 1980a. Descriptions of a new genus and some new species of Membracidae<br />

(Homoptera) in the collections of the Zoological Survey of India. Rec. Zool. Surv. India Misc. Publ.,<br />

Occas. Pap. 16: 1-[69].<br />

Ananthasubramanian, K. S. 1980b. Taxonomic studies on Indian Membracidae (Insecta: Homoptera).<br />

Entomon 5(2): 113-128.<br />

Ananthasubramanian, K. S. 1984a. Taxonomical and biological notes on Anchon ulniforme Buckton<br />

(Homoptera: Membracidae). Entomon 9(3): 225-229.<br />

Ananthasubramanian, K. S. 1987a. Newer trends in the biosystematics of Membracidae. Proc. Indian Acad.<br />

Sci., Animal Sci., 96(5): 517-525.<br />

Ananthasubramanian, K. S. 1996a. Fauna of India (Homoptera: Membracidae). In Ghosh, A. K. (ed.).<br />

Zoological Survey of India, Calcutta, India. xviii + 534 pp.<br />

Ananthasubramanian, K. S., and T. N. Ananthakrishnan. [1975a (dated 1970)]. Taxonomic, biological and<br />

ecological studies of some Indian membracids (Insecta: Homoptera). Part I. Rec. Zool. Surv. India<br />

68(1-2): 161-272.<br />

468


Ananthasubramanian, K. S., and T. N. Ananthakrishnan. [1975b (dated 1970)]. Taxonomic, biological and<br />

ecological studies of some Indian membracids. Part--II. Rec. Zool. Surv. India 68(1-2): 305-340.<br />

Ananthasubramanian, K. S., G. Murugan, and L. K. Ghosh. 1990a. Redescription of Hypsauchenia subfusca<br />

Buckton (Homoptera: Membracidae) with notes on its nymphal stages. Indian Zool. 14(1-2): 93-96.<br />

Ananthasubramanian, K. S., and C. Ramachandran. 1990a. Preliminary observations on the behaviour of<br />

Formicomus sp., a coleopteran ant-mimic, towards the nymphs of the membracid bug Leptocentrus<br />

taurus (F.) (Homoptera: Insecta). Indian Zool. 14(1-2): 131-133.<br />

Arnett, R. H., G. A. Samuelson, and G. M. Nishida. 1993a. The insect and spider collections of the world, 2nd.<br />

ed. Sandhill Crane, Gainesville, FL.<br />

Ayyanna, T., G. V. Subbaratnam, and E. Dharmaraju. 1978a. Pest complex on sunflower, Helianthus annus<br />

Lin. in Andhra Pradesh. Indian J. Entomol. 40(3): 353-356.<br />

Ayyar, T. V. R. 1937a. A cow bug (Anchon pilosum, Wlk.) injurious to leguminous crops in Malabar. Madras<br />

Agric. J. 25(2): 33-35.<br />

Azhar, I. 1992a. Role of black ants in cocoa pod borer natural control. MAPPS Newsletter 16(4): 36-37.<br />

Ballou, C. H. 1935a. Insect notes from Costa Rica in 1934. Insect Pest Surv. Bull. 15, Suppl. 4: 163-212.<br />

Ballou, C. H. 1936b. Insect notes from Costa Rica in 1935. Insect Pest Surv. Bull. 16: 437-497 [454-479].<br />

Banerjee, M. R. 1958a. A study of the chromosomes during meiosis in twenty-eight species of Hemiptera<br />

(Heteroptera, Homoptera). Proc. Zool. Soc. (Calcutta) 11(1): 9-37.<br />

Beckmann, J. 1772a. Fulgora, Cicada. Caroli a Linné systema naturae ex editions duodecima in epitomen<br />

redactum et praelectionibus academicis accomodatum 1: 1-240 [149-150].<br />

Behura, B. K. 1951a. Habits of the common membracid (`tree-hopper')-Otinotus oneratus Walk. J. Bombay<br />

Natur. Hist. Soc. 50: 299-304 [reprint paged 1-6].<br />

Behura, B. K. 1955a. Miscellaneous note. 21. Adaptive coloration and camouflage of the common<br />

membracid (`tree-hopper') Otinotus oneratus Walk. (Homoptera: Rhynchota). J. Bombay Natur. Hist.<br />

Soc. 53: 145-146 [reprint paged 1-2].<br />

Behura, B. K. 1962a. On the biology of Otinotus oneratus Walk. (Homoptera: Membracidae). J. Utkal Univ.<br />

(Sci.), Bhubaneswar 2(2): 53-57.<br />

469


Behura, B. K., and U. C. Panda. 1959a. Some unrecorded host plants of four common membracid species in<br />

Orissa. Indian J. Entomol. 20(3): 236.<br />

Behura, B. K., and G. C. Sengupta. 1951a. On a pest of jute new to Orissa. Sci. & Cult. 16: 572-573.<br />

Behura, B. K., and V. Sinha. 1951a. 23. A record of the common membracid, Otinotus oneratus Walk.<br />

(Homoptera: Rhynchota) from the City of Patna (Bihar). J. Bombay Natur. Hist. Soc. 50: 183-184<br />

[reprint paged 1].<br />

Bergevin, E. de. 1934b. Hémiptères in Mission du Hoggar. III (Février à Mai 1928). Etudes zoologiques sur<br />

le Sahara Central par L.-G. Seurat. Mem. Soc. Hist. Natur. Afrique Nord 4: 119-133; Figs. 1-5.<br />

Bhattacharya, A. K., and G. K. Manna. 1967a. A study of germinal chromosomes during meiosis in fifty<br />

species of Homoptera (Hemiptera). Proc. Indian Sci. Congr. 54(3): [?618-619 (as cited by<br />

Bhattacharya & Manna 1973a); reprint paged 418-[419].<br />

Bhattacharya, A. K., and G. K. Manna. 1973a. Morphology, behaviour and metrical studies of the germinal<br />

chromosomes of ten species of Membracidae (Homoptera). Cytologia (Tokyo) 38(4): 657-665.<br />

Biswas, A., and A. K. Bhattacharya. 1989a. Cytotaxonomical evaluation of the tree-hopper Oxyrachis [sic]<br />

taranda (Fabr.). (Membracidae: Homoptera). Environ. & Ecol. (Kalyani) 7(1): 132-135.<br />

