28.07.2013 Views

university of kwazulu-natal faculty of science and agriculture school ...

university of kwazulu-natal faculty of science and agriculture school ...

university of kwazulu-natal faculty of science and agriculture school ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

UNIVERSITY OF KWAZULU-NATAL<br />

FACULTY OF SCIENCE AND AGRICULTURE<br />

SCHOOL OF CHEMISTRY<br />

THE ISOLATION, STRUCTURE ELUCIDATION AND<br />

BIOLOGICAL TESTING OF COMPOUNDS FROM<br />

PLECTRANTHUS HADIENSIS<br />

BY<br />

SHIKSHA DUKHEA<br />

2010<br />

SUPERVISOR: DR. N.A. KOORBANALLY<br />

CO-SUPERVISOR: DR. B. MOODLEY


THE ISOLATION, STRUCTURE ELUCIDATION AND<br />

BIOLOGICAL TESTING OF COMPOUNDS FROM<br />

PLECTRANTHUS HADIENSIS<br />

BY<br />

SHIKSHA DUKHEA<br />

Submitted in partial fulfilment <strong>of</strong> the requirements for the degree<br />

<strong>of</strong> Master <strong>of</strong> Science in the School <strong>of</strong> Chemistry, Faculty <strong>of</strong> Science<br />

<strong>and</strong> Agriculture, University <strong>of</strong> KwaZulu-Natal.<br />

Supervisor: Dr N. A. Koorbanally<br />

Co-Supervisor: Dr. B. Moodley<br />

ii


Preface<br />

The experimental work described in this dissertation was carried out from March 2007 to<br />

January 2009 in the School <strong>of</strong> Chemistry, Howard College <strong>and</strong> Westville campuses, Durban,<br />

under the supervision <strong>of</strong> Dr. N.A. Koorbanally <strong>and</strong> Dr. B. Moodley.<br />

This study represents original work by the author <strong>and</strong> has not been submitted in any other form<br />

to another <strong>university</strong>. Where use was made <strong>of</strong> work <strong>of</strong> others it has been duly acknowledged in<br />

the text.<br />

I hereby certify that the above statement is correct<br />

SIGNED: _______________________<br />

Shiksha Dukhea<br />

B-Tech (DIT)<br />

SIGNED: _______________________<br />

Dr. N.A. Koorbanally<br />

Ph.D (Natal)<br />

SIGNED: _______________________<br />

Dr. B. Moodley<br />

Ph.D (UKZN)<br />

iii


I, SHIKSHA DUKHEA, declare that<br />

Declaration<br />

1. The research reported in this thesis, except where otherwise indicated, is my original<br />

research.<br />

2. This thesis has not been submitted for any degree or examination at any other<br />

<strong>university</strong>.<br />

3. This thesis does not contain other persons’ data, pictures, graphs or other information,<br />

unless specifically acknowledged as being sourced from other persons.<br />

4. This thesis does not contain other persons’ writing, unless specifically acknowledged as<br />

being sourced from other researchers. Where other written sources have been quoted,<br />

then:<br />

a) Their words have been re-written but the general information attributed to them<br />

has been referenced<br />

b) Where their exact words have been used, then their writing has been placed in<br />

italics <strong>and</strong> inside quotation marks, <strong>and</strong> referenced.<br />

5. This thesis does not contain text, graphics or tables copied <strong>and</strong> pasted from the Internet,<br />

unless specifically acknowledged, <strong>and</strong> the source being detailed in the thesis <strong>and</strong> in the<br />

References section.<br />

Signed:……………………………………………………..<br />

iv


Acknowledgements<br />

First <strong>and</strong> foremost I would like to thank Mother Saraswathi for her guidance <strong>and</strong> for granting<br />

me with wisdom, patience <strong>and</strong> faith.<br />

Thank you to my supervisor, Dr. N.A. Koorbanally <strong>and</strong> co-supervisor, Dr. B. Moodey, for<br />

guidance, clarity <strong>and</strong> support. Thank you to Pr<strong>of</strong>. N. Crouch from the South African National<br />

Botanical Institute (SANBI), for the collection <strong>of</strong> the plant material as well as for your advice,<br />

insight <strong>and</strong> availability when assistance was needed. Thank you to Mr. D. Jagjivan for help<br />

with the NMR, Mrs. A. Naidoo for her assistance <strong>and</strong> training with the HPLC <strong>and</strong> Ms. S.<br />

Misthry for her technical support during her tenure at the <strong>university</strong>.<br />

My gratitude is also extended to all my colleagues who have helped me throughout my studies<br />

by <strong>of</strong>fering intellectual support, empathy <strong>and</strong> sincerity: Erick Korir, Kaalin Gopaul, Gugulethu<br />

Ndlovu, Vusi Mchunu, Siyabonga Gumede, Joyce Kiplimo, Hamisu Ibrahim, Thrineshan<br />

Moodley, Maya Makatini <strong>and</strong> Edith Sabata. You all are very much appreciated <strong>and</strong> will never<br />

be forgotten.<br />

Words cannot express how grateful I am for the support <strong>and</strong> words <strong>of</strong> encouragement that my<br />

family has showered me with. Thank you Mum <strong>and</strong> Dad, for your underst<strong>and</strong>ing <strong>and</strong><br />

unwavering faith in me <strong>and</strong> to my sister, Karishma for your positive <strong>and</strong> caring nature. To my<br />

fiancé, Akash Rampersad, I thank you for always being there for me <strong>and</strong> to my friends, Nitesh<br />

<strong>and</strong> Swasthie Doolabh, thank you for always believing in me.<br />

My final words <strong>of</strong> gratitude are to the National Research Foundation (NRF) for their financial<br />

support <strong>and</strong> the Council for Science <strong>and</strong> Industrial Research (CSIR) in Pretoria, for the efficient<br />

analysis <strong>of</strong> isolated compounds for biological activity as well as a special thank you to Dr. N.<br />

Moodley (CSIR) for his assistance with the interpretation <strong>of</strong> the anticancer assay results.<br />

v


List <strong>of</strong> Abbreviations<br />

NMR - nuclear magnetic resonance<br />

1 H NMR - proton nuclear magnetic resonance<br />

13 C NMR - carbon nuclear magnetic resonance<br />

DEPT - distortionless enhancement by polarization transfer<br />

HSQC - heteronuclear single quantum coherence<br />

HMBC - heteronuclear multiple bond coherence<br />

COSY - correlation nuclear magnetic spectroscopy<br />

NOESY - nuclear overhauser effect spectroscopy<br />

J - coupling constant<br />

s - singlet<br />

d - doublet<br />

dd - doublet <strong>of</strong> doublets<br />

t - triplet<br />

brs - broad singlet<br />

m - multiplet<br />

td - triplet <strong>of</strong> doublets<br />

TLC - thin layer chromatography<br />

IR - infrared spectroscopy<br />

UV - ultra-violet<br />

CDCl3 - deuterated chlor<strong>of</strong>orm<br />

CD3OD - deuterated methanol<br />

DMSO - dimethylsulphoxide<br />

m/z - mass-to-charge ratio<br />

[M] + - molecular ion peak<br />

IPP - isopentenyl diphosphate<br />

GPP - geranyl pyrophosphate<br />

FPP - farnesyl pyrophosphate<br />

DMAPP - dimethylallyl diphosphate<br />

vi


GC-MS - gas chromatography-mass spectrometry<br />

LC-MS - liquid chromatography-mass spectrometry<br />

Hz - Hertz<br />

W½ - half-width<br />

GI50 - growth inhibition - the concentration at which the growth<br />

<strong>of</strong> the cell is inhibited by 50%<br />

TGI - total growth inhibition<br />

LC50 - lethal dose concentration - concentration at which 50% <strong>of</strong><br />

the cells are killed<br />

LC100 - lethal dose concentration - concentration at which 100%<br />

<strong>of</strong> the cells are killed<br />

RPMI - Roswell Park Memorial Institute<br />

ATCC - American Type Culture Collection<br />

SRB - sulforhodamine B<br />

MIC - minimum inhibitory activity<br />

TCA - trichloroacetic acid<br />

MRSA - methicillin resistant Staphylococcus aureus<br />

VRE - vancomycin-resistant Enterococcus faecalis<br />

I.U.P.A.C - international union <strong>of</strong> pure <strong>and</strong> applied chemistry<br />

∆ - delta (to indicate the position <strong>of</strong> the double bond)<br />

vii


List <strong>of</strong> Tables<br />

Table 1: Summary <strong>of</strong> the medicinal uses <strong>of</strong> various Plectranthus species 21<br />

Table 2: Summary <strong>of</strong> uses <strong>of</strong> various Plectranthus species 23<br />

Table 3: Antibacterial activity <strong>of</strong> Plectranthus <strong>and</strong> Coleus extracts 28<br />

Table 4: Antifungal activity <strong>of</strong> Plectranthus <strong>and</strong> Coleus extracts 32<br />

Table 5a: Antiparasitic, anti-inflammatory, antioxidant, antitumour <strong>and</strong> insect antifeedant activity <strong>of</strong><br />

polar extracts from seven Plectranthus species<br />

Table 5b: Other important inhibitory activity <strong>of</strong> polar extracts from Plectranthus <strong>and</strong> Coleus species 37<br />

Table 6a: Royleanone-type abietanes with an isopropyl side chain at C-13, isolated from Plectranthus<br />

<strong>and</strong> Coleus species<br />

Table 6b: Royleanone-type abietane dimers isolated from Plectranthus <strong>and</strong> Coleus species 44<br />

Table 6c: Royleanone-type abietanes with a linear side chain at C-13 isolated from Plectranthus <strong>and</strong><br />

Coleus species<br />

Table 7: Spirocoleons isolated from Plectranthus <strong>and</strong> Coleus species 49<br />

Table 8: Vinylogous quinones isolated from Plectranthus species 56<br />

Table 9a: Coleon-type abietanes isolated from Plectranthus <strong>and</strong> Coleus species 60<br />

Table 9b: Coleon-type abietanes with an olefinic bond at ∆ 5 isolated from Plectranthus <strong>and</strong> Coleus<br />

species<br />

Table 9c: Coleon-type abietanes with double bonds within ring A <strong>and</strong> B isolated from Plectranthus<br />

species<br />

Table 10: Miscellaneous abietanes isolated from Plectranthus <strong>and</strong> Coleus species 69<br />

Table 11: Antibacterial <strong>and</strong> antifungal activity <strong>of</strong> compounds extracted from Plectranthus species 72<br />

Table 12: Antibacterial <strong>and</strong> antifungal activity <strong>of</strong> abietanes isolated from Salvia species 74<br />

Table 13: Inhibitory activity <strong>of</strong> abietanes isolated from Plectranthus <strong>and</strong> Coleus extracts 76<br />

Table 14: Pharmacological activity <strong>of</strong> abietanes isolated from other plant species 78<br />

Table 15: 1 H NMR data for compound I compared with three reference compounds (CDCl3, 400MHz) 109<br />

Table 16: 13 C NMR data for compound I compared with three reference compounds (CDCl3, 400MHz) 110<br />

Table 17: 1 H NMR data for compound II compared with three reference compounds (CDCl3, 400MHz) 111<br />

Table 18: 13 C NMR data for compound II compared with one reference compound (CDCl3) 112<br />

Page<br />

34<br />

40<br />

46<br />

64<br />

68<br />

viii


Table 19: NMR data <strong>of</strong> compound III (CDCl3) <strong>and</strong> its acetylated equivalent 116<br />

Table 20: 1 H NMR data for compound III (CDCl3) compared with two similar compounds 117<br />

Table 21: 13 C NMR data for compound III (CDCl3) compared with two similar compounds 118<br />

Table 22: NMR data <strong>of</strong> compound IV (CD3OD) compared with reference compound 124<br />

Table 23: Comparison <strong>of</strong> 13 C NMR data <strong>of</strong> compound IV (CD3OD) with two similar compounds 126<br />

Table 24: Comparison <strong>of</strong> 1 H NMR data <strong>of</strong> compound IV (600MHz, CD3OD) with three reference<br />

compounds<br />

Table 25: 1 H <strong>and</strong> 13 C NMR data <strong>of</strong> stigmasterol (V) compared with reference data (CDCl3, 400MHz) 130<br />

Table 26: 1 H <strong>and</strong> 13 C NMR data <strong>of</strong> lupeol (VI) compared with reference data (CDCl3, 400MHz) 131<br />

Table 27: Antibacterial activity <strong>of</strong> compounds I to IV 144<br />

Table 28: Growth inhibition values for compounds I-IV against TK-10, UACC-62 <strong>and</strong> MCF-7 cell lines 152<br />

Table 29: GI50 values (uM) <strong>of</strong> compounds I <strong>and</strong> II <strong>and</strong> their 7α-isomers 152<br />

List <strong>of</strong> Figures<br />

Figure 1a: Acyclic (class 1), monocyclic (class 2) <strong>and</strong> bicyclic (class 3) diterpenes 2<br />

Figure 1b: Tricyclic (Class 4) diterpenes 3<br />

Figure 1c: Tetracyclic (Class 5) diterpenes 3<br />

Figure 1d: Macrocyclic (Class 6) diterepenes 4<br />

Figure 2: Formation <strong>of</strong> cassane type diterpenoids 4<br />

Figure 3: Numbering system for abietanoids 5<br />

Figure 4: Representative structures <strong>of</strong> the different types <strong>of</strong> abietane diterpenoids 6<br />

Figure 5: Examples <strong>of</strong> the use <strong>of</strong> the prefix “nor”, “abeo” <strong>and</strong> “seco” 7<br />

Figure 6: IPP derived from mevalonic acid (MVA) 8<br />

Figure 7: IPP derived from deoxyxylulose phosphate (DXP) 9<br />

Figure 8: Derivation <strong>of</strong> GGPP from DMAPP 10<br />

Page<br />

127<br />

ix


Figure 9: Formation <strong>of</strong> ring A from GGPP 10<br />

Figure 10: Biosynthetic pathway for bi-, tri- <strong>and</strong> tetracyclic diterpenes 11<br />

Figure 11: Biosynthesis <strong>of</strong> beyerane, trachylobane, atisane <strong>and</strong> aconane diterpenes 12<br />

Figure 12: Synthesis <strong>of</strong> abietadiene 13<br />

Figure 13: Plectranthus hadiensis 16<br />

Figure 14: Illustration <strong>of</strong> the 2 clades within the Plectranthus species, categorized according to their<br />

phylogeny<br />

Figure 15: Plectranthus hadiensis in bloom 94<br />

Figure 16: Chair conformation <strong>of</strong> compound I showing the relationship between H-5, H-6 <strong>and</strong> H-7 107<br />

Figure 17: Fragment <strong>of</strong> Ring C 114<br />

Figure 18: NOESY correlations for compound III 115<br />

Figure 19: NOESY correlations for compound IV 124<br />

Figure 20: Dose response curve for 7β-acetoxy-6β-hydroxyroyleanone (I) against TK-10, UACC-62<br />

<strong>and</strong> MCF-7 cell lines<br />

Figure 21: Dose response curve for 7β,6β-dihydroxyroyleanone (II) against TK-10, UACC-62 <strong>and</strong><br />

MCF-7 cell lines<br />

Figure 22: Dose response curve for ent-pimara-8(14),15-diene-3β,11α-diol (III) against TK-10,<br />

UACC-62 <strong>and</strong> MCF-7 cell lines<br />

Figure 23: Dose response curve for 2α,3α,19α-trihydroxyurs-12-en-28-oic acid (IV) against TK-10,<br />

UACC-62 <strong>and</strong> MCF-7 cell lines<br />

List <strong>of</strong> Spectra<br />

Compound I, 7β-acetoxy-6β-hydroxyroyleanone 161<br />

Spectrum 1a: 1 H NMR spectrum <strong>of</strong> compound I 162<br />

Spectrum 1b: 13 C NMR spectrum <strong>of</strong> compound I 163<br />

Spectrum 1c: Exp<strong>and</strong>ed 13 C NMR spectrum <strong>of</strong> compound I 164<br />

Page<br />

18<br />

150<br />

150<br />

151<br />

151<br />

x


Spectrum 1d: Exp<strong>and</strong>ed DEPT spectrum <strong>of</strong> compound I 165<br />

Spectrum 1e: HSQC spectrum <strong>of</strong> compound I 166<br />

Spectrum 1f: Exp<strong>and</strong>ed HSQC spectrum <strong>of</strong> compound I 167<br />

Spectrum 1g: HMBC spectrum <strong>of</strong> compound I 168<br />

Spectrum 1h: Exp<strong>and</strong>ed HMBC spectrum <strong>of</strong> compound I 169<br />

Spectrum 1i: COSY spectrum <strong>of</strong> compound I 170<br />

Spectrum 1j: NOESY spectrum <strong>of</strong> compound I 171<br />

Spectrum 1k: IR spectrum <strong>of</strong> compound I 172<br />

Spectrum 1l: UV spectrum <strong>of</strong> compound I 173<br />

Spectrum 1m: GC-MS spectrum <strong>of</strong> compound I 174<br />

Compound II, 6β, β, β,7β-dihydroxyroyleanone β,<br />

175<br />

Spectrum 2a: 1 H NMR spectrum <strong>of</strong> compound II 176<br />

Spectrum 2b: 13 C NMR spectrum <strong>of</strong> compound II 177<br />

Spectrum 2c: Exp<strong>and</strong>ed 13 C NMR spectrum <strong>of</strong> compound II 178<br />

Spectrum 2d: Exp<strong>and</strong>ed DEPT spectrum <strong>of</strong> compound II 179<br />

Spectrum 2e: HSQC spectrum <strong>of</strong> compound II 180<br />

Spectrum 2f: Exp<strong>and</strong>ed HSQC spectrum <strong>of</strong> compound II 181<br />

Spectrum 2g: HMBC spectrum <strong>of</strong> compound II 182<br />

Spectrum 2h: Exp<strong>and</strong>ed HMBC spectrum <strong>of</strong> compound II 183<br />

Spectrum 2i: COSY spectrum <strong>of</strong> compound II 184<br />

Spectrum 2j: NOESY spectrum <strong>of</strong> compound II 185<br />

Spectrum 2k: IR spectrum <strong>of</strong> compound II 186<br />

Spectrum 2l: UV spectrum <strong>of</strong> compound II 187<br />

Spectrum 2m: LC-MS spectrum <strong>of</strong> compound II 188<br />

Compound III, ent-pimara-8(14),15-diene-3β,11α-diol 189<br />

Spectrum 3a: 1 H NMR spectrum <strong>of</strong> compound III 190<br />

Page<br />

xi


Spectrum 3b: 13 C NMR spectrum <strong>of</strong> compound III 191<br />

Spectrum 3c: Exp<strong>and</strong>ed DEPT spectrum <strong>of</strong> compound III 192<br />

Spectrum 3d: HSQC spectrum <strong>of</strong> compound III 193<br />

Spectrum 3e: Exp<strong>and</strong>ed HSQC spectrum <strong>of</strong> compound III 194<br />

Spectrum 3f: HMBC spectrum <strong>of</strong> compound III 195<br />

Spectrum 3g: Exp<strong>and</strong>ed HMBC spectrum <strong>of</strong> compound III 196<br />

Spectrum 3h: COSY spectrum <strong>of</strong> compound III 197<br />

Spectrum 3i: NOESY spectrum <strong>of</strong> compound III 198<br />

Spectrum 3j: IR spectrum <strong>of</strong> compound III 199<br />

Spectrum 3k: UV spectrum <strong>of</strong> compound III 200<br />

Spectrum 3l: GC-MS spectrum <strong>of</strong> compound III 201<br />

Compound IV, euscaphic acid 202<br />

Spectrum 4a: 1 H NMR spectrum <strong>of</strong> compound IV 203<br />

Spectrum 4b: 13 C NMR spectrum <strong>of</strong> compound IV 204<br />

Spectrum 4c: Exp<strong>and</strong>ed 13 C NMR spectrum <strong>of</strong> compound IV 205<br />

Spectrum 4d: DEPT spectrum <strong>of</strong> compound IV 206<br />

Spectrum 4e: Exp<strong>and</strong>ed DEPT spectrum <strong>of</strong> compound IV 207<br />

Spectrum 4f: HSQC spectrum <strong>of</strong> compound IV 208<br />

Spectrum 4g: Exp<strong>and</strong>ed HSQC spectrum <strong>of</strong> compound IV 209<br />

Spectrum 4h: HMBC spectrum <strong>of</strong> compound IV 210<br />

Spectrum 4i: Exp<strong>and</strong>ed HMBC spectrum <strong>of</strong> compound IV 211<br />

Spectrum 4j: COSY spectrum <strong>of</strong> compound IV 212<br />

Spectrum 4k: NOESY spectrum <strong>of</strong> compound IV 213<br />

Spectrum 4l: IR spectrum <strong>of</strong> compound IV 214<br />

Spectrum 4m: UV spectrum <strong>of</strong> compound IV 215<br />

Spectrum 4n: GC-MS spectrum <strong>of</strong> compound IV 216<br />

Page<br />

xii


Compound V, stigmasterol 217<br />

Spectrum 5a: 1 H NMR spectrum <strong>of</strong> compound V 218<br />

Spectrum 5b: Exp<strong>and</strong>ed 1 H NMR spectrum <strong>of</strong> compound V 219<br />

Spectrum 5c: 13 C NMR spectrum <strong>of</strong> compound V 220<br />

Spectrum 5d: Exp<strong>and</strong>ed 13 C NMR spectrum <strong>of</strong> compound V 221<br />

Spectrum 5e: IR spectrum <strong>of</strong> compound V 222<br />

Compound VI, lupeol 223<br />

Spectrum 6a: 1 H NMR spectrum <strong>of</strong> compound VI 224<br />

Spectrum 6b: Exp<strong>and</strong>ed 1 H NMR spectrum <strong>of</strong> compound VI 225<br />

Spectrum 6c: 13 C NMR spectrum <strong>of</strong> compound VI 226<br />

Spectrum 6d: Exp<strong>and</strong>ed 13 C NMR spectrum <strong>of</strong> compound VI 227<br />

Spectrum 6e: IR spectrum <strong>of</strong> compound VI 228<br />

Page<br />

xiii


Abstract<br />

Three diterpenes <strong>of</strong> the abietane class, 7β-acetoxy-6β-hydroxyroyleanone (I), 6β,7β-<br />

dihydroxyroyleanone (II) <strong>and</strong> ent-pimara-8(14),15-diene-3β,11α-diol (III) <strong>and</strong> three<br />

triterpenes, 2α,3α,19α-trihydroxyurs-12-en-28-oic acid (IV), stigmasterol (V) <strong>and</strong> lupeol (VI)<br />

were isolated from the stem <strong>and</strong> leaf material <strong>of</strong> Plectranthus hadiensis. The structures <strong>of</strong> the<br />

compounds were elucidated using 2D NMR spectroscopy <strong>and</strong> Mass spectrometry. All six<br />

compounds have been isolated previously, but this is the first occurrence <strong>of</strong> compounds III-VI<br />

in Plectranthus hadiensis. This is also the first report <strong>of</strong> the isolation <strong>of</strong> a pimarene from<br />

Plectranthus, which provides a biochemical link to other genera in the family Lamiaceae where<br />

this class <strong>of</strong> compounds exist.<br />

Compounds I to IV were tested for their antibacterial activity against Enterococcus faecalis <strong>and</strong><br />

Pseudomonas aeruginosa as well as their anticancer activity against breast (MCF-7), renal (TK-<br />

10) <strong>and</strong> melanoma (UACC-62) cell lines. Compounds I <strong>and</strong> II exhibited good antibacterial<br />

activity against Enterococcus faecalis <strong>and</strong> Pseudomonas aeruginosa <strong>and</strong> although the ent-<br />

pimara-8(14),15-diene-3β,11α-diol (III), was inactive against E. faecalis, it was very active<br />

against P. aeruginosa. Compound IV, the triterpenoid, was structurally different to I-III <strong>and</strong><br />

did not show any anti-bacterial activity. Compounds I-III were weakly active toward the<br />

cancerous renal (TK-10), melanoma (UACC-62) <strong>and</strong> breast (MCF-7) cell lines, while IV was<br />

inactive in all <strong>of</strong> the cell lines.<br />

xiv


2<br />

19<br />

1<br />

4<br />

18<br />

O<br />

20<br />

5<br />

Structures <strong>of</strong> compounds isolated from Plectranthus hadiensis<br />

9<br />

10<br />

11<br />

6 7<br />

OH<br />

OH<br />

12<br />

14<br />

8<br />

R<br />

R<br />

13<br />

16<br />

(I) OC(O)CH3<br />

(II) OH<br />

HO<br />

3<br />

15<br />

O<br />

19<br />

5<br />

10<br />

6<br />

17<br />

7<br />

21<br />

HO<br />

18<br />

14<br />

2<br />

3<br />

20<br />

1<br />

HO<br />

20 11<br />

9<br />

4 5 6 7<br />

10 8<br />

18 19<br />

22<br />

29<br />

16<br />

23<br />

12<br />

13<br />

17<br />

14<br />

15<br />

16<br />

HO<br />

HO<br />

1<br />

4<br />

25 26<br />

9<br />

5<br />

10<br />

6 7<br />

8<br />

23 24<br />

(III) (IV)<br />

28<br />

27<br />

25<br />

26<br />

HO<br />

24 23<br />

(V) (VI)<br />

3<br />

10<br />

2<br />

30<br />

25 26<br />

20<br />

29<br />

27<br />

18<br />

12<br />

29<br />

19<br />

27<br />

17<br />

18<br />

14<br />

OH<br />

15<br />

17<br />

22<br />

28<br />

30<br />

21<br />

22<br />

COOH<br />

xv


Table <strong>of</strong> Contents<br />

Page<br />

Preface ....................................................................................................................................... iii<br />

Declaration ................................................................................................................................. iv<br />

Acknowledgements ....................................................................................................................... v<br />

List <strong>of</strong> Abbreviations ................................................................................................................... vi<br />

List <strong>of</strong> Tables ............................................................................................................................ viii<br />

List <strong>of</strong> Figures ............................................................................................................................. ix<br />

List <strong>of</strong> Spectra .............................................................................................................................. x<br />

Abstract ..................................................................................................................................... xiv<br />

Chapter 1 Introduction to diterpenoids ...................................................................................1<br />

1.1 Classification <strong>of</strong> diterpenoids ............................................................................................1<br />

1.2 Classification <strong>of</strong> the abietane diterpenoids ........................................................................5<br />

1.3 Biosynthesis .......................................................................................................................7<br />

References ..................................................................................................................................14<br />

Chapter 2 An introduction to the Plectranthus in South Africa ..........................................15<br />

2.1 Phylogeny, occurrence <strong>and</strong> description ...........................................................................15<br />

2.2 Ethnobotanical uses .........................................................................................................19<br />

2.3 Pharmacological/biological uses <strong>of</strong> the plant extract .......................................................25<br />

2.4 The phytochemistry <strong>of</strong> Plectranthus ................................................................................39<br />

2.5 Biological activity <strong>of</strong> the phytochemical constituents <strong>of</strong> Plectranthus ...........................71<br />

References ..................................................................................................................................80<br />

Chapter 3 Extractives from Plectranthus hadiensis ..............................................................94<br />

3.1 Introduction ......................................................................................................................94<br />

3.2 Foreword to Experimental ...............................................................................................97<br />

3.3 Experimental ....................................................................................................................99<br />

xvi


3.4 Results <strong>and</strong> Discussion <strong>of</strong> the compounds isolated .......................................................102<br />

3.4.1 Structural elucidation <strong>of</strong> Compounds I <strong>and</strong> II.........................................................104<br />

3.4.2 Structure elucidation <strong>of</strong> Compound III ...................................................................112<br />

3.4.3 Structure elucidation <strong>of</strong> Compound IV ...................................................................120<br />

3.4.4 Structure elucidation <strong>of</strong> Compounds V <strong>and</strong> VI.......................................................128<br />

Physical data for compounds I-VI .......................................................................................133<br />

References ................................................................................................................................136<br />

Chapter 4 Antibacterial <strong>and</strong> anticancer activity <strong>of</strong> the compounds isolated ...................141<br />

4.1 Antibacterial testing .......................................................................................................143<br />

4.1.1 Experimental ...........................................................................................................143<br />

4.1.2 Results <strong>and</strong> discussion ............................................................................................144<br />

4.2 Anti-cancer screening ....................................................................................................146<br />

4.2.1 Experimental ...........................................................................................................147<br />

4.2.2 Results <strong>and</strong> discussion ............................................................................................148<br />

References ................................................................................................................................153<br />

Chapter 5 Conclusion ............................................................................................................156<br />

References ................................................................................................................................158<br />

Page<br />

xvii


Chapter 1 Introduction to diterpenoids<br />

1.1 Classification <strong>of</strong> diterpenoids<br />

Diterpenes consist <strong>of</strong> four isoprene units (C20) <strong>and</strong> are by far the most diverse group <strong>of</strong><br />

compounds. They are placed into different classes (termed acyclic, monocyclic, bicyclic,<br />

tricyclic, tetracyclic <strong>and</strong> macrocyclic) based on the number <strong>of</strong> carbocyclic rings in the<br />

structure (figures 1a-d).<br />

The acyclic <strong>and</strong> monocyclic compounds (figure 1a) do not have much variation in that<br />

they are either straight chain structures or contain one ring <strong>and</strong> a side chain respectively,<br />

such as phytane (1) <strong>and</strong> vitamin A (2).<br />

Bicyclic compounds belonging to Class 3 (figure 1a), contain two six-membered<br />

carbocyclic rings with alkyl groups attached at either C-8 or C-9 or both. Labdanes <strong>and</strong><br />

clerodanes are differentiated because <strong>of</strong> the different positions <strong>of</strong> the methyl groups. In<br />

clerodanes these methyl groups occur at C-4, C-5, C-8, C-9 <strong>and</strong> C-13 while in labdanes<br />

there are two methyl groups at C-4 <strong>and</strong> one each at C-8, C-10 <strong>and</strong> C-13.<br />

Class 4 diterpenes (figure 1b) are the tricyclic diterpenoids <strong>and</strong> have three six-membered<br />

rings but differ in the substitution pattern on these rings. Abietane <strong>and</strong> totarane<br />

diterpenoids are fairly similar in structure, the only difference being the position <strong>of</strong> the<br />

isopropyl group in ring C, which is situated at C-13 in abietanes <strong>and</strong> C-14 for totaranes<br />

due to different alkyl shifts, abietane being the precursor to totarane (Dewick, 2002;<br />

Nakanishi, 1974).<br />

The structural difference between pimarane <strong>and</strong> cassane type diterpenes is the position <strong>of</strong><br />

the methyl group (CH3-17) on ring C, which occurs at C-13 in pimaranes <strong>and</strong> C-14 in<br />

cassanes, pimarane being the precursor to the cassanes (Nakanishi, 1974) <strong>and</strong> occurs by a<br />

methyl shift from C-13 in the pimaranes to C-14 in the cassanes when a carbocation at C-<br />

14 is created by a hydride shift in the s<strong>and</strong>aracopimarenyl cation (Figure 2). Taxane type<br />

1


compounds are also classified as tricyclic, but have a different biosynthetic pathway<br />

(Dewick, 2002).<br />

Within the class 5 diterpenoids (figure 1c), the kauranes, beyeranes <strong>and</strong> atisanes are all<br />

derived from the s<strong>and</strong>aracopimarenyl cation. This is shown later in figures 10 <strong>and</strong> 11.<br />

They are therefore similar in structure, the kauranes having a methylene group at C-16,<br />

the beyeranes having a methyl group at C-17 <strong>and</strong> the methylene bridge occurring<br />

between C-12 <strong>and</strong> C-8 in the atisanes. The gibberellins are similar to the kauranes, the<br />

difference being the five-membered ring in gibberellins arising from the biosynthesis<br />

(Figure 10). Phorbols <strong>and</strong> ginkolides follow different biosynthetic pathways (Dewick,<br />

2002).<br />

The macrocyclic compounds (figure 1d), the trachylobanes <strong>and</strong> the aconanes, are similar<br />

to the atisanes from which they are derived. This is shown later in figure 11.<br />

O<br />

16<br />

17 18 19 20<br />

H<br />

6<br />

1<br />

A<br />

5<br />

1<br />

10<br />

5<br />

9 8<br />

A B<br />

4<br />

12<br />

13<br />

20<br />

17<br />

11<br />

15<br />

16<br />

(1) phytane<br />

7<br />

9 13<br />

(2) Vitamin A<br />

OH<br />

OH O<br />

18 19<br />

OH<br />

(3) 15-hydroxy-3-cleroden-2-one (clerodane) (4) Forskolin (labdane)<br />

Figure 1a: Acyclic (class 1), monocyclic (class 2) <strong>and</strong> bicyclic (class 3) diterpenes<br />

Continued on next page….<br />

4<br />

10<br />

3<br />

OH<br />

OH<br />

8<br />

1<br />

13<br />

O<br />

OAc<br />

2


HO<br />

19<br />

19<br />

20<br />

10<br />

A H B<br />

4 6<br />

H<br />

COOH<br />

OH<br />

O<br />

20<br />

13<br />

12<br />

11<br />

C 14<br />

1<br />

10<br />

A<br />

5<br />

4<br />

9<br />

B<br />

8<br />

7<br />

OH<br />

18<br />

17<br />

15<br />

O<br />

OH<br />

11<br />

C D 16<br />

15<br />

17<br />

AcO<br />

O<br />

19<br />

10<br />

H<br />

4 6<br />

(11) Steviol (kaurane) (12) 2-acetoxy-1,15-beyeradiene-3,12-dione<br />

(beyerane)<br />

Continued on next page….<br />

16<br />

3<br />

11<br />

20<br />

10<br />

5<br />

18 19<br />

H<br />

18<br />

9<br />

20<br />

H<br />

Figure 1c: Tetracyclic (Class 5) diterpenes<br />

13<br />

11<br />

O<br />

15<br />

OH<br />

17<br />

17<br />

15<br />

16<br />

16<br />

O<br />

O<br />

1<br />

O<br />

OH<br />

20<br />

(5) Horminone (abietane) (6) Totarol (totarane) (7) Phytocassane E (cassane)<br />

3<br />

1<br />

19 18<br />

OH<br />

20<br />

H<br />

H<br />

12<br />

13<br />

14<br />

17<br />

15<br />

16<br />

(8) 3β-dihydroxy-8(14),15-pimaradiene<br />

(pimarane)<br />

6<br />

9<br />

AcO<br />

18<br />

14<br />

AcO OAc<br />

H<br />

17<br />

11<br />

A 15<br />

1<br />

20<br />

B<br />

19<br />

8<br />

C<br />

4<br />

H<br />

H<br />

16<br />

OAc<br />

3<br />

18<br />

1<br />

20<br />

19<br />

1<br />

H<br />

3 5<br />

12<br />

11 13<br />

15<br />

10<br />

H<br />

8<br />

12<br />

H<br />

14<br />

3<br />

14<br />

HO O<br />

19 18<br />

(9) Taxusin (taxane) (10) 3β,12-dihydroxy-13-methyl-<br />

5,8,11,13-podocarpatetraen-7-one<br />

(podocarpane)<br />

Figure 1b: Tricyclic (Class 4) diterpenes<br />

20<br />

OH<br />

17<br />

(13) Ent-16α-hydroxyatisane-3-one<br />

(atisane)<br />

8<br />

12<br />

8<br />

OH<br />

15<br />

17<br />

14<br />

15<br />

16


1<br />

H<br />

CO2H 19<br />

20<br />

CHO<br />

18 10<br />

5<br />

H<br />

12<br />

14<br />

15<br />

CO2H 7<br />

OH<br />

17<br />

16<br />

O<br />

1<br />

A<br />

HO<br />

HO<br />

H<br />

20<br />

5<br />

14<br />

B<br />

OH<br />

OH<br />

11<br />

C D<br />

10<br />

19<br />

18<br />

8<br />

H<br />

H<br />

(14) GA19 (gibberellin)<br />

CH2OH 17<br />

(15) phorbol (16) Bilobalide (ginkgolide)<br />

H<br />

H<br />

13<br />

17<br />

14<br />

H<br />

s<strong>and</strong>aracopimarenyl cation<br />

8<br />

16<br />

Figure 1c: Tetracyclic (Class 5) diterpenes<br />

12 17<br />

12<br />

1<br />

A<br />

HO<br />

HOOC<br />

11<br />

20<br />

E<br />

13<br />

C 14<br />

15<br />

10<br />

H<br />

B<br />

H<br />

17<br />

1<br />

11<br />

4<br />

19 18<br />

14<br />

9<br />

7<br />

(17) hydroxytrachylobanic acid (trachylobane) (18) aconane<br />

Figure 1d: Macrocyclic (Class 6) diterepenes<br />

H<br />

Figure 2: Formation <strong>of</strong> cassane type diterpenoids<br />

H<br />

O<br />

O<br />

O<br />

H<br />

H<br />

16<br />

15<br />

H<br />

O<br />

HO<br />

H<br />

O<br />

cassane type diterpenoid<br />

OH<br />

4<br />

O


1.2 Classification <strong>of</strong> the abietane diterpenoids<br />

Abietane diterpenoids consist <strong>of</strong> approximately twenty carbon atoms <strong>and</strong> commonly have<br />

three tertiary methyl groups (two at C-4 <strong>and</strong> one at C-10), <strong>and</strong> one isopropyl group at C-<br />

13. Their numbering system is based on the nomenclature <strong>of</strong> natural product hydrides as<br />

recommended by the I.U.P.A.C. in 1993 (Figure 3). These abietanes can be further<br />

classified into eight types based on structural differences through reductions (addition <strong>of</strong><br />

hydrogen across a double bond) or oxidations such as hydroxylations <strong>and</strong> dehydrations as<br />

well as cyclisations between different oxygenated groups.<br />

20<br />

13<br />

12<br />

11<br />

C<br />

14<br />

1<br />

2 10<br />

A<br />

3 5<br />

4<br />

9<br />

B<br />

6<br />

8<br />

7<br />

19<br />

18<br />

Figure 3: Numbering system for abietanoids<br />

Acidic abietanes (e.g. abietic acid (19), figure 4) are characterised by the presence <strong>of</strong> a<br />

carboxylic acid in the compound. In levopimaric acid (20) there is a double bond in ring<br />

C (figure 4). In ferruginol (21) <strong>and</strong> carnosol (22) type abietanes, ring C is phenolic in<br />

character. Due to the presence <strong>of</strong> a lactone ring which extends across ring B from C-7 to<br />

C-10, carnosol type abietanes are differentiated from ferruginol type abietanes.<br />

Callicarpone (23) abietanes are based on the epoxide ring at ∆ 12 <strong>and</strong> the presence <strong>of</strong> a<br />

hydroxy isopropyl group attached to C-15 as well as α,β-unsaturated ketone groups in<br />

rings B <strong>and</strong> C. The royleanones (24) have a benzoquinone ring C. Tanshinone (25)<br />

abietanes consist <strong>of</strong> highly oxidised rings where two <strong>of</strong> the rings, A <strong>and</strong> B are aromatic,<br />

ring C contains two adjacent α,β-unsaturated systems <strong>and</strong> a fourth ring, a furan ring is<br />

present as ring D. Fichtelite (26) closely resembles the abietane skeletal structure <strong>and</strong><br />

17<br />

15<br />

16<br />

5


may be referred to as a norabietane due to the absence <strong>of</strong> the methyl group at C-4. Also<br />

present in the structure is a double bond at ∆ 4 .<br />

19<br />

9<br />

H<br />

H<br />

H<br />

COOH<br />

H<br />

COOH<br />

H<br />

(19) abietic acid (20) levopimaric acid (21) ferruginol<br />

HO<br />

O<br />

10<br />

O<br />

H<br />

O<br />

OH<br />

7<br />

H<br />

O<br />

H<br />

α<br />

9<br />

β 8<br />

(22) carnosol (23) callicarpone (24) royleanone<br />

O<br />

O<br />

16<br />

15<br />

(25) tanshinone (26) dl-fichtelite<br />

H<br />

Figure 4: Representative structures <strong>of</strong> the different types <strong>of</strong> abietane diterpenoids<br />

(Nakanishi et al., 1974)<br />

The terms “nor”, “abeo” <strong>and</strong> “seco” are used widely in the abietanes. The use <strong>of</strong> “nor”<br />

occurs when a methyl group is eliminated from the structure. The number preceding<br />

“nor” refers to the carbon atom which has been eliminated. The prefix “abeo” is used<br />

12<br />

H<br />

O<br />

O<br />

15<br />

OH<br />

20<br />

O<br />

10<br />

7<br />

OH<br />

OH<br />

O<br />

6


when a methyl group migrates to an adjacent carbon atom <strong>and</strong> “seco” refers to a bond<br />

that has been broken on the skeletal structure. The numbers preceding “abeo” refers to<br />

the carbon atoms involved in the migration e.g. (10→5) abeo indicates that a methyl has<br />

migrated from C-10 to C-5 <strong>and</strong> the numbers preceding “seco” refers to the carbon atoms<br />

in which the bond has been broken e.g. in 4,5-seco the bond has been broken between C-<br />

4 <strong>and</strong> C-5. Figure 5 includes examples <strong>of</strong> these.<br />

1<br />

2 10<br />

3<br />

4<br />

19<br />

20<br />

13<br />

12<br />

11<br />

9<br />

8<br />

5<br />

6<br />

7<br />

14<br />

16<br />

15<br />

17<br />

20<br />

4 5<br />

(a) 18-nor (b) 4,5-seco-20(10→5)abeoabietane<br />

Figure 5: Examples <strong>of</strong> the use <strong>of</strong> the prefix “nor”, “abeo” <strong>and</strong> “seco”<br />

1.3 Biosynthesis<br />

The acyclic diterpenes (Class 1), for example phytane (1) (Figure 1a) is formed by the<br />

addition <strong>of</strong> four molecules <strong>of</strong> IPP (isopentenyl diphosphate). The formation <strong>of</strong> IPP can<br />

follow either one <strong>of</strong> two biosynthetic pathways, the methylerythritol phosphate pathway<br />

(MEP), also known as the 1-deoxy-D-xylulose (DOX) pathway <strong>and</strong> the mevalonic acid<br />

(MVA) pathway. The MVA pathway is the only pathway used by animals, while both<br />

pathways are present in plants. The enzymes involved in the MVA pathway are found in<br />

the cytosol while those in the MEP or DOX pathway are found in the chloroplast <strong>of</strong> the<br />

plant.<br />

10<br />

7


In the mevalonic acid pathway, the biosynthesis starts with the Claisen condensation<br />

reaction where two molecules <strong>of</strong> acetyl-CoA react to produce acetoacetyl-CoA which<br />

reacts further with an additional molecule <strong>of</strong> acetyl-CoA in a stereospecific aldol reaction<br />

producing HMG-CoA (β-hydroxy-β-methylglutaryl-CoA) (figure 6). The carbonyl<br />

group in HMG-CoA is then reduced with NADPH to the primary alcohol producing<br />

mevaldic acid hemithioacetal, then mevaldic acid <strong>and</strong> further reduction to mevalonic acid<br />

(MVA). The addition <strong>of</strong> two ATP molecules leads to the sequential phosphorylation <strong>of</strong><br />

MVA to mevalonic acid diphosphate <strong>and</strong> a further molecule <strong>of</strong> ATP results in the release<br />

<strong>of</strong> CO2 producing isopentenyl disphosphate (IPP) which is subsequently isomerised to<br />

DMAPP in a reversible reaction. The forward reaction is favoured due to the<br />

electrophilic nature <strong>of</strong> DMAPP.<br />

H<br />

O<br />

1<br />

HO2C 2<br />

SCoA<br />

O<br />

6<br />

H<br />

O<br />

3<br />

SCoA<br />

OH<br />

4<br />

mevalonic acid<br />

(MVA)<br />

2 x ATP<br />

OH<br />

OH<br />

NADPH<br />

O OPP<br />

5<br />

Claisen<br />

reaction<br />

mevalonic acid diphosphate<br />

O<br />

H<br />

O<br />

OH P O ADP<br />

OH<br />

HO 2C<br />

-CO 2<br />

O<br />

SCoA<br />

acetoacetyl-CoA<br />

O<br />

-H +<br />

CoA<br />

OH<br />

mevaldic acid<br />

H<br />

4<br />

5<br />

3<br />

H R<br />

2<br />

O<br />

Linkage<br />

Hydrolysis <strong>of</strong><br />

acetyl-CoA<br />

H S<br />

isopentenyl PP<br />

(IPP)<br />

1<br />

-H +<br />

OPP<br />

HO 2C<br />

HO 2C<br />

isomerase<br />

HMG-CoA<br />

reductase<br />

OH<br />

O<br />

HMG-CoA<br />

OH<br />

NADPH<br />

OH<br />

H<br />

mevaldic acid<br />

hemithioacetal<br />

dimethylallyl PP<br />

(DMAPP)<br />

Figure 6: IPP derived from mevalonic acid (MVA), (reproduced from Dewick, 2002)<br />

SCoA<br />

SCoA<br />

OPP<br />

EnzSH<br />

8


In the MEP pathway, 1-deoxy-D-xylulose-5-phosphate is derived from pyruvic acid.<br />

Thiamine diphosphate bonds to the pyruvic acid, which leads to decarboxylation<br />

producing a TPP/pyruvate enamine which then reacts with D-glyceraldehyde, followed<br />

by the loss <strong>of</strong> TPP to yield 1-deoxy-D-xylulose 5-P (DXP). DXP undergoes a pinnacol<br />

like rearrangement followed by a reduction to produce 2-methyl-D-erythritol 4-P. This is<br />

then transformed into 4-(CDP)-2-methyl-D-erythritol due to its reaction with cytidine<br />

triphosphate (CTP) <strong>and</strong> then phosphorylated with ATP. Cyclisation involving the<br />

oxygen <strong>of</strong> the terminal phosphate group with the phosphorus <strong>of</strong> the cytidine bound<br />

phosphate results in a phosphoanhydride. Opening <strong>of</strong> the ring <strong>and</strong> subsequent reduction<br />

<strong>and</strong> dehydration may lead to IPP, however these latter steps still need to be determined.<br />

9


N<br />

thiamine diphosphate (TPP)<br />

O<br />

OH<br />

NH 2<br />

N<br />

OH<br />

OH<br />

B<br />

OP<br />

H<br />

N S<br />

OPP<br />

OH<br />

O OH<br />

STEPS TO BE DETERMINED<br />

-H 2O<br />

OPP<br />

OPP<br />

NADPH<br />

OH<br />

IPP DMAPP<br />

H<br />

N<br />

H<br />

O<br />

O<br />

OP<br />

OPP<br />

OPP<br />

NH 2<br />

N<br />

OH<br />

H 3C<br />

TPP anion<br />

OP<br />

1-deoxy-D-xylulose 5-P (DXP)<br />

+ TPP anion regenerated<br />

NADPH<br />

O<br />

C<br />

H<br />

N S<br />

OH<br />

CO 2H<br />

pyruvic acid<br />

OH<br />

OH<br />

OPP<br />

OP<br />

2-methyl-D-erythritol 4-P<br />

H OH<br />

O<br />

H3C C<br />

H +<br />

O OH<br />

O<br />

P<br />

O O<br />

P<br />

O OH<br />

OH<br />

H OH<br />

N<br />

OH<br />

N S<br />

CTP<br />

2-methyl-D-erythritol-2,4-cyclophosphate<br />

NH 2<br />

N<br />

-H +<br />

OP<br />

OH<br />

OH<br />

H 3C<br />

HO O<br />

C<br />

C<br />

N S<br />

OH<br />

OH<br />

OH<br />

O<br />

O<br />

H<br />

OPP<br />

H<br />

H3C OH<br />

C<br />

N S<br />

O<br />

H<br />

OH<br />

TPP/pyruvate-derived enamine<br />

O<br />

O P OH<br />

OH<br />

O<br />

O<br />

P<br />

OH<br />

O<br />

P<br />

OH<br />

O<br />

O<br />

O<br />

4-(CDP)-2-methyl-D-erythritol<br />

OP<br />

D-glyceraldehyde 3-P<br />

P O CH2 O<br />

OH<br />

ATP<br />

O<br />

NH 2<br />

N<br />

HO OH<br />

P O CH2 O<br />

OH<br />

N<br />

N<br />

NH 2<br />

HO OH<br />

Figure 7: IPP derived from deoxyxylulose phosphate (DXP), (reproduced from<br />

Dewick, 2002)<br />

DMAPP contains a diphosphate anion which acts as a good leaving group resulting in the<br />

isoprene unit being electrophilic. DMAPP yields an allylic cation by means <strong>of</strong> a SN1<br />

reaction. IPP then adds to this allylic cation <strong>and</strong> with a stereospecific loss <strong>of</strong> a proton<br />

(HR) which then forms geranyl pyrophosphate (GPP). Addition <strong>of</strong> two further IPP<br />

molecules result in the formation <strong>of</strong> first farnesyl diphosphate (FPP) <strong>and</strong> then<br />

geranylgeranyl diphosphate (GGPP), the precursor to diterpenoid biosynthesis (figure 8).<br />

N<br />

O<br />

O<br />

10


DMAPP<br />

IPP<br />

OPP<br />

S N1<br />

geranyl PP (GPP)<br />

farnesyl PP<br />

(FPP)<br />

resonance-stabilised allylic cation<br />

OPP<br />

OPP<br />

IPP<br />

H R H S<br />

OPP<br />

geranylgeranyl PP<br />

(GGPP)<br />

Figure 8: Derivation <strong>of</strong> GGPP from DMAPP (reproduced from Dewick, 2002)<br />

Monocyclic diterpenes e.g. vitamin A (2) are formed via the first cyclisation step after the<br />

formation <strong>of</strong> GGPP, which is initiated by the protonation <strong>of</strong> the isopropylidene unit in<br />

GGPP.<br />

H<br />

GGPP<br />

H<br />

OPP<br />

1 st<br />

cyclisation<br />

A<br />

IPP<br />

H<br />

monocyclic type diterpene<br />

Figure 9: Formation <strong>of</strong> ring A from GGPP<br />

A series <strong>of</strong> cyclisations as in figure 10 yields the bicyclic intermediate, copalyl<br />

diphosphate. The subsequent loss <strong>of</strong> pyrophosphate <strong>and</strong> cyclisation <strong>of</strong> copalyl PP results<br />

in the formation <strong>of</strong> the tricyclic diterpenes as in the s<strong>and</strong>aracopimarenyl cation<br />

(intermediate I). Attack by the double bond on the carbocation in the<br />

s<strong>and</strong>aracopimarenyl cation results in a fourth ring (intermediate II). Stabilisation <strong>of</strong> the<br />

cation in intermediate II, by forming a tertiary cation followed by loss <strong>of</strong> a proton result<br />

OPP<br />

OPP<br />

OPP<br />

11


in the kauranes. From the kauranes, loss <strong>of</strong> a hydride ion in ring B followed by ring<br />

contraction <strong>and</strong> further oxidations result in the gibberellins (figure 10) (Dewick, 2002).<br />

H<br />

4<br />

H<br />

COOH<br />

GGPP<br />

H<br />

7<br />

- H<br />

H<br />

ent-7-hydoxykaurenoic acid<br />

H<br />

H<br />

CO2H H<br />

OH<br />

O<br />

H<br />

OPP<br />

sequence <strong>of</strong><br />

oxidation<br />

reactions<br />

ring<br />

contraction<br />

W-M 1,2-alkyl<br />

shift<br />

O<br />

4<br />

A H B<br />

H<br />

H<br />

copalyl PP<br />

H 7<br />

ent-kaurene<br />

GA 12-aldehyde<br />

D<br />

O<br />

OPP<br />

-H<br />

sequence <strong>of</strong> oxidation<br />

reactions, lactone<br />

formation<br />

H<br />

H<br />

13<br />

C<br />

s<strong>and</strong>aracopimarenyl cation<br />

(Intermediate I)<br />

HO<br />

H<br />

H<br />

O<br />

C O<br />

4<br />

12<br />

10 9<br />

8<br />

17<br />

16<br />

15<br />

COOH<br />

gibberellic acid<br />

12<br />

13<br />

15<br />

H<br />

1,2-hydride<br />

migration<br />

16<br />

OH<br />

17<br />

H<br />

W-M 1,2-alkyl<br />

shift<br />

H<br />

H<br />

H<br />

13<br />

15<br />

(Intermediate II)<br />

Figure 10: Biosynthetic pathway for bi-, tri- <strong>and</strong> tetracyclic diterpenes (reproduced<br />

partially from Dewick (2002), Nakanishi (1974) <strong>and</strong> Hanson (1968))<br />

Loss <strong>of</strong> a proton at C-16 (in intermediate I) with retention <strong>of</strong> the methyl at C-13 would<br />

lead to the beyeranes (figure 11). Formation <strong>of</strong> a carbocation at C-12 from intermediate II<br />

followed by an alkyl migration <strong>of</strong> the methylene bridge gives rise to the atisane type<br />

compounds (Figure 11). The macrocyclic type compounds, the trachylobanes <strong>and</strong><br />

aconanes form pentacyclic <strong>and</strong> tetracyclic diterpenes respectively. The bond between C-<br />

12 <strong>and</strong> C-15 is formed with loss <strong>of</strong> a proton producing the trachylobanes <strong>and</strong><br />

rearrangement <strong>of</strong> the 8,9 bond to the 9,16 position with loss <strong>of</strong> the C-17 methylene group<br />

(Hanson, 1968) result in the aconanes (Figure 11).<br />

H<br />

12


H<br />

1,3 H + migration<br />

H<br />

H<br />

12<br />

13<br />

14<br />

D<br />

H<br />

16<br />

15<br />

Intermediate II<br />

H<br />

H<br />

D<br />

16<br />

15<br />

13<br />

C<br />

s<strong>and</strong>aracopimarenyl cation<br />

H<br />

H<br />

H<br />

8<br />

(Intermediate I)<br />

-H (17)<br />

19<br />

16<br />

4<br />

17<br />

15<br />

-H + (16)<br />

H H<br />

HO<br />

16<br />

14<br />

H H<br />

12<br />

CH 2OH<br />

15<br />

13<br />

17<br />

13<br />

12 17<br />

15<br />

9,16-bond formation<br />

8<br />

14<br />

1,2 H + loss <strong>of</strong> CH2 11<br />

20 H<br />

9<br />

shift<br />

18<br />

Atisirene<br />

(atisane type compound)<br />

16<br />

Beyerol<br />

(beyerane type diterpene)<br />

CH 2OH<br />

15<br />

-H (12)<br />

12,15-bond<br />

formation<br />

19<br />

4<br />

20<br />

18<br />

19<br />

4<br />

18<br />

20<br />

aconane type compound<br />

12<br />

17<br />

15 13<br />

16<br />

9<br />

8<br />

trachylobane type diterpene<br />

15<br />

16<br />

9<br />

8<br />

Figure 11: Biosynthesis <strong>of</strong> beyerane, trachylobane, atisane <strong>and</strong> aconane diterpenes<br />

(Manitto, 1981)<br />

The loss <strong>of</strong> a proton at C-14 in the s<strong>and</strong>aracopimarenyl cation leads to the formation <strong>of</strong> a<br />

double bond between C-8 <strong>and</strong> C-14 after which a methyl migration from C-17 to C-15<br />

yields an abietenyl cation, which loses a proton at C-7 to produce abietadiene (figure 12).<br />

H<br />

H<br />

8<br />

14<br />

16<br />

H<br />

17<br />

H<br />

8<br />

s<strong>and</strong>aracopimarenyl cation (-)-s<strong>and</strong>aracopimaradiene<br />

H<br />

15<br />

17<br />

14<br />

H<br />

H<br />

H<br />

7<br />

H<br />

16<br />

15<br />

abietenyl cation O (-)-abietadiene<br />

Figure 12: Synthesis <strong>of</strong> abietadiene (reproduced from Dewick, 2002)<br />

H<br />

H<br />

13


References<br />

Abad, A., Agullo, C., Cunat, A.C., de Alfonso Marzal, I., Navarro, I. <strong>and</strong> Gris, A. (2006)<br />

A unified synthetic approach to trachylobane-, beyerane-, atisane- <strong>and</strong> kaurane-type<br />

diterpenes, Tetrahedron, 62, 3266-3283<br />

Dev, S. (1985) CRC h<strong>and</strong>book <strong>of</strong> terpenoids, Diterpenoids, CRC Press, pp 37, 353-361<br />

Dewick, P.M. (2002) Medicinal natural products: a biosynthetic approach, Wiley, pp 170,<br />

171, 192, 204, 208, 210, 212<br />

Hanson, J.R. (1968) The tetracyclic diterpenes, Pergamon, Volume 9, pp 114-120<br />

Manitto, P. (1981) Biosynthesis <strong>of</strong> Natural Products, Ellis Horwood Limited, pp 258-262<br />

Nakanishi, K. (1974) Natural products chemistry, Academic Press, Inc., Volume 1, pp<br />

186-188, 218-230, 267-270<br />

Newman, A.A. (1972) Chemistry <strong>of</strong> Terpenes <strong>and</strong> Terpenoids, Academic Press, pp 155-<br />

191<br />

Panico, R., Powell, W.H. <strong>and</strong> Richer, J.C. (1993) International Union <strong>of</strong> Pure <strong>and</strong><br />

Applied Chemistry, Organic Chemistry Division, Commission <strong>of</strong> Nomenclature <strong>of</strong><br />

Organic Chemistry, A Guide to IUPAC Nomenclature <strong>of</strong> Organic Compounds<br />

(Recommendations 1993), Blackwell Scientific publications, pp 55-56<br />

Rig<strong>and</strong>y, J. <strong>and</strong> Klesney, S.P. (1979) International Union <strong>of</strong> Pure <strong>and</strong> Applied Chemistry,<br />

Organic Chemistry Division, Commission <strong>of</strong> Nomenclature <strong>of</strong> Organic Chemistry,<br />

Nomenclature <strong>of</strong> Organic Chemistry, Sections A-H, Pergamon Press, pp 491-511<br />

Templeton, W. (1969) An introduction to the chemistry <strong>of</strong> the terpenoids <strong>and</strong> steroids,<br />

Butterworths, pp 111-121<br />

14


Chapter 2 An introduction to the Plectranthus in South<br />

Africa<br />

2.1 Phylogeny, occurrence <strong>and</strong> description<br />

The genus Plectranthus is one <strong>of</strong> twenty-five genera in the subfamily Nepetoideae <strong>of</strong> the<br />

family, Lamiaceae. Plectranthus is an “Old World” genus belonging to the Mint/Sage<br />

family. It contains about three-hundred species found in tropical Africa, Asia, India,<br />

Madagascar, Australia <strong>and</strong> a few Pacific isl<strong>and</strong>s (Rijo et al., 2007; Lukhoba et al., 2006;<br />

van Jaarsveld, 2006). The name Plectranthus literally means ‘spur flower’ due to the<br />

characteristic spurred corolla tube present in the first Plectranthus species that was<br />

discovered. This physical attribute however, is not consistent throughout the genus <strong>and</strong><br />

may easily be confused for belonging to the Solenostemon or Thorncr<strong>of</strong>tia species.<br />

Within Africa, Plectranthus can be found in the southern part for example, Namibia,<br />

Swazil<strong>and</strong>, Lesotho <strong>and</strong> South Africa. It grows abundantly in eight out <strong>of</strong> the nine<br />

provinces within South Africa, with the largest concentration being found in the north-<br />

eastern part <strong>of</strong> the Eastern Cape <strong>and</strong> southern KwaZulu-Natal which has as much as<br />

thirty-six species. Plectranthus is desirable as a garden plant because it suppresses weed<br />

growth <strong>and</strong> prevents erosion (van Jaarsveld, 1988) <strong>and</strong> is simple <strong>and</strong> inexpensive to<br />

maintain. It is also <strong>of</strong> ornamental interest <strong>and</strong> is cultivated for their attractive foliage.<br />

They are however susceptible to attack by the eel-worm which, if not treated<br />

appropriately can lead to complete deterioration <strong>of</strong> the plant (van Jaarsveld, 1988).<br />

They are usually found growing in shade under trees where the soil is rich in humus <strong>and</strong><br />

well drained. However, not all Plectranthus species thrive under these conditions.<br />

Species with succulent leaves prefer growth in drier regions such as the dry bushveld or<br />

in rockeries (Figure 13). Even though Plectranthus species perish or wilt under extreme<br />

weather conditions such as frost <strong>and</strong> heat, they recover relatively quickly after a shower<br />

<strong>of</strong> rain or sprout again in spring (van Jaarsveld, 1988).<br />

15


The flower colour varies among the species in Plectranthus, either being white, blue or<br />

mauve to pink. At the end <strong>of</strong> February, the plants begin to develop flowerbuds <strong>and</strong> reach<br />

full bloom between March <strong>and</strong> April. While some species <strong>of</strong> Plectranthus grow as<br />

upright shrubs to a height <strong>of</strong> approximately 1.5 meters, for example, ecklonii, fruticosus<br />

<strong>and</strong> hadiensis, others occur as groundcover plants, varying between 10 to 30 centimetres<br />

in height, for example madagascariensis <strong>and</strong> saccatus. Plectranthus hadiensis can be<br />

easily identified because <strong>of</strong> its large, hairy leaves.<br />

Figure 13: Plectranthus hadiensis (picture courtesy <strong>of</strong> Pr<strong>of</strong>. N. Crouch)<br />

Species <strong>of</strong> Plectranthus are used as ornamental, economic <strong>and</strong> medicinal plants.<br />

The phylogeny <strong>of</strong> Plectranthus was well documented by Paton et al. (2004) <strong>and</strong> Lukhoba<br />

et al. (2006) based on its DNA sequence <strong>and</strong> augmented morphological data <strong>of</strong> the genus.<br />

This information was presented in the form <strong>of</strong> a cladogram (figure 14) which divided the<br />

Plectranthus genus into two clades or groups. Clade 1 contains Plectranthus species<br />

formally known as Coleus <strong>and</strong> are grouped together based on their<br />

ethnobotanical/medicinal uses with Clade 1b containing a greater number <strong>of</strong> medicinally<br />

active species than Clade 1a. The groups in bold in figure 14 all have reported medicinal<br />

uses. Of the three subclades, subclade 1b seems to be the most widely used medicinally,<br />

16


followed by subclade 2 <strong>and</strong> lastly subclade 1a where only groups 2 <strong>and</strong> 8 are used<br />

medicinally. Species within Clade 1 are also sources <strong>of</strong> food <strong>and</strong> are used as food<br />

flavourants, fodder for domestic animals, ornamental displays in homes <strong>and</strong> gardens as<br />

well as other uses such as building material (Lukhoba et al., 2006). For example, the<br />

wood from Plectranthus insignis can be used to build huts or temporary houses (Cheek et<br />

al., 2000; Lukhoba et al., 2006).<br />

There are further species that fit into clades 1 <strong>and</strong> 2 but could not be placed into any <strong>of</strong><br />

the subclades as they were morphologically different species within these subclades.<br />

These are listed as unplaced groups A-E in each clade.<br />

Plectranthus is a synonym for Coleus (Lukhoba et al., 2006) <strong>and</strong> therefore in searching<br />

the literature for phytochemical reviews <strong>of</strong> Plectranthus, one has to also consider the<br />

Coleus species. Plectranthus amboinicus itself has synonymns <strong>of</strong> Plectranthus<br />

aromaticus Roxb., Coleus aromaticus Benth. <strong>and</strong> Coleus amboinicus Lour. (Lukhoba et<br />

al., 2006).<br />

Beside morphological characteristics <strong>and</strong> DNA sequencing, it would also be useful to<br />

have chemotaxonomic data linking the different species together <strong>and</strong> hence,<br />

phytochemical studies on the different species <strong>of</strong> Plectranthus is important to build up a<br />

database <strong>of</strong> the secondary metabolites linking these species together.<br />

17


Clade 1 unplaced groups<br />

Group A: Plectranthus melleri (P. luteus)<br />

P. esculentus<br />

Group B: P. edulis, P. punctatus<br />

Group C: P. lactiflorus, P. stachyoides<br />

Group D: P. gracillimus<br />

Group E: P. mollis, P beddomei<br />

1<br />

1a<br />

1b<br />

Group 1: Pycnostachys<br />

Group 2: Plectranthus sylvestris, P. alpinus,<br />

P. defoliatus, P. insignis, P. decurrens<br />

Group 3: P. robustus, P. baumii, P. foliatus,<br />

P. katangensis, P. insolitus<br />

Group 4: P. thysoideus, P. daviesii, P. sereti<br />

Group 5: P. glabratus, P. parishii<br />

Group 6: Anisochilus, Leocus africanum<br />

Group 7: P. helfleri, P. albicalyx<br />

Group 8: P. hadiensis, P. gr<strong>and</strong>identatus,<br />

P. madagascariensis, P. argentatus,<br />

P. parvifolius, P. congestus<br />

P. graveolens, P. asirensis<br />

Group 9: P. calycinus, P. rehmanii<br />

Group 1: Plectranthus igniarus<br />

Group 2: P. tetensis, P. barbatus, P. kivuensis,<br />

P. lanuginosus, P. caninus<br />

Group 3: P. coeruleus<br />

Group 4: P. fredericii, P. hereroensis<br />

Group 5: P. bojeri, P. rotundifolius, P. vettiveroides,<br />

P. occidentalis, Plectranthus sp. aff<br />

occidentalis, P. variifolius<br />

Group 6: P. buchananii<br />

Group 7: P. montanus, P. prostratus,<br />

P. pseudomarruboides, P. lanceolatus<br />

Group 8: P. aegyptiacus, P amboinicus<br />

Clade 2 unplaced groups Group 1: Tetradenia<br />

Group 2: Thomcr<strong>of</strong>tia<br />

Group A: Plectranthus adenophorus,<br />

Group 3: Plectranthus elegans, P. fruticosus,<br />

P. modestum<br />

P. ciliatus, P. oertendahlii, P. saccatus<br />

Group B: P. longipes<br />

Group C: P. gracilis<br />

2<br />

P.ambiguus, P. zuluensis, P. parvus<br />

P. m<strong>and</strong>alensis, P. eckonliii, P. verticillatus,<br />

Group D: P. pulcherissima<br />

P. grallatus<br />

Group E: P. pubescens, P. radiatus<br />

P. viphyensis<br />

Group 4: Aeollanthus<br />

Group 5: Capitanopsis, Dauphinea, Madlabium<br />

Group 6: Plectranthus gl<strong>and</strong>ulosus, P. longipes<br />

P. laxiflorus, P. kamerunensis, P. stolzii<br />

Key<br />

represents groups cited as being useful represents groups with no/few cited uses Groups shown in bold have recorded medicinal uses<br />

Figure 14: Illustration <strong>of</strong> the 2 clades within the Plectranthus species, categorized<br />

according to their phylogeny (reproduced from Lukhoba et al., 2006)<br />

18


2.2 Ethnobotanical uses<br />

A comprehensive review was done by Lukhoba et al. (2006), which contains<br />

ethnomedicinal information <strong>of</strong> a variety <strong>of</strong> Plectranthus species between 1934 <strong>and</strong> 2005.<br />

This is summarised in tables 1 <strong>and</strong> 2 with additional information added for published<br />

work between 2006 <strong>and</strong> 2010.<br />

Table 1 is an inventory <strong>of</strong> Plectranthus species that are used by traditional healers to help<br />

alleviate <strong>and</strong>/or heal skin, digestive, respiratory, muscular-skeletal <strong>and</strong> genito-urinary<br />

conditions as well as infections, fever <strong>and</strong> pain, while table 2 contains an inventory <strong>of</strong><br />

species used to treat heart, circulatory <strong>and</strong> blood disorders, ailments affecting the sensory<br />

<strong>and</strong> nervous system, treatment <strong>of</strong> poisonous substances in the body, inflammation <strong>and</strong><br />

medical conditions which could not be assigned to any <strong>of</strong> the other categories, labelled as<br />

‘unspecific’.<br />

A total <strong>of</strong> twenty-one Plectranthus species are used for digestive conditions, nineteen<br />

used for skin conditions <strong>and</strong> sixteen <strong>and</strong> fifteen species respectively used for respiratory<br />

conditions <strong>and</strong> infections <strong>and</strong> fever (Table 1). This in itself is evidence <strong>of</strong> the genus’<br />

widespread use ethnomedicinally.<br />

The conditions listed in table 2 are not treated by as many species as are those listed in<br />

table 1 with the highest being eight species used for nervous conditions, followed by six<br />

species to treat sensory conditions, five species for heart, circulatory <strong>and</strong> blood disorders<br />

<strong>and</strong> four species each for treatment against poisons <strong>and</strong> inflammation.<br />

Plectranthus barbatus <strong>and</strong> Plectranthus amboinicus have proven to be the most widely<br />

used species, being used in all <strong>of</strong> the medical conditions listed in Tables 1 <strong>and</strong> 2 with<br />

Plectranthus laxiflorus being used in all conditions in table 1 <strong>and</strong> three <strong>of</strong> the categories<br />

as reflected in Table 2.<br />

It must be noted that digestive conditions as categorised by Lukhoba et al. (2006) contain<br />

nausea, vomiting <strong>and</strong> diarrhoea <strong>and</strong> that “pain” can be associated with a number <strong>of</strong><br />

19


different medical conditions <strong>and</strong> in many cases, the treatment <strong>of</strong> inflammation will also<br />

result in the relief <strong>of</strong> pain. Respiratory <strong>and</strong> genito-urinary conditions could also lead to<br />

infection <strong>and</strong> fever. It is thus unclear from the information presented in Lukhoba et al.<br />

(2006) or the papers cited therein whether or not the plant extracts are treating a certain<br />

condition or the symptoms arising from these conditions as pain <strong>and</strong> fever are the<br />

symptoms <strong>of</strong> a wide variety <strong>of</strong> diseases. The same can be said about nausea, vomiting<br />

<strong>and</strong> diarrhoea. They are the symptoms <strong>of</strong> a wide variety <strong>of</strong> viral <strong>and</strong> bacterial infections.<br />

Examples <strong>of</strong> heart, circulatory <strong>and</strong> blood disorders are congestive heart failure,<br />

hypertension <strong>and</strong> angina. Epilepsy, convulsions <strong>and</strong> depression are related to the nervous<br />

system while ear <strong>and</strong> eye problems are grouped as ‘sensory’ conditions. Poisons<br />

treatment refers to the treatment <strong>of</strong> a person who has been bitten or stung by an insect or<br />

animal which posesses venom.<br />

Even though in many instances, these ethnomedicinal uses are unsubstantiated <strong>and</strong><br />

unclear, they can be useful leads in the testing <strong>of</strong> plant extracts or compounds isolated<br />

from them.<br />

20


Table 1: Summary <strong>of</strong> the medicinal uses <strong>of</strong> various Plectranthus species (Lukhoba et al.,<br />

2006*)<br />

Plectranthus<br />

species<br />

Skin<br />

conditions<br />

Digestive<br />

conditions<br />

Medical conditions<br />

Respiratory<br />

conditions<br />

Infections<br />

<strong>and</strong> fever<br />

Genitourinary<br />

conditions<br />

Pain<br />

Muscular<br />

–skeletal<br />

conditions<br />

P. aegypticus<br />

(Forssk.) C. Chr<br />

<br />

P. alpinus (Vatke)<br />

O. Ryding<br />

<br />

P. ambiguus (Bolus)<br />

Codd<br />

<br />

P. amboinicus<br />

(Lour.) Spreng<br />

<br />

P. asirensis J.R.I<br />

Wood<br />

<br />

P. barbatus Andr. <br />

P. beddomei Raiz. <br />

P. bojeri (Benth.)<br />

Hedge<br />

<br />

P. caninus Roth <br />

P. coeruleus<br />

(Gurke) Agnew<br />

<br />

P. coleoides 2<br />

P. congestus R.Br. <br />

P. decurrens<br />

(Gurke) J.K. Morton<br />

<br />

P. defoliatus Hochst.<br />

Ex Benth<br />

<br />

P. eckonlii Benth <br />

P. edulis (Vatke)<br />

Agnew<br />

<br />

P. elegans Britten <br />

P. esculentus<br />

N.E.Br.<br />

<br />

P. fruticosus L’Her. <br />

P. gl<strong>and</strong>ulosus<br />

Hook.f.<br />

P. hadienis (Forssk.)<br />

<br />

Schweinf. Ex<br />

Spreng.<br />

+ + +<br />

P. hereroensis Engl. <br />

P. ignarius<br />

(Schweinf.) Agnew<br />

<br />

P. insignis Hook.f. <br />

P. kamerunensis<br />

(Gurke)<br />

<br />

P. lactiflorus<br />

(Vatke) Agnew<br />

<br />

P. lanceolatus Bojer<br />

ex Benth<br />

Continued on next page.......<br />

<br />

21


Plectranthus<br />

species<br />

Skin<br />

conditions<br />

Digestive<br />

conditions<br />

Medical conditions<br />

Respiratory<br />

conditions<br />

Infections<br />

<strong>and</strong> fever<br />

Genitourinary<br />

conditions<br />

Pain<br />

Muscular<br />

–skeletal<br />

conditions<br />

P. lanuginosus<br />

(Benth.) Agnew<br />

<br />

P. laxiflorus Benth. <br />

P. longipes Baker <br />

P. madagascariensis<br />

Benth.<br />

<br />

P. m<strong>and</strong>alensis<br />

Baker<br />

<br />

P. melleri Baker <br />

P. mollis (Aiton)<br />

Spreng.<br />

1 <br />

P. montanus Benth. <br />

P. parviflorus<br />

(Poir.) Henckel<br />

<br />

P. prostratus Gurke<br />

P.<br />

<br />

pseudomarrubiodes<br />

Willemse<br />

<br />

P. pubescens Baker <br />

P. punctatus L’Her <br />

P. rogosus 3<br />

P. stachyoides Oliv. <br />

P. stolzii Gilli <br />

P. sylvestris Gurke <br />

P. tetensis (Bak.)<br />

Agnew<br />

P. vettiveroides<br />

<br />

(K.C. Jacob) H.I<br />

Maass<br />

<br />

Total 19 21 16 15 7 10 6<br />

* Where data was not taken from Lukhoba et al. (2006) the references are denoted by superscripts in the table<br />

<strong>and</strong> the references are given below<br />

+ No mention in the references cited within Lukhoba et al. (2006) to these conditions, however Lukhoba et al.<br />

(2006) lists these as being prevalent<br />

1 Ayyanar <strong>and</strong> Ignacimuthu, 2005<br />

2 Ignacimuthu et al., 2006<br />

3 Khan et al., 2007<br />

22


Table 2: Summary <strong>of</strong> uses <strong>of</strong> various Plectranthus species (Lukhoba et al., 2006)<br />

Plectranthus<br />

species<br />

Heart,<br />

circulatory<br />

<strong>and</strong> blood<br />

Nervous Sensory<br />

Medical conditions<br />

Poisons<br />

Treatment<br />

Inflammation Unspecific<br />

P. aegypticus<br />

(Forssk.) C. Chr.<br />

<br />

P. alpinus (Vatke)<br />

O. Ryding<br />

<br />

P. amboinicus<br />

(Lour.) Spreng<br />

<br />

P. barbatus Andr. <br />

P. bojeri (Benth.)<br />

Hedge<br />

<br />

P. congestus R.Br. <br />

P. edulis (Vatke)<br />

Agnew<br />

<br />

P. fruticosus<br />

L’Her.<br />

<br />

P. gl<strong>and</strong>ulosus<br />

Hook.f.<br />

<br />

P. grallatus Briq. <br />

P. gr<strong>and</strong>identatus<br />

Gurke<br />

P. hadienis<br />

<br />

(Forssk.)<br />

Schweinf. Ex<br />

Spreng.<br />

+<br />

P. ignarius<br />

(Schweinf.)<br />

Agnew<br />

P. kivuensis<br />

<br />

(Lebrun & Touss.)<br />

R.H. Willemse<br />

<br />

P. laxiflorus<br />

Benth.<br />

<br />

P. longipes Baker<br />

P.<br />

<br />

madagascariensis<br />

Benth.<br />

<br />

P. m<strong>and</strong>alensis<br />

Baker<br />

<br />

P. mollis (Aiton)<br />

Spreng<br />

<br />

P. montanus<br />

Benth.<br />

<br />

P. occidentalis<br />

B.J. Pollard<br />

<br />

P. pubescens<br />

Baker<br />

<br />

P. punctatus<br />

L’Her<br />

Continued on next page.....<br />

<br />

23


Plectranthus<br />

species<br />

Heart,<br />

circulatory<br />

<strong>and</strong> blood<br />

Nervous Sensory<br />

Medical conditions<br />

Poisons<br />

Treatment<br />

Inflammation Unspecific<br />

P. sp. aff.<br />

occidentalis<br />

<br />

P. stolzii Gilli<br />

P. vettiveroides<br />

<br />

(K.C. Jacob) H.I<br />

Maass<br />

P. viphyensis<br />

<br />

Brummit & J.H.<br />

Seyani<br />

<br />

Total 5 8 6 4 4 18<br />

+ No mention in the references cited within Lukhoba et al. (2006) to these conditions, however Lukhoba et<br />

al. (2006) lists these as being prevalent<br />

The modes <strong>of</strong> administration <strong>of</strong> the plant extracts differ according to the ailment being<br />

treated. The treatment <strong>of</strong> skin conditions such as burns, wounds, allergies <strong>and</strong> insect<br />

bites are treated by applying ground plant material on the affected area whilst bathing in<br />

herbal extracts may help alleviate the irritation associated with measles <strong>and</strong> chicken pox.<br />

Digestive <strong>and</strong> respiratory conditions are treated by drinking teas, infusions or decoctions<br />

to alleviate constipation, indigestion <strong>and</strong> dyspepsia as well as asthma, bronchitis <strong>and</strong><br />

other respiratory conditions <strong>and</strong> the inhalation <strong>of</strong> steam or smoke is used for the treatment<br />

<strong>of</strong> colds <strong>and</strong> influenza. Enemas <strong>and</strong> injections are also used as a means <strong>of</strong> administering<br />

plant extracts to the patient (Gurib-Fakim, 2006). For instance, the leaf infusion <strong>of</strong><br />

Plectranthus defoliatus Hochst. ex Benth. is either drunk or admininstered as an enema<br />

(Neuwinger, 2000). With regard to injections being administered, no information is<br />

given as to how the extracts are injected <strong>and</strong> whether they use conventional needles <strong>and</strong><br />

syringes or home-made equivalents as there is doubt as to where <strong>and</strong> how traditional<br />

healers would get access to needles <strong>and</strong> syringes. Furthermore, there is doubt as to<br />

whether traditional healers are trained to administer injections, <strong>and</strong> the improper use <strong>of</strong><br />

needles <strong>and</strong> syringes, for example the repeated use <strong>of</strong> these could do the patient more<br />

harm than the illness itself.<br />

24


2.3 Pharmacological/biological uses <strong>of</strong> the plant extract<br />

Extracts <strong>of</strong> Plectranthus species have shown to be active in a wide range <strong>of</strong> bioassays.<br />

These include antibacterial, antifungal, antiparastitic, anti-inflammatory, antioxidant,<br />

antitumour <strong>and</strong> insect antifeedant activity. Of these, they find most widespread activity<br />

in antibacterial <strong>and</strong> antifungal assays. References are given in the subchapters that<br />

follow.<br />

Methods used for the determination <strong>of</strong> antibacterial activity<br />

The two most common qualitative methods for testing antimicrobial activity <strong>of</strong> extracts<br />

are performed by either using the agar well assay or the disc diffusion assay. In the agar<br />

well method, wells or holes are made into the solidified, sterile agar plate once the test<br />

inoculum has been evenly distributed on the agar surface. These wells are then filled<br />

with solutions <strong>of</strong> the plant extracts <strong>and</strong> test controls. After incubation, the antimicrobial<br />

activity is determined by measuring the diameters <strong>of</strong> zones <strong>of</strong> inhibition in milimeters.<br />

In the disc diffusion assay, filter paper discs are dissolved in solutions <strong>of</strong> plant extracts<br />

<strong>and</strong> placed onto the inoculated plate. Once incubation <strong>of</strong> the plate is complete the<br />

antimicrobial activity is determined by measuring the diameters <strong>of</strong> zones <strong>of</strong> inhibition in<br />

milimeters. Wells or holes are not required for this method <strong>of</strong> testing. Since the unit <strong>of</strong><br />

measurement is the same for both test methods, results can be compared.<br />

The bioautography agar overlay method is derived from the disc diffusion assay/method<br />

<strong>and</strong> uses thin layer chromatography (TLC) plates instead <strong>of</strong> filter paper. In this method<br />

the plant extract or compound <strong>of</strong> interest is adsorbed onto the TLC plate followed by the<br />

introduction <strong>of</strong> a thin layer <strong>of</strong> inoculum onto the very same plate. The plant extract or<br />

compound being evaluated then diffuses from the TLC/adsorbent into the inoculum.<br />

After incubation <strong>of</strong> the TLC plate, the Rf values <strong>of</strong> the observed spots are recorded <strong>and</strong><br />

zones <strong>of</strong> inhibition are measured in mm.<br />

All three methods described above, are performed in triplicate to ensure reproducible<br />

results <strong>and</strong> are measured against control st<strong>and</strong>ards.<br />

25


Use <strong>of</strong> the minimum inhibitory concentration (MIC) assay allows one to determine the<br />

lowest concentration at which an extract will be active. This is normally represented in<br />

µg/ml <strong>and</strong> is carried out by serial dilutions <strong>of</strong> the plant extracts or compounds under<br />

study.<br />

Antibacterial activity <strong>of</strong> Plectranthus <strong>and</strong> Coleus plant extracts<br />

It is observed from Table 3 that the Plectranthus species are active against a variety <strong>of</strong><br />

bacterial strains but being more active toward Staphylococcus <strong>and</strong> Bacillus species with<br />

sixteen <strong>of</strong> the twenty-one Plectranthus species being active against Staphylococcus<br />

aureus <strong>and</strong> Bacillus subtilis listed in table 3, below. Although the Pseudomonas bacterial<br />

strain was also a popular choice for antibacterial testing, only eight Plectranthus species<br />

was active against this pathogen.<br />

The leaves, roots <strong>and</strong> aerial parts were the most common parts <strong>of</strong> Plectranthus which<br />

have been tested for antibacterial activity with there being one report on the activity <strong>of</strong><br />

the stems <strong>and</strong> the flowers against bacteria (Rabe <strong>and</strong> van Staden, 1998; Matu <strong>and</strong> van<br />

Staden, 2003). In one study, the root <strong>and</strong> flower extracts displayed higher antibacterial<br />

activity than the leaf extracts (Rabe <strong>and</strong> van Staden, 1998; Matu <strong>and</strong> van Staden, 2003;<br />

Mothana et al., 2008) suggesting that further antimicrobial studies <strong>of</strong> the root <strong>and</strong> flower<br />

extracts in Plectranthus should also be carried out.<br />

The solvents used to prepare the extracts for bioassays, were predominantly polar with<br />

there being just two instances where hexane was used as the solvent medium. Ideally, a<br />

high activity <strong>of</strong> the water extracts is desired as water is readily available, inexpensive <strong>and</strong><br />

safe for human consumption. An alternative to using solvents to prepare plant extracts<br />

for bioassays, is the hydrodistillation <strong>of</strong> the plant or certain parts <strong>of</strong> the plant producing<br />

an essential oil (Ascensao et al., 1998; Alsufyani et al., (see footnote X under table 3);<br />

Marwah et al., 2007; Oliveira et al., 2007; Vagionas et al., 2007). This method however,<br />

excludes the secondary metabolites which are not volatile at the temperatures being used.<br />

The polar extracts are more active than the non-polar extracts at inhibiting the growth <strong>of</strong><br />

bacteria (Matu <strong>and</strong> van Staden, 2003).<br />

26


P. barbatus <strong>and</strong> P. madagascariensis were the two most commonly tested plant species,<br />

with extracts from both plants being more susceptible to gram-positive bacteria<br />

(Staphylococcus aureus <strong>and</strong> Bacillus subtilis) than gram-negative bacteria (Ascensao et<br />

al., 1998; Rabe <strong>and</strong> van Staden, 1998; Matu <strong>and</strong> van Staden, 2003; Wellsow et al., 2006;<br />

Kisangau et al., 2007; Figueiredo et al., 2010). Coleus kilim<strong>and</strong>schari was found to be<br />

active against a wide variety <strong>of</strong> gram-negative <strong>and</strong> -positive bacteria (Vagionas et al.,<br />

2007).<br />

27


Plectranthus<br />

species<br />

Coleus<br />

kilim<strong>and</strong>schari<br />

P. aff. puberulentus<br />

Table 3: Antibacterial activity <strong>of</strong> Plectranthus <strong>and</strong> Coleus extracts<br />

Extraction<br />

medium <strong>and</strong><br />

plant<br />

part/s used<br />

80% methanol lv<br />

acetone lv<br />

Antibacterial activity Reference<br />

Bacillus cereus, Enterobacter<br />

cloacae, Escherichia coli,<br />

Klebsiella pneumoneae,<br />

Mycobacterium fortuitum,<br />

Proteus vulgaris,<br />

Pseudomonas aeruginosa,<br />

Salmonella typhimurium,<br />

Staphylococcus aureus,<br />

Streptococcus pyogenes<br />

Bacillus subtilis,<br />

Pseudomonas syringae<br />

P. argentatus B. subtilis<br />

P. barbatus<br />

petroleum ether lv ,<br />

dichloromethane lv<br />

<strong>and</strong> water lv<br />

water w<br />

hexane rt <strong>and</strong><br />

methanol rt<br />

hexane s , methanol s<br />

<strong>and</strong> water s<br />

methanol lv<br />

S. aureus, B. subtilis, E. coli,<br />

P. aeruginosa<br />

Cariogenic bacteria<br />

(Streptococcus sobrinus <strong>and</strong><br />

Streptococcus mutans)<br />

B. subtilis, S. aureus,<br />

Micrococcus luteus<br />

P. ciliatus<br />

(3 different collections)<br />

methanol lv<br />

P. ciliatus<br />

S. aureus, B. subtilis<br />

S. aureus, B. subtilis,<br />

(1 collection)<br />

M. luteus<br />

P. cylindraceus oil a<br />

E. coli, P. aeruginosa, K.<br />

pneumoniae, S. aureus, B.<br />

subtilis, Salmonella<br />

choleraesuis<br />

water<br />

P. eckonlii<br />

w Cariogenic bacteria (S.<br />

sobrinus <strong>and</strong> S. mutans)<br />

methanol lv S. aureus, B. subtilis<br />

methanol f<br />

S. aureus, B. subtilis,<br />

M. luteus, Staphylococcus<br />

epidermis<br />

Continued on next page.....<br />

Cos et al., 2002<br />

Wellsow et al.,<br />

2006<br />

Kisangau et al.,<br />

2007<br />

Figueiredo et al.,<br />

2010<br />

Matu <strong>and</strong> van<br />

Staden, 2003<br />

Rabe <strong>and</strong> van<br />

Staden, 1998<br />

Marwah et al.,<br />

2007<br />

Figueiredo et al.,<br />

2010<br />

Rabe <strong>and</strong> van<br />

Staden, 1998<br />

28


Plectranthus species<br />

P. forsteri<br />

‘marginatus’<br />

P. fruticosus<br />

(2 different collections)<br />

Extraction<br />

medium <strong>and</strong> plant<br />

part/s used<br />

P. fruticosus methanol f<br />

P. hadiensis<br />

Antibacterial activity Reference<br />

acetone lv B. subtilis, P. syringae<br />

methanol lv S. aureus, B. subtilis<br />

water rt<br />

methanol rt+lv <strong>and</strong><br />

water lv<br />

S. aureus, B. subtilis,<br />

M. luteus<br />

multi-resistant strains <strong>of</strong> S.<br />

epidermidis,<br />

Staphylococcus<br />

haemolyticus <strong>and</strong> S.<br />

aureus, the North German<br />

epidemic strain<br />

S. aureus, B. subtilis,<br />

Micrococcus flavus <strong>and</strong><br />

multi-resistant strains <strong>of</strong> S.<br />

epidermidis, S.<br />

haemolyticus <strong>and</strong> S.<br />

aureus, the North German<br />

epidemic strain<br />

hexane a 8 bacillus formulations<br />

dichloromethane a<br />

P. hereroensis acetone rt<br />

P. laxiflorus essential oil a<br />

P. madagascariensis<br />

P. madagascariensis<br />

(2 different collections)<br />

P. oribiensis<br />

P. oribiensis<br />

Continued on next page.....<br />

B. subtilis, Xanthomonas<br />

campestris<br />

S. aureus, Vibrio cholera,<br />

Streptococcus faecalis<br />

S. aureus, S. epidermis, E.<br />

coli, E. cloacae, K.<br />

pneumoniae, P. aeruginosa<br />

acetone lv B. subtilis, P. syringae<br />

essential oil a<br />

methanol lv<br />

B. subtilis, *Micrococcus<br />

sp., S. aureus, Yersinia<br />

enterocolitica<br />

S. aureus, B. subtilis,<br />

M. luteus, S. epidermis<br />

S. aureus, B. subtilis,<br />

M. luteus, S. epidermis<br />

S. aureus, B. subtilis,<br />

M. luteus, S. epidermis<br />

Wellsow et al.,<br />

2006<br />

Rabe <strong>and</strong> van<br />

Staden, 1998<br />

Mothana et al.,<br />

2008<br />

Laing et al., 2006<br />

Batista et al., 1994<br />

Vagionas et al.,<br />

2007<br />

Wellsow et al.,<br />

2006<br />

Ascensao et al.,<br />

1998<br />

Rabe <strong>and</strong> van<br />

Staden, 1998<br />

29


Plectranthus species<br />

Extraction<br />

medium <strong>and</strong> plant<br />

part/s used<br />

P. ornatus essential oil lv<br />

Antibacterial activity Reference<br />

S. aureus, S. pyogenes,<br />

E. coli, S. typhimurium<br />

P. petiolaris methanol lv S. epidermis, B. subtilis<br />

P. puberulentus acetone lv P. syringae<br />

P. rubropunctatus<br />

*Plectranthus sp.<br />

(3 hybrids)<br />

*Plectranthus sp.<br />

(1 hybrid)<br />

*Plectranthus sp.<br />

(1 hybrid)<br />

S. aureus, B. subtilis,<br />

S. epidermis<br />

S. aureus, B. subtilis<br />

methanol lv S. aureus, B. subtilis,<br />

M. luteus<br />

S. aureus, B. subtilis,<br />

S. epidermis<br />

P. strigosus<br />

S. aureus, B. subtilis,<br />

M. luteus, S. epidermis<br />

P. tenuiflorus essential oil lv<br />

S. aureus, S. pyogenes,<br />

E. coli, K. pneumoniae,<br />

P. aeruginosa<br />

P. verticillatus methanol lv S. aureus, B. subtilis,<br />

S. epidermis<br />

Oliveira et al., 2007<br />

Rabe <strong>and</strong> van<br />

Staden, 1998<br />

Wellsow et al.,<br />

2006<br />

Rabe <strong>and</strong> van<br />

Staden, 1998<br />

x Alsufyani et al.,<br />

Rabe <strong>and</strong> van<br />

Staden, 1998<br />

NB. A species <strong>of</strong> Coleus is also included in this table because <strong>of</strong> the uncertain relationship to the<br />