Boulard, M. 1966a. Sur un Monocentrus [Membracidae Centrotinae] nouveau nuisible au poivrier cultive en<br />

Afrique centralé. Ann. Soc. Entomol. France (n.s.)2(3): 577-584.<br />

Boulard, M. 1968b. Description de cinq Membracides nouveaux du genre Hamma accompagnée de précisions<br />

sur H. rectum. Ann. Soc. Entomol. France (n.s.)4(4): 937-950.<br />

Boulard, M. 1968d. Description du mâle et de la larve de Kallicrates bellicornis Capener<br />

(Homoptera-Membracidae). Cahiers La Maboké 6(2): 127-131.<br />

Boulard, M. 1969a. Hémiptéroïdes nuisibles ou associés aux cacaoyers en République Centrafricaine.<br />

Deuxième partie. Homoptères Auchénorhynches. Café, Cacao, Thé (Paris) 13(4): 310-324.<br />

Boulard, M. 1969c. Homoptères jassidomorphes nouveaux liés aux colatiers et aux autres plantes simulantes<br />

cultivés en Afrique centrale. Café, Cacao, Thé (Paris) 13(2): 151-156.<br />

Boulard, M. 1971c. Monocentrus nouveaux d'Afrique centrale [Hom. Membracidae]. Ann. Soc. Entomol.<br />

France (n.s.)7(2): 287-324.<br />

470


Boulard, M. [1979i (dated 1978)]. Genres nouveaux et espèces nouvelles de Membracides africains<br />

(Homoptera Auchenorhyncha). Bull. Inst. Fondamental Afrique Noire (sér. A)40(1): 100-1<strong>19.</strong><br />

Boulard, M. [1979j (dated 1978)]. Oxyrhachiens nouveaux du Sahara (Homoptera Membracidae). Bull. Inst.<br />

Fondamental Afrique Noire (sér. A)40(2): 428-436.<br />

Boulard, M. 1983b. Un genre nouveau de Membracides associés aux plantes stimulantes en Afrique centrale.<br />

Café, Cacao, Thé (Paris) 27(3): 191-194.<br />

Boulard, M. 1995d [dated 1994-1995]. Membracidés nouveaux des îles Seychelles. Création d'une tribu<br />

nouvelle (Homoptera Membracoidea Membracidae). École Pratique Hautes Études), Travaux Lab.<br />

Biol. & Evol. Insectes 7-8: 179-187.<br />

Briggs, J. C. 1995a. Global Biogeography. Elsevier Science, Amsterdam, The Netherlands. xvii + 452 pp.<br />

Brummitt, R. K. 1992a. Vascular Plant Families and Genera. Kew: Royal Botanic Garderns, Kew, United<br />

Kingdom. 804 p.<br />

Buckley, R. C. 1982a. Ant-plant interactions: a world review. pp. 111-162. In Buckley, R. C. (ed.). Ant-Plant<br />

Interactions in Australia. Junk, The Hague. ix + 162 pp.<br />

Buckley, R. [C.]. 1983a. Interaction between ants and membracid bugs decreases growth and seed set of host<br />

plant bearing extrafloral nectaries. Oecologia (Berlin) 58(1): 132-136.<br />

Buckton, G. B. 1903a. A monograph of the Membracidae 1903: 181-296; PIs. 39-60.<br />

Capener, A. L. 1950a. A new genus and species of membracid from South Africa. J. Entomol. Soc. South<br />

Africa 13: 99-102; Figs. 1-9.<br />

Capener, A. L. 1951a. Sexually dimorphic Membracidae from Southern Africa. J. Entomol. Soc. South Africa<br />

14: 152-164; Figs. 1-50.<br />

Capener, A. L. 1952b. Notes on the classification of certain African Membracidae with the addition of three<br />

new genera and four new species (Hemipt.- Homopt.). J. Entomol. Soc. South Africa 15: 101-121;<br />

Figs. 1-39.<br />

Capener, A. L. 1953b. African Membracidae I. J. Entomol. Soc. South Africa 16: 112-131; Pls. I-IV.<br />

Capener, A. L. 1962a. The taxonomy of the African Membracidae. Part 1. The Oxyrhachinae. Repub. South<br />

Africa, Dep. Agric. Tech. Serv., Entomol. Mem. 6: [i], [1]-164.<br />

471


Capener, A. L. 1966a. Contribution à la fauna du Congo (Brazzaville). Mission A. Villiers et A.<br />

Descarpentries. XLI. Homoptères Membracidae. Bull. Inst. Français Afrique Noire (sér. A)28(4):<br />

1708-1709.<br />

Capener, A. L. 1968a. The taxonomy of the African Membracidae. Part 2. The Centrotinae. Repub. South<br />

Africa, Dep. Agric. Tech. Serv., Entomol. Mem. 17: [i-iii], [1-124].<br />

Capener, A. L. 1968b. The genus Gargara Amyot and Serville (Homoptera: Membracidae) in South Africa. J.<br />

Entomol. Soc. South Africa 31(1): 181-183.<br />

Capener, A. L. 1968c. Six new species of Membracidae (Hemiptera: Homoptera) from South Africa. J.<br />

Entomol. Soc. South Africa 31(1): 197-207.<br />

Capener, A. L. 1971a. New African Membracidae (Hemiptera: Homoptera). J. Entomol. Soc. South Africa<br />

34(1): 17-31.<br />

Capener, A. L. 1972a. New genera and species of African Membracidae (Hemiptera-Homoptera). Repub.<br />

South Africa, Dep. Agric. Tech. Serv., Entomol. Mem. 24. iii + 52 pp.<br />

Capener, A. L. 1972b. Some South African species of Anchon (Hemiptera-Homoptera: Membracidae). J.<br />

Entomol. Soc. South Africa 35(1): 97-110.<br />

Capener, A. L. 1972c. Further new African Membracidae (Hemiptera: Homoptera). J. Entomol. Soc. South<br />

Africa 35(2): 181-199.<br />

Carver, M., G. F. Gross, and T. E. Woodward. 1991a. Hemiptera (bugs, leafhoppers, cicadas, aphis, scale<br />

insects etc.). pp. 429-509. In CSIRO (ed.), The Insects of Australia. A Textbook for Students and<br />