Plectranthus species<br />

* Unknown species<br />

x<br />

available electronically on http://www.kau.edu.sa, date accessed 27/09/2010; the date <strong>of</strong> the publication<br />

is not apparent.<br />

Key: lv: leaves, rt: roots, s: stems, a: aerial parts, w: whole plant, f: flowers<br />

Table 4 contains antifungal activity <strong>of</strong> eight Plectranthus species <strong>and</strong> one Coleus species.<br />

All <strong>of</strong> the species in table 4 were active against at least one C<strong>and</strong>ida species with six<br />

Plectranthus species being active against C<strong>and</strong>ida albicans, the most widely tested<br />

fungal pathogen. P. amboinicus <strong>and</strong> P. barbatus were the two most tested species for<br />

antifungal activity from all the Plectranthus species.<br />

From the studies reviewed, hydrodistillation seemed to be the most popular method <strong>of</strong><br />

extraction, followed by solvent extraction with water, methanol <strong>and</strong> more uncommonly<br />

solvents such as ether, hexane <strong>and</strong> dichloromethane.<br />

30


There were two comparative studies on the solvent extracts with regard to antifungal<br />

activity (Laing et al., 2006; Kisangau et al., 2007). In one study, the ether extract showed<br />

higher activity than the dichloromethane <strong>and</strong> aqueous extracts while in the other study,<br />

the hexane extract was more effective than the dichloromethane extract. This indicates<br />

that future studies on ether <strong>and</strong> hexane extracts need to be conducted since these extracts<br />

were shown to be active.<br />

The leaves are the most popular part <strong>of</strong> the plant used to make extracts for antifungal<br />

activity. Other studies mention aerial parts being used for extraction but these parts are<br />

not specified <strong>and</strong> could be the leaves, flowers, seeds or fruit. There is also one report on<br />

the roots being used. There is thus a need for more studies on the roots <strong>and</strong> stem material<br />

to be carried out for antifungal activity as not many studies have been done on these plant<br />

parts.<br />

There is also a need for comparative studies to be done with the different plant parts as<br />

well as with the solvent used for extraction. This would then provide a much clearer<br />

indication <strong>of</strong> which plant part as well as which solvent is best suited for antifungal<br />

activity <strong>and</strong> would be a good guide for phytochemists to use when choosing a suitable<br />

plant part to study.<br />

31


Plectranthus<br />

species<br />

Coleus<br />

kilim<strong>and</strong>schari<br />

P. amboinicus<br />

P. barbatus<br />

Table 4: Antifungal activity <strong>of</strong> Plectranthus <strong>and</strong> Coleus extracts<br />

Extraction<br />

medium <strong>and</strong><br />

plant<br />

part/s used<br />

80% methanol lv<br />

essential oil lv<br />

Antifungal activity Reference<br />

C<strong>and</strong>ida albicans,<br />

Microsporum canis,<br />

Trichophyton rubrum,<br />

Epidermophyton floccosum<br />

Aspergillus flavus, Aspergillus<br />

niger, Aspergillus ochraceus,<br />

Aspergillus oryzae, C<strong>and</strong>ida<br />

versatilis, Fusarium<br />

moniliforme, *Penicillium sp.,<br />

Saccharomyces cerevisiae, in<br />

stored food commodities<br />

methanol lv C<strong>and</strong>ida krusei<br />

essential oil lv<br />

C. albicans, C<strong>and</strong>ida<br />

tropicalis, C<strong>and</strong>ida<br />

guilliermondii, C<strong>and</strong>ida krusei<br />

methanol lv C<strong>and</strong>ida krusei<br />

80% methanol rt+lv C. albicans<br />

petroleum ether lv ,<br />

dichloromethane lv<br />

<strong>and</strong> water lv<br />

P. cylindraceus oil a<br />

C. albicans<br />

C. albicans, M. canis,<br />

Microsporum gypseum,<br />

T. rubrum, Trichophyton<br />

mentagrophytes<br />

Inhibits fungal spore<br />

germination <strong>and</strong> growth <strong>of</strong><br />

*Bipolaris sp., Alternaria<br />

alternate, Fusarium<br />

oxysporum, Curvularia lunata,<br />

Stemphyllum solani<br />

P. gr<strong>and</strong>is methanol lv C<strong>and</strong>ida krusei<br />

Continued on next page.....<br />

Cos et al., 2002<br />

Murthy et al.,<br />

2009<br />

Tempone et al.,<br />

2008<br />

de Oliveira et<br />

al., 2007<br />

Tempone et al.,<br />

2008<br />

Runyoro et al.,<br />

2006<br />

Kisangau et al.,<br />

2007<br />

Marwah et al.,<br />

2007<br />

Tempone et al.,<br />

2008<br />

32


Plectranthus<br />

species<br />

P. hadiensis<br />

P. laxiflorus<br />

Extraction<br />

medium <strong>and</strong><br />

plant<br />

part/s used<br />

hexane a<br />

dichloromethane a<br />

Antifungal activity Reference<br />

Sclerotinia sclerotiorum,<br />

Rhizoctonia solani, *C<strong>and</strong>ida<br />

species<br />

S. sclerotiorum, *C<strong>and</strong>ida<br />

species<br />

essential oil a C. albicans, C. tropicalis,<br />

C. glabrata<br />

P. neochilus methanol lv C<strong>and</strong>ida krusei<br />

P. tenuiflorus essential oil lv C. albicans<br />

Laing et al.,<br />

2006<br />

Vagionas et al.,<br />

2007<br />

Tempone et al.,<br />

2008<br />

x<br />

Alsufyani et<br />

al.,<br />

NB. A species <strong>of</strong> Coleus is also included in this table because <strong>of</strong> the uncertain relationship to the<br />

Plectranthus species<br />

* Unknown species<br />

x<br />

available electronically on http://www.kau.edu.sa, date accessed 27/09/2010; the date <strong>of</strong> the publication<br />

is not apparent.<br />

Key: lv: leaves, rt: roots, s: stems, a: aerial parts, w: whole plant, f: flowers<br />

Besides posessing antifungal <strong>and</strong> antibacterial activity, Plectranthus <strong>and</strong> Coleus species<br />

also have anti-tumor, antiparasitic, antioxidant, antifeedant <strong>and</strong> anti-inflammatory<br />

properties, as shown in Table 5a.<br />

P. amboinicus appears to be the most commonly used Plectranthus species, being active<br />

against a wide variety <strong>of</strong> pharmacological activities. P. barbatus was also a popular plant<br />

species used, being active in three <strong>of</strong> the five pharmacological activities contained in<br />

table 5a. Other Plectranthus species are used less frequently.<br />

The leaves seem to be the most popular plant part used to inhibit the growth <strong>of</strong> parasites,<br />

to act as an antioxidant <strong>and</strong> antifeedant as well as for the treatment <strong>of</strong> inflammation <strong>and</strong><br />

tumors. There has been only two reports on root extracts being used <strong>and</strong> just one report<br />

on the stem being used. More research on the root, stem <strong>and</strong> aerial parts is required as it<br />

is still unclear as to which plant part is the most active.<br />

33


Methanol, ethanol <strong>and</strong> water seem to be used more frequently than hexane <strong>and</strong> acetone<br />

for making extracts to be tested in these bioassays. There has been one report where<br />

hexane <strong>and</strong> acetone extracts were used. This may limit the studies to polar extracts <strong>and</strong><br />

more studies using hexane, dichloromethane <strong>and</strong> acetone is needed to ascertain whether<br />

the non-polar fractions are active in these same bioassays.<br />

Table 5a: Antiparasitic, anti-inflammatory, antioxidant, antitumour <strong>and</strong> insect antifeedant<br />

activity <strong>of</strong> polar extracts from seven Plectranthus species<br />

Plectranthus<br />

species<br />

P. amboinicus<br />

Solvent <strong>of</strong><br />

Extraction<br />

aqueous lv<br />

methanol lv<br />

P. barbatus methanol lv<br />

P. cylindraceus essential oil a<br />

P. gr<strong>and</strong>is methanol lv<br />

a, lv<br />

P. marruboides essential oil<br />

P. neochilus methanol lv<br />

P. punctatus<br />

aqueous lv <strong>and</strong><br />

80%<br />

methanol lv<br />

Continued on next page.....<br />

Pharmacological details Reference<br />

Antiparastic activity<br />

inhibits growth <strong>of</strong><br />

Plasmodium berghei yoelii<br />

antileishmanial activity<br />

against Leishmania<br />

chagasi <strong>and</strong> Leishmania<br />

amazonensis<br />

antileishmanial activity<br />

against Leishmania<br />

chagasi <strong>and</strong> Leishmania<br />

amazonensis<br />

nematicidal activity against<br />

Meloidogyne javanica<br />

antileishmanial activity<br />

against Leishmania<br />

chagasi <strong>and</strong> Leishmania<br />

amazonensis<br />

toxic fumigant against<br />

Anopheles gambiae<br />

antileishmanial activity<br />

against Leishmania<br />

chagasi <strong>and</strong> Leishmania<br />

amazonensis<br />

ovicidal <strong>and</strong> larvicidal<br />

activity against<br />

Haemonchus contortus<br />

Periyanayagam et<br />

al., 2008<br />

Tempone et al.,<br />

2008<br />

Tempone et al.,<br />

2008<br />

Onifade et al.,<br />

2008<br />

Tempone et al.,<br />

2008<br />

Omolo et al., 2005<br />

Tempone et al.,<br />

2008<br />

Tadesse et al.,<br />

2009<br />

34


Plectranthus<br />

species<br />

Coleus<br />

kilim<strong>and</strong>schari<br />

Solvent <strong>of</strong><br />

Extraction<br />

80%<br />

methanol lv<br />

Pharmacological details Reference<br />

Antiviral activity<br />

Antiviral activity against<br />

DNA-virus Herpes simplex<br />

virus type 1<br />

Antioxidant Activity<br />

P. amboinicus essential oil lv antiradical activity<br />

P. barbatus<br />

P. eckonlii<br />

P. fruticosus<br />

P. hadiensis<br />

aqueous lv<br />

methanol rt+lv<br />

<strong>and</strong> water rt+lv<br />

P. lanuginosus aqueous lv<br />

antioxidant activity<br />

confirmed by DPPH <strong>and</strong> βcarotene/linoleic<br />

acid test<br />

assays<br />

antiradical activity<br />

antioxidant activity<br />

confirmed by DPPH <strong>and</strong> βcarotene/linoleic<br />

acid test<br />

assays<br />

P. laxiflorus essential oil a antiradical activity<br />

P. verticillatus aqueous lv<br />

P. amboinicus<br />

P. barbatus<br />

Continued on next page....<br />

70% ethanol lv<br />

antioxidant activity<br />

confirmed by DPPH <strong>and</strong> βcarotene/linoleic<br />

acid test<br />

assays<br />

Anti-inflammatory activity<br />

Cos et al., 2002<br />

Murthy et al.,<br />

2009<br />

Fale et al., 2009<br />

Mothana et al.,<br />

2008<br />

Fale et al., 2009<br />

Vagionas et al.,<br />

2007<br />

Fale et al., 2009<br />

Gurgel et al., 2009<br />

composition anti-inflammatory Wong et al., 2009<br />

hexane rt, s+lv ,<br />

water rt, s+lv <strong>and</strong><br />

rt, s+lv<br />

methanol<br />

Matu <strong>and</strong> van<br />

Staden, 2003<br />

35


Plectranthus<br />

species<br />

P. amboinicus<br />

P. aff.<br />

puberulentus<br />

P. forsteri<br />

‘marginatus’<br />

P. puberulentus<br />

P. saccatus<br />

P. zuluensis<br />

Solvent <strong>of</strong><br />

Extraction<br />

70% ethanol lv<br />

leaf juice<br />

composition<br />

(orally,<br />

topically or<br />

injections)<br />

acetone lv<br />

Pharmacological details Reference<br />

Anti-tumor activity<br />

anti-tumor (Sarcoma-180<br />

ascite <strong>and</strong> Ehrlich ascite<br />

carcinoma) activity in mice<br />

Inhibits growth <strong>of</strong><br />

carcinoma (HepG2, Huh7)<br />

<strong>and</strong> melanoma (Bowes)<br />

cells<br />

Insect-antifeedant activity<br />

antifeedant activity against<br />

S. littoralis<br />

Gurgel et al., 2009<br />

Cheng-Yu et al.,<br />

2006<br />

Wellsow et al.,<br />

2006<br />

NB. The term ‘mixture’ refers to the testing <strong>of</strong> a composition comprising <strong>of</strong> a Plectranthus plant extract<br />

with either another plant extract/essential oil (not necessarily belonging to the Plectranthus species) or an<br />

appropriate pharmaceutical drug.<br />

Key: lv: leaves, rt: roots, s: stems, a: aerial parts, w: whole plant, f: flowers<br />

Plectranthus <strong>and</strong> Coleus species act as abortificients (Almeida <strong>and</strong> Lemonica, 2000),<br />

prevent the formation <strong>of</strong> plaque build-up on teeth (Figueiredo et al., 2010), are used<br />

topically as a barrier against harmful UV rays (Chen et al., 2009), act as a hair growth<br />

stimulant (Kiyoshi et al., 2005) <strong>and</strong> inhibitor (Kazuo et al., 2006), are used in the<br />

treatment <strong>of</strong> rheumatoid arthritis (Rey-Yuh et al., 2008; Jui-Yu et al., 2009), act as a<br />

scorpion venom antidote (Uawonggul et al., 2006) <strong>and</strong> are used to treat Alzheimers<br />

disease (Fale et al., 2009) as well as many other ailments, disorders <strong>and</strong> diseases (table<br />

5b).<br />

P. amboinicus <strong>and</strong> P. barbatus seem to be the most commonly tested species each having<br />

widespread application. Once again the leaves appear to be the most popular plant part<br />

used. There has been just one study on the root extract. The stems <strong>and</strong> roots need to be<br />

studied further.<br />

36


There are plant extracts in table 5b which have been tested as mixtures either in<br />

combination with other plant extracts or pharmaceutical agents, which highlights the<br />

synergistic effect <strong>of</strong> various Plectranthus <strong>and</strong> Coleus species.<br />

Table 5b: Other important inhibitory activity <strong>of</strong> polar extracts from Plectranthus <strong>and</strong><br />

Coleus species<br />

Plectranthus<br />

species<br />

C. barbatus<br />

C. foskohlii<br />

*Coleus<br />

species<br />

P. amboinicus<br />

Continued on next page.....<br />

Solvent <strong>of</strong><br />

Extraction<br />

Other inhibitory activity<br />

Other Activities Reference<br />

70% ethanol lv anti-implantation effects<br />

in rats<br />

Almeida <strong>and</strong><br />

Lemonica, 2000<br />

mixture prevents foul breath Sonoko et al., 2005<br />

prevention <strong>of</strong> progression<br />

<strong>of</strong> diabetic complications<br />

<strong>and</strong> skin aging<br />

Masayuki et al.,<br />

2007<br />

mixture<br />

antispasmodic effect on<br />

respiratory tract smooth<br />

muscle<br />

Rongqiu et al.,<br />

2005<br />

treat all forms <strong>of</strong> obesity<br />

<strong>and</strong> associated metabolic<br />

syndromes<br />

Marcin et al., 2005;<br />

Han et al., 2005<br />

hair growth stimulant Kiyoshi et al., 2005<br />

body hair growth inhibitor Kazuo et al., 2006<br />

food mixture<br />

improves bowel<br />

movement<br />

antiasthmatic, cough-<br />

Motoyuki et al.,<br />

2007<br />

composition<br />

relieving,phlegmexpelling, treats acute <strong>and</strong><br />

chronic bronchitis<br />

Jian et al., 2006<br />

food/cosmetic promotes longevity <strong>and</strong><br />

compostions, increases bone mass <strong>and</strong> Sayuri et al. 2008<br />

powder decreases body weight<br />

mixture<br />

remedy for menopause<br />

disorder<br />

Chiyoko et al.,<br />

2005<br />

aqueous lv<br />

acts as scorpion venom<br />

antidote against<br />

Heterometrus laoticus<br />

Uawonggul et al.,<br />

2006<br />

mixture treat rheumatoid arthritis Jui-Yu et al., 2009<br />

essential oil mixture<br />

relaxing uterus <strong>and</strong><br />

alleviating dysmenorrhea<br />

Jiali et al., 2007<br />

37


Plectranthus<br />

species<br />

P. amboinicus<br />

P. barbatus<br />

P. eckonlii<br />

P. fruticosus<br />

Solvent <strong>of</strong><br />

Extraction<br />

composition<br />

essential oil mixture<br />

(applied on belly)<br />

composition (taken<br />

orally or applied<br />

topically)<br />

aqueous lv<br />

Other Activities Reference<br />

treatment <strong>of</strong> skin disorders<br />

<strong>and</strong> healing <strong>of</strong> wounds<br />

especially in diabetic<br />

patients<br />

Relieves menstrual pain<br />

by relaxing the uterus,<br />

tested in mice<br />

Treat rheumatoid arthritis<br />

(tested in animals)<br />

helps in treatment <strong>of</strong><br />

Alzheimers disease<br />

water lv prevents dental caries<br />

70:30<br />

ethanol:propylene<br />

glycol rt<br />

aqueous lv<br />

used topically as a<br />

mixture for UV<br />

protection. Tested (in<br />

vitro) on human <strong>and</strong><br />

guinea pig skin<br />

helps in treatment <strong>of</strong><br />

Alzheimers disease<br />

waterlv prevents dental caries<br />

aqueous lv<br />

essential oil (diethyl<br />

ether extract)<br />

essential oil lv<br />

P. gr<strong>and</strong>is leaves<br />

P. lanuginosus aqueous lv<br />

*Plectranthus<br />

species<br />

hot water<br />

P. striatus mixture<br />

Continued on next page....<br />

helps in treatment <strong>of</strong><br />

Alzheimers disease<br />

antifertility activity by<br />

inhibiting implantations,<br />

in rats<br />

embryotoxic properties, in<br />

rats<br />

possesses gastroprotective<br />

properties<br />

helps in treatment <strong>of</strong><br />

Alzheimers disease<br />

increases blood vessel<br />

elasticity in stroke prone<br />

rats<br />

promotes function <strong>of</strong><br />

gallbladder<br />

Rey-Yuh et al.,<br />

2007<br />

Chia-Li et al., 2007<br />

Rey-Yuh et al.,<br />

2008<br />

Fale et al., 2009<br />

Figueiredo et al.,<br />

2010<br />

Chen et al., 2009<br />

Fale et al., 2009<br />

Figueiredo et al.,<br />

2010<br />

Fale et al., 2009<br />

Chamorro et al.,<br />

1991<br />

Pages et al., 1988<br />

Rodrigeus et al.,<br />

2010<br />

Fale et al., 2009<br />

Tetsuji et al., 2007<br />

Yaoliang et al.,<br />

2006<br />

38


Plectranthus<br />

species<br />

Solvent <strong>of</strong><br />

Extraction<br />

P. ternifolius mixture<br />

P. verticillatus aqueouslv<br />

Other Activities Reference<br />

treat liver function<br />

impairment<br />

helps in treatment <strong>of</strong><br />

Alzheimers disease<br />

Guo et al., 2006<br />

Fale et al., 2009<br />

NB. Coleus species are also included in this table because <strong>of</strong> the uncertain relationship to the Plectranthus<br />

species<br />

* Unknown species<br />

Key: lv: leaves, rt: roots, s: stems, a: aerial parts, w: whole plant, f: flowers<br />

2.4 The phytochemistry <strong>of</strong> Plectranthus<br />

The main phytochemical constituents <strong>of</strong> Plectranthus are diterpenoids, with about one-<br />

hundred <strong>and</strong> forty-seven <strong>of</strong> these compounds being isolated from the coloured leaf-gl<strong>and</strong>s<br />

<strong>of</strong> Plectranthus species, the majority <strong>of</strong> which were highly modified abietanoids.<br />

Essential oils, monoterpenoids, sesquitepenoids <strong>and</strong> phenolics have also been isolated<br />

from Plectranthus species (Abdel-Mogib et al., 2002; Lukhoba et al., 2006).<br />

Compounds 27 to 174 are grouped into five categories, the royleoanone-type abietanes<br />

(compounds 27 to 69), the spirocoleons (compounds 70 to 108), vinylogous quinones<br />

(compounds 109 to 130), coleon-type abietanes (compounds 131 to 167) <strong>and</strong> the<br />

miscellaneous abietanes (compounds 168 to 174) which do not resemble any <strong>of</strong> the<br />

abietanes in the previous four categories.<br />

Twenty royleanone type abietanes with the presence <strong>of</strong> a hydroxybenzoquinone or p-<br />

quinoid ring C system <strong>and</strong> an isopropyl group at C-13 have been isolated from eleven<br />

known Plectranthus species <strong>and</strong> three Coleus species (Table 6a). These compounds all<br />

have methyl groups at C-4 <strong>and</strong> C-10 with the exception <strong>of</strong> compound 42 where the<br />

methyl group at C-10 is oxidized to an alcohol. Compound 45 is notably different from<br />

compounds 27 to 46, as the substituent at C-12 is an acetyl group. At C-6 <strong>and</strong> C-7 <strong>of</strong><br />

compounds 27 to 42, there are either hydroxy, aldehyde or acetyl groups attached to these<br />

positions, with the substituent at C-6 being in the beta position. In compounds 43 to 46,<br />

39


variation is observed within ring B with a double bond being present either at the ∆ 5 or ∆ 6<br />

positions. Compound 46 has an epoxide ring in place <strong>of</strong> the olefinic bond at ∆ 8 .<br />

Table 6a: Royleanone-type abietanes with an isopropyl side chain at C-13, isolated from<br />

Plectranthus <strong>and</strong> Coleus species<br />

Compound Name Synonym<br />

27<br />

28<br />

29<br />

30<br />

31<br />

32<br />

Continued on next page…..<br />

12-hydroxy-8,12abietadiene-11,14-dione <br />

7α,12-dihydroxy-8,12abietadiene-11,14-dione <br />

7β,12-dihydroxy-8,12abietadiene-11,14-dione<br />

7-formyl-12-hydroxy-<br />

8,12-abietadiene-11,14dione<br />

7α-acetoxy-12-hydroxy-<br />

8,12-abietadiene-11,14dione <br />

6β,12-dihydroxy-8,12abietadiene-11,14-dione<br />

royleanone<br />

horminone<br />

taxoquinone<br />

7-Oformylhorminone <br />

7αacetoxyroyleanone <br />

6βhydroxyroyleanone<br />

Isolated from<br />

Plectranthus (P) or<br />

Coleus (C) species<br />

P. gr<strong>and</strong>identatus;<br />

C. carnosus;<br />

*Plectranthus<br />

species<br />

P. hereroensis;<br />

P. gr<strong>and</strong>identatus;<br />

C. carnosus;<br />

*Plectranthus<br />

species;<br />

P. sanguineus<br />

*Plectranthus<br />

species<br />

P. sanguineus<br />

Reference<br />

Gaspar-Marques et al.,<br />

2006;<br />

Cerqueira et al., 2004;<br />

Yoshizaki et al., 1979;<br />

Hensch et al., 1975<br />

Gaspar-Marques et al.,<br />

2006;<br />

Batista et al., 1994;<br />

Yoshizaki et al., 1979;<br />

Hensch et al., 1975;<br />

Matloubi-Moghadam et<br />

al., 1987<br />

Hensch et al., 1975<br />

Matloubi-Moghadam et<br />

al., 1987<br />

C. carnosus Yoshizaki et al., 1979<br />

P. gr<strong>and</strong>identatus;<br />

C. carnosus;<br />

P. sanguineus<br />

Gaspar-Marques et al.,<br />

2006;<br />

Yoshizaki et al., 1979;<br />

Matloubi-Moghadam et<br />

al., 1987<br />

40


Compound Name Synonym<br />

33<br />

34<br />

35<br />

36<br />

37<br />

38<br />

Continued on next page……<br />

6β,7α,12-trihydroxy-<br />

8,12-abietadiene-11,14dione<br />

6β,7β,12-trihydroxy-<br />

8,12-abietadiene-11,14-<br />

dione <br />

7α-acyloxy-6β,12dihydroxy-8,12abietadiene-11,14-dione <br />

7α-acetoxy-6β,12dihydroxy-8,12abietadiene-11,14-dione <br />

7β-acetoxy-6β,12dihydroxy-8,12abietadiene-11,14-dione <br />

7α-formyloxy-6β,12dihydroxy-8,12abietadiene-11,14-dione <br />

6β,7αdihydroxyroyleanone <br />

6β,7βdihydroxyroyleanone <br />

7α-acyloxy-6βhydroxyroyleanone <br />

7α-acetoxy-6βhydroxyroyleanone <br />

7β-acetoxy-6βhydroxyroyleanone<br />

7α-formyloxy-6β-<br />

hydroxyroyleanone<br />

Isolated from<br />

Plectranthus (P) or<br />

Coleus (C) species<br />

P. gr<strong>and</strong>identatus;<br />

C. carnosus;<br />

P. argentatus;<br />

*Plectranthus<br />

species;<br />

P. sanguineus;<br />

P. edulis;<br />

P. hadiensis;<br />

P. fasciculatus<br />

Reference<br />

Gaspar-Marques et al.,<br />

2006;<br />

Gaspar-Marques et al.,<br />

2002;<br />

Cerqueira et al., 2004;<br />

Yoshizaki et al., 1979;<br />

Alder et al., 1984a;<br />

Hensch et al., 1975;<br />

Matloubi-Moghadam et<br />

al., 1987;<br />

Kunzle et al., 1987;<br />

Laing et al., 2006;<br />

Rasikari, 2007<br />

C. zeylanicus Mehrota et al., 1989<br />

P. gr<strong>and</strong>identatus<br />

P. gr<strong>and</strong>identatus;<br />

C. carnosus;<br />

P. argentatus;<br />

*Plectranthus<br />

species;<br />

C. zeylanicus;<br />

P. sanguineus;<br />

P. hadiensis;<br />

P. actites<br />

Cerqueira et al., 2004;<br />

Gaspar-Marques et al.,<br />

2002<br />

Teixera et al., 1997;<br />

Gaspar-Marques et al.,<br />

2006;<br />

Gaspar-Marques et al.,<br />

2002;<br />

Cerqueira et al., 2004;<br />

Yoshizaki et al., 1979;<br />

Alder et al., 1984a;<br />

Hensch et al., 1975;<br />

Mehrotra et al., 1989;<br />

Matloubi-Moghadam et<br />

al., 1987;<br />

van Zyl et al., 2008;<br />

Rasikari, 2007<br />

C. zeylanicus Mehrotra et al., 1989<br />

P. myrianthus;<br />

P. argentatus;<br />

P. hadiensis;<br />

P. sanguineus<br />

Miyase et al., 1977a;<br />

Alder et al., 1984a;<br />

van Zyl et al., 2008;<br />

Matloubi-Moghadam et<br />

al., 1987<br />

41


Compound Name Synonym<br />

39<br />

40<br />

41<br />

42<br />

43<br />

44<br />

45<br />

46<br />

* unknown species<br />

6β-formyloxy-7α,12dihydroxy-8,12-<br />

abietadiene-11,14-dione <br />

12-hydroxy-8,12abietadiene-7,11,14-<br />

trione <br />

6β,12-dihydroxy-8,12abietadiene-7,11,14-<br />

trione <br />

7α-acetoxy-6β,12,20trihydroxy-8,12abietadiene-11,14-dione <br />

12-hydroxy-6,8,12abietatriene-11,14-dione <br />

6,12-dihydroxy-5,8,12abietatriene-7,11,14trione <br />

12,16-diacetoxy-6hydroxy-5,8,12abietatriene-7,11,14-<br />

trione <br />

8α,9α-epoxy-6,12dihydroxy-5,12abietadiene-7,11,14trione <br />

6β-formyloxy-7αhydroxyroyleanone<br />

7-oxoroyleanone<br />

Isolated from<br />

Plectranthus (P) or<br />

Coleus (C) species<br />

Reference<br />

P. argentatus Alder et al., 1984a<br />

*Plectranthus<br />

species<br />

5,6-dihydrocoleon U P. sanguineus<br />

7α-acetoxy-6β,20dihydroxyroyleanone <br />

6,7dehydroroyleanone<br />

Coleon U quinone<br />

Hensch et al., 1975<br />

Matloubi-Moghadam et<br />

al., 1987<br />

C. carnosus Yoshizaki et al., 1979<br />

P. gr<strong>and</strong>identatus;<br />

C. carnosus;<br />

*Plectranthus<br />

species;<br />

P. graveolens<br />

P. forsteri<br />

‘marginatus’;<br />

C. xanthanthus;<br />

P. argentatus;<br />

P. sanguineus<br />

Gaspar-Marques et al.,<br />

2006;<br />

Yoshizaki et al., 1979;<br />

Hensch et al., 1975;<br />

Rasikari, 2007<br />

Wellsow et al., 2006;<br />

Mei et al., 2002;<br />

Alder et al., 1984a;<br />

Matloubi-Moghadam et<br />

al., 1987<br />

Xanthanthusin H C. xanthanthus Mei et al. 2002<br />

8α,9α-epoxycoleon<br />

U quinone<br />

C. xanthanthus;<br />

P. argentatus;<br />

P. sanguineus<br />

Mei et al. 2002;<br />

Alder et al., 1984a;<br />

Matloubi-Moghadam et<br />

al., 1987<br />

42


4<br />

20<br />

10<br />

O<br />

H<br />

19 18<br />

6 7<br />

R 1<br />

OH<br />

C<br />

13<br />

R 2<br />

O<br />

R1 R2<br />

(27) H H<br />

(28) H α-OH<br />

(29) H β-OH<br />

(30) H α−ΟCΗ(Ο)<br />

(31) H α-OC(O)CH3<br />

(32) OH H<br />

(33) OH α-OH<br />

(34) OH β-OH<br />

(35) OH Fatty acid ester<br />

(36) OH α-OC(O)CH3<br />

(37) OH β-OC(O)CH3<br />

(38) OH α-OCH(O)<br />

(39) OCH(O) α-OH<br />

3<br />

1<br />

20<br />

O<br />

H<br />

19 18<br />

10<br />

6<br />

(43)<br />

OH<br />

12<br />

7<br />

O<br />

3<br />

3<br />

1<br />

20<br />

O<br />

H<br />

19 18<br />

1<br />

20<br />

O<br />

H<br />

19 18<br />

R<br />

12<br />

7<br />

OH<br />

R<br />

(40) H<br />

(41) OH<br />

12<br />

OH<br />

7<br />

R 1<br />

O<br />

R 2<br />

R1 R2<br />

(44) OH CH3<br />

(45) OC(O)CH3 CH2OC(O)CH3<br />

O<br />

O<br />

O<br />

O<br />

H<br />

19 18<br />

OH<br />

OH<br />

12<br />

HOH2C 1<br />

O<br />

6 7<br />

20<br />

11 13<br />

10 8<br />

4<br />

O<br />

(42)<br />

OH<br />

OCCH 3<br />

Seven compounds 47 to 53 consisting <strong>of</strong> two abietane compounds joined either by<br />

oxygen or directly by carbon atoms from C-7 in one abietane to C-11' <strong>and</strong> C-12' (as in<br />

compound 47) or to C-7' <strong>and</strong> C-14' (as in compound 51) in the other have also been<br />

isolated from Plectranthus species. These have been isolated from P. gr<strong>and</strong>identatus, P.<br />

sanguineus, P. myrinathus <strong>and</strong> C. carnosus with P. gr<strong>and</strong>identatus yielding all seven<br />

5<br />

O<br />

OH<br />

(46)<br />

8<br />

O<br />

O<br />

O<br />

43


compounds (Table 6b). Depending on the orientation at C-7 <strong>and</strong> how this carbon atom<br />

joins to the next abietane, isomers result as in compounds 47 <strong>and</strong> 48; 49 <strong>and</strong> 50; <strong>and</strong> 51<br />

<strong>and</strong> 52. Compound 53 is a dimer joined at C-7 <strong>of</strong> both compounds. These compounds<br />

are difficult to name systematically <strong>and</strong> therefore only the common names are given in<br />

Table 6b.<br />

Table 6b: Royleanone-type abietane dimers isolated from Plectranthus <strong>and</strong> Coleus<br />

species<br />

Compound Common name<br />

47 Gr<strong>and</strong>idone A<br />

Isolated from<br />

Plectranthus (P)<br />

or Coleus (C)<br />

species<br />

P. gr<strong>and</strong>identatus;<br />

P. sanguineus<br />

48 7-epigr<strong>and</strong>idone A P. gr<strong>and</strong>identatus;<br />

49 Gr<strong>and</strong>idone B P. myrianthus;<br />

50 7-epigr<strong>and</strong>idone B<br />

C. carnosus;<br />

P. sanguineus<br />

51 Gr<strong>and</strong>idone D P. gr<strong>and</strong>identatus;<br />

52 7-epigr<strong>and</strong>idone D<br />

53 Gr<strong>and</strong>idone C<br />

2<br />

19<br />

4<br />

10<br />

O<br />

H<br />

18<br />

2'<br />

19'<br />

6 7<br />

O<br />

4'<br />

9<br />

11<br />

OH<br />

14<br />

β<br />

O<br />

O<br />

α<br />

12'<br />

O<br />

11'<br />

9'<br />

7'<br />

16<br />

O<br />

17<br />

16'<br />

OH<br />

P. myrianthus;<br />

C. carnosus<br />

17'<br />

18'<br />

OH<br />

ΟΗ<br />

(47) (48)<br />

Ο<br />

Η<br />

Ο<br />

7<br />

ΟΗ<br />

Ο<br />

β<br />

α<br />

Reference<br />

Cerqueira et al., 2004;<br />

Gaspar-Marques et al.,<br />

2002<br />

Uchida et al., 1981;<br />

Matloubi-Moghadam et al.,<br />

1987<br />

Ο<br />

Ο<br />

Uchida et al., 1981<br />

Ο<br />

ΟΗ<br />

44


19<br />

O<br />

20<br />

9<br />

11<br />

4 6 7<br />

OH<br />

O<br />

O<br />

H<br />

H<br />

18<br />

O<br />

O<br />

7'<br />

6'<br />

9'<br />

4'<br />

14'<br />

17'<br />

12'<br />

20' O<br />

OH<br />

16'<br />

14<br />

16<br />

O<br />

17<br />

O<br />

H<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

OH<br />

OH<br />

O<br />

H<br />

H<br />

O<br />

O<br />

(49) (50)<br />

O<br />

H<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

H<br />

O<br />

O<br />

O<br />

OH<br />

(51) (52) (53)<br />

Seventeen compounds with linear side-chains at C-13 instead <strong>of</strong> the isopropyl group,<br />

compounds 54 to 69 were isolated from P. hereroensis, P. edulis, P. lanuginosus, P.<br />

sanguineus <strong>and</strong> C. coerulescens (Table 6c). P. lanuginosus yielded the highest number<br />

<strong>of</strong> compounds compared to the other species which yielded less than five compounds.<br />

The side chains are either saturated as in 54, contain a double bond as in compounds 55-<br />

63, an acetyl group as in compound 64 or an alcohol as in compounds 65, 68 <strong>and</strong> 69.<br />

Compounds 57 <strong>and</strong> 61 <strong>and</strong> 65-69 have functional groups at C-3 with 66-69 being abeo-<br />

abietanes where a methyl from C-4 has migrated to C-3.<br />

O<br />

O<br />

H<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

H<br />

O<br />

O<br />

7<br />

OH<br />

H<br />

H<br />

7'<br />

OH<br />

O<br />

O<br />

H<br />

O<br />

O<br />

45


Table 6c: Royleanone-type abietanes with a linear side chain at C-13 isolated from<br />

Plectranthus <strong>and</strong> Coleus species<br />

Compound Name Synonym<br />

54<br />

55<br />

56<br />

57<br />

58<br />

59<br />

60<br />

61<br />

62<br />

63<br />

64<br />

Continued on next page….<br />

16-acetoxy-7α,12-dihydroxy-<br />

8,12-abietadiene-11,14-dione<br />

7α,12-dihydroxy-<br />

17(15→16)-abeoabieta-<br />

8,12,16-triene-11,14-dione<br />

6β,7α,12-trihydroxy-<br />

17(15→16)-abeoabieta-<br />

8,12,16-triene-11,14-dione<br />

3α-formyloxy-6β,7α,12trihydroxy-17(15→16)abeoabieta-8,12,16-triene-<br />

11,14-dione<br />

19-formyloxy-6β,7α,12trihydroxy-17(15→16)abeoabieta-8,12,16-triene-<br />

11,14-dione<br />

7α-ethoxy-6β,12,19trihydroxy-17(15→16)abeoabieta-8,12,16-triene-<br />

11,14-dione<br />

12-hydroxy-17(15→16)abeoabieta-6,8,12,16-<br />

tetraene-11,14-dione<br />

3α-formyloxy-12-hydroxy-<br />

17(15→16)-abeoabieta-<br />

6,8,12,16-tetraene-11,14-<br />

dione<br />

12,19-dihydroxy-<br />

17(15→16)-abeoabieta-<br />

6,8,12,16-tetraene-11,14-<br />

dione<br />

12-hydroxy-19-formyloxy-<br />

17(15→16)-abeoabieta-<br />

6,8,12,16-tetraene-11,14dione<br />

16-acetoxy-7α,12-dihydroxy-<br />

8,12-abietadiene-11,14-dione<br />

6β,7α-dihydroxy(allyl)<br />

royleanone<br />

Lanugone D<br />

Lanugone E<br />

Lanugone A<br />

Lanugone B<br />

Lanugone C<br />

Isolated from<br />

Plectranthus<br />

(P) or Coleus<br />

(C) species<br />

P. hereroensis<br />

P. hereroensis<br />

P. sanguineus<br />

Reference<br />

Gaspar-Marques et<br />

al., 2006;<br />

Batista et al., 1995<br />

Gaspar-Marques et<br />

al., 2006;<br />

Batista et al., 1994<br />

Matloubi-<br />

Moghadam et al.,<br />

1987<br />

P. edulis Kunzle et al., 1987<br />

P. lanuginosus Schmid et al., 1982<br />

P. edulis;<br />

P. lanuginosus<br />

Kunzle et al., 1987;<br />

Schmid et al., 1982<br />

P. edulis Kunzle et al., 1987<br />

P. lanuginosus Schmid et al., 1982<br />

P. hereroensis Batista et al., 1995<br />

46


Compound Name Synonym<br />

65<br />

66<br />

67<br />

68<br />

69<br />

19 18<br />

OH<br />

O 11<br />

15<br />

OCCH3 20<br />

1<br />

10<br />

13<br />

14<br />

O<br />

16<br />

H<br />

17(1516)abeo-3α,18diacetoxy-6β,7α,12,16tetrahydroxy-8,12-<br />

abietadiene-11,14-dione <br />

3β-acetoxy-6β,7α,12trihydroxy-17(15→16),18(4→3)bisabeo-abieta-<br />

4(18),8,12,16-tetraene-<br />

OH<br />

11,14-dione<br />

17(1516),19α(43)bisabeo-6β,7α,12trihydroxy-4(18),8,12,16-<br />

abietatetraene-11,14-dione <br />

17(1516),19β(43)bisabeo-6β,7α,12,16tetrahydroxy-4(18),8,12-<br />

abietatriene-11,14-dione <br />

17(1516),19β(43)bisabeo-6β,12,16trihydroxy-7α-methoxy-<br />

4(18),8,12-abietatriene-<br />

11,14-dione<br />

O<br />

R 1<br />

1<br />

20<br />

O<br />

H<br />

19 18<br />

17(1516),19(43)bisabeo-6β,7α,16trihydroxyroyleanone <br />

17(1516),19(43)bisabeo-6β,16-dihydroxy-<br />

7α-methoxyroyleanone<br />

10<br />

6<br />

R 2<br />

OH<br />

11 13<br />

14<br />

OH<br />

(54) R1 R2<br />

(55) H H<br />

(56) H OH<br />

(57) OCH(O) OH<br />

15<br />

O<br />

16<br />

Isolated from<br />

Plectranthus (P)<br />

or Coleus (C)<br />

species<br />

R 1O<br />

CH 2<br />

19<br />

4<br />

O<br />

H<br />

11<br />

OH<br />

7<br />

OH<br />

13<br />

14<br />

O<br />

OR 2<br />

R1 R2<br />

(58) CH(O) H<br />

(59) H C2H5<br />

47<br />

Reference<br />

C. coerulescens Grob et al., 1978<br />

P. gr<strong>and</strong>identatus Gaspar-Marques<br />

et al., 2006<br />

P. edulis<br />

Kunzle et al.,<br />

1987<br />

C. coerulescens Grob et al., 1978<br />

15<br />

16


R 1<br />

R2CH2 19<br />

O<br />

H 3CCO<br />

19<br />

O<br />

H<br />

6<br />

12<br />

OH<br />

14<br />

8<br />

O<br />

R1 R2<br />

(60) H H<br />

(61) OCH(O) H<br />

(62) H OH<br />

(63) H OCH(O)<br />

3<br />

1<br />

4<br />

18<br />

O<br />

H<br />

10<br />

6 7<br />

OH<br />

OH<br />

12<br />

16<br />

OH<br />

O<br />

15<br />

19<br />

O<br />

OH<br />

1 O<br />

H<br />

3<br />

7<br />

20<br />

O<br />

OH<br />

17<br />

16<br />

O<br />

OCCH 3<br />

O<br />

H 3CCO<br />

3<br />

H3CCOH2C 18<br />

O<br />

(64) (65)<br />

1 O<br />

H<br />

6 7<br />

OH<br />

OH<br />

OR 1<br />

(66) R1 R2<br />

(67) H CH2CH=CH2<br />

(68) H CH2CH(OH)CH3<br />

(69) CH3 CH2CH(OH)CH3<br />

18<br />

Thirty-eight compounds 70-108, commonly referred to as spirocoleons were isolated<br />

from P. edulis (eleven compounds), C. garckeanus (nine compounds), P. lanuginosus <strong>and</strong><br />