Research Workers. 2 nd ed. Cornell University Press, Ithaca, New York. 1137 + xvii (vol. 1) + vi (vol.<br />

2) pp.<br />

Chatterjee, N. C. 1933c. Investigations on the spike-disease of sandal. Entomological investigations by the<br />

Forest Research Institute. Work done at Dehra Dun. Indian Inst. Sci. 1933 (7): 19-21.<br />

Chatterjee, N. C., and M. Bose. 1933a. Entomological investigations on the spike disease of sandal (13).<br />

Membracidae and Cercopidae (Homopter.). Indian For. Rec. 19(2): 1-14.<br />

Cheo, M. T. 1935b. A preliminary list of the insects and arachnids injurious to economic plants in China.<br />

Peking Natur. Hist. Bull. 10: 93-114.<br />

472


Chitra, S., and K. S. Ananthasubramanian. 1999a. Mutualistic association between the treehopper,<br />

Eucoccosterphus tuberculatus (De Motschulsky) and the ant, Camponotus compressus Fabricus. J.<br />

Entomol. Res. 23(2): 89-98.<br />

Cookson, L., and T. R. New. 1980a. Observations on the biology of Sextius virescens (Fairmaire) (Homoptera,<br />

Membracidae) on Acacia in Victoria. Australian Entomol. Mag. 7(1): 4-10.<br />

Cranston, P. S., and I. D. Naumann. 1991a. Biogeography. pp. 180-197. In CSIRO (ed.), The Insects of<br />

Australia. A Textbook for Students and Research Workers. 2 nd ed. Cornell University Press, Ithaca,<br />

New York. 1137 + xvii (vol. 1) + vi (vol. 2) pp.<br />

Creão-Duarte, A. J. 1992a. Sobre a provável parafilia de Centrotinae Amyot & Serville (Homoptera,<br />

Membracidae). [About the probable paraphyly of Centrotinae Amyot & Serville (Homoptera,<br />

Membracidae).] Rev. Brasileira Zool. 9(3/4): 197-201.<br />

Cryan, J. R. 1999a. Molecular Systematic Investigation of the Higher Relationships within the Family<br />

Membracidae (Insecta: Hemiptera). Unpublished Ph.D Dissertation, Entomology, North Carolina<br />

State University, Raleigh, North Carolina. x + 140 pp.<br />

Cryan, J. R., B. M. Wiegmann, L. L. Deitz, and C. H. Dietrich. 2000a. Phylogeny of the treehoppers (Insecta:<br />

Hemiptera: Membracidae): evidence from two nuclear genes. Mol. Phylogenet. & Evol. 17(2): 317-<br />

334.<br />

Dallwitz, M. J. 1980. A general system for coding taxonomic descriptions. Taxon 29, 41–6.<br />

Dallwitz, M. J., T. A. Paine, and E. J. Zurcher. 1993a. User’s guide to the DELTA System: a general system for<br />

processing taxonomic descriptions. 4th edition. http://biodiversity.uno.edu/delta/.<br />

Dallwitz, M. J., T. A. Paine, and E. J. Zurcher. 1999a. User’s guide to the DELTA Editor.<br />

http://biodiversity.uno.edu/delta/.<br />

Davli, C. S., R. B. Dumbre, and V. G. Khanvilkar. 1992a. Record of mango hopper species and their<br />

composition in the Konkan region. J. Maharashtra Agric. Univ. 17(3): 404-406.<br />

Day, M. F. 1999a. The genera of Australian Membracidae (Hemiptera: Auchenorrhyncha). Invertebr. Taxon.<br />

13(4): 629-747.<br />

473


Deitz, L. L. 1975a. Classification of the higher categories of the New <strong>World</strong> treehoppers (Homoptera:<br />

Membracidae). North Carolina Agric. Exp. Sta. Tech. Bull. 225. 177 pp.<br />

Deitz, L. L. 1985a. Placement of the genera Abelus Stål and Hemicentrus Melichar in the subfamily<br />

Centrotinae (Homoptera: Membracidae). Proc. Entomol. Soc. Washington 87(1): 161-170.<br />

Deitz, L. L., and C. H. Dietrich. 1993a. Superfamily Membracoidea (Homoptera: Auchenorrhyncha). I.<br />

Introduction and revised classification with new family-group taxa. System. Entomol. 18(4):287-296.<br />

Dejean, A., and T. Bourgoin. 1998a. Relationships between ants (Hymenoptera: Formicidae) and<br />

Euphyonarthex phyllostoma (Hemiptera: Tettigometridae). Sociobiology 32(1): 91-100.<br />

Dietrich, C. H. 1989a. Surface sculpturing of the abdominal integument of Membracidae and other<br />

Auchenorrhyncha (Homoptera). Proc. Entomol. Soc. Washington 91(2):143-152.<br />

Dietrich, C. H., and L. L. Deitz. 1993a. Superfamily Membracoidea (Homoptera: Auchenorrhyncha). II.<br />

Cladistic analysis and conclusions. Syst. Entomol. 18(4): 297-311.<br />

Dietrich, C. H., S. H. McKamey, and L. L. Deitz. 2001a. Morphology-based phylogeny of the treehopper<br />

family Membracidae (Hemiptera: Cicadomorpha: Membracoidea). Syst. Entomol. 26: 213-239.<br />

<strong>Distant</strong>, W. L. 1879e. Rhynchota. Scientific results of the second Yankand mission; based upon the<br />

collections and notes of the late Ferdinand Stoliczka, Ph.D. 1879: 1-15; 1 pl.<br />

<strong>Distant</strong>, W. L. <strong>1908</strong>g. Rhynchota-Homoptera. The fauna of British India including Ceylon and Burma.<br />

Published under the authority of the Secretary of State for India in Council. Edited by Lt. Col. C. T.<br />

Bingham 4: i-xiv, 1-501; Figs. 1-282. [1-419; Figs. 1-255].<br />

<strong>Distant</strong>, W. L. 1915b. Rhynchotal notes.-LVI. Ann. & Mag. Natur. Hist. (8)16: 322-328.<br />

<strong>Distant</strong>, W. L. 1916a. Rhynchota. Homoptera: Appendix. The fauna of British India, including Ceylon and<br />

Burma. Published under the authority of the Secretary of State for India in Council. Edited by A. E.<br />

Shipley, assisted by Guy A. K. Marshall 6: i-vii, 1-248; Figs. 1-177.<br />

<strong>Distant</strong>, W. L. 1916c. Rhynchotal notes.-LIX. Ann. & Mag. Natur. Hist. (8)17: 313- 330; 1 fig.<br />

<strong>Distant</strong>, W. L. 1916d. Rhynchotal notes.-LX. Ann. & Mag. Natur. Hist. (8)18: 19-44; 1 fig.<br />

Dlabola, J. 1979b. Insects of Saudia Arabia. Homoptera. Fauna Saudi Arabia 1: 115-139.<br />

Enslin, E. 1911a. Gargara genistae F. und Formica cinerea Mayr. Z. Wiss. Insektenbiol. 7: 19-21; Figs. 1-2.<br />

474


Enslin, E. 1911b. [Gargara genistae F. und Formica cinerea, Mayr.] Z. Wiss. Insektenbiol. 7: 56-58.<br />

Esaki, T., and T. Ishihara. 1950a. Hemiptera of Shansi, North China. Hemiptera I. Homoptera. Mushi 21:<br />

39-48; Pls. 5-7; Text figs. A-B.<br />

Evans, J. W. 1948b. Some observations on the classification of the Membracidae and on the ancestry,<br />

phylogeny and distribution of the Jassoidea. Trans. R. Entomol. Soc., London 99: 497-515; Figs. 1-10.<br />

Evans, J. W. 1966a. The leafhoppers and froghoppers of Australia and New Zealand (Homoptera:<br />

Cicadelloidea and Cercopoidea). Australian Mus. Mem. 12: 1-347.<br />

Eyles, A. C. 1970a. Hemiptera. [In symposium: "The Present Status of Taxonomic Entomology in New<br />

Zealand"]. New Zealand Entomol. 4(3): 34-37<br />

Eyles, A. C. 1971a. The family Membracidae (Homoptera) present in New Zealand. New Zealand Entomol.<br />

5(1): 47-48.<br />

Froggatt, W. W. 1902a. Insects of the wattle trees. Misc. Pub. Dep. Agric. New South Wales 581: 16-18.<br />

Funkhouser, W. D. 1919a. A new Tylocentrus from Arizona (Membracidae: Homoptera). Entomol. News 30:<br />

2l7-219; Pl. 10.<br />

Funkhouser, W. D. 1919d. New records and species of Philippine Membracidae. Philippine J. Sci. 15: 15-29;<br />

Pl. 1.<br />

Funkhouser, W. D. 1927b. Fauna sumatrensis. (Beitrag Nr. 30). Membracidae (Homoptera) Suppl. Entomol.<br />

15: 1-22; Figs. 1-29.<br />

Funkhouser, W. D. 1927f. Membracidae. General Catalogue of the Hemiptera. Fasc. 1: 1-581.<br />

Funkhouser, W. D. 1929b. New Archipelagic Membracidae. Philippine J. Sci. 40: 111-131; Pls. 1-2.<br />

Funkhouser, W. D. 1935b. New records and species of Membracidae in the Buitenzorg Museum Collection.<br />

Treubia 15: 119-130; Figs. 1-7.<br />

Funkhouser, W. D. 1951a. Homoptera Fam. Membracidae. Gen. Insectorum 208: 1-383; Pls.I-XIV; Text figs.<br />

1-9.<br />

Futuyuma, D. J. 1998a. Evolutionary Biology. 3 rd edit. Sinauer Associates, Sunderland, Massachusetts. xviii<br />

+ 763 + [64] pp.<br />

475


Gersani, M., and A. A. Degen. 1988a. Daily energy intake and expenditure of the weaver ant Polyrhachis<br />

simplex (Hymenoptera: Formicidae) collecting honeydew from the cicada Oxyrrhachis [sic] versicolor<br />

(Homoptera: Membracidae). J. Arid Environ. 15(1): 75-80.<br />

Goding, F. W. 1892a. A synopsis of the subfamilies and genera of the Membracidae of North America. Trans.<br />

Amer. Entomol. Soc. 19: 253-260.<br />

Goding, F. W. 1892c. Studies in North American Membracidae, II. Entomol. News 3: 200-201.<br />

Goding, F. W. 1893d. Food plants of some N. A. Membracidae. Insect Life 5: 92-93.<br />

Goding, F. W. 1895a. Studies in N. A. Membracidae-III. Canad. Entomol. 27: 274-277.<br />

Goding, F. W. 1903a. A monograph of the Australian Membracidae. Proc. Linn. Soc. New South Wales 28:<br />

2-41; Pl. 1.<br />

Goding, F. W. 1926e. Classification of the Membracidae of America. J. New York Entomol. Soc. 34:<br />

295-317.<br />

Goding, F. W. 1928a The Membracidae of South America and the Antilles, II. Subfamily Centrotinae. J. New<br />

York Entomol. Soc. 35: 391-408; Pls. 19-20.<br />

Goding, F. W. 1930a. New Membracidae, X. J. New York Entomol. Soc. 38: 89-92.<br />

Goding, F. W. 1930b. Membracidae in the American Museum of Natural History. Amer. Mus. Novitates 421:<br />

1-27; Fig. 1.<br />

Goding, F. W. 1931a. Classification of the <strong>Old</strong> <strong>World</strong> Membracidae. J. New York Entomol. Soc. 39: 299-313.<br />

Goding, F. W. 1934a. The <strong>Old</strong> <strong>World</strong> Membracidae. J. New York Entomol. Soc. 42: 451-480.<br />

Goidanich, A. 1946a. La scoperta della Ceresa bubalus in Italia. Italia Agric. 83(12): 717-719; 3 figs.<br />

Green, E. E. 1900a. Note on the attractive properties of certain larval Hemiptera. Entomol. Mon. Mag. 36:<br />

185; 1 fig.<br />

Gunji, Y., and S. Nagai. 1994a. A new subspecies of Giganthorhabdus [sic] enderleini Schmidt from the<br />

Malay Peninsula (Homoptera: Membracidae). Trans. Shikoku Entomol. Soc. 20(3-4): 125-127.<br />

Günthart, H. 1987b. Oekologische Untersuchungen im Unterengadin. D8. Zikaden (Auchenorrhyncha).<br />