C. coerulescens (seven compounds), C. barbatus (three compounds), P. gr<strong>and</strong>is <strong>and</strong> C.<br />

somaliensis (two compounds) <strong>and</strong> P. barbatus (one compound) (Table 7). These<br />

compounds are refered to as spirocoleons as C-13 is the common carbon atom which<br />

links the cyclopropyl ring to the coleon-type abietane. The cyclopropyl bridge is<br />

represented as being either in the α or β position with the methyl group at C-15 being<br />

oriented such that the molecule is either R or S with respect to C-15. In compounds 71-<br />

82, R1 to R4 have either hydrogen, acetyl or formyloxy groups. The difference between<br />

72 <strong>and</strong> 83 is the orientation/stereochemistry <strong>of</strong> the methyl group at C-15. Oxidised<br />

R 2<br />

1<br />

20<br />

O<br />

H<br />

12<br />

6 7<br />

OH<br />

OH<br />

OH<br />

48<br />

O<br />

16<br />

OH


Continued on next page….<br />

functional groups occur at C-6 <strong>and</strong> C-7, with C-6 being predominantly hydroxyl.<br />

Compound 100 is the only compound which has an acetyl group present at C-17.<br />

Table 7: Spirocoleons isolated from Plectranthus <strong>and</strong> Coleus species<br />

Compound Name Synonym<br />

70<br />

71<br />

72<br />

73<br />

74<br />

75<br />

76<br />

77<br />

78<br />

79<br />

80<br />

*cannot be conventionally named due to<br />

the linkage between C-1 <strong>and</strong> C-11<br />

(15S)-6β,7α,12α-trihydroxy-<br />

13β,16-cycloabieta-8-ene-11,14-<br />

dione <br />

(15S)-7α-formyloxy-6β,12αdihydroxy-13β,16-cycloabieta-8-<br />

ene-11,14-dione <br />

(15S)-7α-formyloxy-6β,12α,19trihydroxy-13β,16-cycloabieta-8-<br />

ene-11,14-dione <br />

(15S)-19-formyloxy-6β,7α,12αtrihydroxy-13β,16-cycloabieta-8-<br />

ene-11,14-dione<br />

(15S)-7α,19-bis(formyloxy)-<br />

6β,12α-dihydroxy-13β,16-<br />

cycloabieta-8-ene-11,14-dione <br />

(15S)-3α-formyloxy-6β,7α,12αtrihydroxy-13β,16-cycloabieta-8-<br />

ene-11,14-dione<br />

(15S)-3α,7α-bis(formyloxy)-<br />

6β,12α-dihydroxy-13β,16-<br />

cycloabieta-8-ene-11,14-dione<br />

(15S)-3α-formyloxy-19-acetoxy-<br />

6β,7α,12α-trihydroxy-13β,16-<br />

cycloabieta-8-ene-11,14-dione<br />

(15S)-3α-formyloxy-6β-acetoxy-<br />

7α,12α-dihydroxy-13β,16-<br />

cycloabieta-8-ene-11,14-dione <br />

(15S)-3α-acetoxy-6β,7α,12αtrihydroxy-13β,16-cycloabieta-8ene-11,14-dione<br />

Barbatusin<br />

Lanugone F<br />

Lanugone G<br />

Lanugone H<br />

Lanugone I<br />

Lanugone J<br />

3-O-desacetyl-3-Oformyl<br />

coleon Y<br />

6,12-bis(Odesacetyl)<br />

coleon R<br />

Isolated from<br />

Plectranthus<br />

(P) or Coleus<br />

(C) species<br />

C. barbatus;<br />

P. gr<strong>and</strong>is<br />

P. lanuginosus<br />

Reference<br />

Zelnik et al., 1977;<br />

Rodrigues et al.,<br />

2010<br />

Schmid et al., 1982;<br />

Kunzle et al., 1987<br />

P. lanuginosus Schmid et al., 1982<br />

P. edulis Kunzle et al., 1987<br />

C. coerulescens Grob et al., 1978<br />

P. edulis Kunzle et al., 1987<br />

C. coerulescens Grob et al., 1978<br />

49


Compound Name Synonym<br />

81<br />

82<br />

83<br />

84<br />

85<br />

86<br />

87<br />

88<br />

89<br />

90<br />

91<br />

92<br />

(15S)-3α,6β-diacetoxy-7α,12αdihydroxy-13β,16-cycloabieta-<br />

Continued on next page…..<br />

8-ene-11,14-dione<br />

(15S)-3α,19-diacetoxy-<br />

6β,7α,12α-trihydroxy-13β,16-<br />

cycloabieta-8-ene-11,14-dione <br />

(15R)-7α-formyloxy-6β,12αdihydroxy-13β,16-cycloabieta-<br />

8-ene-11,14-dione<br />

(15R)-7α-acetoxy-6β,12αdihydroxy-13β,16-cycloabieta-<br />

8-ene-11,14-dione<br />

(15R)-3α,7α-bis(formyloxy)-<br />

6β,12α-dihydroxy-13β,16-<br />

cycloabieta-8-ene-11,14-dione <br />

(15R)-3α-formyloxy-6β,12αdiacetoxy-7α-hydroxy-13β,16-<br />

cycloabieta-8-ene-11,14-dione <br />

(15S)-6β,12α-acetoxy-7αhydroxy-13β,16-cycloabieta-8-<br />

ene-3,11,14-trione <br />

(15S)-6β,12α-acetoxy-3,7αdihydroxy-13β,16-cycloabieta-<br />

8-ene-11,14-dione<br />

(15S)-19(43)-abeo-7αacetoxy-6β,12α-dihydroxy-<br />

13β,16-cycloabieta-3,8-diene-<br />

11,14-dione<br />

(15R)-19(43)-abeo-6βacetoxy-7α,12α-dihydroxy-<br />

13β,16-cycloabieta-3,8-diene-<br />

2,11,14-trione<br />

(15S)-19α(43)-abeo-<br />

6β,7α,12α-trihydroxy-13β,16cycloabieta-4(18),8-diene-<br />

11,14-dione<br />

(15S)-19β(43)-abeo-<br />

6β,7α,12α-trihydroxy-13β,16cycloabieta-4(18),8-diene-<br />

11,14-dione<br />

12-O-desacetyl<br />

coleon R<br />

Coleon Y<br />

Lanugone K’<br />

Lanugone K<br />

Barbatusin<br />

3β-hydroxy-3deoxybarbatusin<br />

Isolated from<br />

Plectranthus (P) or<br />

Coleus (C) species<br />

Reference<br />

C. coerulescens Grob et al., 1978<br />

P. lanuginosus Schmid et al., 1982<br />

P. edulis Kunzle et al., 1987<br />

C. barbatus;<br />

P. gr<strong>and</strong>is<br />

P. gr<strong>and</strong>is<br />

Zelnik et al., 1977;<br />

Rodrigues et al.,<br />

2010<br />

Rodrigues et al.,<br />

2010<br />

Coleon O C. coerulescens Grob et al., 1978<br />

Plectrin P. barbatus Kubo et al., 1984<br />

Coleon J<br />

7,12-bis(Odesacetyl)<br />

coleon N<br />

C. somaliensis;<br />

P. edulis<br />

Moir et al., 1973b;<br />

Kunzle et al., 1987<br />

C. coerulescens Grob et al., 1978<br />

50


Compound Name Synonym<br />

93<br />

94<br />

95<br />

96<br />

97<br />

98<br />

99<br />

100<br />

101<br />

102<br />

103<br />

(15S)-19α(43)-abeo-7αacetoxy-6β,12α-dihydroxy-13β,16-cycloabieta-4(18),8-<br />

diene-11,14-dione <br />

(15S)-19β(43)-abeo-7αacetoxy-6β,12α-dihydroxy-13β,16-cycloabieta-4(18),8-<br />

diene-11,14-dione <br />

(15S)-19α(43)-abeo-12αacetoxy-6β,7α-dihydroxy-13β,16-cycloabieta-4(18),8-<br />

diene-11,14-dione <br />

(15S)-19α(43)-abeo-7αformyloxy-6β,12α-dihydroxy-13β,16-cycloabieta-4(18),8-<br />

diene-11,14-dione <br />

(15S)-19α(43)-abeo-7αformyloxy-12α-acetoxy-6βhydroxy-13β,16-cycloabieta-<br />

4(18),8-diene-11,14-dione<br />

(15S)-19α(43)-abeo-7α,12αdiacetoxy-6β-hydroxy-13β,16cycloabieta-4(18),8-diene-<br />

11,14-dione<br />

(15S)-3α,7α,19-triacetoxy-<br />

6β,12β-dihydroxy-13α,16-<br />

cycloabieta-8-ene-11,14-dione <br />

(15S)-6β,17-diacetoxy-7α,12βdihydroxy-13α,16-cycloabieta-<br />

8-ene-11,14-dione<br />

(15S)-6β,12α,19-triacetoxy-7αhydroxy-13α,16-cycloabieta-8-<br />

ene-11,14-dione <br />

(15S)-7α,19-diacetoxy-6β,12αdihydroxy-13α,16-cycloabieta-<br />

8-ene-11,14-dione<br />

(15S)-7α,19-diacetoxy-6β,12βdihydroxy-13α,16-cycloabieta-<br />

8-ene-11,14-dione<br />

Continued on next page……<br />

Coleon G<br />

12-O-desacetylcoleon N<br />

12-O-desacetyl-7-Oacetyl-3β,19-diacetyloxy-<br />

coleon Q<br />

12-O-desacetyl-6-Oacetyl-17-acetyloxy<br />

coleon P<br />

6-O-acetyl-19-acetyloxycoleon<br />

Q<br />

12-O-desacetyl-7-Oacetyl-19-acetyloxy-<br />

coleon Q<br />

12-O-desacety-7-Oacetyl-19-acetyloxycoleon<br />

P<br />

Isolated from<br />

Plectranthus<br />

(P) or Coleus<br />

(C) species<br />

C.<br />

somaliensis;<br />

P. edulis<br />

C.<br />

coerulescens<br />

P. edulis<br />

P. edulis<br />

C. garckeanus<br />

Reference<br />

Moir et al., 1973b;<br />

Kunzle et al.,<br />

1987<br />

Grob et al., 1978<br />

Kunzle et al.,<br />

1987<br />

Kunzle et al.,<br />

1987<br />

Miyase et al.,<br />

1979<br />

51


Compound Name Synonym<br />

104<br />

105<br />

106<br />

107<br />

108<br />

(15S)-19(43)-abeo-7αacetoxy-6β,12α-dihydroxy-<br />

13α,16-cycloabieta-3,8-diene-<br />

11,14-dione<br />

(15S)-19(43)-abeo-7α,19diacetoxy-6β,12α-dihydroxy-<br />

13α,16-cycloabieta-3,8-diene-<br />

11,14-dione<br />

(15S)-19β(43)-abeo-3αacetoxy-6β,7α,12α-trihydroxy-13α,16-cycloabieta-4(18),8-<br />

diene-11,14-dione <br />

(15S)-19β(43)-abeo-7α,3αdiacetoxy-6β,12α-dihydroxy-13α,16-cycloabieta-4(18),8-<br />

diene-11,14-dione <br />

(15S)-19(43)-abeo-7αacetoxy-6β,12α-dihydroxy-<br />

13α,16-cycloabieta-3(19),4(18),<br />

8-triene-11,14-dione<br />

Isolated from<br />

Plectranthus<br />

(P) or Coleus<br />

(C) species<br />

Coleon O C. garckeanus<br />

19-acetyloxy coleon O<br />

7-desoxy-12-Odesacetyl-3-acetyloxy<br />

coleon N<br />

Coleon Z<br />

C. garckeanus<br />

P. edulis<br />

C.<br />

garckeanus;<br />

P. edulis<br />

Reference<br />

Miyase et al.,<br />

1979<br />

Miyase et al.,<br />

1979<br />

Kunzle et al.,<br />

1987<br />

Miyase et al.,<br />

1979;<br />

Kunzle et al.,<br />

1987<br />

52


O<br />

R 1<br />

3<br />

1<br />

OH<br />

H<br />

O<br />

H<br />

12<br />

OH<br />

6 7<br />

OCCH 3<br />

O<br />

O<br />

OCCH 3<br />

13<br />

OH<br />

O<br />

CH 3<br />

15<br />

H<br />

R 1<br />

R2CH2 19<br />

O<br />

H<br />

6 7<br />

OR 3<br />

(70) R1 R2 R3 R4<br />

(71) H H H H<br />

(72) H H H CH(O)<br />

(73) H OH H CH(O)<br />

(74) H OCH(O) H H<br />

(75) H OCH(O) H CH(O)<br />

(76) OCH(O) H H H<br />

(77) OCH(O) H H CH(O)<br />

(78) OCH(O) OC(O)CH3 H H<br />

(79) OCH(O) H C(O)CH3 H<br />

(80) OC(O)CH3 H H H<br />

(81) OC(O)CH3 H C(O)CH3 H<br />

(82) OC(O)CH3 OC(O)CH3 H H<br />

11<br />

6 7<br />

OR 2<br />

OR 4<br />

OR 3<br />

O<br />

H<br />

CH 3<br />

R1 R2 R3 R4<br />

(83) H H CH(O) H<br />

(84) H H C(O)CH3 H<br />

(85) OCH(O) H CH(O) H<br />

(86) OCH(O) C(O)CH3 H C(O)CH3<br />

13<br />

15<br />

R<br />

O<br />

H<br />

11<br />

6 7<br />

OH<br />

OCCH 3<br />

O<br />

O<br />

13<br />

OR 4<br />

OCCH 3<br />

14<br />

OH<br />

R<br />

(87) =O<br />

(88) β-OH<br />

O<br />

O<br />

CH 3<br />

15<br />

CH 3<br />

15<br />

H<br />

H<br />

53


R 1<br />

19<br />

3<br />

3<br />

1<br />

18<br />

1<br />

18<br />

20<br />

20<br />

O<br />

H<br />

O<br />

H<br />

6 7<br />

OH<br />

6 7<br />

OH<br />

OH<br />

OR 3<br />

16<br />

OR 2<br />

16<br />

13<br />

O<br />

CH 3<br />

R1 R2 R3<br />

(91) α-CH3 H H<br />

(92) β-CH3 H H<br />

(93) α-CH3 C(O)CH3 H<br />

(94) β-CH3 C(O)CH3 H<br />

(95) α−CH3 H C(O)CH3<br />

(96) α−CH3 CH(O) H<br />

(97) α−CH3 CH(O) C(O)CH3<br />

(98) α−CH3 C(O)CH3 C(O)CH3<br />

O<br />

OCCH 3<br />

O<br />

CH 3<br />

H<br />

H<br />

O<br />

19<br />

O<br />

CH 3CO<br />

3<br />

CH 3COCH 2<br />

O<br />

3<br />

1<br />

18<br />

20<br />

1<br />

O<br />

H<br />

20<br />

O<br />

H<br />

6 7<br />

OH<br />

OCCH 3<br />

(89) (90)<br />

11<br />

O<br />

12<br />

6 7<br />

OH<br />

(99)<br />

14<br />

OH<br />

16<br />

OH<br />

13<br />

O<br />

O<br />

OCCH 3<br />

O<br />

H<br />

H<br />

CH 3<br />

CH 3<br />

54


H<br />

3<br />

R 1CH 2<br />

1<br />

20<br />

O<br />

H<br />

OR 2<br />

R 4<br />

6 7<br />

13<br />

OR 3<br />

O<br />

H<br />

15<br />

CH2R5 17<br />

R1 R2 R3 R4 R5<br />

(100) H C(O)CH3 H β-OH OC(O)CH3<br />

(101) OC(O)CH3 C(O)CH3 H α- H<br />

(102) OC(O)CH3 H C(O)CH3<br />

OC(O)CH3<br />

α-OH H<br />

(103) OC(O)CH3 H C(O)CH3 β-OH H<br />

19<br />

H 3CCO<br />

O<br />

3<br />

1<br />

18<br />

20<br />

O<br />

H<br />

6 7<br />

OH<br />

OH<br />

OR<br />

R<br />

(106) H<br />

(107) C(O)CH3<br />

O<br />

H<br />

CH 3<br />

19<br />

3<br />

1<br />

18<br />

RCH 2<br />

20<br />

O<br />

H<br />

19<br />

6 7<br />

3<br />

OH<br />

1<br />

20<br />

OH O<br />

(108)<br />

O<br />

6 7<br />

OH<br />

O<br />

OCCH 3<br />

H<br />

18<br />

OH O<br />

(104)<br />

R<br />

H<br />

(105) OC(O)CH3<br />

O<br />

OCCH 3<br />

Twenty-two quinone methides, 109-130 were isolated from ten Plectranthus species<br />

(Table 8). Eight compounds were isolated from P. strigosus <strong>and</strong> six from P. lanuginosus<br />

<strong>and</strong> P. parviflorus while the other species yielded less than four compounds each.<br />

Compounds 109-120 closely resemble benzoquinones, but there is only one carbonyl<br />

present in ring C, located at C-12 instead <strong>of</strong> C-11 <strong>and</strong> C-14 <strong>and</strong> has double bonds at ∆ 7 ,<br />

C-9(11) <strong>and</strong> ∆ 13 . Compounds 121-130 have an additional double bond in ring B at ∆ 5 .<br />

Yet again variation <strong>of</strong> the isopropyl group at C-13 is observed in compounds 109-117. In<br />

compound 118 the isopropyl group has cyclised onto ring C, resulting in a partially<br />

H<br />

CH 3<br />

55<br />

H<br />

CH 3


educed furan ring. The linear side chains which have replaced the isopropyl group are<br />

either saturated as in 112, oxidized to a double bond as in compound 116 or contain<br />

methoxy groups (114) <strong>and</strong> hydroxy groups (111, 112, 115, 117, 119-122). The tertiary<br />

methyl group usually present at C-19, has been oxidized to a formyloxy (-OCHO) group<br />

in compounds 114 <strong>and</strong> 117. In abietanes 126-130 the methyl group at position 19 has<br />

been modified to include either an aromatic group as in 126-129 or a prenylated group as<br />

in 130. Compound 122 has an acetyl group present at C-3 as well as a hydroxy group at<br />

C-15 while compounds 123-125 have aromatic substituents at C-2.<br />

Continued on next page…..<br />

Table 8: Vinylogous quinones isolated from Plectranthus species<br />

Compound Name Synonym<br />

109<br />

110<br />

111<br />

112<br />

113<br />

114<br />

115<br />

116<br />

11-hydroxy-7,9(11),13abietatriene-12-one11,14-dihydroxy-7,9(11),13abietatriene-6,12-dione<br />

11,14,16-trihydroxy-<br />

7,9(11),13-abietatriene-6,12dione<br />

11,14,16-trihydroxy-<br />

17(15→16)-abeoabieta-<br />

7,9(11),13-triene-6,12-dione<br />

16-acetoxy-11,14-dihydroxy-<br />

17(15→16)-abeoabieta-<br />

7,9(11),13-triene-6,12-dione<br />

19-formyloxy-6β,11,14trihydroxy-16-methoxy-<br />

17(15→16)-abeoabieta-<br />

7,9(11),13-triene-12-one<br />

6β,19-epoxy-11,14dihydroxy-13-(2hydroxypropyl)-7,9(11),13abietatriene-12-one13-allyl-6β,19-epoxy-11,14dihydroxy-7,9(11),13abietatriene-12-one <br />

14hydroxytaxodione<br />

Lanugone O<br />

Lanugone N<br />

Lanugone L<br />

Lanugone M<br />

Isolated from<br />

Plectranthus (P)<br />

species<br />

Reference<br />

P. elegans Dellar et al., 1996<br />

P. gr<strong>and</strong>identatus Uchida et al., 1981<br />

P. lanuginosus;<br />

P. edulis<br />

Schmid et al.,<br />

1982;<br />

Kunzle et al., 1987<br />

P. edulis Kunzle et al., 1987<br />

56


Compound Name Synonym<br />

117<br />

118<br />

119<br />

120<br />

121<br />

122<br />

123<br />

124<br />

125<br />

126<br />

127<br />

Continued on next page…..<br />

19-formyloxy-11,14,16trihydroxy-17(15→16)abeoabieta-7,9(11),13-triene-<br />

6,12-dione<br />

(15S)-14,16-epoxy-11hydroxy-7,9(11),13abietatriene-6,12-dione<br />

*Too complex to name<br />

systematically<br />

*Too complex to name<br />

systematically<br />

11,15-dihydroxy-<br />

5,7,9(11),13-abietatetraene-<br />

12-one<br />

3β-acetoxy-11,15-dihydroxy-<br />

5,7,9(11),13-abietatetraene-<br />

12-one<br />

2-(3-hydroxybenzoyl)-11hydroxy-5,7,9(11),13abietatetraene-12-one<br />

2-(3,4-dihydroxybenzoyl)-<br />

11-hydroxy-5,7,9(11),13abietatetraene-12-one; <br />

2-(4-hydroxy-3methoxybenzoyl)-11hydroxy-5,7,9(11),13abietatetraene-12-one <br />

19-(3-methyl-2-butenoyl)-11hydroxy-5,7,9(11),13abietatetraene-12-one <br />

19-(4-hydroxybenzoyl)-11hydroxy-5,7,9(11),13abietatetraene-12-one<br />

Lanugone P<br />

Lanugone Q<br />

Nilgherron A<br />

Nilgherron B<br />

Fuerstione<br />

3β-<br />

Acetoxyfuerstione<br />

Parvifloron D<br />

Parviflorone F<br />

Isolated from<br />

Plectranthus (P)<br />

species<br />

Reference<br />

P. edulis Kunzle et al., 1987<br />

P. nilgherricus<br />

P. parviflorus;<br />

P. strigosus;<br />

P. eckonlii;<br />

P. lucidus<br />

P. nummularius;<br />

P. parviflorus;<br />

P. strigosus;<br />

P. eckonlii<br />

Miyase et al.,<br />

1977b<br />

Ruedi et al., 1978;<br />

Alder et al., 1984b;<br />

van Zyl et al.,<br />

2008; Nyila et al.,<br />

2009<br />

Narukawa et al.<br />

2001;<br />

Ruedi et al., 1978;<br />

Alder et al., 1984b;<br />

van Zyl et al.,<br />

2008;<br />

Nyila et al., 2009<br />

Parviflorone G P. strigosus Alder et al., 1984b<br />

Parviflorone A<br />

Parviflorone C<br />

P. parviflorus;<br />

P. strigosus;<br />

P. purpuratus<br />

subsp. purpuratus;<br />

P. lucidus<br />

P. parviflorus;<br />

P. strigosus;<br />

P. purpuratus<br />

subsp. tongaensis<br />

Ruedi et al., 1978;<br />

Alder et al., 1984b;<br />

van Zyl et al., 2008<br />

Ruedi et al., 1978<br />

57


Compound Name Synonym<br />

HCO<br />

O<br />

128<br />

129<br />

130<br />

H<br />

19<br />

HO<br />

20<br />

10<br />

18<br />

19-(3,4-dihydroxybenzoyl)-<br />

11-hydroxy-5,7,9(11),13abietatetraene-12-one <br />

19-(4-hydroxy-3methoxybenzoyl)-11hydroxy-5,7,9(11),13-<br />

abietatetraene-12-one<br />

19-(3-methyl-2-butenoyl)-<br />

2,11-dihydroxy-5,7,9(11),13abietatetraene-12-one<br />

HO<br />

9<br />

O<br />

12<br />

7<br />

13<br />

3<br />

1<br />

Parviflorone E<br />

Parviflorone B<br />

Isolated from<br />

Plectranthus (P)<br />

species<br />

P. nummularius;<br />

P. parviflorus;<br />

P. strigosus;<br />

P. purpuratus<br />

subsp. tongaensis<br />

P. parviflorus;<br />

P. strigosus<br />

Reference<br />

Narukawa et al.<br />

2001;<br />

Ruedi et al., 1978;<br />

Alder et al., 1984b;<br />

van Zyl et al., 2008<br />

Ruedi et al., 1978;<br />

Alder et al., 1984b;<br />

Parviflorone H P. strigosus Alder et al., 1984b<br />

HO<br />

20<br />

H<br />

10<br />

11<br />

6<br />

O<br />

O R<br />

(109) R<br />

(110) CH3<br />

(111) CH2(OH)<br />

11<br />

6<br />

H<br />

CH2 OH<br />

19<br />

O<br />

14<br />

OH<br />

16<br />

OCH 3<br />

HO<br />

H<br />

O<br />

11 12<br />

14<br />

OH<br />

14<br />

OH<br />

(114) R<br />

(115) CH2CH(OH)CH3<br />

(116) CH2-CH=CH2<br />

19<br />

6<br />

O<br />

R<br />

O<br />

HCO<br />

3<br />

1<br />

HO<br />

20<br />

H<br />

10<br />

11<br />

6<br />

O<br />

O<br />

R<br />

(112) H<br />

(113) C(O)CH3<br />

HO<br />

11<br />

CH2 19<br />

H<br />

O<br />

(117)<br />

OH OR 14<br />

O<br />

7<br />

58<br />

16<br />

16<br />

14 OH<br />

OH


R<br />

2<br />

HO<br />

5<br />

11<br />

9<br />

HO<br />

9<br />

H O<br />

O<br />

H<br />

C<br />

7<br />

O<br />

11 13<br />

13<br />

OH<br />

O<br />

7<br />

14<br />

O<br />

15<br />

16<br />

17<br />

R<br />

HO<br />

O<br />

H<br />

9<br />

O<br />

O<br />

11 13<br />

5 7<br />

OH<br />

(118) R<br />

(119) H<br />

(120) OC(O)CH3<br />

2<br />

COCH 2<br />

19<br />

(123) R = OC OH<br />

O<br />

O<br />

(124) R = OC OH<br />

OH<br />

(125) R = OC OH<br />

OH<br />

5<br />

(130)<br />

11<br />

9<br />

O<br />

7<br />

O<br />

13<br />

OCH 3<br />

RCH 2<br />

19<br />

OH<br />

OH<br />

5<br />

OH<br />

11<br />

9<br />

O<br />

7<br />

R<br />

13<br />

3<br />

HO<br />

5<br />

11<br />

9<br />

O<br />

7<br />

13<br />

14<br />

15<br />

R<br />

(121) H<br />

(122) OC(O)CH3<br />

59<br />

OH<br />

(126) R = OC(O)CH=(CH 3) 2<br />

O<br />

(127) R = OC OH<br />

(128) R =<br />

O<br />

OC OH<br />

O<br />

OH<br />

(129) R = OC OH<br />

OCH 3


Thirty-six compounds (131-167) having a coleon-type structure were isolated from<br />

eleven Plectranthus <strong>and</strong> ten Coleus species, where most <strong>of</strong> the compounds have been<br />

isolated from P. edulis <strong>and</strong> C. coerulescens (Table 9a-c). The coleon-type compounds<br />

differ from the royleanones in that ring C is aromatic in coleon-type compounds as<br />

apposed to having a hydroxybenzoquinone or p-quinoid ring system.<br />

Compounds 131-148 (Table 9a) differ in ring B with regard to positions 6 <strong>and</strong> 7 as they<br />

both could be saturated as in 131, or oxidized, with either a hydroxy or carbonyl group<br />

(132-135) or two carbonyl groups (136-145). Alternatively either C-6 or C-7 could be<br />

oxidized as in 132-134. Compounds 138 to 141 are the only compounds where the<br />

methyl group/s at C-15 have been oxidized to an alcohol or acetyl group, while 134 is the<br />

only compound where the methyl group at C-20 has been oxidized to an alcohol.<br />

Plectranthol B (131), has an aromatic substituent at C-19 with a prenyl group occurring at<br />

C-12. In compounds 146 to 148, an oxygen bridge is formed between C-20 <strong>and</strong> either C-<br />

6 or C-7. Compound 147 has a methoxy group present at C-20 while 148 has a carbonyl<br />

function at C-7.<br />

Table 9a: Coleon-type abietanes isolated from Plectranthus <strong>and</strong> Coleus species<br />

Compound Name Synonym<br />

131<br />

132<br />

133<br />

134<br />

135<br />

Continued on next page….<br />

12-O-(3-methyl-2-butenoyl)-<br />

19-O-(3,4dihydroxybenzoyl)-11hydroxy-8,11,13-abietatriene7α,11-dihydroxy-12-<br />

methoxy-8,11,13-abietatriene <br />

11,12-dihydroxy-8,11,13abietatriene-7-one <br />

11,12,20-trihydroxy-8,11,13abietatriene-7-one<br />

6β,11,12,14-tetrahydroxy-<br />

8,11,13-abietatriene-7-one<br />

Isolated from<br />

Plectranthus<br />

(P) or Coleus<br />

(C) species<br />

Plectranthol B P. nummularius<br />

11,20dihydroxysugiol <br />

11hydroxysugiol <br />

5,6dihydrocoleon<br />

U<br />

Reference<br />

Narukawa et al.<br />

2001<br />

P. elegans Dellar et al., 1996<br />

P. cyaneus<br />

P. cyaneus;<br />

C. forskohlii<br />

P. argentatus<br />

Horvath et al.,<br />

2004<br />

Horvath et al.,<br />

2004;<br />

Lingling et al.,<br />

2005<br />

Alder et al.,<br />

1984a<br />

60


Compound Name Synonym<br />

136<br />

137<br />

138<br />

139<br />

140<br />

141<br />

142<br />

143<br />

144<br />

145<br />

146<br />

Continued on next page….<br />

11,12,14-trihydroxy-8,11,13abietatriene-6,7-dione <br />

14-formyloxy-11,12dihydroxy-8,11,13abietatriene-6,7-dione<br />

11,12,14,16-tetrahydroxy-<br />

8,11,13-abietatriene-6,7dione <br />

16-acetoxy-11,12,14trihydroxy-8,11,13-<br />

abietatriene-6,7-dione <br />

3α-acetoxy-11,12,14,16tetrahydroxy-8,11,13-<br />

abietatriene-6,7-dione <br />

16,17-diacetoxy-3α,11,12,14tetrahydroxy-8,11,13-<br />

abietatriene-6,7-dione <br />

16-acetoxy-11,12,14,17tetrahydroxy-8,11,13-<br />

abietatriene-6,7-dione <br />

16,17-diacetoxy-11,12,14trihydroxy-8,11,13abietatriene-6,7-dione11,12,16-trihydroxy-8,11,13-<br />

abietatriene-6,7-dione<br />

3β,11,12,14-tetrahydroxy-<br />

8,11,13-abietatriene-6,7-<br />

dione <br />

7β,20β-epoxy-11,12dihydroxy-8,11,13abietatriene<br />

Coleon V<br />

14-O-formylcoleon<br />

-V<br />

Coleon D<br />

16-Oacetylcoleon<br />

D<br />

Coleon I<br />

Coleon K<br />

Coleon X<br />

16-O-acetyl<br />

coleon X<br />

Isolated from<br />

Plectranthus<br />

(P) or Coleus<br />

(C) species<br />

P. myrianthus;<br />

C. carnosus;<br />

C.<br />

coerulescens;<br />

P. sanguineus<br />

P. myrianthus<br />

C. aquaticus;<br />

C. coerulescens<br />

C.<br />

coerulescens;<br />

P. edulis<br />

Reference<br />

Miyase et al.,<br />

1977a;<br />

Yoshizaki et al.,<br />

1979;<br />

Grob et al., 1978;<br />

Matloubi-<br />

Moghadam et al.,<br />

1987<br />

Miyase et al.,<br />

1977a<br />

Ruedi et al., 1972;<br />

Grob et al., 1978;<br />

Schmid et al.,<br />

1982;<br />

Kunzle et al.,<br />

1987<br />

Grob et al., 1978;<br />

Kunzle et al.,<br />

1987<br />

C. somaliensis Moir et al., 1973a<br />

C. garckeanus<br />

P. edulis<br />

Coleon T P. caninus<br />

20deoxocarnosol<br />

C. barbatus<br />

Miyase et al.,<br />

1979<br />

Kunzle et al.,<br />

1987<br />

Arihara et al.,<br />

1977<br />

Kelecom et al.,<br />

1984<br />

61


Compound Name Synonym<br />

147<br />

148<br />

HO<br />

HO<br />

7β,20β-epoxy-20S-methoxy-<br />

11,12-dihydroxy-8,11,13abietatriene <br />

6β,20β-epoxy-6α,11,12trihydroxy-8,11,13abietatriene-7-one<br />

19<br />

O<br />

O<br />

19<br />

HO 11<br />

R<br />

20<br />

10<br />

H<br />

A<br />

OH<br />

11<br />

B<br />

O<br />

C<br />

12<br />

8<br />

O<br />

13<br />

17<br />

15<br />

16<br />

18<br />

1<br />

HO<br />

(131) (132)<br />

OH<br />

12<br />

8<br />

7<br />

O<br />

15<br />

14<br />

18<br />

R<br />

(133) H<br />

(134) OH<br />

Isolated from<br />

Plectranthus<br />

(P) or Coleus<br />

(C) species<br />

3<br />

1<br />

20<br />

19<br />

HO<br />

19 18<br />

H<br />

10<br />

11<br />

6 7<br />

OH<br />

(135)<br />

OCH 3<br />

OH<br />

12<br />

8<br />

H<br />

OH<br />

14<br />

OH<br />

O<br />

Reference<br />

Esquirolin D C. esquirolii Li et al., 1991<br />

Carnosolone<br />

P. cyaneus;<br />

C. carnosus<br />

Horvath et al.,<br />

2004;<br />

Yoshizaki et al.,<br />

1979<br />

62


R 1<br />

3<br />

1<br />

HO<br />

H<br />

19 18<br />

11<br />

OH<br />

6 7<br />

8<br />

O<br />

12<br />

O<br />

14<br />

16<br />

R 3<br />

15<br />

OR 2<br />

R1 R2 R3 R4<br />

(136) H H CH3 CH3<br />

(137) H CHO CH3 CH3<br />

(138) H H CH2(OH) CH3<br />

(139) H H CH2OC(O)CH3 CH3<br />

(140) OC(O)CH3 H CH2(OH) CH3<br />

(141) OH H CH2OC(O)CH3 CH2OC(O)CH3<br />

19<br />

HO<br />

20<br />

10<br />

18<br />

H<br />

R 1<br />

1<br />

HO<br />

19 18<br />

11<br />

6 7<br />

O<br />

OH<br />

12<br />

8<br />

O<br />

13<br />

R 3<br />

R 2<br />

R 4<br />

17<br />

R1 R2 R3<br />

(144) H H CH2CH(OH)CH3<br />

(145) OH OH CH(CH3)2<br />

OH<br />

OH<br />

3<br />

1<br />

OH<br />

11<br />

19 18 O<br />

H<br />

7<br />

OH<br />

12<br />

8<br />

O<br />

R<br />

(142) H<br />

(143) C(O)CH3<br />

11<br />

12 15<br />

HO<br />

CH3O 11<br />

12 15<br />

HO<br />

20<br />

11<br />

12 15<br />

14<br />

14<br />

14<br />

O<br />

6<br />

8<br />

7<br />

19<br />

10<br />

H<br />

18<br />

O<br />

6<br />

OH<br />

7<br />

19<br />

10<br />

H<br />

18<br />

O<br />

OH<br />

O<br />

(146) (147) (148)<br />

OH<br />

O<br />

16<br />

CH2OCCH3 CH2OR 17<br />

14<br />

OH<br />

63


In compounds 149-165 (Table 9b), an olefinic bond is present at C-5 while oxygenated<br />

substituents occur at C-11, C-12 <strong>and</strong> C-14. With the exception <strong>of</strong> compound 157,<br />

compounds 153-165 have either one or both <strong>of</strong> the isopropyl methyl groups at C-15,<br />

being oxidized to an acetyl <strong>and</strong>/or alcohol function. Compounds 152 <strong>and</strong> 159 have a<br />

hydroxy <strong>and</strong> acetoxy group present at C-3 respectively while compounds 160 <strong>and</strong> 161<br />

have an acetyl group at C-2. Abietanes 163 <strong>and</strong> 164 have a formyloxy (-OCHO) group at<br />

C-19 while the isopropyl group at C-13 has been replaced by a linear, 3-carbon side-<br />

chain containing either a double bond or alcohol in compounds 162-164.<br />

Table 9b: Coleon-type abietanes with an olefinic bond at ∆ 5 isolated from Plectranthus<br />

<strong>and</strong> Coleus species<br />

Compound Name Synonym<br />

149<br />

150<br />

151<br />

152<br />

Continued on next page…..<br />

6,11,12,14-tetrahydroxy-<br />

5,8,11,13-abietatetraene-7one <br />

14-acetoxy-6,11,12trihydroxy-5,8,11,13-<br />

abietatetraene-7-one <br />

11-acetoxy-6,12,14trihydroxy-5,8,11,13-<br />

abietatetraene-7-one <br />

3β,6,11,12,14pentahydroxy-5,8,11,13abietatetraene-7-one<br />

Coleon U<br />

14-O-acetylcoleon<br />

U<br />

Coleon U 11<br />

acetate<br />

Isolated from<br />

Plectranthus (P)<br />

or Coleus (C)<br />

species<br />

P. myrianthus;<br />

P.<br />

gr<strong>and</strong>identatus;<br />

P. forsteri<br />

’marginatus’;<br />

C. carnosus;<br />

P. sanguineus;<br />

P. edulis;<br />

P. fasciculatus<br />

P.<br />

gr<strong>and</strong>identatus<br />

Coleon S P. caninus<br />

Reference<br />

Wellsow et al., 2006;<br />

Gaspar-Marques et<br />

al., 2006;<br />

Gaspar-Marques et<br />

al., 2002;<br />

Cerqueira et al.,<br />

2004;<br />

Miyase et al., 1977a;<br />

Yoshizaki et al.,<br />

1979;<br />

Matloubi-Moghadam<br />

et al., 1987;<br />

Kunzle et al., 1987;<br />

Coutinho et al.,<br />

2009;<br />

Rasikari, 2007<br />

Rijo et al., 2007<br />

C. xanthanthus Mei et al. 2002<br />

Arihara et al., 1977:<br />

64


Compound Name Synonym<br />

153<br />

154<br />

155<br />

156<br />

157<br />

158<br />

159<br />

160<br />

161<br />

162<br />

Continued on next page….<br />

6,11,12,14,16pentahydroxy-5,8,11,13abietatetraene-7-one <br />

16-acetoxy-6,11,12,14tetrahydroxy-5,8,11,13-<br />

abietatetraene-7-one <br />

16-acetoxy-6,11,12,14,17pentahydroxy-5,8,11,13-<br />

abietatetraene-7-one<br />

16,17-diacetoxy-<br />

6,11,12,14-tetrahydroxy-<br />

5,8,11,13-abietatetraene-7-<br />

one <br />

11-acetoxy-6,12,14trihydroxy-5,8,11,13-<br />

abietatetraene-7-one <br />

11,16-diacetoxy-6,12,14trihydroxy-5,8,11,13-<br />

abietatetraene-7-one <br />

3α-acetoxy-6,11,12,14,16pentahydroxy-5,8,11,13-<br />

abietatetraene-7-one<br />

2α,17-diacetoxy-<br />

6,11,12,14,16pentahydroxy-5,8,11,13-<br />

abietatetraene-7-one <br />

2α,6,11,12,16,17hexacetoxy-14-hydroxy-5,8,11,13-abietatetraene-7-<br />

one <br />

6,11,12,14,16pentahydroxy-17(15→16)abeoabieta-5,8,11,13tetraene-7-one<br />

Coleon C<br />

16-O-acetyl<br />

coleon C<br />

Coleon W<br />

16-O-acetyl<br />

coleon W<br />

11-acetoxy-coleon<br />

U<br />

11,16-diacetoxycoleon<br />

U<br />

Isolated from<br />

Plectranthus (P)<br />

or Coleus (C)<br />

species<br />

C. aquaticus,<br />

C. coerulescens;<br />

P. edulis;<br />

C. forskohlii<br />

C. coerulescens;<br />

P. edulis<br />

C. coerulescens;<br />

P. myrianthus;<br />

C. garckeanus<br />

Reference<br />

Ruedi et al.,1971;<br />

Grob et al., 1978;<br />

Schmid et al., 1982;<br />

Kunzle et al., 1987;<br />

Yanwen et al., 2007;<br />

Xiu et al., 2008<br />

Grob et al., 1978;<br />

Kunzle et al., 1987<br />

Grob et al., 1978;<br />

Miyase et al., 1977a,<br />

Miyase et al., 1979<br />

C. garckeanus Miyase et al., 1979<br />

C. xanthanthus Mei et al., 2000<br />

Coleon H C. somaliensis Moir et al., 1973a<br />

C. blumei Ragasa et al., 2001<br />

P. edulis Kunzle et al., 1987<br />

65


Compound Name Synonym<br />

163<br />

164<br />

165<br />

R 1<br />

3<br />

19<br />

19-formyloxy-6,11,12,14tetrahydroxy-17(15→16)abeoabieta-5,8,11,13,16<br />

1<br />

R 2O<br />

5<br />

18<br />

pentaene-7-one<br />

19-formyloxy-<br />

6,11,12,14,16pentahydroxy-17(15→16)abeoabieta-5,8,11,13-<br />

tetraene-7-one <br />

16-acetyl-11,12,14trihydroxy-5,8,11,13abietatetraene-7-one(6,18lactone)<br />

11<br />

6<br />

OH<br />

OH<br />

12<br />

8<br />

O<br />

14<br />

15<br />

OR 3<br />

R1 R2 R3<br />

(149) H H H<br />

(150) H H C(O)CH3<br />

(151) H C(O)CH3 H<br />

(152) OH H H<br />

Lanugone R<br />

Lanugone S<br />

R 1<br />

19<br />

1<br />

R 2O<br />

3 5<br />

Isolated from<br />

Plectranthus (P)<br />

or Coleus (C)<br />

species<br />

18<br />

11<br />

6<br />

OH<br />

OH<br />

12<br />

8<br />

O<br />

16<br />

R 3<br />

R 4<br />

17<br />

14<br />

OH<br />

Reference<br />

P. lanuginosus Schmid et al., 1982<br />

P. edulis Kunzle et al., 1987<br />

R1 R2 R3 R4<br />

(153) H H CH2OH CH3<br />

(154) H H CH2OC(O)CH3 CH3<br />

(155) H H CH2OC(O)CH3 CH2OH<br />

(156) H H CH2OC(O)CH3 CH2OC(O)CH3<br />

(157) H C(O)CH3 CH3 CH3<br />

(158) H C(O)CH3 CH2OC(O)CH3 CH3<br />

(159) OC(O)CH3 H CH2(OH) CH3<br />

66


O<br />

CH 3CO<br />

3<br />

2<br />

1<br />

O<br />

OH<br />

5<br />

18<br />

OR<br />

5<br />

11<br />

6<br />

OR<br />

OR<br />

12<br />

8<br />

14<br />

OH<br />

O<br />

R<br />

(160) H<br />

(161) C(O)CH3<br />

11<br />

9<br />

O<br />

6<br />

7<br />

OH<br />

12<br />

8<br />

(165)<br />

14<br />

OH<br />

O<br />

CH 2OR<br />

16<br />

CH2OCCH3 O<br />

CH 2OCCH 3<br />

O<br />

3<br />

1<br />

OH<br />

5<br />

11<br />

9<br />

R 1CH 2 OH<br />

7<br />

OH<br />

12<br />

8<br />

R 2<br />

14<br />

OH<br />

R1 R2<br />

(162) H CH2CH(OH)CH3<br />

(163) OCH(O) CH2CH=CH2<br />

(164) OCH(O) CH2CH(OH)CH3<br />

Compounds 166 <strong>and</strong> 167 (Table 9c) have double bonds within rings A <strong>and</strong> B. In<br />

compound 166, the double bonds are located at C-1(10) <strong>and</strong> ∆ 6 respectively while the<br />

methyl group is no longer at C-10 but at C-5. In 167 the double bonds occur at ∆ 3 <strong>and</strong> ∆ 5<br />