Ergeb. Wiss. Unters. Schweizerischen Nationalpark (N.F.)12(12): D203-D299.<br />

476


Halkka, O. 1959a. Chromosome studies on the Hemiptera Homoptera Auchenorrhyncha. Ann. Acad. Sci.<br />

Fennicae (ser. A)(4. Biol.) 43: 1-[73].<br />

Halkka, O. 1962a. The chromosomes of the Membracidae. Hereditas 48: 215-2<strong>19.</strong><br />

Halkka, O. 1964a. Recombination in six homopterous families. Evolution 18(1): 81-88.<br />

Hall, R. 1998a. The plate tectonics of Cenozoic SE Asia and the distribution of land and sea. pp. 99-132. In<br />

Hall, R., and J. D. Holloway (eds.) Biogeography and Geological Evolution of SE Asia. Backhuys<br />

Publishers, Leiden, The Netherlands. 417 pp.<br />

Hargreaves, E. 1937a. Some insects and their food-plants in Sierra Leone. Bull. Entomol. Res. 28: 505-520.<br />

Haupt, H. 1929c. Neueinteilung der Homoptera-Cicadina nach phylogenetisch zu wertenden Merkmalen.<br />

Zool. Jahrb. Abt. System., Ökol. & Biol. Tiere 58: 173-286; Figs. 1-86.<br />

Hayashi, M., and T. Endo. 1985b. Some biological notes on Japanese treehoppers (Homoptera, Membracidae).<br />

Rostria (Trans. Hemipterol. Soc. Japan) 37: 533-542.<br />

Hedges, S. B. 2001a. Biogeography of the West Indies: An overview. pp. 15-33. In Woods, C. A., and F. E.<br />

Sergile (eds.). Biogeography of the West Indies. CRC Press, Boca Raton, Florida. 582 pp.<br />

Helmore, D. W. 1982a. Drawings of New Zealand insects. Bull. Entomol. Soc. New Zealand 8: 1-52.<br />

Hinton, H. E. 1977a. Subsocial behavior and biology of some Mexican membracid bugs. Ecol. Entomol. 2(1):<br />

61-79.<br />

Hoffmann, W. E. 1942a. Bugs or Homoptera. The cicadas, plant hoppers, plant lice, scale insects, and others.<br />

Spec. Publ. Lingnan Natur. Hist. Surv. & Mus. 9: 1-20; Pls. 1-30.<br />

Hölldobler, B., and E. O. Wilson. 1990a. The Ants. Belknap Press of Harvard University Press, Cambridge,<br />

Massachusetts. [xiv] + 732 pp.<br />

Huntley, B. 1993a. Species-richness in north-temperate zone forests. J. Biogeog. 20: 163-180.<br />

International Commission on Zoological Nomenclature (ICZN). 1999a. International Code of Zoological<br />

Nomenclature. 4th edtion. International Trust for Zoological Nomenclature, c/o The Natural History<br />

Museum, London. xxix + 306 pp.<br />

Iturralde-Vinent, M. A., and R. D. E. MacPhee. 1999a. Paleogeography of the Caribbean region: Implications<br />

for Cenozoic biogeography. Bull. Amer. Mus. Nat. Hist. 238: 1-95.<br />

477


Jacobs, D. H. 1985a. Order Hemiptera (bugs, leafhoppers, cicadas, aphids, scale-insects, etc.). Introduction.<br />

pp. 112-117. In Scholtz, C. H., and E. Holm (eds.). Insects of Southern Africa. Butterworths, Durban,<br />

South Africa. [viii] + 502 pp.<br />

Jankoviƒ, L. 1975a. Fauna Homoptera: Auchenorrhyncha SR Srbije. Zbornik Radova o Entomofauni SR<br />

Srbije, I: Srpska Akad. Nauka i Umetn. -- Odeljenje Prir.-Matem. Nauka (Beograd). pp. 85-217.<br />

Kato, M. 1935e. Description of a new Membracidae from Chosen. Entomol. <strong>World</strong> 3: 476-478; 1 fig.<br />

[Reprint paged 2-4; 1 fig.].<br />

Kenne, M., and A. Dejean. 1997a. Caste polyethism and honeydew collection activity in foraging workers of<br />

Myrmicaria opaciventris (Hymenoptera: Formicidae: Myrmicinae). Sociobiology 30(3): 247-255.<br />

Kirillova, V. I. 1987a. Chromosome numbers of the leafhoppers (Homoptera, Auchenorrhyncha) of the world<br />

fauna. II. Karyotypic peculiarities of leafhoppers of the superfamily Cicadelloidea. Entomol. Obozr.<br />

66(2): 321-337.<br />

Kirillova, V. I. 1988a. Chromosome numbers of world Homoptera Auchenorrhyncha II. Cicadelloidea.<br />

Entomol. Rev. 67(1): 80-108.<br />

Kirkaldy, G. W. 1906c. Leaf-hoppers and their natural enemies. (Pt. IX Leaf-hoppers. Hemiptera). Bull.<br />

Hawaii. Sugar Planters' Assoc., Div. Entomol. 1 (9): 271-479; Pls. 21-32.<br />

Kitching, R. L., and B. K. Filshie. 1974a. The morphology and mode of action of the anal apparatus of<br />

membracid nymphs with special reference to Sextius virescens (Fairmaire) (Homoptera). J. Entomol.<br />

(ser. A)49(1): 81-88.<br />

Kitching, R. L. 1987a. Aspects of the natural history of the lycaenid butterfly Allotinus major in Sulawesi. J.<br />

Natur. Hist. 21(3): 535-544.<br />

Koningsberger, J. C. 1915a. Java zoölogisch en biologisch 1915: 1-663 [104-106].<br />

Kosztarab, M. 1982a. Homoptera. pp. 447-470. In S. P. Parker (ed.). Synopsis and Classification of Living<br />

Organisms. McGraw Hill, New York. Vol. 2. 1232 pp.<br />

Krauss, N. L. H. 1965a. Investigations on biological control of melastoma (Melastoma malabathricum L.).<br />

Proc. Hawaiian Entomol. Soc. 19(1): 97-101.<br />

478


Labandeira, C. C., K. R. Johnson, and P. Wilf. 2002a. Impact of the terminal Cretaceous event on plant-insect<br />

interactions. Proc. Nat. Acad. Sci. 99(4): 2061-2066.<br />

Labandeira, C. C., and J. J. Seposki, Jr. 1993a. Insect diversity in the fossil record. Science 261: 310-315.<br />

Lallemand, V. 1925a. Hemiptera Homoptera in Zoological results of the Swedish Expedition to Central Africa<br />

1921. Insecta. Arkiv Zool. 18: 1-8.<br />

Lamborn, W. A. 1914a. On the relationship between certain West African insects, especially ants, Lycaenidae<br />

and Homoptera. With an appendix containing descriptions of new species. Tran. R. Entomol. Soc.<br />

London 1913: 436-498; Pl. XXVI; 1 text fig.<br />

Lin, C. P. 2003a. Phylogeny and Evolution of Subsocial Behavior and Life History Traits in the Neotropical<br />

Treehopper Subfamily Membracinae (Hemiptera: Membracidae) Molecular Phylogeny of the<br />

Enchenopa binotata Species Complex (Homoptera: Membracidae). Unpublished Ph.D Dissertation,<br />

Cornell University, Ithaca, New York. xiii + 330 pp.<br />

Lodos, N., and A. Kalkandelen. 1981a. Preliminary list of Auchenorrhyncha with notes on distribution and<br />

importance of species in Turkey. VI. Families Cercopidae and Membracidae. Turkiye Bitki Koruma<br />

Dergisi 5(3): 133-149.<br />

Loye, J. E. 1992a. Ecological diversity and host plant relationships of treehoppers in a lowland tropical<br />

rainforest (Homoptera: Membracidae and Nicomiidae). pp. 280-289, 659-660. In, Quintero, D., and<br />

A. Aiello (eds.), Insects of Panama and Mesoamerica. Selected Studies. Oxford University Press,<br />

Oxford. xxii + 692 pp.<br />

Maes, J-M. 1998a. Superfamilia Membracoidea. pp. 146-157. In, Catalogo de los Insectos y Artropodos<br />

Terrestres de Nicaragua. [two volumes, publisher not indicated, Nicaragua]. [xlvi] + 1898 pp.<br />

Matsumura, S. 1912a Die Cicadinen Japans II. Annot. Zool. Japonenses, Tokyo, 8: 15-51.<br />

McKamey, S. H. 1997a. Nomenclatural changes in the Membracidae and Aetalionidae (Hemiptera:<br />

Membracoidea): species-group names and Sphongophorus Fairmaire, revised status. Steenstrupia 22:<br />

1-11.<br />

479


McKamey, S. H. 1998a. Taxonomic Catalogue of the Membracoidea (exclusive of leafhoppers): Second<br />

Supplement to Fascicle 1, Membracidae, of the General Catalogue of the Hemiptera. Mem. American<br />

Entomol. Institute 60: 1-377.<br />

McKamey, S. H., and L. L. Deitz. 1996a. Generic revision of the New <strong>World</strong> tribe Hoplophorionini<br />

(Hemiptera: Membracidae: Membracinae). Syst. Entomol. 21(4): 295-342.<br />

McLoughlin, S. 2001a. The breakup history of Gondwana and its impact on pre-Cenozoic floristic<br />

provincialism. Aust. J. Bot. 49: 271-300.<br />

Melichar, L. 1914b. Homopteren von Java, gesammelt von Herrn. Edw. Jacobson. Leyden Mus. Notes 36:<br />

91-147; Pl. 3.<br />

Menon, P. S. 1958a. Studies on the chromosome behaviour in three species of Indian Homoptera. Caryologia<br />

(Florence) 11(1): 57-67.<br />

Menon, P. S. 1959a. On the chromosome behaviour in a membracid, Leptocentrus substitutus Walker.<br />

Genetica 29(5-6): 312-318.<br />

Metcalf, Z. P., and V. Wade. 1965a. General Catalogue of the Homoptera. A Supplement to Fascicle I -<br />

Membracidae of the General Catalogue of Hemiptera. Membracoidea. In Two Sections. North<br />

Carolina State Univ., Raleigh. 1552 pp.<br />

Mohammad, F. A., and I. Ahmad. 1991a. Redescription of Otinotus oneratus (Walker) and Otinotus<br />

pallescens <strong>Distant</strong> (Hemiptera: Membracidae: Centrotinae: Leptocentrini) pests of sunflower and other<br />

crops from Indo-Pakistan subcontinent and their relationships. Proc. Pakistan Cong. Zool. 11: 315-<br />

323.<br />

Mohammad, F. A., and I. Ahmad. 1995a. A new species of Leucaspis group of the tree hopper's genus<br />

Leptocentrus Stål (Homoptera: Auchenorrhyncha: Membracidae: Centrotine) from Punjab, Pakistan<br />

and its cladistic relationship. Biol. Res. J. 2: 23-26.<br />

Morley, C. 1905b. Homoptera. The Hemiptera of Suffolk 1905: i-x, 1-34 (23-31).<br />

Nast, J. 1972a. Palaearctic Auchenorrhyncha (Homoptera). An Annotated Check List. Polish Sci. Publ.,<br />

Warsaw. 550 pp.<br />

Nixon, K. C. 1999a. Winclada (BETA) ver. 0.9.9. K. C. Nixon, Ithaca, New York.<br />

480


Okáli, I., and V. Janský. 1998a. Treehoppers (Auchenorrhyncha, Membracidae) of Slovakia. Zborník<br />

Slovenského Národného Múzea Prírodne Vedy 44: 50-60.<br />

Olmstead, K. L., and T. K. Wood. 1990a. Altitudinal patterns in species richness of Neotropical treehoppers<br />

(Homoptera: Membracidae): the role of ants. Proc. Entomol. Soc. Washington 92(3): 552-560.<br />

Panda, U. C. 1968a. Protective adaptation of some membracids of Orissa. Prakruti-Utkal Univ. J. Sci. 5(2):<br />

17-22.<br />

Panda, U. C., and B. K. Behura. 1956a. Further observations on the biology of the common 'tree-hopper'<br />

Otinotus oneratus Walk. (Homoptera, Membracidae) in Orissa. J. Bombay Natur. Hist. Soc. 54(1):<br />