<strong>and</strong> the methyl group at C-19 has migrated from C-4 to C-3. The linear, 3-carbon side-<br />

chain in this compound has been oxidized to an alcohol. In compound 166, the<br />

substituent at C-19 is aromatic.<br />

O<br />

67


Table 9c: Coleon-type abietanes with double bonds within ring A <strong>and</strong> B isolated from<br />

Plectranthus species<br />

Compound Name Synonym<br />

HO<br />

HO<br />

166<br />

167<br />

3'<br />

4'<br />

2'<br />

5'<br />

19-O-(3’,4’dihydroxybenzoyl)-11,12dihydroxy-20(10→5)abeoabieta-<br />

1(10),6,8,11,13-pentene<br />

19(43),17(1516)bisabeoabieta-<br />

11,12,14,16-tetrahydroxy-<br />

3,5,8,11,13-pentene-2,7dione<br />

1'<br />

6'<br />

O<br />

O<br />

Miscellaneous constituents<br />

1<br />

OH<br />

10<br />

11<br />

A B<br />

5<br />

4<br />

20<br />

19<br />

6<br />

OH<br />

C<br />

12<br />

8<br />

Plectranthol<br />

A<br />

Isolated<br />

from<br />

Plectranthus<br />

(P) species<br />

P.<br />

nummularius<br />

Plectrinone A P. barbatus<br />

13<br />

Reference<br />

Narukawa et al.,<br />

2001<br />

Schultz et al.,<br />

2007<br />

hydroxybenzoquinone structure. Compound 173 is similar to the royleanones but B ring<br />

68<br />

19<br />

O<br />

2<br />

3<br />

4<br />

HO<br />

10<br />

5<br />

(166) (167)<br />

11<br />

6<br />

7<br />

OH<br />

12<br />

8<br />

13<br />

14 OH<br />

OH<br />

O<br />

15 16 17<br />

Eight compounds 168-174 (table 10) do not resemble the abietanes 27-167 as they<br />

contain carbocyclic <strong>and</strong> heterocyclic rings which are fused differently from the other<br />

abietanes. Compounds 168 to 171 contain a highly conjugated system with ring A being<br />

aromatic <strong>and</strong> ring B resembling the hydroxybenzoquinone system. An oxidised furan<br />

ring also forms a part <strong>of</strong> structures 168 to 171. In compound 172 rings A <strong>and</strong> B are<br />

linked by a carbon-to-carbon bond. Ring A resembles that <strong>of</strong> the normal ring A in<br />

abietanes, with methyl groups at C-4 <strong>and</strong> C-6 <strong>and</strong> a ketone at C-5, <strong>and</strong> ring B has the


has been exp<strong>and</strong>ed by an extra oxygen atom forming a seven membered ring with<br />

carbonyl groups flanking the oxygen at either side. Compound 174 has four rings fused<br />

together including an aromatic <strong>and</strong> lactone ring. Both compounds 173 <strong>and</strong> 174 have<br />

highly conjugated systems.<br />

Table 10: Miscellaneous abietanes isolated from Plectranthus <strong>and</strong> Coleus species<br />

Compound Name<br />

168<br />

169<br />

170<br />

171<br />

172<br />

173<br />

174<br />

(4R,19S)-7,12,19αtrihydroxy-1,5(10),6,8,12-<br />

abietapentene-11,14-dione <br />

(4R,19R)-7,12,19βtrihydroxy-1,5(10),6,8,12abietapentene-11,14-dione<br />

7,12-dihydroxy-<br />

1,5(10),6,8,12-abietapentene-<br />

11,14,19-trione<br />

16-acetoxy-7,12-dihydroxy-<br />

1,5(10),6,8,12-abietapentene-<br />

11,14,19-trione<br />

*Too complex to name<br />

systematically<br />

*Too complex to name<br />

systematically<br />

*Too complex to name<br />

systematically<br />

Common<br />

name<br />

Coleon A<br />

(19S)<br />

Coleon A<br />

(19R)<br />

Coleon A<br />

lactone<br />

Xanthanthusin<br />

E<br />

Isolated from<br />

Plectranthus (P)<br />

species<br />

P. aff puberulentus<br />

P. puberulentus;<br />

P. edulis<br />

P. edulis<br />

Sanguinon A P. sanguineus<br />

Edulon A P. edulis<br />

Reference<br />

Wellsow et al.,<br />

2006<br />

Wellsow et al.,<br />

2006;<br />

Kunzle et al.,<br />

1987<br />

Kunzle et al.,<br />

1987<br />

C. xanthanthus Mei et al., 2002<br />

Matloubi-<br />

Moghadam et al.,<br />

1987<br />

Buchbauer et al.,<br />

1978;<br />

Kunzle et al.,<br />

1987<br />

69


1<br />

18<br />

3<br />

20<br />

4<br />

O<br />

5<br />

19<br />

R 1 R2<br />

11<br />

9<br />

10<br />

A<br />

O<br />

6 7<br />

OH R 3<br />

B<br />

8<br />

14<br />

OH<br />

R1 R2 R3<br />

(168) H OH CH3<br />

(169) OH H CH3<br />

O<br />

H<br />

O<br />

OH<br />

O<br />

O<br />

O<br />

15 17<br />

O<br />

1<br />

HO<br />

18<br />

3<br />

20<br />

O<br />

4<br />

O<br />

11<br />

9<br />

10<br />

5<br />

19<br />

A<br />

O<br />

OH R<br />

B<br />

6 7<br />

R<br />

8<br />

14<br />

OH<br />

(170) CH3<br />

(171) CH2OC(O)CH3<br />

O<br />

OH<br />

(173) (174)<br />

O<br />

O<br />

OH<br />

O<br />

15 17<br />

O<br />

CH 2OCCH 3<br />

O<br />

4 5<br />

6<br />

O<br />

(172)<br />

OH<br />

COOH<br />

70<br />

O


2.5 Biological activity <strong>of</strong> the phytochemical constituents <strong>of</strong> Plectranthus<br />

The antibacterial <strong>and</strong> antifungal activities <strong>of</strong> abietanes isolated from Plectranthus species<br />

are listed in table 11. Of the one-hundred <strong>and</strong> fifty abietanes isolated from Plectranthus<br />

<strong>and</strong> Coleus species, only twenty are reported as having showed antimicrobial activity.<br />

These twenty abietanes were isolated from eight Plectranthus species with horminone<br />

(28), 7α-acetoxy-6β-hydroxyroyleanone (36), 7α,12-dihydroxy-17(15→16)-abeoabieta-<br />

8,12,16-triene-11,14-dione (55), 16-acetoxy-7α,12-dihydroxy-8,12-abietadiene-11,14-<br />

dione (54) <strong>and</strong> Coleon U (149) being isolated from more than one species.<br />

Of all the abietanes isolated from Plectranthus <strong>and</strong> Coleus species the highest<br />

antibacterial <strong>and</strong> antifungal activities were shown by the royleanone <strong>and</strong> coleon type<br />

compounds. These were compounds 28, 36, 38 (7α-formyloxy-6β-hydroxyroyleanone),<br />

44 (coleon U quinone) <strong>and</strong> 149. All these compounds are structurally related <strong>and</strong> have<br />

the same basic skeleton with different functional groups located in the molecules.<br />

However, coleon U has an aromatic ring <strong>and</strong> the others have a hydroxyquinoid ring C.<br />

Bacillus subtilis <strong>and</strong> Staphylococcus aureus were the most commonly tested bacterial<br />

strains while the anti-fungal pathogens tested were Cladosporium cucumerinum,<br />

Rhizoctonia solani, Sclerotinia sclerotiorum, Pythium ultimum <strong>and</strong> C<strong>and</strong>ida albicans.<br />

Acetone was the most frequently used solvent for extraction, while dichloromethane,<br />

chlor<strong>of</strong>orm <strong>and</strong> ethyl acetate were reportedly used only once for the extraction <strong>of</strong><br />

abietanes from the plant material.<br />

Of the eight antimicrobial studies carried out on abietanes, two were done on the roots<br />

only <strong>and</strong> two on the entire plant. The rest <strong>of</strong> the studies were carried out on the aerial<br />

parts <strong>of</strong> the plant <strong>and</strong> the leaves (aerial parts in many instances mean leaves <strong>and</strong> flowers).<br />

Comparative studies need to be done on the different plant parts, to ascertain where the<br />

largest concentration <strong>of</strong> abietane diterpenoids exist.<br />

71


The majority <strong>of</strong> the abietanes isolated remain untested against microbes (bacteria <strong>and</strong><br />

fungi) <strong>and</strong> there is thus a need to carry out antimicrobial assays on the remainder <strong>of</strong> the<br />

abietanes.<br />

It was found that the coleon-type compound (where ring C is aromatic) are more active<br />

than royleanone-type compounds (where ring C has a 12-hydroxy-p-benzoquinone<br />

moeity) (Gaspar-Marques et al., 2006; Wellsow et al., 2006).<br />

It has been observed that the oxidation pattern at the C-6 <strong>and</strong> C-7 positions in compounds<br />

having a royleanone-type structure plays a role in the antibacterial activity <strong>of</strong> the<br />

compound with compounds where C-7 is oxidised being more active than those oxidised<br />

at C-6 or not oxidised at all (Teixeira et al., 1997; Gaspar-Marques et al., 2006). Another<br />

important observation is that the presence <strong>of</strong> an isopropyl group at C-13 in royleanone-<br />

type compounds results in better activity than those compounds having an oxidised<br />

isopropyl group or allylic group at the same position (Gaspar-Marques et al., 2006;<br />

Batista et al., 1995; Batista et al., 1994).<br />

Table 11: Antibacterial <strong>and</strong> antifungal activity <strong>of</strong> compounds extracted from Plectranthus<br />

species<br />

Plectranthus<br />

species<br />

P. aff.<br />

puberulentus<br />

Plant<br />

part<br />

Compound<br />

Antimicrobial<br />

Activity<br />

acetone lv (168), (169) B. subtilis<br />

P. ecklonii ethyl acetate w (123), (124)<br />

P. elegans chlor<strong>of</strong>orm a (109), (132)<br />

Continued on next page…..<br />

Drug resistant<br />

Mycobacterium<br />

tuberculosis<br />

Listeria<br />

monocytogenes<br />

B. subtilis, S. aureus,<br />

Streptomyces scabies,<br />

P. aeruginosa,<br />

Pseudomonas<br />

syringae, Erwinia<br />

carotovora,<br />

*Cladosporium<br />

cucumerinum<br />

Reference<br />

Wellsow et<br />

al., 2006<br />

Nyila et al.,<br />

2009<br />

Dellar et al.,<br />

1996<br />

72


Plectranthus<br />

species<br />

P. forsteri<br />

‘marginatus’<br />

P.<br />

gr<strong>and</strong>identatus<br />

Plant<br />

part<br />

Compound<br />

acetone lv (44), (149)<br />

acetone w (36)<br />

acetone a+rt<br />

P. hadiensis dichloromethane a<br />

P. hereroensis<br />

Continued on next page…..<br />

acetone a+rt<br />

acetone rt<br />

(27), (28), (32),<br />

(33), (36), (43),<br />

(149)<br />

x (36), (38)<br />

x (33)<br />

(28), (54), (55),<br />

(64)<br />

(55)<br />

(28), (54)<br />

Antimicrobial<br />

Activity<br />

Bacillus subtilis,<br />

Pseudomonas<br />

syringae<br />

Staphylococcus<br />

aureus,<br />

Vibrio cholera<br />

Six strains <strong>of</strong><br />

methicillin resistant<br />

S. aureus, two strains<br />

<strong>of</strong> vancomycinresistant<br />

E. faecalis<br />

B. subtilis,<br />

Xanthomonas<br />

campestris,<br />

*Rhizoctonia solani,<br />

*Sclerotinia<br />

sclerotiorum,<br />

*Pythium ultimum,<br />

*unknown C<strong>and</strong>ida<br />

species<br />

*S. sclerotiorum,<br />

*unknown C<strong>and</strong>ida<br />

species<br />

Six strains <strong>of</strong><br />

methicillin resistant<br />

S. aureus, two strains<br />

<strong>of</strong> vancomycinresistant<br />

E. faecalis<br />

S. aureus,<br />

V. cholerae<br />

S. aureus, V. cholera,<br />

*C<strong>and</strong>ida albicans,<br />

P. aeruginosa,<br />

Escherichia coli,<br />

Shigella dysenteriae,<br />

Salmonella<br />

typhimurium,<br />

Steptococcus faecalis<br />

Reference<br />

Wellsow et<br />

al., 2006<br />

Teixera et<br />

al., 1997<br />

Gaspar-<br />

Marques et<br />

al., 2006<br />

Laing et al.,<br />

2006<br />

Gaspar-<br />

Marques et<br />

al., 2006<br />

Batista et<br />

al., 1995<br />

Batista et<br />

al., 1994<br />

73


Plectranthus<br />

species<br />

Plant<br />

part<br />

Compound<br />

P. puberulentus acetone lv (170)<br />

Antimicrobial<br />

Activity<br />

Bacillus subtilis,<br />

Pseudomonas<br />

syringae<br />

Reference<br />

Wellsow et<br />

al., 2006<br />

* denotes anti-fungal pathogens<br />

x Laing et al. (2006) reported the isolation <strong>of</strong> 7α-acetoxy-6-hydroxyroyleanone <strong>and</strong> 7α,6-dihydroxyroyleanone<br />

without including the stereochemistry in the name. It is thus assumed that these compounds are 7α-acetoxy-6βhydroxyroyleanone<br />

(36) <strong>and</strong> 7α,6β-dihydroxyroyleanone (33), respectively<br />

Key: lv: leaves, rt: roots, s: stems, a: aerial parts, w: whole plant, f: flowers<br />

Three abietanes have also been found in Salvia species where antimicrobial studies were<br />

carried out (Table 12). All three <strong>of</strong> these abietanes have a royleanone-type structure.<br />

Compounds 28 (horminone) <strong>and</strong> 31 (7α-acetoxyroyleanone) exhibited similar <strong>and</strong> in<br />

some cases stronger antibacterial activity to commonly used antibiotics such as<br />

cefoperazone, amicain, kanamycin <strong>and</strong> vancomycin (Ulubelen et al., 2001; 2003).<br />

Table 12: Antibacterial <strong>and</strong> antifungal activity <strong>of</strong> abietanes isolated from Salvia species<br />

Plant species Compound Activity Reference<br />

Salvia sclarea (40) S. aureus, *C. albicans<br />

Ulubelen et al.,<br />

1994<br />

Salvia<br />

blepharochlaena;<br />

Salvia<br />

amplexicaulis;<br />

Salvia eriophora<br />

* denotes anti-fungal pathogens<br />

(28)<br />

(31)<br />

S. aureus, S. epidermis, B.<br />

subtilis, E. faecalis Kolak et al.,<br />

2001;<br />

S. aureus, S. epidermis, B.<br />

subtilis<br />

Ulubelen et al.,<br />

2001; 2003<br />

Table 13 lists twenty-seven abietanes with antioxidant, anticancer, antifeedant <strong>and</strong> other<br />

activity which have been isolated from thirteen Plectranthus species <strong>and</strong> two Coleus<br />

species.<br />

Compounds 36 (7α-acetoxy-6β-hydroxyroyleanone), 123 <strong>and</strong> 124 commonly known as<br />

Parvifloron D <strong>and</strong> F respectively, have been isolated the most <strong>and</strong> have exhibited both<br />

74


anticancer (Cerqueira et al., 2004; Nyila et al., 2009; Gaspar-Marques et al., 2002) <strong>and</strong><br />

antimalarial activity (van Zyl et al., 2008). Compound 124 also has antioxidant activity<br />

(Narukawa et al., 2001). Compound 36 has a royleanone-type structure while the other<br />

two compounds (123-124) have a vinylogous quinone-type structure. In the three studies<br />

that were done on coleon-type <strong>and</strong> royleanone-type compounds (Mei et al., 2002;<br />

Cerqueira et al., 2004; Gaspar-Marques et al., 2002), it was found that the coleon-type<br />

compounds were more effective as anticancer agents than the royleanone-type<br />

compounds.<br />

When Kabouche et al. (2007) tested the antioxidant activity <strong>of</strong> royleanone <strong>and</strong> coleon-<br />

type compounds, they found that the presence <strong>of</strong> a carbonyl group at C-7 led to higher<br />

activity as apposed to compounds having no substituent at this position or having a<br />

substituent other than a carbonyl at C-7. When the hydroxyl group at C-12 is replaced by<br />

a methoxy group as in 176, the activity is increased as well (Kabouche et al., 2007). In<br />

studies where coleon (compounds where ring C is aromatic) <strong>and</strong> royleanone-type (where<br />

ring C has a 12-hydroxy-p-benzoquinone moeity) compounds were isolated, the coleon-<br />

type compounds proved to be more active than the royleanone-type compounds<br />

(Kabouche et al., 2007; Cerqueira et al., 2004; Mei et al., 2002; Gaspar-Marques et al.,<br />

2002; Narukawa et al., 2001). However there has been one instance were a royleanone-<br />

type diterpene (Coleon U quinone (44)) showed potent antifeedant activity whereas the<br />

coleon-type diterpene (coleon U (149)) displayed no activity as an antifeedant (Wellsow<br />

et al., 2006).<br />

O<br />

R<br />

12<br />

O<br />

OCCH 3<br />

O<br />

R<br />

(175) OH<br />

(176) OCH3<br />

75


The leaves seem to be the most frequently used plant part. There has been three instances<br />

where compounds from the entire plant has been tested but only one report on abietanes<br />

being isolated from the roots <strong>of</strong> Plectranthus species.<br />

In ten <strong>of</strong> the eleven studies on Plectranthus species, polar solvents (ethyl acetate,<br />

dichloromethane, acetone, ether <strong>and</strong> water) were used for extraction with there being just<br />

one report <strong>of</strong> hexane <strong>and</strong> dichloromethane being used as a solvent for extraction. This is<br />

probably because abietanes are best isolated with a polar solvent medium as many <strong>of</strong> the<br />

abietanes are highly functionalised with carbonyl <strong>and</strong> hydroxyl groups.<br />

Table 13: Inhibitory activity <strong>of</strong> abietanes isolated from Plectranthus <strong>and</strong> Coleus extracts<br />

Plectranthus<br />

species<br />

C. forskohlii<br />

Plant<br />

part<br />

NS<br />

taken orally or<br />

applied topically<br />

C. xanthanthus 70% acetone a<br />

Compound Other Activity Reference<br />

Anticancer activity<br />

(153)<br />

(44), (45),(46),<br />

(151), (172)<br />

P. ecklonii ethyl acetate w (123), (124)<br />

P.<br />

gr<strong>and</strong>identatus<br />

P.<br />

gr<strong>and</strong>identatus<br />

Continued on next page…..<br />

acetone w (149)<br />

acetone extract w<br />

acetone w<br />

(35), (36), (47),<br />

(149)<br />

(36), (149)<br />

(33), (35), (36),<br />

(47), (149)<br />

anti-tumor activity<br />

(in vivo <strong>and</strong> in vitro)<br />

inhibits growth <strong>and</strong><br />

proliferation <strong>of</strong> tumors<br />

cytotoxic against K562<br />

human leukemia cells<br />

active against vero cell<br />

line<br />

promising anti-cancer<br />

drug<br />

antiproliferative activity<br />

against human<br />

lymphocytes<br />

antiproliferative activity<br />

against the expression <strong>of</strong><br />

CD69 by T- <strong>and</strong> Bmouse<br />

lymphocytes <strong>and</strong><br />

induces lymphocyte<br />

apoptosis<br />

anti-tumor activity<br />

(breast, lung, renal,<br />

melanoma <strong>and</strong> CNS)<br />

Xiu et al., 2008<br />

Yanwen et al.,<br />

2007<br />

Mei et al., 2002<br />

Nyila et al.,<br />

2009<br />

Coutinho et al.,<br />

2009<br />

Cerqueira et al.,<br />

2004<br />

Gaspar-Marques<br />

et al., 2002<br />

76


Plectranthus<br />

species<br />

Plant<br />

part<br />

P. nummularis acetone lv<br />

Compound Other Activity Reference<br />

Antioxidant activity<br />

(124), (128),<br />

(131), (168)<br />

Antifeedant activity<br />

antioxidant activity<br />

P. aff.<br />

puberulentus<br />

acetone lv (168), (169)<br />

antifeedent activity<br />

against S. littoralis<br />

P. barbatus ether lv insect antifeedent<br />

(90)<br />

activity against S.<br />

gramium <strong>and</strong><br />

P. gossypiella<br />

P. forsteri<br />

‘marginatus’ acetone lv<br />

P. puberulentus<br />

(44)<br />

(170)<br />

antifeedent activity<br />

against S. littoralis<br />

Antimalarial activity<br />

P. ecklonii dichloromethane lv (123), (124)<br />

P. hadiensis dichloromethane lv (38), (36)<br />

P. lucidus<br />

P. purpuratus<br />

subsp. purpuratus<br />

P. purpuratus<br />

subsp. tongaensis<br />

dichloromethane lv<br />

(123), (126)<br />

(126)<br />

(127), (128)<br />

P. barbatus water lv (169)<br />

Other activity<br />

P. ecklonii ethyl acetate w (123), (124)<br />

P. gr<strong>and</strong>is hexane lv (70), (87)<br />

P. hereroensis acetone rt (64)<br />

antimalarial activity;<br />

inhibits β-haematin<br />

formation<br />

antimalarial activity;<br />

inhibits β-haematin<br />

formation<br />

antimalarial activity;<br />

inhibits β-haematin<br />

formation<br />

antisecretory <strong>and</strong><br />

antiulcer activities<br />

inhibits tyrosinase<br />

activity<br />

gastroprotective<br />

properties, in mice<br />

antiviral activity<br />

against Herpes virus ie.<br />

Herpes simplex type II<br />

Narukawa et al.,<br />

2001<br />

Wellsow et al.,<br />

2006<br />

Kubo et al., 1984<br />

Wellsow et al.,<br />

2006<br />

van Zyl et al.,<br />

2008<br />

van Zyl et al.,<br />

2008<br />

van Zyl et al.,<br />

2008<br />

Schultz et al.,<br />

2007<br />

Nyila et al., 2009<br />

Rodrigues et al.,<br />

2010<br />

Batista et al.,<br />

1995<br />

NB. Coleus species are also included in this table because <strong>of</strong> the uncertain relationship to the Plectranthus species<br />

Key: lv: leaves, rt: roots, s: stems, a: aerial parts, w: whole plant, f: flowers, NS: not specified<br />

77


Table 14 contains six abietanes isolated from five known Salvia species, one unknown<br />

Salvia species <strong>and</strong> one Lepechinia species. These compounds have been shown to<br />

possess anticancer, antioxidant or cardiovascular activity with compounds 27<br />

(royleanone) having antitumor <strong>and</strong> antioxidant activity <strong>and</strong> 28 (horminone) having<br />

antitumor, anticancer <strong>and</strong> antioxidant activity.<br />

The royleanone-type abietanes (27, 28, 32 <strong>and</strong> 44) have shown to exhibit anticancer,<br />

antioxidant <strong>and</strong> cardiovascular activity while the coleon-type compounds (134 <strong>and</strong> 146)<br />

have proved to be active only against cancer cell lines.<br />

Table 14: Pharmacological activity <strong>of</strong> abietanes isolated from other plant species<br />

Plant species Compound Activity Reference<br />

Salvia pachyphylla (146)<br />

Active against human<br />

cancer cell lines<br />

Guerrero et al.,<br />

2006<br />

Salvia hypargeia (134)<br />

Active against ovarian<br />

cancer cell line (A2780)<br />

Topcu et al., 2008<br />

*Salvia species<br />

(27), (28),<br />

(32)<br />

Antitumor<br />

Topcu <strong>and</strong> Goren,<br />

2007<br />

Lepechinia bullata (28), (43) Anticancer<br />

Jonathan et al.,<br />

1989<br />

Kolak et al., 2001;<br />

Salvia amplexicaulis<br />

Cardiovascular activity Ulubelen et al.,<br />

Salvia amplexicaulis;<br />

Salvia eriophora<br />

(44)<br />

Antihypertensive<br />

2003<br />

Kolak et al., 2001;<br />

Ulubelen et al.,<br />

2002<br />

Salvia barrelieri<br />

(27), (28),<br />

(31)<br />

Antioxidant activity<br />

Kabouche et al.,<br />

2007<br />

* unknown species<br />

The distinguishing feature <strong>of</strong> an abietanoid structure which determines the activity <strong>of</strong> the<br />

compound, is the oxidation pattern within ring B <strong>and</strong> ring C. It has been observed that<br />

the oxidation patterns at C-6, C-7 <strong>and</strong> C-12 influence the activity <strong>of</strong> the abietanoid.<br />

Compounds having a coleon-type structure (where ring C is aromatic) have proven to be<br />

more active than royleanone-type compounds (where ring C has a 12-hydroxy-p-<br />

benzoquinone moeity) (Gaspar-Marques et al., 2006; Wellsow et al., 2006).<br />

78


Two compounds, 7α-acetoxy-6β-hydroxyroyleanone (36) <strong>and</strong> coleon U (149) have<br />

shown to have the widest range <strong>of</strong> biological activity with compound 149 always being<br />

more active than compound 36 <strong>and</strong> occasionally having even stronger activity than the<br />

well known drugs used as controls.<br />

Although much has been done on testing the abietanes for biological activity, there are<br />

still many abietanes which have not been tested for any biological or pharmacological<br />

activity. These assays will prove useful in determining the structure-activity relationships<br />

<strong>of</strong> the abietanes.<br />

79


References<br />

Abdel-Mogib, M., Albar, H.A. <strong>and</strong> Batterjee, S.M. (2002) Chemistry <strong>of</strong> the genus<br />

Plectranthus, Molecules, 7, 271-301<br />

Alder, A.C., Ruedi, P. <strong>and</strong> Eugster, C. H. (1984a) Gl<strong>and</strong>ular pigments from labiates:<br />

polar diterpenoids from Plectranthus argentatus S. T. Blake, Helvetica Chimica<br />

Acta, 67, 1523-1530<br />

Alder, A.C., Ruedi, P. <strong>and</strong> Eugster, C. H. (1984b) Gl<strong>and</strong>ular pigments from tropical<br />

labiates: parviflorones from Plectranthus strigosus Benth, Helvetica Chimica Acta,<br />

67, 1531-1534<br />

Almeida, F.C.G. <strong>and</strong> Lemonica, I.P. (2000) The toxic effects <strong>of</strong> Coleus barbatus B. on<br />

the different periods <strong>of</strong> pregnancy in rats, Journal <strong>of</strong> Ethnopharmacology, 73, 53-60<br />

Alsufyani, T., Fatani, A., Khorshedm, F., Shaker, S. <strong>and</strong> Albar, H.A.H., Phytochemical<br />

composition <strong>and</strong> antimicrobial activities <strong>of</strong> the essential oil from Plectranthus<br />

tenuiflorus growing in Saudi Arabia, 9 pp, http://www.kau.edu.sa (accessed on<br />

27/09/2010)<br />

Arihara, S., Ruedi, P. <strong>and</strong> Eugster, C. H. (1977) Diterpenoid leaf-gl<strong>and</strong> pigments:<br />

coleons S <strong>and</strong> T from Plectranthus caninus Roth (Labiatae), a new diosphenol-trans-<br />

A/B-6,7-diketone pair <strong>of</strong> the abietane series, Helvetica Chimica Acta, 60, 1443-1447<br />

Ascensao, L., Figueiredo, A.C., Barroso, J.G., Pedro, L.G., Schripsema, J., Deans, S.G.<br />

<strong>and</strong> Scheffer, J.J.C. (1998) Plectranthus madagascariensis: morphology <strong>of</strong> the<br />

gl<strong>and</strong>ular trichomes, essential oil composition <strong>and</strong> it’s biological activity,<br />

International Journal <strong>of</strong> Plant Science, 159, 31-38<br />

Ayyanar, M <strong>and</strong> Ignacimuthu, S. (2005) Traditional knowledge <strong>of</strong> the Kani tribals <strong>of</strong><br />

Kouthalai <strong>of</strong> Tirunelveli Hills, Tamil Nadu, India, Journal <strong>of</strong> Ethnopharmacology,<br />

102, 246-255<br />

Batista, O., Duarte, A., Nascimento, J. <strong>and</strong> Simoes, M.F. (1994) Structure <strong>and</strong><br />

antimicrobial activity <strong>of</strong> diterpenes from the roots <strong>of</strong> Plectranthus hereroensis,<br />

Journal <strong>of</strong> Natural Products, 57, 858-861<br />

80


Batista, O., Simoes, M.F., Duarte, A., Valdeira, M.L., de La Torre, M.C. <strong>and</strong> Rodriguez,<br />

B. (1994) An antimicrobial abietane from the root <strong>of</strong> Plectranthus hereroensis,<br />

Phytochemistry, 38, 167-169<br />

Buchbauer, G., Ruedi, P. <strong>and</strong> Eugster, C.H. (1978) Edulon A, a derivative <strong>of</strong> 2H-1-<br />

oxapyrene from Plectranthus edulis (Labiatae), Helvetica Chimica Acta, 61, 1969-<br />

74<br />

Cerqueira, F., Cordeira-Da-Silva, A., Gaspar-Marques, C., Simoes, F., Pinto, M.M.M.<br />

<strong>and</strong> Nascimento, M.S.J. (2004) Effect <strong>of</strong> abietane diterpenes from Plectranthus<br />

gr<strong>and</strong>identatus on T- <strong>and</strong> B-lymphocyte proliferation, Bioorganic <strong>and</strong> Medicinal<br />

Chemistry, 12, 217-223<br />

Chamorro, G., Salazar, M., Fournier, G. <strong>and</strong> Pages, N. (1991) Anti-implantation effects<br />

<strong>of</strong> various extracts <strong>of</strong> Plectranthus fruticosus on pregnant rats, Planta medica, 57, 81<br />

Cheek, M., Onana, J.M. <strong>and</strong> Pollard, B.J. (2000) The plants <strong>of</strong> Mt. Oku <strong>and</strong> the Ijim<br />

Ridge, Cameroon, A conservation list, Royal Botanic Gardens, Kew, 220pp<br />

Chen, J., Hammell, D.C., Spry, M., D’Orazio, J.A. <strong>and</strong> Stinchcomb, A.L. (2009) In vitro<br />

skin diffusion study <strong>of</strong> pure forskolin versus a forskolin-containing Plectranthus<br />

barbatus root extract, Journal <strong>of</strong> Natural Products, 72, 769-771<br />

Cheng-Yu, W., Kun-Shan, L., Ching-Wu, H. <strong>and</strong> Huei, L. (2006) Leaf juice <strong>of</strong><br />

Plectranthus amboinicus for treating cancer <strong>and</strong>/or tumor, United States Patent<br />

Application 20060099283 (abstract from Scifinder Scholar 2007)<br />

Chi-Huey, W., Yih-Shyun E.C., Hui-Ming, Y., Ting-Jen R.C., Chung-Yi, W. <strong>and</strong> Jim-<br />

Min, F. (2009) Compositions <strong>and</strong> methods for treating inflammation <strong>and</strong><br />

inflammation-related disorders by Plectranthus amboinicus extracts, United States<br />

Patent Application 20090076143 (abstract from Scifinder Scholar 2007)<br />

Chiyoko, U., Hiroaki, K., Takuya, U. <strong>and</strong> Atsushi, N. (2005) Remedy for menopause<br />

disorder containing specified plant extract <strong>and</strong> skin composition containing the same,<br />

Jpn. Kokai Tokkyo Koho, Patent application number JP 2003-425741, 15pp (abstract<br />

from Scifinder Scholar 2007)<br />

Chia-Li, W., Meng-Hwan, L., Chun-Ying, L., Jay, H. <strong>and</strong> Ying-Chieh, T. (2007)<br />

Compositions <strong>and</strong> methods for uterine relaxing, United States Patent Application<br />

20070237839 (abstract from Scifinder Scholar 2007)<br />

81


Cos, P., Hermans, N., de Bryne, T., Apers, S., Sindambiwe, J.B., v<strong>and</strong>en Berghe, D.,<br />

Pieters, L. <strong>and</strong> Vlietinck, A.J. (2002) Further evaluation <strong>of</strong> Rw<strong>and</strong>an medicinal plant<br />

extracts for their antimicrobial <strong>and</strong> antiviral activities, Journal <strong>of</strong><br />

Ethnopharmacology, 79, 155-163<br />

Coutinho, I., Pereira, G., Simoes, M.F., Corte-Real, M., Goncalves, J. <strong>and</strong> Saraiva, L.<br />

(2009) Selective activation <strong>of</strong> protein kinase C-δ <strong>and</strong> -ε by 6,11,12,14-tetrahydroxy-<br />

abieta-5,8,11,13-tetraene-7-one (coleon U), Biochemical pharmacology, 78, 449-459<br />

Cseke, L.J., Kirakosyan, A., Kaufman, P.B., Warber, S.L., Duke, J.A. <strong>and</strong> Brielmann,<br />

H.L. (2006) Natural products from plants, CRC/Taylor <strong>and</strong> Francis, 2 nd edition, pp<br />

Dellar, J. E., Cole M. D. <strong>and</strong> Waterman P. G. (1996) Antimicrobial abietane diterpenoids<br />

from Plectranthus elegans, Phytochemistry, 41, 735-738<br />

de Oliveira, R. de A.G., de O. Lima, E., de Souza, E.L, Vieira, W.L., Freire, K.R.L.,<br />

Trajano, V.N., Lima, I.O. <strong>and</strong> Silva-Filho, R.N. (2007) Interference <strong>of</strong> Plectranthus<br />

amboinicus (Lour.) Spreng essential oil on the anti-c<strong>and</strong>ida activity <strong>of</strong> some clinically<br />

used antifungals, Brazilian Journal <strong>of</strong> Pharmacognosy, 17, 186-190<br />

Fale, P.L., Borges, C., Madeira, P.J.A., Ascensao, L., Araujo, M.E.M., Florencio, M.H.,<br />

Serralheiro, M.L.M. (2009) Rosemarinic acid, scutellarein 4’-methyl ether 7-O-<br />

glucuronide <strong>and</strong> (16S)-coleon E are the main compounds responsible for the<br />

antiacetylcholinesterase <strong>and</strong> antioxidant activity in herbal tea <strong>of</strong> Plectranthus<br />

barbatus (“false boldo”), Food Chemistry, 114, 798-805<br />

Figueiredo, N.L., de Aguiar, S.R.M.M., Fale, P.L., Ascensao, L., Serralheiro, M.L.M. <strong>and</strong><br />

Lino, A.R.L. (2010) The inhibitory effect <strong>of</strong> Plectranthus barbatus <strong>and</strong> Plectranthus<br />

ecklonii leaves on the viability, glucosyltransferase activity <strong>and</strong> bi<strong>of</strong>ilm formation <strong>of</strong><br />

Streptococcus sobrinus <strong>and</strong> Streptococcus mutans, Food Chemistry, 119, 664-668<br />

Gaspar-Marques, C., Pedro, M., Simoes, M.F.A., Nascimento, M.S.J., Pinto, M.M.M. <strong>and</strong><br />

Rodriguez, B. (2002) Effect <strong>of</strong> abietane diterpenes from Plectranthus gr<strong>and</strong>identatus<br />

on the growth <strong>of</strong> human cancer cell lines, Planta Medica, 68, 839-840<br />

Gaspar-Marques, C., Duarte, M.A., Simoes, M.F., Rijo, P. <strong>and</strong> Rodriguez, B. (2006)<br />

Abietanes from Plectranthus gr<strong>and</strong>identatus <strong>and</strong> P. hereroensis against methicillin-<br />

<strong>and</strong> vancomycin-resistant bacteria, Phytomedicine, 13, 267-271<br />

82


Gaspar-Marques, C., Simoes, M.F., Valdeira, M.L., Rodriguez, B. (2008) Terpenoids <strong>and</strong><br />

phenolics from Plectranthus strigosus, bioactivity screening, Natural Product<br />

Research, Part A: Structure <strong>and</strong> Synthesis, 22, 167-177 (abstract from Scifinder<br />

Scholar 2007)<br />

Grob, K., Ruedi, P. <strong>and</strong> Eugster, C. H. (1978) Leaf gl<strong>and</strong> pigments from labiates<br />

structures <strong>of</strong> 16 diterpenoids (coleons <strong>and</strong> royleanones) from Coleus coerulescens<br />

Guerke, Helvetica Chimica Acta, 61, 871-884<br />

Guerrero, I.C., Andres, L.S., Leon, L.G., Machin, R.P., Padron, J.M., Luis, J.G. <strong>and</strong><br />

Delgadillo, J. (2006) Abietane diterpenoids from Salvia pachyphylla <strong>and</strong> S.<br />

clevel<strong>and</strong>ii with cytotoxic activity against human cancer cell lines, Journal <strong>of</strong> Natural<br />

Products, 69, 1803-1805<br />

Guo, P. (2006) A chinese medicinal composition for treating liver function impairment,<br />

<strong>and</strong> its preparation method, (Pang Guo, Peop. Rep. China) Faming Zhuanli Shenqing<br />

Gongkai Shuomingshu, Patent number CN 1718225, Patent Application number CN<br />

2004-10027950 (abstract from Scifinder Scholar 2007)<br />

Gurib-Fakim, A. (2006) Medicinal plants: Traditions <strong>of</strong> yesterday <strong>and</strong> drugs <strong>of</strong><br />

tomorrow, Molecular Aspects <strong>of</strong> Medicine, 27, 1-93<br />

Gurgel, A.P.A.D., da Silva, J.G., Grangeiro, A.R.S., Oliveira, D.C., Lima, C.M.P., da<br />

Silva, A.C.P., Oliveira, R.A.G., Souza, I.A. (2009) In vivo study <strong>of</strong> the anti-<br />

infammatory <strong>and</strong> antitumor activities <strong>of</strong> leaves from Plectranthus amboinicus (Lour.)<br />

Spreng (Lamiaceae), Journal <strong>of</strong> Ethnopharmacology, 125, 361-363<br />

Han, L.K., Morimoto, C., Yu, R.-H. <strong>and</strong> Okuda, H. (2005) Effects <strong>of</strong> Coleus forskohlii on<br />

fat storage in ovariectomized rats, Yakugaku Zasshi, 125, 449-453 (abstract from<br />

Scifinder Scholar 2007)<br />

Hensch, M., Ruedi, P. <strong>and</strong> Eugster, C. H. (1975) Horminone, taxoquinone, <strong>and</strong> other<br />

royleanones obtained from two Abyssinian Plectranthus species (Labiatae),<br />

Helvetica Chimica Acta, 58, 1921-1934<br />

Horvath, T., Linden, A., Yoshizaki, F., Eugster, C. H. <strong>and</strong> Ruedi, P. (2004) Abietanes <strong>and</strong><br />

a novel 20-norabietanoid from Plectranthus cyaneus (Lamiaceae), Helvetica Chimica<br />

Acta, 87, 2346-2353<br />

83


Hulme, M. (1954) Wild flowers <strong>of</strong> Natal, Pietermaritzburg, Shuter <strong>and</strong> Shooter, Plates 26<br />

<strong>and</strong> 29<br />

Hutchings, A., Scott, A.H., Lewis, G. <strong>and</strong> Cunningham, A. (1996) Zulu medicinal plants:<br />

an inventory, University <strong>of</strong> Natal Press, Pietermaritzburg, pp 270-271<br />

Ignacimuthu, S., Ayyanar, M. <strong>and</strong> Sivaraman, S.K. (2006) Ethnobotanical investigations<br />

among tribes in Madurai District <strong>of</strong> Tamil Nadu (India), Journal <strong>of</strong> Ethnobiology <strong>and</strong><br />

Ethnomedicine, 2, 25-31<br />

Jiali, W., Menghuan, L., Junying, L., Jie, H. <strong>and</strong> Yingjie, C. (2007) Traditional Chinese<br />

medicine composition for relaxing uterus <strong>and</strong> alleviating dysmenorrhea, (Yangsen<br />

Biotechnology Co., Ltd., Peop. Rep. China) Faming Zhuanli Shenqing Gongkai<br />

Shuomingshu, Patent number CN 101069679, Patent Application number CN 2006-<br />

10081834, 11pp (abstract from Scifinder Scholar 2007)<br />

Jian, L., Jiashuo, Z., Zhihe, C., Yunlong, X. <strong>and</strong> Qiduan, J. (2006) Chinese medicine<br />

composition for treating asthma <strong>and</strong> cough <strong>and</strong> its preparation, (Yunnan Yunhe<br />

Pharmaceutical Co., Ltd., Peoples Republic <strong>of</strong> China), Faming Zhuanli Shenqing<br />

Gongkai Shuomingshu, Patent number CN 1872146, Patent application number CN<br />

2006-10010797, 13pp (abstract from Scifinder Scholar 2007)<br />

Jonathan, L.T., Che, C.-T., Pezzuto, J.M., Fong, H.H.S. <strong>and</strong> Farnsworth, N.R. (1989) 7-<br />

O-methylhorminone <strong>and</strong> other cytotoxic diterpene quinones from Lepechinia bullata,<br />

Journal <strong>of</strong> Natural Products, 52, 571-575<br />

Jui-Yu, W., Chia-Ming, C., Tsun-Min, C. <strong>and</strong> Yu-Shan, C. (2009) Plectranthus<br />

amboinicus extract for treating rheumatoid arthritis, (Development Center for<br />

Biotechnology, Taiwan) Faming Zhuanli Shenqing Gongkai Shuomingshu, Patent<br />

number CN 101491573, Patent Application number CN 2008-10001091, 38pp<br />

(abstract from Scifinder Scholar 2007)<br />

Kabouche, A., Kabouche, Z., Ozturk, M., Kolak, U. <strong>and</strong> Topcu, G. (2007) Antioxidant<br />

abietane diterpenoids from Salvia barrelieri, Food Chemistry, 102, 1281-1287<br />

Karanatsios, D. Scarpa, J. S. <strong>and</strong> Eugster, C. H. (1966) Structure <strong>of</strong> fuerstion, Helvetica<br />

Chimica Act, 49, 1151-1172<br />

Kazuo, T. (2006) Body hair-growth inhibitors containing skin-care agents <strong>and</strong> body-<br />

slimming agents, (Japan) Jpn. Kokai Tokkyo Koho, Patent number JP 2006016373,<br />

84


Patent Application number JP 2004-222610, 3pp (abstract from Scifinder Scholar<br />

2007)<br />

Kelecom, A. (1984) An abietane diterpene from the labiatae Coleus barbatus,<br />

Phytochemistry, 23, 1677-1679<br />

Khan, S.M., Ahmad, H., Ramzan, M. <strong>and</strong> Jan, M.M. (2007) Ethnomedicinal plant<br />

resources <strong>of</strong> Shawar Valley, Pakistan Journal <strong>of</strong> Biological Sciences, 10, 1743-1746<br />

Kisangau, D.P., Hosea, K.M., Joseph, C.C. <strong>and</strong> Lyaruu, H.V.M. (2007) In-vitro<br />

antimicrobial assay <strong>of</strong> plants used in traditional medicine in Bukoba Rural District,<br />

Tanzania, African Journal <strong>of</strong> Traditional <strong>and</strong> Complementary Medicine, 4, 510-523<br />

Kiyoshi, K., Satoshi, S., Maruyasu, S., Masatoshi, H. <strong>and</strong> Masahiro, M. (2005) Hair<br />

growth stimulating compositions containing (benzylamino)purines <strong>and</strong> Labiatae<br />

extracts, (Lion Corp., Japan; Sansei Pharmaceutical Co., Ltd.) Jpn. Kokai Tokkyo<br />

Koho, 18pp (abstract from Scifinder Scholar 2007)<br />

Kolak, U., Ari, S., Birman, H., Hasancebi, S. <strong>and</strong> Ulubelen, A. (2001) Cardioactive<br />

diterpenoids from the roots <strong>of</strong> Salvia amplexicaulis, Planta Medica, 67, 761-763<br />

Kubo, I., Matsumoto, T., Tori, M. <strong>and</strong> Asakawa, Y. (1984) Structure <strong>of</strong> Plectrin: an aphid<br />

antifeedant diterpene from Plectranthus barbatus, Chemistry Letters, 9, 1513-1516<br />

Kunzle, J.M., Ruedi, P. <strong>and</strong> Eugster, C.H. (1987) Isolation <strong>and</strong> structure elucidation <strong>of</strong> 36<br />

diterpenoids from trichomes <strong>of</strong> Plectranthus edulis (Vatke) T.T. Aye., Helvetica<br />

Chimica Acta, 70, 1911-1929<br />

Laing, M.D., Drewes, S.E. <strong>and</strong> Gurlal, P. (2006) Extracts <strong>of</strong> Plectranthus hadiensis,<br />

argentatus or myrianthus for the treatment <strong>of</strong> microbial infection, Publication number<br />

WO/2008/001278, 10pp, http://www.wipo.int/pctdb/en/wo (last date accessed<br />

05/12/2010)<br />

Lans, C.A. (2006) Ethnomedicines used in Trinidad <strong>and</strong> Tobago for urinary problems <strong>and</strong><br />

diabetes mellitus, Journal <strong>of</strong> Ethnobiology <strong>and</strong> Ethnomedicine, 2, 45-56<br />

Lans, C.A. (2007) Ethnomedicines used in Trinidad <strong>and</strong> Tobago for reproductive<br />

problems, Journal <strong>of</strong> Ethnobiology <strong>and</strong> Ethnomedicine, 3, 13-25<br />

Li, C.-M., Zhang, G.-H., Lin, Z.-W., Zheng, H.-L. <strong>and</strong> Sun, H.D. (1991) The structure <strong>of</strong><br />

Esquirolin A, Acta Botanica Yunnanica, 13, 216-218 (abstract only)<br />

85


Lingling, X., Jie, L., Weijia, L. <strong>and</strong> Lingyi, K. (2005) Studies in the chemical constituents<br />

in root <strong>of</strong> Coleus forskohlii, Zhongguo Zhongyao Zazhi, 30, 1753-1755 (abstract from<br />

Scifinder Scholar 2007)<br />

Lukhoba, C.W., Simmonds, M.S.J., Paton, A.J. (2006) Plectranthus: A review <strong>of</strong><br />

ethnobotanical uses, Journal <strong>of</strong> Ethnopharmacology, 103, 1-24<br />

Marcin, K. (2005) Formulation for treating obesity <strong>and</strong> associated metabolic syndrome,<br />

(Multipharma I Goeteborg AB, Swed.) PCT Int. Appl., 31pp (abstract from Scifinder<br />

Scholar 2007)<br />

Marwah, R.G., Fatope, M.O., Deadman, M.L., Ochei, J.E. <strong>and</strong> Al-Saidi, S.H. (2007)<br />

Antimicrobial activity <strong>and</strong> the major components <strong>of</strong> the essential oil <strong>of</strong> Plectranthus<br />

cylindraceus, Journal <strong>of</strong> Applied Microbiology, 103, 1220-1226<br />

Masayuki, Y. <strong>and</strong> Nobuyasu, M. (2007) Maillard reaction product decomposition agents<br />

containing plant extracts <strong>and</strong> food containing the agents, (Acuray Co., Ltd., Japan)<br />

Jpn. Kokai Tokkyo Koho, Patent number 2007119373, Application number JP 2005-<br />

311282, 30pp (abstract from Scifinder Scholar 2007)<br />

Matloubi-Moghadam, F., Ruedi, P. <strong>and</strong> Eugster, C.H. (1987) Drüsefarbst<strong>of</strong>fe aus<br />

Labiaten: Identifizierung von 17 abietanoiden aus Plectranthus sanguineus<br />

BRITTEN, Helvetica Chimica Acta, 70, 975-983<br />

Matu, E.N. <strong>and</strong> van Staden, J. (2003) Antibacterial <strong>and</strong> anti-inflammatory activities <strong>of</strong><br />

some plants used for medicinal purposes in Kenya, Journal <strong>of</strong> Ethnopharmacology,<br />

87, 35-41<br />

Mehrota, R., Vishwakarma, R. A. <strong>and</strong> Thakur, R. S. (1989) Abietane diterpenoids from<br />

Coleus zeylanicus, Phytochemistry, 28, 3135-3137<br />

Mei, X.X, Na, Z., Niu, X.M., Li, C.M., Lin, Z.W. <strong>and</strong> Sun, H. D. (2000) Two new<br />

abietane diterpenoids from Coleus xanthanthus, Chinese Chemical Letters, 11, 1069-<br />

1072<br />

Mei, S.-X., Jiang, B., Niu, X.-M., Li, M.-L., Yang, H., Na, Z., Lin, Z.-W., Li, C.-M. <strong>and</strong><br />

Sun, H.-D. (2002) Abietane diterpenoids from Coleus xanthanthus, Journal <strong>of</strong><br />

Natural Products, 65, 633-637<br />

Miyase, T., Ruedi, P. <strong>and</strong> Eugster, C. H. (1977a) Diterpenoid leaf-gl<strong>and</strong> pigments from<br />

Labiatae: coleons U, V, W, 14-O-formylcoleon V, <strong>and</strong> two royleanones from<br />

86


Plectranthus myrianthus Briq.; cis- <strong>and</strong> trans-A/B-6,7-dioxoroyleanone, Helvetica<br />

Chimica Acta, 60, 2770-2779<br />

Miyase, T., Ruedi, P. <strong>and</strong> Eugster, C.H. (1977b) Diterpenoid leaf-gl<strong>and</strong> pigments from<br />

Labiatae: 3β-acetoxyfuerstione, nilgherron A <strong>and</strong> nilgherron B, new quinomethanes<br />

from Plectranthus nilgherricus Benth.; absolute configuration <strong>of</strong> fuerstione, Helvetica<br />

Chimica Acta, 60, 2789-2803<br />

Miyase, T., Yoshizaki, F., Kabengele, N., Ruedi, P. <strong>and</strong> Eugster, C. H. (1979) Structures<br />

<strong>of</strong> 13 diterpenes (coleones) from Solenostemon sylvaticus <strong>and</strong> Coleus garckeanus<br />

(Labiatae) leaf gl<strong>and</strong>s, Helvetica Chimica Acta, 62, 2374-2383<br />

Moir, M., Ruedi, P. <strong>and</strong> Eugster, C.H. (1973a) Diterpenoid hydroquinones from Coleus<br />

somaliensis (S. Moore): Coleons H, I <strong>and</strong> K, Helvetica Chimica Acta, 56, 2534-2539<br />

Moir, M., Ruedi, P. <strong>and</strong> Eugster, C.H. (1973b) Diterpenoids from Coleus somaliensis (S.<br />

Moore): Coleons G <strong>and</strong> J, Helvetica Chimica Acta, 56, 2539-2548<br />

Mothana, R.A.A., Abdo, S.A.A., Hasson, S., Althawab, F.M.N., Alaghbari, S.A.Z. <strong>and</strong><br />

Lindequist, U. (2008) Antimicrobial, antioxidant <strong>and</strong> cytotoxic activities <strong>and</strong><br />

phytochemical screening <strong>of</strong> some Yeni medicinal plants, eCAM Advance Access, pp<br />

1-8<br />

Motoyuki, M. (2007) Functional food for the bowel movement improvement, (Genex K.<br />

K., Japan) Jpn. Kokai Tokkyo Koho, Patent number JP 2007097572, Patent<br />

Application number JP 2005-373060, 6pp (abstract from Scifinder Scholar 2007)<br />

Murthy, P.S., Ramalakshmi, K. <strong>and</strong> Srinivas, P. (2009) Fungitoxic activity <strong>of</strong> Indian<br />

borage (Plectranthus amboinicus) volatiles, Food Chemistry, 114, 1014-1018<br />

Narukawa, Y., Shimizu, N., Shimotohno, K. <strong>and</strong> Takeda, T. (2001) Two new<br />

diterpenoids from Plectranthus nummularius Briq., Chemical <strong>and</strong> Pharmaceutical<br />

Bulletin, 49, 1182-1184<br />

Neuwinger, H.D. (2000) African Traditional Medicine, A Dictionary <strong>of</strong> Plant Use <strong>and</strong><br />

Applications, Mepharm Scientific Publishers, Stuttgart, pp 406-408<br />

Nyila, M.A., Leonard, C.M., Hussein, A.A. <strong>and</strong> Lall, N. (2009) Bioactivities <strong>of</strong><br />

Plectranthus ecklonii constituents, Natural Product Communications, 4, 1177-1180<br />

(abstract from Scifinder Scholar 2007)<br />

87


Oliveira, P.M., Alves, R.B., Ferreira, A.A., Brasileiro, B.G., Takahashi, J.A., Lage,<br />

G.L.C., Ferraz, V.P., Silveira, D. <strong>and</strong> Raslan, D.S. (2007) Composition <strong>and</strong><br />

antimicrobial activity <strong>of</strong> essential oil from Plectranthus ornatus Codd, Recent<br />

Progress in Medicinal Plants, 17, 395-409 (abstract from Scifinder Scholar 2007)<br />

Oliveira, P.M., Souza J.N.C., Lage, G.L.C., Alves, R.B., Silveira, D. <strong>and</strong> Raslan, D.S.<br />

(2007) Ethnobotany, pharmacology <strong>and</strong> phytochemistry <strong>of</strong> Plectranthus (Lamiaceae),<br />

Recent Progress in Medicinal Plants, 17, 363-393 (abstract from Scifinder Scholar<br />

2007)<br />

Omolo, M.O., Okinyo, D., Ndiege, I.O., Lw<strong>and</strong>e, W. <strong>and</strong> Hassanali, A. (2005) Fumigant<br />

toxicity <strong>of</strong> the essential oils <strong>of</strong> some African plants against Anopheles gambiae sensu<br />

stricto, Phytomedicine, 12, 241-246<br />

Onifade, A.K., Fatope, M.O., Deadman, M.L. <strong>and</strong> Al-Kindy, S.M.Z. (2008) Nematicidal<br />

activity <strong>of</strong> Haplophyllum tuberculatum <strong>and</strong> Plectranthus cylindraceus oils against<br />

Meloidogyne javanica, Biochemical Systematics <strong>and</strong> Ecology, 36, 679-683<br />

Pages, N., Salazar, M., Chamorro, G., Fournier, G., Paris, M., Dumitresco, S.M. <strong>and</strong><br />

Boudene, C. (1988) Teratological evaluation <strong>of</strong> Plectranthus fruticosus leaf essential<br />

oil, Planta medica, 54, 296-298<br />

Paton, A.J., Springate, D., Suddee, S., Otieno, D., Grayer, R.J., Harley, M.M., Willis, F.,<br />

Simmonds, M.S.J., Powell, M.P. <strong>and</strong> Savolainen, V. (2004) Phylogeny <strong>and</strong> evolution<br />

<strong>of</strong> basils <strong>and</strong> allies (Ocimeae, Labiatae) based on three plastid DNA regions,<br />

Molecular Phylogenetics <strong>and</strong> Evolution, 31, 277-299<br />

Periyanayagam, K., Nirmala, D.K., Suseela, L., Uma, A. <strong>and</strong> Ismail, M. (2008) In vivo<br />

antimalarial activity <strong>of</strong> leaves <strong>of</strong> Plectranthus amboinicus (Lour.) Spreng on<br />

Plasmodium berghei yoelii, The Journal <strong>of</strong> Communicable Diseases, 40, 121-125<br />

(abstract from Scifinder Scholar 2007)<br />

Rabe, T. <strong>and</strong> van Staden, J. (1998) Screening <strong>of</strong> Plectranthus species for antibacterial<br />

activity, South African Journal <strong>of</strong> Botany, 64, 62-65<br />

Ragasa, C.Y., Templora, V.F. <strong>and</strong> Rideout, J.A. (2001) Diastereomeric diterpenes from<br />

Coleus blumei, Chemical <strong>and</strong> Pharmaceutical Bulletin, 49, 927-929<br />

88


Rasikari, H. (2007) Phytochemistry <strong>and</strong> arthropod bioactivity <strong>of</strong> Australian Lamiaceae,<br />

PhD Thesis, Southern Cross University, Lismore, NSW, 290pp,<br />

http://epubs.scu.edu.au/theses/9 (accessed on 22/10/2010)<br />

Rey-Yuh, W., Yuh-Shan, C., Yu-Yuan, W., Ma-Li, S., Hung-Jen, H. <strong>and</strong> Chin-Wen, H.<br />

(2007) Plant extracts for treating skin disorders <strong>and</strong> enhancing healing <strong>of</strong> wounds for<br />

diabetic patients, (Development Center for Biotechnology, Taiwan) U.S. Pat. Appl.<br />

Publ., Patent number US 2007237841, Patent Application number US 2006-605178,<br />

19pp (abstract from Scifinder Scholar 2007)<br />

Rey-Yuh, W., Jia-Ming, C., Chun-Ming, C. <strong>and</strong> Yuh-Shan, C. (2008) Plant extracts for<br />

the treatment <strong>of</strong> rheumatoid arthritis, United States Patent Application 20080069911<br />

(abstract from Scifinder Scholar 2007)<br />

Rijo, P., Gaspar-Marques, C., Simoes, M.F., Jimeno, M.L., Rodrıguez, B. (2007) Further<br />

diterpenoids from Plectranthus ornatus <strong>and</strong> P. gr<strong>and</strong>identatus, Biochemical<br />

Systematics <strong>and</strong> Ecology, 35, 215-221<br />

Rodrigues, P. de A., de Morais, S.M., de Souza, C.M., Silva, A.R.A., de Andrade, G.M.,<br />

Silva, M.G.V., Albuquerque, R.L., Rao, V.S. <strong>and</strong> Santos, F.A. (2010)<br />

Gastroprotective effect <strong>of</strong> barbatusin <strong>and</strong> 3-beta-hydroxy-3-deoxibarbatusin,<br />

quinonoid diterpenes isolated from Plectranthus gr<strong>and</strong>is, in ethanol-induced gastric<br />

lesions in mice, Journal <strong>of</strong> Ethnopharmacology, 127, 725-730<br />

Rongqiu, Z., Lingyi, K., Gonghua, W. <strong>and</strong> Guangyun, Z. (2005) Manufacture <strong>of</strong> dripping<br />

pills containing Coleus forskohlii extract, (Kunming Xingzhong Pharmaceutical Co.,<br />

Ltd., Peop. Rep. China) Faming Zhuanli Shenqing Gongkai Shuomingshu, Patent<br />

number CN 1682840, Patent Application number CN 2005-10010685, 7pp (abstract<br />

from Scifinder Scholar 2007)<br />

Ruedi, P. <strong>and</strong> Eugster, C. H. (1971) Structure <strong>of</strong> coleon C, a new leaf pigment from<br />

Coleus aquaticus, Helvetica Chimica Acta, 54, 1606-1621<br />

Ruedi, P. <strong>and</strong> Eugster, C. H. (1972) Coleon D, a diterpene from Coleus aquaticus with<br />

trans-A/B-6,7-dioxo structure, Helvetica Chimica Acta, 55, 1736-1745<br />

Ruedi, P. <strong>and</strong> Eugster, C. H. (1975) Coleons C, D, I, <strong>and</strong> I' obtained from a Madagascan<br />

Plectranthus species. Interconversion <strong>of</strong> cis- <strong>and</strong> trans-A/B-6,7-diketoditerpenes,<br />

Helvetica Chimica Acta, 58, 1899-1912<br />

89


Ruedi, P. <strong>and</strong> Eugster, C. H. (1977) Diterpenoid leaf-gl<strong>and</strong> pigments: coleon L, a new<br />

diosphenolic compound from Coleus somaliensis S. Moore; revision <strong>of</strong> the structures<br />

<strong>of</strong> coleon H, I, I' <strong>and</strong> K, Helvetica Chimica Acta, 60, 1233-1238<br />

Ruedi, P. <strong>and</strong> Eugster, C. H. (1978) Diterpenoid pigments from labiates: 6 new<br />

quinomethanes from Plectranthus parviflorus Willd, Helvetica Chimica Acta, 61,<br />

709-715<br />

Ruedi, P., Uchida, M. <strong>and</strong> Eugster, C. H. (1981) Partial synthesis <strong>of</strong> the gr<strong>and</strong>idones A,<br />

7-epi-A, B, 7-epi-B, C, D <strong>and</strong> 7-epi-D, from 14-hydroxytaxodione, Helvetica<br />

Chimica Acta, 64, 2251-2256<br />

Runyoro, D.K.B., Matee, M.I.N., Ngassapa, O.D., Joseph, C.C. <strong>and</strong> Mbwambo, Z.H.<br />

(2006) Screening <strong>of</strong> Tanzanian medicinal plants for anti-c<strong>and</strong>ida activity, BMC<br />

Complementary <strong>and</strong> Alternative Medicine, 6, 10pp<br />

Sayuri, Y. <strong>and</strong> Vladimir, B. (2008) Macrobiotic <strong>and</strong> diet food or cosmetic compositions<br />

containing plant extracts, (Japan) Jpn. Kokai Tokkyo Koho, Patent number JP<br />

2008110922, Application number JP 2006-293373, 11pp (abstract from Scifinder<br />

Scholar 2007)<br />

Schmid, J.M., Ruedi, P. <strong>and</strong> Eugster, C.H. (1982) Diterpenoid leaf-gl<strong>and</strong> pigments from<br />

Labiatae: 22 novel coleons <strong>and</strong> royleanones from Plectranthus lanuginosus,<br />

Helvetica Chimica Acta, 65, 2136-2163<br />

Schultz, C., Bossolani, M.P., Torres, L.M.B., Lima-L<strong>and</strong>man, M.T.R., Lapa, A.J. <strong>and</strong><br />

Souccar, C. (2007) Inhibition <strong>of</strong> the gastric H+, K+-ATPase by Plectrinone A, a<br />

diterpenoid isolated from Plectranthus barbatus Andrews, Journal <strong>of</strong><br />

Ethnopharmacology, 111, 1-7<br />

Sonoko, M., Noriyuki, K., Fumihiko, T. <strong>and</strong> Tomoko, H. (2005) Buccal compositions for<br />

preventing foul breath containing natural products, (Lion Corp., Japan) Jpn. Kokai<br />

Tokkyo Koho, Patent number JP 2005289918, Patent Application number JP 2004-<br />

108703, 13 pp (abstract from Scifinder Scholar 2007)<br />

Tadesse, D., Eguale, T., Giday, M. <strong>and</strong> Mussa, A. (2009) Ovicidal <strong>and</strong> larvicidal activity<br />

<strong>of</strong> crude extracts <strong>of</strong> Maesa lanceolata <strong>and</strong> Plectranthus punctatus against<br />

Haemonchus contortus, Journal <strong>of</strong> Ethnopharmacology, 122, 240-244<br />

90


Teixeira, A.P., Batista, O., Simoes, M.F., Nascimento, J., Duarte, A., de La Torre, M.C.<br />

<strong>and</strong> Rodriguez, B. (1997) Abietane diterpenoids from Plectranthus gr<strong>and</strong>identatus,<br />

Phytochemistry, 44, 325-327<br />

Tempone, A.G., Sartorelli, P., Teixeira, D., Prado, F.O., Calixto, I.A., Lorenzi, H. <strong>and</strong><br />

Melhem, M.S.C. (2008) Brazilian flora extracts as source <strong>of</strong> novel antileishmanial<br />

<strong>and</strong> antifungal compounds, Mem Inst Oswaldo Cruz, Rio de Janeiro, 103, 443-449<br />

Tetsuji, H., Masashi, S., Satoka, E., Takehito, K., Katsuhisa, H., Toshio, S. <strong>and</strong> Masaki,<br />

Y. (2007) Blood vessel elasticity improvers containing Nepetoideae (extracts), Yakult<br />

Honsha Co., Ltd., Japan) Jpn. Kokai Tokkyo Koho, Patent number JP 2007238602,<br />

Patent Application number JP 2007-25195, 14pp (abstract from Scifinder Scholar<br />

2007)<br />

Topcu, G. <strong>and</strong> Goren, A.C. (2007) Biological activity <strong>of</strong> diterpenoids isolated from<br />

Anatolian Lamiaceae plants, Records <strong>of</strong> Natural Products, 1, 1-16<br />

Topcu, G., Turkmen, Z., Schilling, J.K., Kingston, D.G.I., Pezzuto, J.M. <strong>and</strong> Ulubelen, A.<br />

(2008) Cytotoxic activity <strong>of</strong> some Anatolian Salvia extracts <strong>and</strong> isolated abietane<br />

diterpenoids, Pharmaceutical Biology, 46, 180-184<br />

Uawonggul, N., Chaveerach, A., Thammasirirak, S., Arkaravichien, T., Chuachan, C. <strong>and</strong><br />

Daduang, S. (2006) Screening <strong>of</strong> plants acting against Heterometrus laoticus scorpion<br />

venom activity on fibroblast cell lysis, Journal <strong>of</strong> Ethnopharmacology, 103, 201-207<br />

Uchida, M., Miyase, T., Yoshizaki, F., Bieri, J. H., Ruedi, P. <strong>and</strong> Eugster, C. H. (1981)<br />

14-Hydroxytaxodione as major diterpenoid in Plectranthus gr<strong>and</strong>identatus Gurke;<br />

isolation <strong>of</strong> seven new dimeric diterpenoids from P. gr<strong>and</strong>identatus, P. myrianthus<br />

Briq. <strong>and</strong> Coleus carnosus Hassk.: structures <strong>of</strong> gr<strong>and</strong>idones A, 7-epi-A, B, 7-epi-B,<br />

C, D <strong>and</strong> 7-epi-D, Helvetica Chimica Acta, 64, 2227-2250<br />

Ulubelen, A., Topcu, G., Eri§, C., Sönmez, U., Kartal, M., Kurucu, S. <strong>and</strong> Bozok-<br />

Johansson, C. (1994) Terpenoids from Salvia sclarea, Phytochemistry, 36, 971-974<br />

Ulubelen, A., Oeksuez, S., Topcu, G., Goeren, A.C. <strong>and</strong> Voelter, W. (2001) Antibacterial<br />

diterpenes from the roots <strong>of</strong> Salvia blepharochlaena, Journal <strong>of</strong> Natural Products, 64,<br />

549-551<br />

91


Ulubelen, A., Birman, H., Oksuz, S., Topcu, G., Kolak, U., Barla, A. <strong>and</strong> Voelter, W.<br />

(2002) Cardioactive diterpenes from the roots <strong>of</strong> Salvia eriophora, Planta medica, 68,<br />

818-821<br />

Ulubelen, A. (2003) Cardioactive <strong>and</strong> antibacterial terpenoids from some Salvia species,<br />

Phytochemistry, 64, 395-399<br />

Vagionas, K., Ngassapa, O., Runyoro, D., Graikou, K., Gortzi, O. <strong>and</strong> Chinou, I. (2007)<br />

Chemical analysis <strong>of</strong> edible aromatic plants growing in Tanzania, Food Chemistry,<br />

105, 1711-1717<br />

van Jaarsveld, E.J. (2006) The Southern African Plectranthus <strong>and</strong> the art <strong>of</strong> turning shade<br />

to glade, Fernwood Press, 176pp<br />

van Jaarsveld, E.J. (1988) The Plectranthus h<strong>and</strong>book, National Botanic Gardens <strong>of</strong><br />

South Africa, CTP Book Printers, 23pp<br />

van Zyl, R.L., Khan, F., Edwards, T.J. <strong>and</strong> Drewes, S.E. (2008) Antiplasmodial activities<br />

<strong>of</strong> some abietane diterpenes from the leaves <strong>of</strong> five Plectranthus species, South<br />

African Journal <strong>of</strong> Science, 104, 62-64<br />

Wellsow, J., Grayer, R.J., Veitch, N.C., Kokubun, T., Lelli, R., Kite, G.C. <strong>and</strong><br />

Simmonds, M.S.J. (2006) Insect-antifeedant <strong>and</strong> antibacterial activity <strong>of</strong> diterpenoids<br />

from species <strong>of</strong> Plectranthus, Phytochemistry, 67, 1818-1825<br />

Wong, C.-H., Cheng, Y.-S.E., Yu, H.-M. Cheng, T.-J.R., Wu, C.-L. <strong>and</strong> Fang, J.-M.<br />

(2009) Compositions <strong>and</strong> methods for treating inflammation <strong>and</strong> inflammation-<br />

treated disorders by Plectranthus amboinicus extracts, International Application<br />

number PCT/US2008/076735 (abstract from Scifinder Scholar 2007)<br />

Xiu, X., Hezhen, W., Xiaoming, W., Yongping, H., Qing, L., Changlong, L., Yanfang,<br />

Y., Yanwen, L. <strong>and</strong> Jianwen, L. (2008) Inhibition <strong>of</strong> tumor cell proliferation by<br />

Coleon C, Journal <strong>of</strong> Chemotherapy (Firenze, Italy), 20, 238-245 (abstract from<br />

Scifinder Scholar 2007)<br />

Yanwen, L., Hezhen, W., Xiaoming, W., Jianwen, L. <strong>and</strong> Xiu, X. (2007) Use <strong>of</strong> coleon<br />

C extracted from Coleus as inhibitor for tumor growth <strong>and</strong> tumor cell proliferation,<br />

Faming Zhuanli Shenqing Gongkai Shuomingshu, 10pp (abstract from Scifinder<br />

Scholar 2007)<br />

92


Yaoliang, Y. <strong>and</strong> Zhizhong, L. (2006) A Chinese medicinal preparation with effects in<br />

clearing away heat, eliminating dampness, <strong>and</strong> promoting function <strong>of</strong> gallbladder,<br />

(Peop. Rep. China) Faming Zhuanli Shenqing Gongkai Shuomingshu, Patent number<br />

CN 1736411, Patent Application number CN 2005-10036222 (abstract from Scifinder<br />

Scholar 2007)<br />

Yoshizaki, F., Ruedi, P. <strong>and</strong> Eugster, C. H. (1979) Diterpenoid leaf-gl<strong>and</strong> pigments: 11<br />

coleons <strong>and</strong> royleanones from Coleus carnosus Hassk, Helvetica Chimica Acta, 62,<br />

2754-2762<br />

Zelnik, R., Lavie, D., Levy, E.C., Wang, A.H.J. <strong>and</strong> Paul, I.C. (1977) Barbatusin <strong>and</strong><br />

cyclobutatusin, two novel diterpenoids from Coleus barbatus Bentham, Tetrahedron,<br />

33, 1457-1467<br />

93


Chapter 3 Extractives from Plectranthus hadiensis<br />

3.1 Introduction<br />

Plectranthus hadiensis is commonly known as the ‘hairy spurflower’ or ‘imbozisa’ by the<br />

Zulus. This plant is a shrubby perennial which grows to a height <strong>of</strong> 1.5 metres <strong>and</strong><br />

flowers between March <strong>and</strong> June every year, peaking in May (van Jaarsveld, 2006). The<br />

flower blossoms are purple in colour (figure 15) <strong>and</strong> are pleasantly aromatic.<br />

Figure 15: Plectranthus hadiensis in bloom (picture courtesy <strong>of</strong> Pr<strong>of</strong>. N. Crouch)<br />

P. hadiensis favours dry conditions for growth <strong>and</strong> can be found growing between the<br />

Kwa-Zulu Natal coastline <strong>and</strong> Gauteng, South Africa. The cuttings <strong>of</strong> this plant are used<br />

for propogation purposes (van Jaarsveld, 2006).<br />

Ethnobotanically, P. hadiensis was reported by Lukhoba et al. (2006) as having been<br />

known to treat certain skin conditions, diarrhoea in South India <strong>and</strong> Sri Lanka (Mehrotra<br />

et al., 1989) respiratory conditions <strong>and</strong> inflammation (loc cit Sivarajan <strong>and</strong> Balach<strong>and</strong>ran,<br />

1986; Neuwinger, 2000; Hutchings et al, 1996). However the literature cited in Lukhoba<br />

et al. (2006) does not make mention <strong>of</strong> these reports.<br />

94


There have been only four biological studies on Plectranthus hadiensis where the<br />

antiplasmodial, insect-antifeedant, antifungal, antiradical <strong>and</strong> antibacterial properties <strong>of</strong><br />

this plant extract <strong>and</strong> the isolated compounds were evaluated for activity (van Zyl et al.,<br />

2008; Laing et al., 2006; Mothana et al., 2008; Wellsow et al., 2006). The acetone<br />

extract <strong>of</strong> this plant was found to be inactive as an insect-antifeedant (Wellsow et al.,<br />

2006). The hexane extract showed good activity against Sclerotinia sclerotiorum,<br />

Rhizoctonia solani <strong>and</strong> an unknown C<strong>and</strong>ida species while the dichloromethane extract<br />

showed moderate activity against bacterial strains, B. subtilis <strong>and</strong> X. campestris <strong>and</strong> the<br />

fungal microorganism, Sclerotinia sclerotiorum as well as an unknown C<strong>and</strong>ida species<br />

(Laing et al., 2006).<br />

Three royleanones 33, 36 <strong>and</strong> 38 were isolated previously from the dichloromethane<br />

extract <strong>of</strong> the aerial parts <strong>of</strong> P. hadienis (van Zyl et al., 2008) <strong>and</strong> the isomers <strong>of</strong> 33 <strong>and</strong><br />

36, 34 <strong>and</strong> 37 respectively, were isolated from the ethanol extract <strong>of</strong> Coleus zeylanicus (a<br />

synonym for P. hadiensis) (Mehrotra et al., 1989). Compounds 33 <strong>and</strong> 36 exhibited<br />

anticancer activity against breast, lung, renal, melanoma <strong>and</strong> central nervous system cell<br />

lines (MCF-7, NCI-H460, TK-10, UACC-62 <strong>and</strong> SF-268, respectively) with both<br />

compounds proving to be less potent than the positive control, Cyclosporin A (Cerqueira<br />

et al., 2004; Gaspar-Marques et al., 2002). These three compounds (33, 36 <strong>and</strong> 38) have<br />

also proven to be active against six strains <strong>of</strong> methicillin resistant Staphylococcus aureus,<br />

two strains <strong>of</strong> vancomycin-resistant Enterococcus faecalis, Bacillus subtilis, Vibrio<br />

cholera <strong>and</strong> Xanthomonas campestris (Laing et al., 2006; Teixera et al., 1997; Gaspar-<br />

Marques et al., 2006). Compounds 36 <strong>and</strong> 38 (van Zyl et al., 2008) exhibited<br />

antimalarial activity with 38 displaying synergistic properties when combined with<br />

quinine (Tables 11 <strong>and</strong> 13 on pages 72 <strong>and</strong> 76, respectively). There were no reports <strong>of</strong><br />

biological activity in compounds 34 <strong>and</strong> 37.<br />

95


4<br />

20<br />

10<br />

O<br />

H<br />

19 18<br />

6 7<br />

OH<br />

OH<br />

C<br />

13<br />

R<br />

O<br />

R<br />

(33) α-OH<br />

(34) β-OH<br />

(36) α-OC(O)CH3<br />

(37) β-OC(O)CH3<br />

(38) α-OCH(O)<br />

The purpose <strong>of</strong> this study was to perform phytochemical analyses on the stem <strong>and</strong> leaf<br />

material <strong>of</strong> Plectranthus hadiensis in the hope <strong>of</strong> isolating abietane diterpenes to test<br />

against Enterococcus faecalis <strong>and</strong> Pseudomonas aeruginosa bacterial microorganisms<br />

<strong>and</strong> breast (MCF-7), renal (TK-10) <strong>and</strong> melanoma (UACC-62) cancer cell lines. Since<br />

there has been no reports <strong>of</strong> compounds 34 <strong>and</strong> 37 possessing any biological activity, it<br />

was decided to evaluate these compounds for antibacterial <strong>and</strong> anticancer activity. We<br />

hope to compare our activity against E. faecalis with that reported in the literature <strong>and</strong> to<br />

report for the first time the antibacterial activity. We also hope to compare the anticancer<br />

activity <strong>of</strong> known compounds from P. hadiensis with that in the literature <strong>and</strong> report on<br />

the anticancer activity <strong>of</strong> any new compounds isolated from P. hadiensis.<br />

Research has been conducted previously on the aerial parts, roots <strong>and</strong> leaves (Mothana et<br />

al., 2008; Laing et al., 2006), but there has been no phytochemical reports on the stem<br />

material. Since the aerial parts, roots <strong>and</strong> leaves <strong>of</strong> P. hadiensis were found to possess<br />

antiradical, antibacterial <strong>and</strong> antifungal activity (Mothana et al., 2008; Laing et al., 2006),<br />

this plant made an interesting phytochemical <strong>and</strong> pharmacological subject.<br />

96


3.2 Foreword to Experimental<br />

Nuclear Magnetic Resonance (NMR) Spectroscopy<br />

The NMR spectra ( 1 H, 13 C, DEPT, HETCOR, COSY, NOESY, HSQC <strong>and</strong> HMBC) were<br />

recorded on either the Bruker 400MHz or 600MHz NMR spectrometer at the University<br />

<strong>of</strong> Kwa-Zulu Natal, Westville campus. TMS was used as an internal st<strong>and</strong>ard <strong>and</strong><br />

chemical shifts were given as δ (ppm), <strong>and</strong> the coupling constants (J) were reported in<br />

Hz. In the case <strong>of</strong> the 400 MHz NMR instrument, the operating frequency for the 1 H<br />

NMR spectra was 400 MHz <strong>and</strong> for the 13 C NMR spectra was 100 MHz <strong>and</strong> in the 600<br />

MHz NMR instrument, the operating frequencies were 600 <strong>and</strong> 150 MHz respectively for<br />

the 1 H <strong>and</strong> 13 C NMR spectra.<br />

General chromatography<br />

Column chromatography was carried out with silica gel (Merck 60, 0.040-0.063 mm) as<br />

the stationary phase. All crude extracts were separated on 4.5 cm diameter columns with<br />

step gradients <strong>of</strong> binary solvent systems <strong>and</strong> 100 ml fractions were collected with ten<br />

fractions for each step <strong>of</strong> the gradient. Elution <strong>of</strong> the columns was initiated with the least<br />

polar organic solvent, hexane, followed by dichloromethane, ethyl acetate <strong>and</strong> methanol<br />

in a stepwise gradient until the column had been eluted with 100% methanol. Thin layer<br />

chromatography (TLC) was done concurrently with column chromatography in order to<br />

monitor the elution <strong>of</strong> compounds. Merck 20 x 20 cm silica gel 60 F254 aluminium plates<br />

were used <strong>and</strong> visualized with anisaldehyde spray reagent [anisaldehyde: concentrated<br />

hydrochloric acid: aqueous methanol (1:2:97)] by spraying the plates <strong>and</strong> then heating.<br />

UV light (254 <strong>and</strong> 366 nm) was also used to detect compounds with conjugated double<br />

bonds.<br />

Similar fractions were combined <strong>and</strong> purified on columns <strong>of</strong> varying diameter (1.5-2.5<br />

cm) depending on the amount <strong>of</strong> the material to be purified <strong>and</strong> are referred to as 2cm<br />

columns (meaning 2cm diameter columns) in the text that follows. With the exception <strong>of</strong><br />

97


a few cases (specifically stated in the experimental) all purifications were carried out on<br />

2cm diameter columns collecting 50 ml fractions. Where 3cm <strong>and</strong> 1cm columns were<br />

used, 100 ml fractions <strong>and</strong> 10 ml fractions were collected respectively. Any deviations to<br />

these conditions are mentioned specifically in the experimental.<br />

Infrared Spectroscopy (IR Spectroscopy)<br />

Infrared spectra were recorded on a PerkinElmer TM Spectrum 100. The sample was<br />

dissolved in either dichloromethane or methanol before being loaded onto the surface <strong>of</strong><br />

potassium bromide discs.<br />

Ultraviolet Absorption Spectroscopy (UV)<br />

Ultraviolet absorption spectra were recorded with a PerkinElmer TM Lambda 35 UV/VIS<br />

spectrophotometer. Samples were dissolved in either dichloromethane or methanol <strong>and</strong><br />

made to concentrations between 0.0052g/100ml <strong>and</strong> 1.2g/100ml.<br />

Optical Rotation<br />

Optical rotations were performed with a PerkinElmer TM , Model 341 Polarimeter. The<br />

samples were dissolved in dichloromethane or methanol <strong>and</strong> were measured at room<br />

temperature. Concentrations were calculated in g/100mL.<br />

Gas Chromatography-Mass Spectrometry (GC-MS)<br />

The mass spectra were registered on an Agilent MS 5973 instrument which was coupled<br />

to an Agilent GC 6890 instrument equipped with a DB-5MS (30m x 0.25 id, 0.25 µm<br />

stationary phase) column. Helium (at 0.7ml/min) was used as the carrier gas. Optimal<br />

results required that the oven temperature be maintained at 200 o C for one minute<br />

followed by 5<br />

98<br />

o C increments in temperature every minute until an oven temperature <strong>of</strong>


280 o C was attained. This temperature was then held constant for a further eight minutes.<br />

The MS was operated in the EI mode at 70eV, in m/z range 100-500.<br />

Liquid Chromatography-Mass Spectrometry (LC-MS)<br />

The mass spectra were recorded on an Agilent 1100 Series LC/MSD Trap instrument<br />

operating in the negative ion mode <strong>and</strong> equipped with an electrospray interface. Helium<br />

(at 9ml/min) was used as the carrier gas. Separation was achieved using a mobile phase<br />

consisting <strong>of</strong> 95:5 acetonitrile:water containing 0.1% TFA at a flow rate <strong>of</strong> 0.3ml/min.<br />

The mass spectrometer was run in a partial scan mode range m/z 100-500.<br />

Melting Point Determination<br />

Melting points were determined on a K<strong>of</strong>ler micro hotstage melting point apparatus <strong>and</strong><br />

are uncorrected. Compounds for melting point determination were recrystallised from<br />

dichloromethane or methanol before determining the melting point.<br />

General extraction procedure<br />

Plants were air dried, the stems milled <strong>and</strong> the leaves ground. Using a soxhlet, the plant<br />

material was extracted successively using hexane, dichloromethane, ethyl acetate <strong>and</strong><br />

methanol. The plant material was extracted for forty-eight hours each with each <strong>of</strong> the<br />

four solvents <strong>and</strong> the extracts concentrated using a Buchi rotary evaporator. Crude<br />

extracts were stored in the fridge to prevent degradation <strong>of</strong> compounds <strong>and</strong> fungal<br />

contamination until they were ready to be purified further.<br />

3.3 Experimental<br />

Leaf <strong>and</strong> stem materials <strong>of</strong> Plectranthus hadiensis were collected in May 2007 in Klo<strong>of</strong>,<br />

Kwa-Zulu Natal by Pr<strong>of</strong>essor Neil Crouch. A voucher specimen (N. Crouch 1126, NH)<br />

was retained at the National Botanic Institute, Berea Road, Durban, South Africa.<br />

99


The leaves (184.63g) were air-dried, shredded in a domestic blender <strong>and</strong> extracted using<br />

the general extraction procedure above. Concentration <strong>of</strong> the extracts resulted in masses<br />

<strong>of</strong> 9.42 g, 1.72 g, 5.67 g <strong>and</strong> 17.86 g respectively for hexane, dichloromethane, ethyl<br />

acetate <strong>and</strong> methanol. The stems (511.29g) were milled <strong>and</strong> extracted as above, yielding<br />

extracts <strong>of</strong> 3.96 g, 1.39 g, 0.98 g <strong>and</strong> 9.32 g from hexane through to methanol<br />

respectively.<br />

Separation <strong>of</strong> the leaf extract<br />

The hexane extract (9.42g) was eluted with a step gradient <strong>of</strong> hexane:dichloromethane<br />

(3:2; 1:1; 2:3; 1:4; 0:1), dichloromethane:ethyl acetate (4:1; 3:2; 1:1; 2:3; 1:4; 0:1) <strong>and</strong><br />

ethyl acetate:methanol (4:1; 1:1; 0:1). TLC <strong>and</strong> NMR analysis <strong>of</strong> the crude fractions<br />

indicated that fractions 20-22, 23-40, 61-66 <strong>and</strong> 67-71, each contained compounds that<br />

showed characteristic 1 H NMR resonances for either abietane diterpenes or sterols <strong>and</strong><br />

were chosen to be purified further.<br />

Fractions 20-22 was purified with 80% dichloromethane in hexane on a 2cm diameter<br />

column collecting 20 ml fractions, where fractions 11-12 contained stigmasterol (V).<br />

This compound was identified by its 1 H NMR spectrum <strong>and</strong> by comparison with an<br />

authentic sample.<br />

Fractions 23-40, eluted with 60% dichloromethane in hexane <strong>and</strong> needed no further<br />

purification (compound I).<br />

Fractions 61-66 was first purified with ethyl acetate:dichloromethane (20:80) on a 3cm<br />

column collecting 50 ml fractions. Fractions 8-15 <strong>of</strong> this column was further purified<br />

with ethyl acetate:hexane (60:40) on a 2cm column collecting 20 ml fractions where the<br />

pure compound III eluted in fractions 6-8.<br />

100


Fraction 67-71 was purified with 20% ethyl acetate in dichloromethane on a 2 cm<br />

diameter column collecting 20 ml fractions where fraction 25-42 contained the pure<br />

compound III.<br />

The dichloromethane, ethyl acetate <strong>and</strong> methanol extracts were chromatographed with<br />

step gradients from hexane through to methanol but did not result in the isolation <strong>of</strong> any<br />

compounds that could be identified.<br />

Separation <strong>of</strong> the stem extract<br />

The hexane extract (3.96g) was eluted with dichloromethane:hexane (1:4; 2:3; 3:2; 4:1;<br />

1:0), ethyl acetate:dichloromethane (1:4; 2:3; 3:2; 4:1; 1:0) <strong>and</strong> ethyl acetate:methanol<br />

(4:1; 1:1; 0:1). Two fractions <strong>of</strong> interest were obtained; fractions 13-16 <strong>and</strong> 17-23.<br />

Fraction 13-16 was purified further on a 2 cm diameter column with 20%<br />

dichloromethane in hexane collecting 20 ml fractions. Fraction 18-20 <strong>of</strong> this column<br />

was further purified with 20% ethyl acetate in hexane as above where fraction 6<br />

contained more stigmasterol (V).<br />

Fractions 17-23 <strong>of</strong> the crude column was purified on a 3cm column with<br />

dichloromethane:hexane (3:7 for fractions 1-20 <strong>and</strong> 7:3 for fractions 21-40), where<br />

fractions 27-30 was purified with 30% ethyl acetate in hexane <strong>and</strong> then fraction 6 <strong>of</strong> this<br />

column was purified with 20% ethyl acetate in hexane where fraction 10-11 resulted in<br />

the pure compound II <strong>and</strong> fraction 12 contained lupeol (VI). The purifications were done<br />

in 2cm columns, collecting 20 ml fractions. Lupeol was identified from its 1 H NMR<br />

spectrum <strong>and</strong> in comparison with an authentic sample contained in the laboratory.<br />

The dichloromethane extract (1.39g) was eluted with dichloromethane:hexane (2:3; 3:2;<br />

4:1; 1:0), ethyl acetate:dichloromethane (1:4; 2:3; 3:2; 4:1; 1:0) <strong>and</strong> ethyl<br />

acetate:methanol (4:1; 1:1; 0:1) on a 3 cm column collecting 100 ml fractions at each<br />

stage. Fraction 53-60 was purified with ethyl acetate:dichloromethane (1:1) on a 3cm<br />

column collecting 50 ml fractions, where fractions 4-6 yielded compound IV.<br />