160-163.<br />

Panda, U. C., and B. K. Behura. 1957a. Notes on the three common tree-hoppers (Membracidae: Hemiptera) in<br />

Orissa. J. Bombay Natur. Hist. Soc. 54: 958-960.<br />

Parida, B. B., and B. K. Dalua. 1981a. Preliminary studies on the chromosome constitution in 72 species of<br />

auchenorrhynchan Homoptera from India. CIS (Chromosome Inform. Serv., Soc. Chromosome Res.,<br />

Tokyo) 31: 13-16.<br />

Peláez, D. 1941b. Estudios sobre membrácidos. III. El genero Platycentrus Stål (Hem. Homopt.). Rev. Soc.<br />

Mex. Hist. Natur. 2: 51-67; Pl. II.<br />

Peláez, D. 1970a. Estudios sobre membracidos, X. Pieltainellus boneti nov. gen. et sp. de la subfamilia<br />

Centrotinae (Hem., Hom.). An. Esc. Nacl. Cienc. Biol. (Mexico City) 17(1-4): 81-89.<br />

Plummer, C. C. 1935a. Descriptions of new Membracidae from Mexico. J. New York Entomol. Soc. 43:<br />

373-385; Pls. 27-28.<br />

Poinar, G. O., Jr. 1992a. Life in Amber. Stanford University Press, Stanford, California. xiii + 350 pp.<br />

Rafinesque, C. S. 1815a. Analyse de la nature ou tableau de l'univers et des corps organisés 1815: 1-224.<br />

Ramos, J. A. 1957a. A review of the auchenorhynchous Homoptera of Puerto Rico. J. Agric. Univ. Puerto<br />

Rico 41(1): 38-117.<br />

Ramos, J. A. 1979a. Membracidae de la República Dominicana (Homoptera: Auchenorhyncha). Univ. Puerto<br />

Rico (Mayagüez), Esta. Exp. Agric. Bol. 260. 71 pp.<br />

481


Ramos, J. A. 1988a. Zoogeography of the auchenorrhynchous Homoptera of the Greater Antilles (Hemiptera).<br />

pp. 61-70. In Liebherr, J. K. (ed.). Zoogeography of Caribbean Insects. Cornell University Press,<br />

Ithaca. xii + 285 pp.<br />

Rao, S. R. V. 1956a. Studies on the spermatogenesis of some Indian Homoptera. Part III: A study of<br />

chromosomes in two members of the family Membracidae. Caryologia (Florence) 8(2): 309-315.<br />

Rao, M. S., C. A. Viraktamath, and V. Muniyappa. 1988a. Incidence of leafhoppers, treehoppers and<br />

froghopper (Homoptera) in sandal forests of Karnataka in relation to sandal spike disease. Ann.<br />

Entomol. 6(2): 25-34.<br />

Raut, S. K., and S. S. Bhattacharya. 1999a. Pests and diseases of betelvine (Piper beetle) and their natural<br />

enemies in India. Exp. & Appl. Acarol. 23(4): 319-325.<br />

Ray-Chaudhuri, S. P., S. Kakati, S. Pathak, and T. Sharma. 1967a. Studies on the chromosomes of four species<br />

of Indian Homoptera [Auchenorrhyncha]. Proc. Zool. Soc., Calcutta 20(1): 25-31.<br />

Reid, E. M. 1935a. British floras antecedent to the Great Ice Age. Discussion on the origin and relationship of<br />

the British flora. Proceedings of the Royal Society of London, B. 118: 97.<br />

Richter, L. 1942c. Catalogo de los Membracidoos de Columbia. Rev. Acad. Colombia 4: 405-409; Pls. I-III.<br />

Sanderson, M. J., and M. J. Donoghue. 1989a. Patterns of variation in levels of homoplasy. Evolution 43:<br />

1781-1795.<br />

Schlee, D. 1990a. Das Bernstein-Kabinett. Begleitheft zur Bernsteinausstellung im Museum am Löwentor,<br />

Stuttgart. Stuttgarter Beitr. Naturk. (Serie C) 28: 1-100.<br />

Schmidt, E. 1922i. Beiträge zur Kenntnis aussereuropäischer Zikaden (Rhynchota, Homoptera). XXII.<br />

Kanada grandis, eine neue Membracide von Ostindien. Arch. Naturgesch. 88: 265-266.<br />

Schmidt, E. 1926b. Neue Membraciden der Unterfamilie Centrotinae des indo-malayischen Faunengebietes.<br />

(Hemiptera-Homoptera). Wien. Entomol. Zeitung 43: 181-189.<br />

Schmidt, E. 1926d. Neue Membraciden. Soc. Entomol. 41: 21-22.<br />

Schmidt, E. 1928b. Die Zikaden des Buitenzorger Museums. (Hemipt.-Homopt.). I. Treubia 10: 107-144.<br />

Sharma, T., S. K. Pandha, S. Kakati, B. J. Moitra, and J. K. Patnaik. 1964a. On the study of chromosomes of<br />

eight Indian species of Homoptera (Auchenorrhyncha). Proc. 50th Indian Sci. Congr. Pt. 3: 480.<br />

482


Singh, M. M. 1986a. Notes on the behaviour of Oxyrhachis tarandus [taranda] Fabr. (Homoptera:<br />

Membracidae). pp. 303-308. In Pathak, S. C., and Y. N. Sahai (eds.). Recent Advances in Insect<br />

Physiology, Morphology and Ecology. Today & Tomorrow's Printers & Publishers, New Dehi, India.<br />

xlii + 324 pp. + 2 plates.<br />

Smithers, C. N. 1985a. New records of Pogonella bispinus (Stål) (Homoptera: Membracidae) from eastern<br />

Australia and Barrow Island, Western Australia. Australian Entomol. Mag. 12(2): 35-36.<br />

Stål, C. 1866a. Hemiptera Homoptera Latr. Hemiptera Africana 4: 1-276; Pl. 1.<br />

Stegmann, U. E., and K. E. Linsenmair. 2002a. Subsocial and aggregating behaviour in Southeast Asian<br />

treehoppers (Homoptera: Membracidae: Centrotinae). Eur. J. Entomol. 99(1): 29-34.<br />

Strümpel, H. 1972a. Beitrag zur Phylogenie der Membracidae Rafinesque. Zool. Jahrb., Abt. Syst., Ökol. &<br />