101


The ethyl acetate extract (0.98g) was eluted with dichloromethane:hexane (1:4; 2:3; 3:2;<br />

4:1; 1:0), ethyl acetate:dichloromethane (1:4; 2:3; 3:2; 4:1; 1:0) <strong>and</strong> ethyl acetate:<br />

methanol (4:1; 1:1; 0:1). The 1 H NMR spectrum <strong>of</strong> the combined fractions 27-31<br />

indicated the presence <strong>of</strong> stigmasterol (V).<br />

The methanol extract was chromatographed with a step gradient <strong>of</strong> 10%-40% methanol in<br />

dichloromethane but no compounds were isolated for which structural elucidation could<br />

be carried out. NMR spectroscopy <strong>of</strong> the crude extracts showed mainly the presence <strong>of</strong><br />

sugars.<br />

3.4 Results <strong>and</strong> Discussion <strong>of</strong> the compounds isolated<br />

We have isolated the two previously found royleanone compounds (7β-acetoxy-6β-<br />

hydroxyroyleoanone (I or compound 37 as listed in table 6a) <strong>and</strong> 6β,7β-<br />

dihydroxyroyleaonone (II or compound 34 as listed in table 6a) from the hexane extract<br />

<strong>of</strong> the leaves <strong>and</strong> the hexane extract <strong>of</strong> the stem <strong>of</strong> P. hadiensis, respectively. This was<br />

the first occurrence <strong>of</strong> compound III (ent-pimara-8(14),15-diene-3β,11α-diol) in<br />

Plectranthus, which was isolated from the hexane extract <strong>of</strong> the leaves. Compound III<br />

was found previously in Erythroxylum cuneatum which belongs to the Erythroxylaceae<br />

family (Ansell, 1989). Further to this, three triterpenoids (IV-VI) were isolated from the<br />

dichloromethane extract <strong>of</strong> the stem. All six compounds isolated from P. hadiensis are<br />

known compounds.<br />

102


2<br />

19<br />

1<br />

4<br />

18<br />

O<br />

20<br />

9<br />

10<br />

5<br />

11<br />

6 7<br />

OH<br />

OH<br />

12<br />

14<br />

8<br />

R<br />

R<br />

13<br />

16<br />

(I) OC(O)CH3<br />

(II) OH<br />

HO<br />

3<br />

15<br />

O<br />

19<br />

5<br />

10<br />

6<br />

17<br />

7<br />

21<br />

HO<br />

18<br />

14<br />

2<br />

3<br />

20<br />

1<br />

HO<br />

20 11<br />

9<br />

4 5 6 7<br />

10 8<br />

18 19<br />

22<br />

29<br />

16<br />

23<br />

12<br />

13<br />

17<br />

14<br />

15<br />

16<br />

HO<br />

HO<br />

1<br />

4<br />

25 26<br />

9<br />

5<br />

10<br />

6 7<br />

8<br />

23 24<br />

(III) (IV)<br />

28<br />

27<br />

25<br />

26<br />

HO<br />

24 23<br />

(V) (VI)<br />

3<br />

10<br />

2<br />

30<br />

25 26<br />

20<br />

29<br />

27<br />

18<br />

12<br />

29<br />

19<br />

27<br />

17<br />

18<br />

14<br />

OH<br />

15<br />

17<br />

22<br />

28<br />

30<br />

103<br />

21<br />

22<br />

COOH


3.4.1 Structural elucidation <strong>of</strong> Compounds I <strong>and</strong> II<br />

2<br />

19<br />

1<br />

4<br />

O<br />

20<br />

18<br />

9<br />

10<br />

5<br />

11<br />

6 7<br />

OH<br />

OH<br />

12<br />

14<br />

8<br />

R<br />

13<br />

16<br />

15<br />

O<br />

17<br />

I<br />

II<br />

R<br />

OC(O)CH 3<br />

Compound I is a yellow crystalline compound soluble in dichloromethane <strong>and</strong> methanol<br />

with a melting point <strong>of</strong> 197 °C <strong>and</strong> an optical rotation <strong>of</strong> [α] 20 D +29° (c 0.0052g/100ml,<br />

CHCl3) [Mehrotra et al., 1989, optical rotation = +23°]. The mass spectrum showed a<br />

molecular ion peak at m/z 390 corresponding to a molecular formula <strong>of</strong> C22H30O6 <strong>and</strong><br />

fragment ion peaks at m/z 372 (M + - H2O) <strong>and</strong> 357 (M + - H2O - CH3). The IR spectrum<br />

showed carbonyl stretching b<strong>and</strong>s at 1734 cm -1 , O-H stretching b<strong>and</strong>s at 3377 cm -1 ,<br />

alkene stretching b<strong>and</strong>s at 1641 cm -1 <strong>and</strong> C-H bending vibrations <strong>of</strong> the isopropyl group<br />

at 1375 cm -1 . The UV spectrum showed a maximum absorbance at a wavelength <strong>of</strong><br />

275nm (log ε = 1.61).<br />

The 1 H NMR spectrum <strong>of</strong> compound I showed deshielded methine resonances at δH 5.64<br />

(H-7) <strong>and</strong> δΗ 4.30 (H-6) as well as a methine resonance <strong>of</strong> an isopropyl group (H-15) at<br />

δΗ 3.14. One <strong>of</strong> the protons <strong>of</strong> the methylene group at C-1 resonating at δΗ 2.62 could<br />

also be clearly seen as well as three methyl group resonances at δH 0.92 (3H-18ax), 1.62<br />

(3H-20eq) <strong>and</strong> 2.02 (OC(O)CH3). Three other methyl groups were also present in the 1 H<br />

NMR spectrum, but were not clearly distinguishingable as they overlapped with each<br />

other. These were the methyl resonances at positions 16, 17 <strong>and</strong> 19 which occurred at<br />

δH 1.18 <strong>and</strong> δH 1.23.<br />

OH<br />

104


The 13 C NMR spectrum showed the presence <strong>of</strong> twenty-two carbon resonances <strong>of</strong> which<br />

three were attributed to carbonyl groups (C-11, 14 <strong>and</strong> the acetyl carbonyl), four to<br />

substituted olefinic carbon atoms (C-8, 9, 12 <strong>and</strong> 13) (indicating two double bonds in the<br />

structure), two to quaternary carbon resonances (C-4 <strong>and</strong> 10), four to methine (C-5,6,7<br />

<strong>and</strong> 15), three to methylene (C-1, 2 <strong>and</strong> 3) <strong>and</strong> six to methyl (C-16, 17, 18, 19, 20 <strong>and</strong> the<br />

acetyl methyl carbon). The methine <strong>and</strong> methyl resonances were identified using both<br />

the DEPT <strong>and</strong> the HSQC spectra. It must be noted that the C-18 methyl carbon<br />

resonance is more deshielded than the methine carbon resonance <strong>of</strong> C-15. This can be<br />

be distinguished clearly in the HSQC spectrum with δC 24.17 (C-15) showing a<br />

correlation to the methine proton resonance at δH 3.14 (H-15) <strong>and</strong> δC 33.68 (C-18)<br />

showing a correlation to the methyl proton resonance at δH 0.92 (3H-18ax).<br />

The resonances at δH 4.30 <strong>and</strong> δH 5.64 were both coupled in the COSY spectrum. Since<br />

both these resonances were deshielded, both these groups had an oxygen substituent<br />

attached to them. The H-7 resonance showed HMBC correlations to six carbon<br />

resonances (δC 49.75, 67.05, 137.08, 149.90, 169.61 <strong>and</strong> 185.76), two <strong>of</strong> which are<br />

aliphatic, two are olefinic <strong>and</strong> two are carbonyl. The aliphatic carbon resonance at δC<br />

49.75 also shows HMBC correlations to three methyl resonances <strong>and</strong> was therefore<br />

attributed to C-5, with the three methyl resonances at δH 0.92, δH 1.23 <strong>and</strong> δH 1.62 being<br />

3H-18, 3H-19 <strong>and</strong> 3H-20. Both the olefinic carbon resonances which showed HMBC<br />

correlations to H-7 were fully substituted <strong>and</strong> were therefore attributed to C-8 (δC 137.08)<br />

<strong>and</strong> C-9 (δC 149.90), which could be distinguished because the resonance at δC 137.08<br />

showed an additional HMBC correlation to H-6. Of the two carbonyl resonances which<br />

showed HMBC correlations to H-7, one was assigned to the acetyl carbonyl at δC 169.61<br />

as this is coupled to the acetyl methyl group at δH 2.02 in the HMBC spectrum. The<br />

other carbonyl group at δC 185.76 was assigned to C-14.<br />

The C-14 carbonyl group showed HMBC correlations to the methine proton resonance at<br />

δH 3.14 (H-15). This resonance was the methine resonance <strong>of</strong> the isopropyl group <strong>and</strong><br />

showed COSY correlations to the equivalent methyl resonances at δH 1.18. The H-15<br />

105


esonance showed HMBC correlations to the other two olefinic resonances at δC 150.90<br />

<strong>and</strong> δC 124.67 as well as the carbonyl resonance at δC 185.76. These resonances were<br />

therefore assigned to C-12 (δC 150.9), C-13 (δC 124.67) <strong>and</strong> C-14 (δC 185.76). The C-12<br />

<strong>and</strong> C-13 resonances were distinguished based on chemical shift as the more deshielded<br />

resonance <strong>of</strong> C-12 at δC 150.90 was assigned to the olefinic carbon where the hydroxyl<br />

group is situated. The hydroxyl group proton resonance at δH 7.21 showed HMBC<br />

correlations to both C-12 <strong>and</strong> C-13 <strong>and</strong> to the other carbonyl resonance at δC 183.28,<br />

which was then assigned to C-11.<br />

One <strong>of</strong> the 2H-1 resonances was present at δH 2.62 <strong>and</strong> the other overlapped with the 3H-<br />

16 <strong>and</strong> 3H-17 methyl resonances at δH 1.18, determined by the HSQC correlation with C-<br />

1. The other two non equivalent methylene resonances at C-2 <strong>and</strong> C-3 were assigned due<br />

to the C-3 carbon resonance at δC 42.27 showing a HMBC correlation with the two<br />

methyl resonances at δH 1.23 (3H-19ax) <strong>and</strong> δH 0.92 (3H-18eq). The C-2 carbon<br />

resonance was assigned to the remaining methylene resonance. The resonance at δH 1.62<br />

was assigned to 3H-20 since C-5 showed correlations to all three methyl resonances, 3H-<br />

18eq, 3H-19ax <strong>and</strong> 3H-20ax.<br />

Of the remaining two quaternary resonances at δC 33.54 <strong>and</strong> δC 38.63, the resonance at δC<br />

38.63 was assigned to C-4 based on a HMBC correlation with H-6.<br />

The stereochemistry <strong>of</strong> H-5, H-6 <strong>and</strong> H-7 were ascertained from coupling constants <strong>and</strong><br />

using a molecular model to determine their dihedral angles <strong>and</strong> assuming the H-5 proton<br />

to be axial. Since the H-5, H-6 <strong>and</strong> H-7 proton resonances were all slightly broadened<br />

singlets, we were looking for a model where the dihedral angles between H-5 <strong>and</strong> H-6,<br />

<strong>and</strong> H-6 <strong>and</strong> H-7 were close to 90°. This was possible if the H-5 proton was axial<br />

(alpha), H-6 was equatorial (alpha) <strong>and</strong> H-7 was axial (alpha). This indicates that the<br />

hydroxyl group at C-6 is axial (beta) <strong>and</strong> that the acetoxy group at C-7 is equatorial (beta)<br />

(Figure 16). This also supports the downfield chemical shift <strong>of</strong> δH 1.62 <strong>of</strong> 3H-20 as the<br />

106


1,3-diaxial interaction between 3H-20 <strong>and</strong> the 6β-hydroxy group results in a<br />

paramagnetic shift <strong>of</strong> the methyl resonance, supporting this assignment.<br />

3<br />

2<br />

4<br />

1<br />

19<br />

18<br />

5<br />

HO<br />

20<br />

H ax<br />

O<br />

10<br />

OH<br />

6<br />

12<br />

16 17<br />

11<br />

H<br />

9<br />

15<br />

13<br />

7<br />

H<br />

14<br />

8<br />

O<br />

O<br />

OCCH 3<br />

Figure 16: Chair conformation <strong>of</strong> compound I showing the relationship between H-<br />

5, H-6 <strong>and</strong> H-7<br />

There have been two reports <strong>of</strong> compound I being isolated previously (Mehrotra et al.,<br />

1989; Rasikari, 2007). The NMR data compares well with literature (Rasikari, 2007),<br />

however the C-4 <strong>and</strong> C-10 resonances are switched around, but we have assigned C-4<br />

based on an HMBC correlation with H-6 <strong>and</strong> are confident in our assignment. With<br />

regard to the stereochemistry <strong>of</strong> the molecule, in Rasikari (2007) it is important to point<br />

out that the stereochemistry in the name <strong>of</strong> the compound does not correspond with the<br />

structure. We think that the compound was incorrectly named as 7α-acetoxy instead <strong>of</strong><br />

7β-acetoxy as a coupling constant <strong>of</strong> 3.5 Hz is used as a basis for this assignment.<br />

Mehrotra et al. (1989) is also used as a comparison in the identification in Rasikari et al.<br />

(2007). However, Mehrotra et al. (1989) observed a JH-6, H-7 <strong>of</strong> 3.5 Hz, close enough to<br />

that observed by Rasikari (2007) <strong>of</strong> JH-6, H-7 <strong>of</strong> 2.0 Hz, <strong>and</strong> concluded a 6β-axial, 7β-<br />

equatorial configuration. The structure <strong>of</strong> the molecule in Rasikari (2007) is however<br />

correctly depicted as the 6β-ax, 7β-eq form.<br />

While the 1 H NMR data also compares well to that in Mehrotra et al. (1989), the carbon<br />

resonances <strong>of</strong> C-6, 13, 15-17, 19 <strong>and</strong> 20 all differ by 1-3 ppm <strong>and</strong> the carbon resonance<br />

<strong>of</strong> C-18 is very different (33.68 as opposed to 21.00 in the literature). The carbonyl<br />

107


esonance at δC 185.76 <strong>of</strong> C-14 is also different to that <strong>of</strong> 179.00 <strong>and</strong> that <strong>of</strong> the acetyl<br />

carbon at δC 169.61 is 3ppm higher than the acetyl carbon at 166.00. The C-2 carbon<br />

resonance in compound I is also 5ppm lower than that cited in Mehrotra et al. (1989).<br />

Although Hensch et al. (1975) report the 7α-axial acetoxy isomer, the coupling constant<br />

JH-6, H-7 is reported to be 2.0 Hz <strong>and</strong> we think that this is the 7β-equatorial acetoxy isomer.<br />

The NMR data is therefore used for comparison. The NMR data for compound I<br />

compares well with that in Hensch et al. (1975).<br />

Compound II is a yellow compound soluble in dichloromethane <strong>and</strong> methanol with a<br />

melting point <strong>of</strong> 125 °C <strong>and</strong> an optical rotation <strong>of</strong> [α] 20 D -47° (c 0.0063g/100ml, CHCl3).<br />

The GC-MS did not show a molecular ion peak at m/z 348 but the LC-MS showed a peak<br />

at m/z 347 in the negative ion mode which supports the molecular formula <strong>of</strong> C20H28O5<br />

with a molecular mass <strong>of</strong> 348 amu. The UV spectrum showed a maximum absorbance at<br />

a wavelength <strong>of</strong> 192nm (log ε = 2.73).<br />

The 1 H <strong>and</strong> 13 C NMR data for compound II is similar to that <strong>of</strong> compound I, with a few<br />

notable differences. The H-7 resonance moved upfield from δH 5.64 to δH 4.54. The<br />

methyl acetyl resonance at δH 2.02 was also absent <strong>and</strong> a new one-proton resonance<br />

appeared as a broad singlet at δH 3.00. Another broad singlet could now be distinguished<br />

at δH 1.70. In the 13 C NMR spectrum <strong>of</strong> compound II, the acetyl carbonyl resonance was<br />

absent as well as the acetyl methyl resonance. Furthermore, the carbonyl stretching b<strong>and</strong><br />

in the IR spectrum was also absent. All these changes were consistent with the acetyl<br />

group at C-7 being replaced by a hydroxyl group.<br />

The broad singlet resonance at δH 3.00 was attributed to the hydroxyl group proton at C-7<br />

because <strong>of</strong> a COSY correlation to H-7. This proton resonance did not correlate to any <strong>of</strong><br />

the carbon resonances in the HSQC spectrum. The resonance at δH 1.70 also did not<br />

correlate to any <strong>of</strong> the carbon resonances <strong>and</strong> was attributed to the hydroxyl group at C-6.<br />

This resonance could have also been present in compound I, but could not be<br />

108


distinguished from the other resonances that occurred along with it. The C-9 carbon<br />

resonance showed a HMBC correlation with H-7 <strong>and</strong> CH3-20 <strong>and</strong> the C-8 carbon<br />

resonance showed a HMBC correlation to the H-7 resonance as well as the H-6<br />

resonance. These correlations confirmed the assignments <strong>of</strong> H-6 <strong>and</strong> H-7 as well as C-8<br />

<strong>and</strong> C-9.<br />

The H-5, H-6 <strong>and</strong> H-7 resonances had the same slightly broadened singlet pr<strong>of</strong>ile as that<br />

<strong>of</strong> compound I <strong>and</strong> therefore the same stereochemistry would be prevalent here as well<br />

with a 6β-ax, 7β-eq-dihydroxy form. The paramagnetic shift for the 3H-20 resonance is<br />

also observed in compound II as well as for 3H-19β-ax methyl group which is more<br />

deshielded at δH 1.62 than that <strong>of</strong> 3H-18 at δH 1.06.<br />

Compound II was isolated previously from Mehrotra et al. (1989). Rasikari (2007) <strong>and</strong><br />

Hensch et al. (1975) report the 7α-axial-hydroxy isomer. However, the coupling<br />

constants <strong>of</strong> JH-6, H-7 in both Rasikari (2007) <strong>and</strong> Hensch et al. (1975) are 2.0 Hz <strong>and</strong><br />

therefore we think that these compounds may also be the 7β-equatorial-hydroxy <strong>and</strong> not<br />

the 7α-axial-hydroxy isomer. The NMR data <strong>of</strong> all three references are thus used for<br />

comparison. The 1 H NMR data compare well, with a consistent 6-7 ppm difference for<br />

Hensch et al. (1975). The 13 C NMR data compared well with that <strong>of</strong> Rasikari (2007). No<br />

13 C NMR data is given in both Mehrotra et al. (1989) <strong>and</strong> Hensch et al. (1975).<br />

Table 15: 1 H NMR data for compound I compared with three reference compounds<br />

(CDCl3, 400MHz)<br />

Position Moiety<br />

Compound I<br />

2.62, d<br />

(J = 12.72 Hz)<br />

Rasikari, 2007<br />

(500MHz)<br />

2.65, dt<br />

(J = 12.8 Hz)<br />

1 CH2<br />

1.18 1.22, m<br />

2 CH2<br />

1.57<br />

1.83<br />

1.59, dt<br />

(J = 13.4, 3.5 Hz)<br />

1.85, qt<br />

(J = 13.4, 3.5 Hz)<br />

Continued on next page…..<br />

(Mehrotra. et al.,<br />

1989)<br />

(80MHz)<br />

(Hensch et al., 1975)<br />

(60MHz)<br />

2.64, m<br />

109


Position Moiety Compound I<br />

3 CH2<br />

5 CH<br />

6<br />

1.49<br />

Rasikari, 2007<br />

(500MHz)<br />

1.49, dt<br />

(J = 12.8 Hz)<br />

1.18 1.24, m<br />

1.32, s<br />

(w½ = 3.6 Hz)<br />

1.35, s<br />

CH 4.30, s 4.33, s<br />

(Mehrotra. et al.,<br />

1989)<br />

(80MHz)<br />

4.25, dd<br />

(J = 3.5, 2.0 Hz)<br />

(Hensch et al., 1975)<br />

(60MHz)<br />

4.34, m<br />

-OH 2.46, s<br />

7 CH 5.64, s<br />

5.62, d<br />

(J = 3.5 Hz)<br />

5.70, d<br />

(J = 2 Hz)<br />

12 -OH 7.21, s 7.20 7.20, s 7.25, s<br />

15 CH 3.14, sep<br />

3.18, hept<br />

(J = 7.1 Hz)<br />

3.15, sep<br />

(J = 7 Hz)<br />

3.16, m<br />

(J = 7 Hz)<br />

16<br />

17<br />

CH3<br />

CH3<br />

1.18, d<br />

(J = 7.08 Hz)<br />

1.24, d<br />

(J = 7.1 Hz)<br />

1.15, d<br />

(J = 7 Hz)<br />

1.20, d<br />

(J = 7 Hz)<br />

18 CH3 0.92, s 0.96, s 0.90, s 0.88,s<br />

19 CH3 1.23, s 1.24, s 1.20, s 1.24, s<br />

20 CH3 1.62, s 1.63, s 1.60, s 1.62, s<br />

7-<br />

OCOCH3<br />

2.02, s 2.05, s 2.00, s 2.02, s<br />

Table 16: 13 C NMR data for compound I compared with three reference compounds<br />

(CDCl3, 400MHz)<br />

Position Moiety Compound I<br />

(Rasikari., 2007)<br />

(125MHz)<br />

(Mehrotra. et al., 1989)<br />

(20MHz)<br />

(Hensch et al., 1975)<br />

(60MHz)<br />

1 CH2 38.35 38.6 38.50 38.7<br />

2 CH2 18.97 19.2 24.00 24.2<br />

3 CH2 42.27 42.5 42.50 42.5<br />

4 C 38.63 33.9 39.00 38.4<br />

5 CH 49.75 50.0 49.50 49.9<br />

6 CH 67.05 67.3 68.00 67.2<br />

7 CH 68.74 69.0 70.00 68.9<br />

8 C=C 137.08 137.3 137.50 137.3<br />

9 C=C 149.90 150.1 150.50 150.1<br />

10 C 33.54 38.9 34.50 33.6<br />

11 C=O 183.28 183.5 183.50 185.9<br />

12 C=C 150.90 151.1 151.00 151.1<br />

13 C=C 124.67 124.9 126.00 124.8<br />

14 C=O 185.76 186.0 179.00 183.6<br />

15 CH 24.17 24.4 23.00 23.8<br />

Continued on next page….<br />

110


Position Moiety Compound I<br />

(Rasikari., 2007)<br />

(125MHz)<br />

(Mehrotra. et al., 1989)<br />

(20MHz)<br />

(Hensch et al., 1975)<br />

(60MHz)<br />

16 CH3 19.71 19.9 22.00 *19.7<br />

17 CH3 19.85 20.1 22.50 *19.8<br />

18 CH3 33.68 33.7 21.00<br />

# 33.7<br />

19 CH3 23.82 24.1 20.00 *19.1<br />

20 CH3 21.51 21.8 23.50 *21.5<br />

7-<br />

OCOCH3<br />

20.95 21.1 20.50 *20.9<br />

7-<br />

OCOCH3<br />

169.61 169.8 166.00 169.9<br />

* Resonance for each methyl group not specified<br />

# Resonance was assigned to C-19 by Hensch et al. (1975) but we suspect that it is the resonance for C-18<br />

Table 17: 1 H NMR data for compound II compared with three reference compounds<br />

(CDCl3, 400MHz)<br />

Position Moiety Compound II<br />

1 CH2<br />

2 CH2<br />

3 CH2<br />

5 CH<br />

6<br />

7<br />

2.61, d<br />

(J = 3.08 Hz)<br />

1.17<br />

Rasikari, 2007<br />

(500 MHz)<br />

2.59, dt<br />

(J = 10.2, 3.5 Hz)<br />

1.19, td<br />

(J = 12.7, 3.6 Hz)<br />

1.57 1.61, m<br />

1.85<br />

1.27<br />

1.48<br />

1.46, s<br />

(w½ = 4.4 Hz)<br />

1.82, qt<br />

(J = 13.7, 3.6 Hz)<br />

1.27, td<br />

(J = 13.3, 4.0 Hz)<br />

1.48, dt<br />

(J = 13.1, 2.6 Hz)<br />

1.45, s<br />

(Hensch et al., 1975)<br />

(60MHz)<br />

2.53, m<br />

(Mehrotra et al., 1989)<br />

(80MHz)<br />

CH 4.48, s 4.45, s 4.39, m 4.50, m<br />

-OH 1.70, brs<br />

CH 4.54, s<br />

4.50, d<br />

(J = 1.8 Hz)<br />

4.43, d<br />

(J = 2 Hz)<br />

4.50, m<br />

-OH 3.00, brs<br />

12 -OH 7.34, s 7.25, s<br />

15 CH 3.18, sep<br />

3.17, hept<br />

(J = 7.1 Hz)<br />

3.10, m<br />

(J = 7 Hz)<br />

3.15, sep<br />

(J = 7 Hz)<br />

16 CH3 1.24, d<br />

1.21, d<br />

1.14, d<br />

1.30, d<br />

17 CH3 (J = 6.92 Hz) (J = 7.1 Hz)<br />

(J = 7 Hz)<br />

(J = 7 Hz)<br />

18 CH3 1.06, s 1.04, s 0.99, s 1.05, s<br />

19 CH3 1.27, s 1.26, s 1.23, s 1.20, s<br />

20 CH3 1.62, s 1.60, s 1.56, s 1.65, s<br />

111


Table 18: 13 C NMR data for compound II compared with one reference compound<br />

(CDCl3)<br />

Position Moiety<br />

Compound II<br />

(400MHz)<br />

Rasikari, 2007<br />

(125 MHz)<br />

1 CH2 38.43 38.8<br />

2 CH2 19.03 19.3<br />

3 CH2 42.31 42.6<br />

4 C 33.75 34.0<br />

5 CH 49.50 49.8<br />

6 CH 69.31 69.6<br />

7 CH 69.13 69.4<br />

8 C=C 140.94 141.2<br />

9 C=C 147.54 147.7<br />

10 C 38.56 38.8<br />

11 C=O 183.44 183.7<br />

12 C=C 151.20 151.4<br />

13 C=C 124.26 124.5<br />

14 C=O 189.14 189.4<br />

15 CH 24.02 24.3<br />

16 CH3 19.86 20.0<br />

17 CH3 19.80 20.0<br />

18 CH3 33.52 33.7<br />

19 CH3 24.27 24.5<br />

20 CH3 21.62 21.9<br />

3.4.2 Structure elucidation <strong>of</strong> Compound III<br />

HO<br />

2<br />

3<br />

1<br />

HO<br />

20 11<br />

9<br />

4 5 6 7<br />

10 8<br />

18 19<br />

12<br />

13<br />

17<br />

14<br />

15<br />

Ha<br />

16<br />

Hb<br />

Compound III is a colourless compound soluble in both dichloromethane <strong>and</strong> methanol<br />

with a melting point <strong>of</strong> 89°C <strong>and</strong> an optical rotation <strong>of</strong> [α] 20 D -79° (c 0.0082g/100ml,<br />

CHCl3). The mass spectrum showed a molecular ion peak at m/z 304 corresponding to a<br />

112


molecular formula <strong>of</strong> C20H32O2 <strong>and</strong> fragment ion peaks at m/z 286 <strong>and</strong> 268. These<br />

fragment ion peaks are brought about when compound III loses one <strong>and</strong> two water<br />

molecules consecutively. The IR spectrum showed O-H stretching b<strong>and</strong>s at 3396 cm -1<br />

<strong>and</strong> C-H stretching b<strong>and</strong>s at 2930 cm -1 . The UV spectrum showed a maximum<br />

absorbance at a wavelength <strong>of</strong> 228 nm (log ε = 1.70).<br />

The 1 H NMR spectrum indicated the presence <strong>of</strong> four tertiary methyl groups with<br />

resonances at δΗ 1.01, 0.99, 0.78 <strong>and</strong> 0.75, two double bonds with four olefinic proton<br />

resonances at δH 5.72, δH 5.20, δH 4.90 <strong>and</strong> δH 4.88 <strong>and</strong> two oxygenated methine groups<br />

with resonances at δΗ 3.26 <strong>and</strong> δΗ 3.85. The resonances at δH 5.72 (dd, J = 17.21, 10.57<br />

Hz), δH 4.90 (dd, J = 10.57, 1.16 Hz) <strong>and</strong> δH 4.88 (dd, J = 17.21, 1.16 Hz) was typical <strong>of</strong><br />

a vinyl group (H-15, H-16a <strong>and</strong> H-16b, respectively) (Lyder et al., 1998). A deshielded<br />

methine resonance at δΗ 3.25 is typical for compounds with a hydroxyl group at the 3-<br />

position (H-3, dd, J = 3.84, 10.84 Hz) (Kalauni et al., 2005).<br />

The 13 C NMR spectrum showed the presence <strong>of</strong> twenty carbon resonances typical <strong>of</strong> a<br />

diterpenoid <strong>of</strong> which four were olefinic 146.18 (CH=), δC 137.46 (C), 127.64 (CH=) <strong>and</strong><br />

112.69 (CH2) indicating two double bonds, three were quaternary (δC 39.11, 39.05 <strong>and</strong><br />

39.57), four were aliphatic methine carbon groups, five were methylene <strong>and</strong> four were<br />

methyl.<br />

The interesting point about this molecule is that the methyl resonance at δH 1.01 showed<br />

HMBC correlations to the vinylic carbon resonance (C-15), the olefinic resonance at δC<br />

127.64 (C-14) <strong>and</strong> a methylene resonance at δC 45.85 (C-12). Since this methyl group<br />

was aliphatic, indicated by its chemical shift, the two double bonds could not be<br />

conjugated <strong>and</strong> had to be separated by an aliphatic carbon. Ring C <strong>and</strong> its constituents<br />

could then be constructed as in figure 17 <strong>and</strong> the methyl proton resonance was assigned<br />

to 3H-17.<br />

113


The equatorial methyl group at C-4, usually resonates at approximately δΗ 28 <strong>and</strong> the<br />

axial methyl group at this position resonates at approximately δΗ 15 (Ansell, 1989; Kang<br />

et al., 2005; Meragelman et al., 2003). This was used to assign the resonances at<br />

δΗ 28.43 <strong>and</strong> δΗ 15.59 to 3H-18βax <strong>and</strong> 3H-19αeq, respectively. In the HMBC spectrum,<br />

3H-18βax <strong>and</strong> 3H-19αeq showed correlations to C-3 as well as a quartenary carbon at δC<br />

39.11 (C-4) <strong>and</strong> an aliphatic methine at δC 53.99 (C-5). The C-5 resonance in turn<br />

showed a HMBC correlation to another methyl group at δH 0.75 which could only be<br />

assigned to 3H-20. This 3H-20 resonance was then used to assign C-10 <strong>and</strong> C-9 at δC<br />

39.05 <strong>and</strong> δC 59.83 respectively because <strong>of</strong> HMBC correlations to them.<br />

The tertiary carbon atom, C-13 could be assigned to δC 39.57 because <strong>of</strong> a HMBC<br />

correlation to H-16a <strong>and</strong> H-16b. The methine resonance at δΗ 3.85 could then be assigned<br />

to H-11 because <strong>of</strong> a HMBC to C-13. Since this proton resonance is situated downfield,<br />

it suggests the presence <strong>of</strong> a hydroxyl group at this position even though the<br />

corresponding carbon resonance at δC 66.19 is not as deshielded as other C-O carbon<br />

resonances (with chemical shifts between 72-80).<br />

The methylene carbon resonances could not be assigned from the spectra available,<br />

therefore, literature with NMR data <strong>of</strong> similar compounds was used to assign them<br />

(Tables 19 <strong>and</strong> 20) (Ansell, 1989; Kang et al., 2005).<br />

12<br />

We have placed the proton at C-3 in the axial/alpha position <strong>and</strong> the hydroxyl group in<br />

the beta/equatorial position in accordance with the literature (Ansell, 1989). The<br />

stereochemistry in Ansell (1989) was determined using coupling constants <strong>of</strong> the ABX<br />

13<br />

8<br />

17<br />

14<br />

15<br />

16<br />

Figure 17: Fragment <strong>of</strong> Ring C<br />

114


system where coupling constants <strong>of</strong> 5.3 Hz <strong>and</strong> 9.7 Hz indicated an axial proton (α) <strong>and</strong><br />

an equatorial hydroxyl group (β). The coupling constants <strong>of</strong> compound III compared<br />

well to this with values <strong>of</strong> 3.84 Hz <strong>and</strong> 10.84 Hz indicating that the hydroxyl group at<br />

position 3 in compound III was equatorial (β). This was supported by a NOESY<br />

correlation between H-3 <strong>and</strong> H-5 indicating a 1,3-diaxial interaction between the two<br />

protons.<br />

The NOESY spectrum was then used to determine the configuration <strong>of</strong> the hydroxyl<br />

group at C-11 as well as the methyl group situated at C-13. The methyl group CH3-20ax<br />

showed a correlation to the proton at H-11 which puts this hydrogen in a beta/axial<br />

position <strong>and</strong> the hydroxyl group in the alpha/equatorial position (Figure 18). It is for this<br />

reason that the compound III has been named as ent-pimara-8(14),15-diene-3β,11α-diol.<br />

The methyl group, CH3-17 was assigned to the equatorial (alpha) position as it showed<br />

NOESY correlations with the H-12α proton at δΗ 1.82. The protons at H-12 was<br />

assigned using values from the literature <strong>of</strong> similar compound, 3.3 (Meragelman et al.,<br />

2003) (Table 20, page 117) as compound III in the literature does not distinguish<br />

between the H-12 protons.<br />

HO<br />

H<br />

3<br />

2<br />

4<br />

19<br />

1<br />

18<br />

5<br />

H ax<br />

20 ax<br />

10<br />

6<br />

9<br />

11<br />

7<br />

8<br />

H<br />

12<br />

Figure 18: NOESY correlations for compound III<br />

HO<br />

H<br />

H<br />

14<br />

15<br />

13<br />

16<br />

17<br />

115


The proton NMR data for compound III was similar to that in the literature with the<br />

exception <strong>of</strong> the resonance for the methylene group at C-6 (Table 19). Ansell (1989)<br />

reported 2H-6 having a resonance <strong>of</strong> δΗ 2.37 (ddd, J = 2.3, 3.3, 13.2 Hz) while in<br />

compound III, the methylene group at C-6 resonated as singlets at δΗ 1.38 <strong>and</strong> δΗ 1.63<br />

(Table 19). The 13 C NMR data was not reported in the literature <strong>and</strong> therefore the<br />

diacetylated compound was used for comparison (Table 19). Due to insufficient sample,<br />

compound III could not be acetylated for absolute comparison.<br />

In comparing our compound to that <strong>of</strong> literature, we have had to make an assumption that<br />

the compound in the literature had the hydroxyl groups in the equatorial positions (3β <strong>and</strong><br />

11α) as concluded in the discussion <strong>and</strong> not by what was depicted in the structure. The<br />

discussion <strong>of</strong> the compound in Ansell (1989) did not match the structure (where the<br />

hydroxyl groups were axial, 3α <strong>and</strong> 11β). The 13 C NMR data also compared well to<br />

similar compounds 3.1 to 3.3 (Table 20, pages 118 <strong>and</strong> 119).<br />

Table 19: NMR data <strong>of</strong> compound III (CDCl3) <strong>and</strong> its acetylated equivalent<br />

Position Moiety<br />

1 CH2<br />

2 CH2<br />

3 CH-OH<br />

Compound III<br />

(400MHz)<br />

2.35<br />

2.02<br />

1.69<br />

1.57<br />

3.26, dd<br />

(J = 3.84, 10.84 Hz)<br />

1 H<br />

Ansell, 1989<br />

(80MHz)<br />

3.26, sx<br />

(J = 5.3, 9.7, Hz)<br />

Compound III<br />

(400MHz)<br />

13 C<br />

# Ansell, 1989<br />

(20MHz)<br />

35.74 36.5<br />

27.59 24.0<br />

78.86 80.6<br />

*4 C 39.11 38.0<br />

5 CH 1.08 53.99 54.0<br />

6 CH2<br />

1.63<br />

1.38<br />

2.37, ddd<br />

(J = 2.3, 3.3, 13.2 Hz) 22.55 22.4<br />

7 CH2<br />

1.48<br />

1.85<br />

38.38 35.6<br />

8 C=C 137.46 136.4<br />

9 CH 1.61 59.83 55.4<br />

*10 C 39.05 38.7<br />

Continued on next page….<br />

116


Position Moiety<br />

Compound III<br />

(400MHz)<br />

11 CH-OH 3.85, m<br />

1 H<br />

Ansell, 1989<br />

(80MHz)<br />

3.86, ddd<br />

(J = 4.7, 7.1, 11.7 Hz)<br />

Compound III<br />

(400MHz)<br />

13 C<br />

# Ansell, 1989<br />

(20MHz)<br />

66.19 69.3<br />

12 CH2<br />

1.82 (α)<br />

1.35 (β)<br />

45.85 40.7<br />

*13 C 39.57 38.7<br />

14 CH= 5.20, s<br />

5.21, d<br />

(J = 1.5 Hz)<br />

127.64 128.4<br />

15 CH=<br />

5.72, dd<br />

(J = 10.57, 17.21 Hz)<br />

5.74, sx<br />

(J = 9.5, 18.1 Hz)<br />

4.87, dd<br />

146.18 145.4<br />

16 CH2<br />

4.89, dd<br />

(J = 9.28, 17.4 Hz)<br />

(J = 1.9, 18.1 Hz)<br />

4.91, dd<br />

(J = 1.9, 9.5 Hz)<br />

112.69 112.5<br />

17 CH3 1.01, s 1.02, s 29.51 29.5<br />

18 CH3 0.99, s 1.00, s 28.43 28.3<br />

19 CH3 0.78, s 0.79, s 15.59 15.7<br />

20 CH3 0.75, s 0.76, s 15.82 16.6<br />

3 OCOCH3 --- --- --- 170.2<br />

3 OCOCH3 --- --- --- 21.1<br />

11 OCOCH3 --- --- --- 170.6<br />

11 OCOCH3 --- --- --- 21.5<br />

* these resonances can be used interchangeably<br />

# The 13 C NMR data corresponds to the acetylated product <strong>of</strong> compound III<br />

Position<br />

1<br />

2<br />

3<br />

Table 20: 1 H NMR data for compound III (CDCl3) compared with two similar<br />

compounds<br />

Compound III<br />

(400MHz)<br />

Compound 3.1<br />

(80MHz)<br />

1 H<br />

Compound 3.2<br />

(300MHz)<br />

Compound 3.3<br />

(600MHz)<br />

Ansell, 1989 Kang et al., 2005 Meragelman et al., 2003<br />

2.35 2.68, s<br />

1.71, dt<br />

(J = 13.1, 3.5 Hz)<br />

2.02 0.98<br />

1.69 1.61, m<br />

1.57 1.61, m<br />

3.26, dd<br />

(J = 3.84, 10.84 Hz)<br />

3.31, dd<br />

(J = 4.5, 9.6 Hz)<br />

4.0, s<br />

3.21, dd<br />

(J = 11.1, 5,2 Hz)<br />

5 1.08 1.68, m 0.82<br />

Continued on next page….<br />

117


Position<br />

6<br />

7<br />

Compound III<br />

(400MHz)<br />

9 1.61<br />

Compound 3.1<br />

(80MHz)<br />

1 H<br />

Compound 3.2<br />

(300MHz)<br />

Compound 3.3<br />

(600MHz)<br />

Ansell, 1989 Kang et al., 2005 Meragelman et al., 2003<br />

1.63 1.73, m<br />

1.63, qd<br />

(J = 13.4, 3.2 Hz)<br />

1.38 1.49<br />

1.48 2.13, m 1.22<br />

1.85 2.35, m<br />

2.02, d<br />

(J = 5.7 Hz)<br />

11 3.85 4.0, m<br />

12 1.82 1.63, m<br />

15<br />

16<br />

5.72, dd<br />

(J = 10.57, 17.21<br />

Hz)<br />

4.89, dd<br />

(J = 9.28, 17.4 Hz)<br />

5.74, septet<br />

(J = 18.4, 8.6 Hz)<br />

4.90, dd<br />

(J = 2.1, 18.4 Hz)<br />

4.96, dd<br />

(J = 2.2, 8.5 Hz)<br />

5.83, dd<br />

(J = 10, 17.8 Hz)<br />

4.94, d<br />

(J = 10 Hz)<br />

5.00, d<br />

(J = 17.8 Hz)<br />

1.78, dt<br />

(J = 13.4, 3.2 Hz)<br />

0.85<br />

1.47 (α), qd<br />

(J = 13.4, 3.1 Hz)<br />

1.47 (β), m<br />

2.01, dq<br />

(J = 13.7, 3.1 Hz)<br />

5.98, dd<br />

(J = 17.9, 11.0 Hz)<br />

5.09, dd<br />

(J = 11.0, 1.2 Hz)<br />

5.14, dd<br />

(J = 17.9, 1.2 Hz)<br />

17 1.01, s *1.09, s 1.05, s 0.91, s<br />

18 0.99, s *1.10, s 1.19, s 0.99, s<br />

19 0.78, s *0.84, s 0.69, s 0.81, s<br />

20 0.75, s *0.92, s 0.80, s 0.93, s<br />

* Resonance for each methyl group not specified<br />

Table 21: 13 C NMR data for compound III (CDCl3) compared with two similar<br />

compounds<br />

Compound 3.1 Compound 3.2 Compound 3.3<br />

Position Compound III (80MHz) (75MHz)<br />

(50MHz)<br />

Ansell, 1989 Kang et al., 2005 Meragelman et al., 2003<br />

1 35.74 37.3 52.2 37.8<br />

2 27.59 27.7 211.0 27.2<br />

3 78.86 79.2 82.2 79.1<br />

4 39.11 38.3 45.3 38.9<br />

5 53.99 54.3 53.3 55.6<br />

6 22.55 22.3 22.3 17.8<br />

7 38.38 35.8 35.2 42.0<br />

8 137.46 137.9 134.6 72.3<br />

9 59.83 51.3 59.1 56.2<br />

Continued on next page…<br />

118


HO<br />

Compound 3.1 Compound 3.2 Compound 3.3<br />

Position Compound III (80MHz) (75MHz)<br />

(50MHz)<br />

Ansell, 1989 Kang et al., 2005 Meragelman et al., 2003<br />

10 39.05 38.6 44.7 37.0<br />

11 66.19 19.2 65.8 17.4<br />

12 45.85 35.8 44.0 36.1<br />

13 39.57 38.6 37.8 36.5<br />

14 127.64 128.3 129.1 53.4<br />

15 146.18 147.4 148.3 147.5<br />

16 112.69 112.8 110.9 112.0<br />

17 29.51 29.5 26.5 28.3<br />

18 28.43 28.5 29.3 32.4<br />

19 15.59 15.7 16.4 15.5<br />

20 15.82 14.8 16.5 15.5<br />

1<br />

3<br />

4<br />

H<br />

6<br />

5<br />

7<br />

16<br />

17<br />

12<br />

15<br />

20 11 13<br />

9 14<br />

10 8<br />

O<br />

HO<br />

H<br />

HO<br />

1<br />

3<br />

4 6<br />

5<br />

18 19<br />

7<br />

12<br />

20 11 13<br />

9<br />

10 8<br />

18 19<br />

17<br />

15<br />

16<br />

HO<br />

1<br />

3<br />

4<br />

OH<br />

6<br />

5<br />

7<br />

18<br />

15<br />

12<br />

20 11 13<br />

17<br />

9<br />

10 8<br />

19<br />

3.1 3.2 3.3<br />

119<br />

16


3.4.3 Structure elucidation <strong>of</strong> Compound IV<br />

HO<br />

HO<br />

2<br />

23<br />

1<br />

4<br />

24<br />

25 26<br />

9<br />

5<br />

10<br />

6 7<br />

8<br />

12<br />

29<br />

27<br />

18<br />

14<br />

OH<br />

15<br />

17<br />

30<br />

21<br />

22<br />

COOH<br />

Compound IV is a white compound soluble in methanol with a melting point <strong>of</strong> 255°C<br />