Geogr. Tiere 99(3): 313-407.<br />

Swezey, O. H. 1942a. Membracidae of Guam. Bull. Bernice P. Bishop Mus. 172: <strong>19.</strong><br />

Swofford, D. L. 2002a. PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Version 4.<br />

Sinauer Associates, Sunderland, Massachusetts.<br />

Tallamy, D. W., and C. [W.] Schaefer. 1997a. Maternal care in the Hemiptera: ancestry, alternatives, and<br />

current adaptive value. pp. 94-115. In Choe, J. C., and B. J. Crespi (eds.). The Evolution of Social<br />

Behavior in Insects and Arachnids. Cambridge Univ. Press. xiii + 541 pp.<br />

Thakur, S. S. 1973a. Observations of the mutualism between Acacia arabica Willd., Camponotus ligniperda<br />

Latr., and Oxyrhachis tarandus [taranda] Fabr. Labdev J. Sci. & Tech. 11-B(3-4): 76-77.<br />

Thirumalai, G. 1986a. Further studies on the membracids from Silent Valley, Kerala (Insecta: Homoptera).<br />

Rec. Zool. Surv. India 84(1-4): 97-105.<br />

Thirumalai, G., and K. S. Ananthasubramanian. 1981a. Taxonomic studies on the membracids collected from<br />

Silent Valley, Kerala (Insecta: Homoptera). Bull. Zool. Surv. India 4(1): 27-35.<br />

Thirumalai, G., and K. S. Ananthasubramanian. 1985a. Taxonomic studies on the Membracidae of southern<br />

India (Homoptera: Insecta)--I. Entomon 10(3): 223-233.<br />

Tian, R., and F. Yuan. 1997a. Chromosomes in twenty-five species of Chinese membracids (Homoptera:<br />

Membracidae). Entomol. Sinica 4(2): 150-158.<br />

483


Tillyard, R. J. 1926d. Suborder Homoptera (Cicadas, plant-hopppers, plant-lice, scale insects). The insects of<br />

Australia and New Zealand. 1926: i-xv, 1-560; Pls. 1-44; Text figs. A1-ZB4 [158-170; Pls. 11-12;<br />

Text figs. Q19-Q35].<br />

Uhler, P. R. 1896a. Summary of the Hemiptera of Japan presented to the United States National Museum by<br />

Professor Mitzukuri. Proc. U. S. Natl. Mus. 19: 255-297 [276-297].<br />

Ushijima, K., and S. Nagai. 1979a. Some notes on the life history of Gigantorhabdus enderleini Schmidt in<br />

Borneo (Hemiptera: Membracidae). Trans. Shikoku Entomol. Soc. 14(3-4): 191-194.<br />

Vilbaste, J. 1968a. Über die Zikadenfauna des Primorje Gebietes. Valgus, Tallin. (Acad. Sci. Estonian SSR,<br />

Inst. Zool. Bot.) [180 pp.]<br />

Ward, P. S. 2001a. Taxonomy, phylogeny and biogeography of the ant genus Tetraponera (Hymenoptera:<br />

Formicidae) in the Oriental and Australian regions. Invert. Tax. 15: 589-665.<br />

Weiss, H. B., and E. L. Dickerson. 1921a. Gargara genistae Fabr., a European Membracid in New Jersey<br />

(Homop.). Entomol. News 32: 108-112; Figs. 1-3.<br />

Whitten, M. J. 1965a. Chromosome numbers in some Australian leafhoppers (Homoptera Auchenorrhyncha).<br />

Proc. Linnean Soc. New South Wales 90(1): 78-85.<br />

Wise, K. A. J. 1977a. A synonymic checklist of the Hexapoda of the New Zealand sub-region. The smaller<br />

orders. Auckland Inst. & Mus. Bull. 11. iii + 176 pp.<br />

Wolcott, G. N. 1941a. A supplement to "Insectae Borinquenses." J. Agric. Univ. Puerto Rico 25: 33-158.<br />

Wood, T. K. 1984a. Life history patterns of tropical membracids (Homoptera: Membracidae). Sociobiology<br />

8(3): 299-344<br />

Wood, T. K. 1993a. Diversity in the New <strong>World</strong> Membracidae. Ann. Rev. Entomol. 38: 409-435.<br />

Yousuf, M., S. I. Ahmed, and M. Gaur. 1997a. Brachygrammatella aligarhensis, a potential egg parasitoid of<br />

Oxyrachis tarandus (Fabricius). Bull. Pure & Appl. Sci. A (Zool.) 16(1-2): 53-58.<br />

Yuan, F., and I. Chou. 1988a. Advances in the research of systematics of Membracoidea from China<br />

(Homoptera: Auchenorrhyncha). pp. 71-78. In, Vidano, C., and A. Arzone (eds.), 6th<br />

Auchenorrhyncha Meeting, Turin, Italy, September 7-11, 1987, Proceedings. Consiglio Nazionale<br />

delle Ricerche, Incremento Produttivita Risorse Agricole (CNR-IPRA), Torino. 652 pp.<br />

484


Yuan, F., and I. Chou. 2002a. Homoptera Membracoidea Aetalionidae Membracidae. Fauna Sinica, Insecta,<br />

28: [i-v], [i]-xix, [1]-590 pp., plates I-IV.<br />

Yuan, F., and Z. Cui. 1987a. Homoptera: Membracidae. pp. 133-147. In, Shimei, Z. (ed.), Agricultural<br />

Insects, Spiders, Plant Diseases and Weeds of Xizang. Vol. 1. Xizang People Publishing House,<br />

China.<br />

Yuan, F., and Z. Cui. 1988a. Homoptera: Membracidae. pp. 141-148. In, Huang, F. - S. (chief ed.), Insects of<br />

Mt. Namjagbarwa Region of Xizang. The Mountaineering and Scientific Expedition, Academia<br />

Sinica. Science Press, Beijing. [6] + xii + 621 pp.<br />

Zimmerman, E. C. 1948a. Homoptera: Auchenorhyncha. Insects of Hawaii. A manual of the insects of the<br />

Hawaiian Islands, including an enumeration of the species and notes on their origin, distribution, hosts,<br />

parasites, etc. 4: i-vii, 1-268; Figs. 1-92.<br />

485

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!