<strong>and</strong> an optical rotation <strong>of</strong> [ ] 20<br />

α D +32.26° (c 0.0186g/100ml, MeOH). A molecular ion peak<br />

<strong>of</strong> m/z 488 was anticipated as this molecular weight corresponded to the molecular<br />

formula <strong>of</strong> compound IV, C30H48O5. This peak could not be detected on the mass<br />

spectrum but a fragment ion peak <strong>of</strong> m/z 426 <strong>and</strong> a base peak <strong>of</strong> m/z 218 were<br />

documented. The loss <strong>of</strong> one <strong>of</strong> the hydroxyl (-OH) group together with the carboxylic<br />

acid (-COOH) group, accounts for the fragment ion peak <strong>of</strong> m/z 426. Tertiary alcohols<br />

<strong>and</strong> carboxylic acids seldom show the molecular ion peaks in the mass spectrum. The IR<br />

spectrum showed O-H stretching b<strong>and</strong>s at 3424 cm -1 , C-H stretching vibrations at 2927<br />

cm -1 <strong>and</strong> a stretching b<strong>and</strong> at 1687 cm -1 which is suggestive <strong>of</strong> a carboxylic acid group<br />

since this group has less double bond character than an aliphatic ketone. The UV<br />

spectrum showed a maximum absorbance at a wavelength <strong>of</strong> 211nm (log ε = 2.05). The<br />

UV spectra <strong>of</strong> pentacyclic triterpenoids with a single double bond, a carboxylic acid<br />

group <strong>and</strong> several hydroxyl groups normally show absorbance values at approximately<br />

205-210 nm.<br />

The 1 H NMR spectrum in conjuction with the HSQC <strong>and</strong> DEPT spectrum showed the<br />

presence <strong>of</strong> seven methyl resonances at δΗ 0.78 (s), δΗ 0.86 (s), δΗ 0.92 (d, J = 7.8 Hz),<br />

δΗ 0.98 (s, 2 x CH3), δΗ 1.19 (s) <strong>and</strong> δΗ 1.35 (s), one broadened triplet olefinic proton<br />

120


esonance at δΗ 5.29 <strong>and</strong> two oxygenated methine resonances at δΗ 3.33 (d, J = 2.28 Hz)<br />

which overlapped with the solvent peaks <strong>and</strong> δΗ 3.93, a broad doublet <strong>of</strong> triplets<br />

respectively.<br />

The two characteristic olefinic resonances at δC 127.95 (CH=) <strong>and</strong> δC 138.66 (C=)<br />

suggested an urs-12-ene skeleton. However the tertiary methyl group (3H-28) which is<br />

usually present at C-17 in urs-12-ene triterpenes was replaced by a carboxylic acid group<br />

evidenced by the carbonyl resonance <strong>of</strong> the carboxyl group at δC 180.88. The C-17<br />

carbon resonance overlapped with the resonances <strong>of</strong> the deuterated methanol solvent<br />

peak between δ 47 <strong>and</strong> δ 48 <strong>and</strong> showed HMBC correlations to a methylene <strong>and</strong> methine<br />

resonance at δΗ 2.57 (2H-16) <strong>and</strong> δΗ 2.49 (H-18), respectively. The proposed resonance<br />

for quartenary carbon C-17, falls within the range as documented for similar compounds<br />

4.1, 4.4 <strong>and</strong> 4.5 (Table 23).<br />

The two proton resonances at δH 3.93 <strong>and</strong> δH 3.33 were attributed to H-2ax <strong>and</strong> H-3eq<br />

respectively based on a comparison with the C-17 methylated compounds, where H-2 <strong>and</strong><br />

H-3 are axial <strong>and</strong> equatorial respectively (Lontsi et al., 1992) <strong>and</strong> where H-2 <strong>and</strong> H-3 are<br />

both axially situated (Lontsi et al., 1998). Our compound compared favourably with the<br />

H-2ax <strong>and</strong> H-3eq configuration. The corresponding carbon resonances at δC 65.90 (C-2)<br />

<strong>and</strong> δC 78.70 (C-3) are deshielded owing to the oxygenation at these carbons.<br />

In addition to C-2 <strong>and</strong> C-3, a further deshielded carbon resonance at δC 72.18 suggested<br />

the presence <strong>of</strong> another oxygenated group. This carbon resonance was however<br />

quaternary <strong>and</strong> was placed at C-19 with a hydroxyl <strong>and</strong> methyl attached to it. Literature<br />

supported this assignment as C-19 in the literature with the same substitution pattern<br />

resonates between δ 71 <strong>and</strong> δ 74, Table 22 (da Graca Rocha et al., 2007; Fang et al.,<br />

1991; Lontsi et al., 1992; 1998).<br />

The C-3 carbon resonance showed HMBC correlations to two tertiary methyl resonances,<br />

3H-23eq (δΗ 0.98) <strong>and</strong> 3H-24ax (δΗ 0.86) whose corresponding methyl proton resonances<br />

121


showed HMBC correlations to another methine resonance <strong>and</strong> one quartenary carbon<br />

resonance at δC 47.90 <strong>and</strong> δC 38.07, which were then attributed to C-5 <strong>and</strong> C-4,<br />

respectively.<br />

The quartenary carbon resonance at δC 39.86 (C-8) showed correlations to two tertiary<br />

methyl resonances at δH 1.35 <strong>and</strong> δH 0.78 which were assigned as 3H-27 <strong>and</strong> 3H-26,<br />

respectively. The 3H-27 methyl resonance was then used to assign the quaternary<br />

carbon resonance <strong>of</strong> C-14 <strong>and</strong> the methylene resonance <strong>of</strong> C-15 to δ 41.35 <strong>and</strong> δ 28.21<br />

due to HMBC correlations.<br />

The C-19 carbon resonance showed HMBC correlations to two methyl resonances at δH<br />

1.19 <strong>and</strong> δH 0.92 (d, J = 7.8 Hz), which were then attributed to 3H-29eq <strong>and</strong> 3H-30eq<br />

respectively. The two methyl groups were distinguished as the resonance at δH 0.92 was<br />

a doublet <strong>and</strong> had to be situated at C-20, which was assigned to δC 41.73 because <strong>of</strong> a<br />

HMBC correlation to 3H-29 <strong>and</strong> 3H-30. The H-18 methine resonance could also be<br />

assigned because <strong>of</strong> a HMBC correlation to C-19.<br />

In addition to the HMBC correlation to C-8, 3H-26 showed correlations to the carbon<br />

resonances at δC 32.68 <strong>and</strong> δC 46.79 which were then assigned to C-7 <strong>and</strong> C-9<br />

respectively. The distinction between the two was made as δC 32.68 was a methylene<br />

carbon resonance <strong>and</strong> δC 46.79 was a methine carbon resonance. The C-9 carbon<br />

resonance in turn was used to assign 3H-25, the remaining methyl resonance as C-9<br />

showed HMBC correlations to it. The 3H-25 methyl resonance then showed a HMBC<br />

correlation to δC 41.09 which was then attributed to C-1.<br />

The carboxylic acid carbon resonance at δC 180.88 <strong>and</strong> the two olefinic carbon<br />

resonances at δC 127.95 <strong>and</strong> δC 138.66 showed correlations to H-18 <strong>and</strong> were assigned to<br />

C-28 <strong>of</strong> the carboxylic acid group <strong>and</strong> C-12 <strong>and</strong> C-13 <strong>of</strong> the double bond. The quaternary<br />

carbon atom, C-17 was assigned to a resonance underneath the solvent peak due to a<br />

122


HMBC correlation with H-18. The H-18 resonance was also used to assign the<br />

methylene proton resonance <strong>of</strong> 2H-16 due to HMBC coupling with this resonance.<br />

The remaining methylene carbon resonances <strong>of</strong> C-6, C-11, C-21 <strong>and</strong> C-22 were assigned<br />

using literature values (Table 22) (da Graca Rocha et al., 2007; Fang et al., 1991; Lontsi<br />

et al., 1992; 1998). We think that da Graca Rocha et al. (2007) has incorrectly assigned<br />

C-15 <strong>and</strong> C-21 <strong>and</strong> that these values are in fact switched around. We have based our<br />

assignment <strong>of</strong> C-15 on a HMBC correlation with 3H-27.<br />

Compounds having the ursene skeletal structure posess seven methyl groups with the<br />

orientation <strong>of</strong> five methyl groups (3H-23 to 3H-27) being certain as a result <strong>of</strong><br />

biosynthesis <strong>and</strong> two methyl groups (3H-29 <strong>and</strong> 3H-30) being either alpha or beta. To<br />

determine the stereochemistry <strong>of</strong> these two methyl groups as well as the two oxygenated<br />

methines (H-2 <strong>and</strong> H-3), correlations in the NOESY spectrum was used, in conjunction<br />

with a molecular model.<br />

The H-2 proton resonance at δΗ 3.93 showed correlations to the H-3, 3H-24ax (δΗ 0.86)<br />

<strong>and</strong> the overlapping methyl group resonances <strong>of</strong> 3H-23eq <strong>and</strong> 3H-25ax at δΗ 0.98. We<br />

have assumed that H-2 correlates to the resonance <strong>of</strong> 3H-25ax since this 3H-25ax is closer<br />

in proximity to H-2. Thus, H-2, based on this correlation would be axial <strong>and</strong> beta <strong>and</strong><br />

since there is a NOESY correlation between H-2 <strong>and</strong> H-3, H-3 must also be beta <strong>and</strong><br />

equatorial. All these NOESY correlations were also observed as possible on a molecular<br />

model.<br />

Assuming that all the rings in the molecule are in the more stable chair conformation, H-<br />

18 would be in the axial/alpha position. A NOESY correlation between H-18ax <strong>and</strong> 3H-<br />

27 confirms the methyl group (CH3-27) to be axial/alpha <strong>and</strong> a further correlation<br />

between H-18ax <strong>and</strong> 3H-29 puts the methyl group (CH3-29) in the alpha/equatorial<br />

position as well (Figure 19).<br />

123


H<br />

HO<br />

3<br />

OH<br />

H<br />

2<br />

4<br />

24 eq<br />

1<br />

23<br />

5<br />

ax<br />

Hax 25<br />

10<br />

6<br />

9<br />

11<br />

7<br />

12<br />

26<br />

8<br />

14<br />

27<br />

13<br />

15<br />

29<br />

18<br />

H<br />

OH<br />

19<br />

16<br />

20<br />

COOH<br />

H<br />

17<br />

Figure 19: NOESY correlations for compound IV<br />

Based on the analytical data reported for compound IV as well as the comparison <strong>of</strong> this<br />

data with literature, compound IV was identified as 2α,3α,19α-trihydroxyurs-12-en-28-<br />

oic acid (Table 22). A slight difference with regard to chemical shift has been obeserved<br />

between compound IV <strong>and</strong> the reference compound (Table 22).<br />

Table 22: NMR data <strong>of</strong> compound IV (CD3OD) compared with a reference compound<br />

Position Moiety<br />

Compound IV<br />

(600MHz)<br />

1 H<br />

*da Graca Rocha et<br />

al., 2007 b<br />

(200MHz)<br />

Compound<br />

IV<br />

(600MHz)<br />

30<br />

22<br />

13 C<br />

21<br />

da Graca Rocha et al.,<br />

2007 b<br />

(200MHz)<br />

1 CH2<br />

1.28<br />

1.56<br />

41.09<br />

37.2<br />

2 CH 3.93, dt<br />

4.10, m 65.90 64.6<br />

3 CH<br />

(J =<br />

3.33,<br />

3.72,<br />

d<br />

3.18<br />

(J = 2.28 Hz)<br />

3.90, d 78.70 77.9<br />

4 C 38.07 41.6<br />

5 CH 1.26 47.90 46.5<br />

6 CH2<br />

1.39<br />

1.45<br />

17.93 17.7<br />

7 CH2<br />

1.31<br />

1.58<br />

32.68 32.6<br />

8 C 39.86 41.1<br />

9 CH 1.85 46.79 47.6<br />

10 C 37.99 38.1<br />

11 CH2 2.00 23.41 25.1<br />

12 CH=<br />

5.29, t<br />

(J = 3.72 Hz)<br />

a 5.20, s 127.95 126.9<br />

13 C=C 138.66 138.6<br />

Continued on next page…..<br />

124


Position Moiety<br />

Compound IV<br />

(600MHz)<br />

1 H<br />

*da Graca Rocha et<br />

al., 2007 b<br />

(200MHz)<br />

Compound<br />

IV<br />

(600MHz)<br />

13 C<br />

da Graca Rocha et al.,<br />

2007 b<br />

(200MHz)<br />

14 C 41.35 40.7<br />

15 CH2<br />

1.01<br />

1.79<br />

28.21 25.9<br />

16 CH2<br />

1.51<br />

2.57<br />

25.25 23.1<br />

17 C 47-48 46.8<br />

18 CH 2.49 53.66 53.1<br />

19 C 72.18 71.6<br />

20 CH 1.35 41.73 41.4<br />

21 CH2<br />

1.23<br />

1.73<br />

25.96 29.0<br />

22 CH2<br />

1.61<br />

1.71<br />

37.65 38.0<br />

23 CH3 0.98 0.69, s 27.89 28.9<br />

24 CH3 0.86 1.30, s 21.09 21.8<br />

25 CH3 0.98 0.89, s 16.15 16.3<br />

26 CH3 0.78 0.95, s 15.51 16.1<br />

27 CH3 1.35 1.22, s 23.55 24.1<br />

28 COOH 180.88 178.9<br />

29 CH3 1.19 1.06, s 25.68 26.4<br />

30 CH3 0.92, d<br />

(J = 7.8 Hz)<br />

* coupling constants not documented<br />

0.90, d 15.25 16.6<br />

a<br />

Reported as resonance for H-5 by De Graca Rocha et al. (2007) but suspect that this resonance belongs to<br />

H-12<br />

b DMSO<br />

The 1 H <strong>and</strong> 13 C NMR data <strong>of</strong> three previously isolated compounds (da Graca Rocha et<br />

al., 2007; Lontsi et al., 1998; Fang et al., 1991) were compared with that <strong>of</strong> compound<br />

IV (Tables 23 <strong>and</strong> 24) as they closely resemble euscaphic acid, the differences being the<br />

orientation <strong>of</strong> the hydroxyl group at C-3 <strong>and</strong> C-11 as well as the substituent at the C-17<br />

position. Once again it should be noted that reference compounds 4.1 to 4.3 were<br />

analysed in dimethylsulphoxide <strong>and</strong> chlor<strong>of</strong>orm <strong>and</strong> at different frequencies for 1 H <strong>and</strong><br />

13 C NMR analysis (Tables 23 <strong>and</strong> 22).<br />

125


HO<br />

HO<br />

Position<br />

2<br />

23<br />

4<br />

10<br />

24<br />

25 26<br />

9<br />

6<br />

8<br />

7<br />

12<br />

29<br />

18<br />

14<br />

27<br />

OH<br />

30<br />

20<br />

21<br />

22<br />

COOH<br />

16<br />

HO<br />

R<br />

12<br />

25 26<br />

9<br />

1<br />

10 8<br />

7<br />

4<br />

6<br />

24 23<br />

4.1 R<br />

4.2 β-OH<br />

4.3 α-OH<br />

29<br />

18<br />

14<br />

27<br />

OH<br />

17<br />

30<br />

20<br />

21<br />

22<br />

COOCH 3<br />

Table 23: Comparison <strong>of</strong> 13 C NMR data <strong>of</strong> compound IV (CD3OD) with two similar<br />

compounds<br />

Compound IV<br />

(600MHz)<br />

4.1 4.2 4.3<br />

b da Graca<br />

Rocha et al.,<br />

2007<br />

(200MHz)<br />

a Fang et al.,<br />

1991<br />

(75MHz)<br />

a Lontsi et al.,<br />

1992<br />

(75MHz)<br />

a Fang et al.,<br />

1991<br />

(75MHz)<br />

28<br />

a Lontsi et al.,<br />

1998<br />

(75MHz)<br />

1 41.09 39.1 47.7 41.7 41.4 46.34<br />

2 65.9 67.1 68.4 66.5 77.2 68.47<br />

3 78.70 82.3 83.2 78.9 78.6 83.25<br />

4 38.07 41.4 39.1 38.2 39.9 39.14<br />

5 47.95 53.1 55.0 48.0 53.0 55.05<br />

6 17.93 18.1 18.3 18.1 17.9 18.28<br />

7 32.68 32.6 32.4 32.5 32.3 32.44<br />

8 39.86 42.4 39.7 40.1 41.0 39.72<br />

9 46.79 46.7 47.7 46.9 47.7 46.95<br />

10 37.99 37.6 37.9 38.3 37.3 37.94<br />

11 23.41 25.2 23.5 23.6 23.5 23.54<br />

12 127.95 126.7 128.5 129.0 128.8 128.59<br />

13 138.66 138.9 138.0 138.1 138.0 137.99<br />

14 41.35 40.7 41.0 41.2 41.0 40.99<br />

15 28.21 30.4 25.8 28.1 28.0 27.99<br />

16 25.25 25.1 25.2 25.4 25.3 25.23<br />

17 47-48 47.0 46.3 47.9 47.8 47.68<br />

18 53.66 54.8 53.0 53.2 51.5 53.02<br />

19 72.18 71.7 72.8 73.1 72.9 72.83<br />

20 41.73 41.4 41.0 41.1 46.7 40.99<br />

21 25.96 28.1 28.0 26.0 25.3 25.83<br />

22 37.65 39.1 37.2 37.4 37.3 37.24<br />

Continued on next page….<br />

126


Position<br />

Compound IV<br />

(600MHz)<br />

4.1 4.2 4.3<br />

b<br />

da Graca<br />

Rocha et al.,<br />

2007<br />

(200MHz)<br />

a Fang et al.,<br />

1991<br />

(75MHz)<br />

a Lontsi et al.,<br />

1992<br />

(75MHz)<br />

a Fang et al.,<br />

1991<br />

(75MHz)<br />

a Lontsi et al., 1998<br />

(75MHz)<br />

23 27.89 28.8<br />

28.5<br />

28.5<br />

28.5<br />

28.55<br />

24 21.09 17.1 16.7 21.8 21.8 16.72<br />

25 15.51 16.6 16.4 16.2 16.1 16.36<br />

26 16.15 23.3 16.7 16.6 17.9 16.42<br />

27 23.55 24.0 224.3 24.7 24.6 24.37<br />

28 180.88 179.0 178.2 178.2 178.4 178.26<br />

29 25.68 26.4 28.0 27.4 27.2 27.18<br />

30 15.25 16.5 15.9 16.1 16.5 15.97<br />

COOCH3 -- -- 51.4 51.6 66.2 51.46<br />

a CDCl3<br />

b DMSO<br />

Table 24: Comparison <strong>of</strong> 1 H NMR data <strong>of</strong> compound IV (600MHz, CD3OD) with three<br />

reference compounds<br />

Position Compound IV<br />

1<br />

2<br />

3<br />

1.28<br />

1.56<br />

3.93, dt<br />

(J = 3.72, 3.18 Hz)<br />

3.33, d<br />

(J = 2.28 Hz)<br />

4.1 4.2 4.3<br />

b # da Graca Rocha et al.,<br />

2007<br />

(200MHz)<br />

4.10, m<br />

3.91, s<br />

a Lontsi et al., 1992<br />

(300MHz)<br />

1.21, m<br />

1.62, m<br />

3.97, ddd<br />

(J = 11.8, 4.4, 2.8 Hz)<br />

3.40, d<br />

(J = 2.8 Hz)<br />

a Lontsi et al., 1998<br />

(300MHz)<br />

0.92, m<br />

1.96, m<br />

3.36, ddd<br />

(J = 14.7, 9.5, 4.7 Hz)<br />

2.98, d<br />

(J = 9.5 Hz)<br />

5 1.26 0.81, m<br />

6<br />

1.39<br />

1.45<br />

1.32, m<br />

1.52, m<br />

7<br />

1.31<br />

1.58<br />

1.26, m<br />

1.50, m<br />

9 1.85 1.70, m 1.65, m<br />

11 2.00 1.96, m 1.98, m<br />

12<br />

15<br />

16<br />

5.29, t<br />

(J = 3.72 Hz)<br />

*5.19, s<br />

5.33, dd<br />

(J = 3.6, 3.5 Hz)<br />

5.33, dd<br />

(J = 3.6, 3.6 Hz)<br />

1.01 1.00, m<br />

1.79 1.60, m<br />

1.51 1.56, m<br />

2.57<br />

2.49, ddd<br />

(J = 13.7, 11.5, 4.7 Hz)<br />

2.49, ddd<br />

(J = 14.5, 12.6, 4.8 Hz)<br />

18 2.49 2.57, s 2.57, s<br />

Continued on next page……<br />

127


Position Compound IV<br />

4.1 4.2 4.3<br />

b # da Graca Rocha et al.,<br />

2007<br />

(200MHz)<br />

a Lontsi et al., 1992<br />

(300MHz)<br />

a Lontsi et al., 1998<br />

(300MHz)<br />

20 1.35<br />

1.38, m<br />

21<br />

1.23<br />

1.73<br />

1.25, m<br />

1.66, m<br />

22<br />

1.61<br />

1.71<br />

1.52, m<br />

1.72, m<br />

23 0.98 0.99, s 1.01, s<br />

24 0.86 0.84, s 0.80, s<br />

25 0.98 0.93, s 0.95, s<br />

26 0.78 0.64, s 0.65, s<br />

27 1.35 1.23, s 1.23, s<br />

29 1.19 1.18, s 1.19, s<br />

30<br />

0.92, d<br />

0.92, d<br />

0.92, d<br />

28-<br />

OCH3<br />

(J = 7.8 Hz)<br />

(J = 6.6 Hz)<br />

3.57, s<br />

(J = 6.7 Hz)<br />

3.58, s<br />

NB 1 H NMR data for compounds 4.2 <strong>and</strong> 4.3 were not documented by Fang et al. (1991)<br />

* Reported as resonance for H-5 by da Graca Rocha et al. (2007) but suspect that this resonance belongs to<br />

H-12<br />

# coupling constants not documented<br />

a CDCl3<br />

b DMSO<br />

3.4.4 Structure elucidation <strong>of</strong> Compounds V <strong>and</strong> VI<br />

HO<br />

3<br />

19<br />

5<br />

10<br />

6<br />

7<br />

21<br />

18<br />

14<br />

20<br />

22<br />

29<br />

16<br />

23<br />

28<br />

27<br />

25<br />

26<br />

HO<br />

3<br />

25 26<br />

24 23<br />

(V) (VI)<br />

Compound V is a white compound soluble in both dichloromethane <strong>and</strong> methanol having<br />

a molecular formula <strong>of</strong> C29H42O. It has a melting point <strong>of</strong> 168°C <strong>and</strong> an optical rotation<br />

10<br />

30<br />

20<br />

29<br />

27<br />

18<br />

19<br />

17<br />

22<br />

28<br />

128


<strong>of</strong> [α] 20 D -40.8° (c 0.12g/100ml, CDCl3). The IR spectrum showed O-H stretching b<strong>and</strong>s<br />

at 3305 cm -1 , C-H stretching vibrations at 2932 cm -1 <strong>and</strong> alkene stretching b<strong>and</strong>s at 1641<br />

cm -1 .<br />

The 1 H NMR spectrum showed the characteristic pattern <strong>of</strong> the ubiquitous stigmasterol<br />

with the three olefinic proton resonances at δH 4.99 (dd, J = 8.64, 15.2 Hz, H-22), δH 5.13<br />

(dd, J = 8.56, 15.2 Hz, H-23) <strong>and</strong> δH 5.32 (bd, J = 5.04 Hz, H-6) <strong>and</strong> the deshielded<br />

methine resonance at δΗ 3.49 (m, H-3), owing to the hydroxy group at this position. On<br />

closer examination <strong>of</strong> the methyl group region <strong>of</strong> the 1 H NMR spectrum <strong>and</strong> in<br />

comparison with the literature (Langlois, 2000), the methyl groups numbered as 18, 19,<br />

21, 26, 27 <strong>and</strong> 29 were assigned to δH 0.65, 0.67, 0.99 (d, J = 8.12 Hz), 0.89 (d, J = 7.18<br />

Hz), 0.80 (d, J = 6.24 Hz) <strong>and</strong> 0.82 (t, J = 6.28 Hz), respectively.<br />

The 13 C NMR spectrum indicated the presence <strong>of</strong> characteristic olefinic resonances at δC<br />

121.71 (C-6), δC 129.29 (C-23), δC 138.31 (C-22) <strong>and</strong> δC 140.76 (C-5). The deshielded<br />

oxygenated methine carbon resonance <strong>of</strong> C-3 occurred at δC 71.81. Compound V was<br />

positivley identified as stigmasterol by comparison with the 1 H <strong>and</strong> 13 C NMR spectra <strong>of</strong><br />

an authentic sample in the laboratory. The NMR data also compared well with that in<br />

literature (Langlois, 2000; Kongduang et al., 2008)<br />

Compound VI is a white compound soluble in both dichloromethane <strong>and</strong> methanol<br />

having a molecular formula <strong>of</strong> C30H50O. It has a melting point <strong>of</strong> 214°C <strong>and</strong> an optical<br />

rotation <strong>of</strong> [α] 20 D +25.3° (c 1.2g/100ml, CDCl3). The IR spectrum showed O-H<br />

stretching b<strong>and</strong>s at 3332 cm -1 , C-H stretching vibrations at 2941 cm -1 <strong>and</strong> alkene<br />

stretching b<strong>and</strong>s at 1637 cm -1 .<br />

The 1 H NMR spectrum showed characteristic resonances for the well known pentacyclic<br />

triterpenoid, lupeol with the characteristic olefinic proton resonances at δH 4.57 (brs, H-<br />

29α) <strong>and</strong> δH 4.69 (brs, H-29β), one deshielded methine group resonance at δΗ 3.19 (dd, J =<br />

5.04, 11.17 Hz, H-3), the H-19 triplet <strong>of</strong> doublets at δΗ 2.38 (J = 5.88, 11.03 Hz), the<br />

129


multiplet at δH 1.91 (H-21) <strong>and</strong> a very shielded doublet at δH 0.68 (J = 9.12 Hz, H-5)<br />

(Makatini, 2007). The methyl groups identified as 3H-23 (δH 0.97), 3H-24 (δH 0.76), 3H-<br />

25 (δH 0.83), 3H-26 (δH 1.03), 3H-27 (δH 0.94), 3H-28 (δH 0.79) <strong>and</strong> a methyl group<br />

bonded to an olefinic carbon at δH 1.68 (3H-30).<br />

The 13 C NMR spectrum indicated the presence <strong>of</strong> thirty carbons with characteristic<br />

olefinic resonances at δC 150.98 (C-20) <strong>and</strong> δC 109.33 (C-29). The C-3 <strong>and</strong> C-5 carbon<br />

resonance could also be singled out at δC 79.01 <strong>and</strong> δC 55.30, respectively, Compound VI<br />

was identical to an authentic sample <strong>of</strong> lupeol with regard to physical appearance,<br />

melting point, optical rotation <strong>and</strong> IR spectroscopy. A comparison <strong>of</strong> the NMR data <strong>of</strong><br />

compound VI with that documented by Burns et al. (2000) for lupeol, also proved that<br />

the two compounds were identical.<br />

Table 25: 1 H <strong>and</strong> 13 C NMR data <strong>of</strong> stigmasterol (V) compared with reference data<br />

(CDCl3, 400MHz)<br />

Position<br />

1 H<br />

Compound V Langlois, 2000 Compound V<br />

13 C<br />

Kongduang et al., 2008<br />

(125MHz)<br />

1 37.26 37.21<br />

2 31.66 231.62<br />

3 3.49, m 3.50, m 71.81 71.80<br />

4 42.31 42.18<br />

5 140.76 140.72<br />

6 5.32, bd 5.35, brs 121.71 121.71<br />

7 31.87 31.87<br />

8 31.91 31.87<br />

9 50.15 50.08<br />

10 36.51 36.48<br />

11 21.08 21.07<br />

12 39.68 39.64<br />

13 42.32 42.29<br />

14 56.87 56.83<br />

15 24.36 24.34<br />

16 28.91 28.92<br />

17 55.96 55.90<br />

18 0.65, s 0.66, s 12.04 12.03<br />

0.99, d<br />

21<br />

(J = 8.12 Hz)<br />

Continued on next page….<br />

1.00, d<br />

(J = 6.65 Hz)<br />

21.21 21.05<br />

130


1 H<br />

Position<br />

Compound V Langlois, 2000 Compound V Kongduang et al., 2008<br />

19 0.67, s 0.70, s 19.39 19.38<br />

20 40.48 40.50<br />

22<br />

23<br />

4.99, dd<br />

(J = 8.56, 15.12 Hz)<br />

5.13, dd<br />

(J = 8.64, 15.16 Hz)<br />

5.00, dd<br />

(J = 7.60, 15.38 Hz)<br />

5.15, dd<br />

(J = 11.53, 15.38 Hz)<br />

13 C<br />

138.31 138.32<br />

129.29 129.22<br />

24 2.25, m 2.21, m 51.24 51.21<br />

25 32.42 31.87<br />

26<br />

27<br />

0.89, d<br />

(J = 7.18 Hz)<br />

0.80, d<br />

(J = 6.24 Hz)<br />

0.90, d<br />

(J = 6.53 Hz)<br />

0.78, d<br />

(J = 6.35 Hz)<br />

20.20 21.20<br />

18.98 18.95<br />

28 25.40 25.40<br />

29<br />

0.82, t<br />

(J = 6.28 Hz)<br />

0.80, t<br />

(J = 6.5 Hz)<br />

12.24 12.25<br />

NB. Langlois (2000) did not report the 13 C NMR data for stigmasterol<br />

Kongduang et al. (2008) did not report the 1 H NMR data for stigmasterol<br />

Table 26: 1 H <strong>and</strong> 13 C NMR data <strong>of</strong> lupeol (VI) compared with reference data (CDCl3,<br />

400MHz)<br />

1 H<br />

Position<br />

Compound VI<br />

Burns et al., 2000<br />

(500MHz)<br />

Compound VI<br />

Burns et al., 2000<br />

(500MHz)<br />

1<br />

0.90<br />

1.67<br />

38.71 38.72<br />

2<br />

1.60<br />

1.56<br />

27.42 27.42<br />

3<br />

3.19, dd<br />

(J = 5.04, 11.17 Hz)<br />

3.19 79.01 79.02<br />

-OH 1.26<br />

4 38.86 38.87<br />

5<br />

0.68, d<br />

(J = 9.12 Hz)<br />

55.30 55.31<br />

6<br />

1.51<br />

1.39<br />

18.32 18.33<br />

7 1.39 34.29 34.29<br />

8 40.84 40.84<br />

9 1.27 50.44 50.35<br />

10 37.17 37.18<br />

11<br />

1.41<br />

1.23<br />

20.93 20.94<br />

12<br />

1.07<br />

1.67<br />

25.15 25.16<br />

13 1.66 38.06 38.07<br />

Continued on next page….<br />

13 C<br />

131


1 H<br />

Position<br />

Compound VI<br />

Burns et al., 2000<br />

(500MHz)<br />

Compound VI<br />

Burns et al., 2000<br />

(500MHz)<br />

14 42.84 42.85<br />

15<br />

1.00<br />

1.68<br />

27.45 27.46<br />

16<br />

1.37<br />

1.47<br />

35.59 35.60<br />

17 43.00 43.01<br />

18 1.36 47.99 48.32<br />

19<br />

2.38, dt<br />

(J = 5.88, 11.03 Hz)<br />

2.38 48.31 48.00<br />

20 150.98 150.98<br />

21<br />

1.91, m<br />

1.32<br />

1.92<br />

29.85 29.86<br />

22<br />

1.19<br />

1.38<br />

40.01 40.02<br />

23 0.97, s 0.97 27.99 28.00<br />

24 0.76, s 0.76 15.38 15.38<br />

25 0.83, s 0.83 16.12 16.13<br />

26 1.03, s 1.03 15.98 15.99<br />

27 0.94, s 0.95 14.55 14.56<br />

28 0.79, s 0.79 18.01 18.02<br />

29<br />

4.57, brs<br />

4.69, brs<br />

4.56<br />

4.69<br />

109.33 109.32<br />

30 1.68, s 1.68 19.31 19.32<br />

13 C<br />

132


Physical data for compounds I-VI<br />

Compound I<br />

Chemical name: 7β-acetoxy-6β,12-dihydroxy-8,12-abietadiene-11,14-dione<br />

Common name: 7β-acetoxy-6β-hydroxyroyleanone<br />

Molecular formula: C22H30O6<br />

Physical description: yellow crystals<br />

Melting point: 197 o C (228 o C, Mehrotra et al., 1989)<br />

Optical rotation:[ ] 20<br />

α D +29 o (c 0.0052g/100ml, DCM) (lit. value = +23 o (CHCl3; Cl),<br />

Mehrotra et al., 1989)<br />

Infrared spectrum ν KBr<br />

max cm-1 : 3377 (O-H stretching b<strong>and</strong>s), 1734 (carbonyl stretching<br />

b<strong>and</strong>s), 1375 (C-H stretching vibrations), 1641 (alkene stretching b<strong>and</strong>s)<br />

Ultraviolet spectrum (λ max): 275 nm (log ε = 1.61)<br />

GC-MS (70eV, direct inlet), relative intensity %: m/z 390 (1.46) [M] + , m/z 372 (4.85) [M<br />

– H2O] + , m/z 357 (0.97) [M - H2O - Me] + , m/z 71 (100)<br />

1 H NMR <strong>and</strong> 13 C NMR data (CDCl3, 400MHz): Refer to tables 15 <strong>and</strong> 16 on pages 109<br />

<strong>and</strong> 110<br />

Compound II:<br />

Chemical name: 6β,7β,12-trihydroxy-8,12-abietadiene-11,14-dione<br />

Common name: 6β,7β-dihydroxyroyleanone<br />

Molecular formula: C20H28O5<br />

Physical description: yellow residue<br />

Melting point: 125 o C (203-205 o C, Hensch et al., 1975)<br />

Optical rotation: [ ] 20<br />

α D -47 o (c 0.0063g/100ml, DCM) (lit. value = -77 o , Hensch et al.,<br />

1975)<br />

Infrared spectrum ν KBr<br />

vibrations), 1638 (alkene stretching b<strong>and</strong>s)<br />

max cm-1 : 3369 (O-H stretching b<strong>and</strong>s), 1376 (C-H bending<br />

133


Ultraviolet spectrum (λ max): 192nm (log ε = 2.73)<br />

LC-MS (70eV, direct inlet): [M] + at 347 (negative ion mode)<br />

1 H <strong>and</strong> 13 C NMR data (CDCl3, 400MHz): Refer to tables 17 <strong>and</strong> 18 on pages 111 <strong>and</strong> 112<br />

Compound III:<br />

Chemical name: ent-pimara-8(14),15-dien-3α,11β-diol<br />

Physical description: white residue<br />

Molecular formula: C20H32O2<br />

Melting point: 89 o C (125-130 o C, Ansell, 1989)<br />

Optical rotation: [ ] 20<br />

α D -79° (c 0.0082g/100ml, DCM)<br />

Infrared spectrum ν KBr<br />

vibrations)<br />

max cm-1 : 3396 (O-H stretching b<strong>and</strong>s), 2930 (C-H stretching<br />

Ultraviolet spectrum (λ max): 228nm (log ε = 1.70)<br />

GC-MS (70eV, direct inlet), relative intensity %: m/z 304 (1.94) [M] + , m/z 135 (100), m/z<br />

286 (10.68) [M – H2O] + , m/z 268 (5.34) [M – 2Me] +<br />

1 H NMR <strong>and</strong> 13 C NMR data (CDCl3, 400MHz): Refer to table 19 on page 116<br />

Compound IV:<br />

Chemical name: 2α,3α,19α-trihydroxyurs-12-en-28-oic acid<br />

Common name: euscaphic acid, jacar<strong>and</strong>ic acid<br />

Molecular formula: C30H48O5<br />

Physical description: white residue<br />

Melting point: 255 o C<br />

Optical rotation: [ ] 20<br />

α D +32.26° (c 0.0186g/100ml, MeOH)<br />

Infrared spectrum ν KBr<br />

1687 (C=O)<br />

max cm-1 : 3424 (O-H stretching b<strong>and</strong>s), 2927 (C-H stretching b<strong>and</strong>s),<br />

Ultraviolet spectrum (λ max): 211nm (log ε = 2.05)<br />

134


GC-MS (70eV, direct inlet), relative intensity %: m/z 426 (8.56) [M - COOH - OH] + , m/z<br />

218 (100)<br />

1 H NMR <strong>and</strong> 13 C NMR data (CD3OD, 600MHz): Refer to table 22 on page 124<br />

Compound V:<br />

Chemical name: 5,22-Stigmastadien-3β-ol<br />

Common name: Stigmasterol<br />

Molecular formula: C29H42O<br />

Physical description: white residue<br />

Melting point: 168 o C (165 o C, Jamal et al., 2009)<br />

Optical rotation: [ ] 20<br />

α D -40.8° (c 0.12g/100ml, CDCl3)<br />

Infrared spectrum ν KBr<br />

max cm-1 : 3305 cm -1 (O-H stretching b<strong>and</strong>s), 2932 cm -1 (C-H<br />

stretching vibrations), 1641 cm -1 (alkene stretching b<strong>and</strong>s)<br />

1 H NMR <strong>and</strong> 13 C NMR data: Refer to table 25 on page 130<br />

Compound VI:<br />

Chemical name: lup-20(29)-en-3β-ol<br />

Common name: Lupeol<br />

Molecular formula: C30H50O<br />

Physical description: white residue/powder<br />

Melting point: 214 o C (213 o C, Fotie et al., 2006; 214-215 o C, Saeed et al., 2003)<br />

Optical rotation: [ ] 20<br />

α D +25.3° (c 1.2g/100ml, DCM) (lit. value = +25.7° (c 0.70, CHCl3),<br />

Fotie et al., 2006)<br />

Infrared spectrum ν KBr<br />

max cm-1 : 3332 cm -1 (O-H stretching b<strong>and</strong>s), 2941 cm -1 (C-H<br />

stretching vibrations), 1637 cm -1 (alkene stretching b<strong>and</strong>s)<br />

1 H NMR <strong>and</strong> 13 C NMR data: Refer to table 26 on pages 131<br />

135


References<br />

Ansell, S.M. (1989) The diterpenes <strong>of</strong> the genus Erythroxylum P. Browne, University <strong>of</strong><br />

Natal, PhD Thesis, pp. 37-43, 247-248, 250-251<br />

Begum, S., Hassan, S.I., Siddiqui, B.S., Shaheen, F., Ghayur, M.N. <strong>and</strong> Gilani, A.H.<br />

(2002) Triterpenoids from the leaves <strong>of</strong> Psidium guajava, Phytochemistry, 61, 399-<br />

403<br />

Burns, D., Reynolds, W.F., Buchanan, G., Reese, P.B. <strong>and</strong> Enriquez, R.G (2000)<br />

Assignment <strong>of</strong> 1 H <strong>and</strong> 13 C NMR spectra <strong>and</strong> investigation <strong>of</strong> hindered side-chain<br />

rotation in lupeol derivatives, Magnetic Resonance in Chemistry, 38, 488-493<br />

Cerqueira, F., Cordeira-Da-Silva, A., Gaspar-Marques, C., Simoes, F., Pinto, M.M.M.<br />

<strong>and</strong> Nascimento, M.S.J. (2004) Effect <strong>of</strong> abietane diterpenes from Plectranthus<br />

gr<strong>and</strong>identatus on T- <strong>and</strong> B-lymphocyte proliferation, Bioorganic <strong>and</strong> Medicinal<br />

Chemistry, 12, 217-223<br />

Chang C., Tseng M. <strong>and</strong> Kuo Y., (2005), Five new diterpenoids from the bark <strong>of</strong><br />

Taiwania cryptomerioides, Chemical <strong>and</strong> Pharmaceutical Bulletin, 53, 286<br />

Ci<strong>of</strong>fi, G., Bellino, A., Pizza, C., Venturella, F. <strong>and</strong> De Tommasi, N. (2001) Triterpene<br />

saponins from Tupidanthus calyptratus, Journal <strong>of</strong> Natural Products, 64, 750-753<br />

Codd L. E. (1985) Flora <strong>of</strong> Southern Africa, South Africa Department <strong>of</strong> Agriculture,<br />

Volume 28, pp 137-172<br />

D’Abrosca, B., Fiorentino, A., Monaco, P., Oriano, P. <strong>and</strong> Pacifico, S. (2006) Annurcoic<br />

acid: A new antioxidant ursane triterpene from fruits <strong>of</strong> cv. Annurca apple, Food<br />

Chemistry, 98, 285-290<br />

Da Graca Rocha, G., Simoes, M., Lucio, K.A., Oliveira, R.R., Kaplan, M.A.C. <strong>and</strong><br />

Gattass, C.R. (2007) Natural triterpenoids from Cecropia lyratiloba are cytotoxic to<br />

both sensitive <strong>and</strong> multidrug resistant leukemia cell lines, Bioorganic <strong>and</strong> Medicinal<br />

Chemistry, 15, 7355-7360<br />

Delgado, G., Hern<strong>and</strong>ez, J. <strong>and</strong> Pereda-Mir<strong>and</strong>a, R. (1989) Triterpenoid acids from<br />

Cunila lythrifolia, Phytochemistry, 28, 1483-1485<br />

Fang, J-M., Wang, K-C. <strong>and</strong> Cheng, Y-S. (1991) Steroids <strong>and</strong> triterpenoids from Rosa<br />

laevigata, Phytochemistry, 30, 3383-3387<br />

136


Fotie, J., Bohle, D.S., Leimanis, M.L., Georges, E., Rukunga, G. <strong>and</strong> Nkengfack, A.E.<br />

(2006) Lupeol long-chain fatty acid esters with antimalarial activity from Holarrhena<br />

floribunda, Journal <strong>of</strong> Natural Products, 69, 62-67<br />

Gaspar-Marques, C., Pedro, M., Simoes, M.F.A., Nascimento, M.S.J., Pinto, M.M.M. <strong>and</strong><br />

Rodriguez, B. (2002) Effect <strong>of</strong> abietane diterpenes from Plectranthus gr<strong>and</strong>identatus<br />

on the growth <strong>of</strong> human cancer cell lines, Planta Medica, 68, 839-840<br />

Gaspar-Marques, C., Duarte, M.A., Simoes, M.F., Rijo, P. <strong>and</strong> Rodriguez, B. (2006)<br />

Abietanes from Plectranthus gr<strong>and</strong>identatus <strong>and</strong> P. hereroensis against methicillin-<br />

<strong>and</strong> vancomycin-resistant bacteria, Phytomedicine, 13, 267-271<br />

Githens, T.S. (1948) Drug Plants <strong>of</strong> Africa, African H<strong>and</strong>books 8, University <strong>of</strong><br />

Pennsylvania Press, The University Museum, Philadelphia, page 100<br />

Han, Y.F., Pan, J., Gao, K. <strong>and</strong> Jia, Z.J. (2005) Sesquiterpenes, nortriterpenes <strong>and</strong> other<br />

constituents from Ligularia tongolensis, Chemical <strong>and</strong> Pharmaceutical Bulletin, 53,<br />

1338-1341<br />

Hensch, M., Ruedi, P. <strong>and</strong> Eugster, C. H. (1975) Horminone, taxoquinone, <strong>and</strong> other<br />

royleanones obtained from two Abyssinian Plectranthus species (Labiatae),<br />

Helvetica Chimica Acta, 58, 1921-1934<br />

Hutchings, A., Scott, A.H., Lewis, G. <strong>and</strong> Cunningham, A. (1996) Zulu medicinal plants:<br />

an inventory, University <strong>of</strong> Natal Press, Pietermaritzburg, pp 270-271<br />

Jamal, A.K., Yaacob, W.A. <strong>and</strong> Din, L.B. (2009) Triterpenes from the root bark <strong>of</strong><br />

Phyllanthus columnaris, Australian Journal <strong>of</strong> Basic <strong>and</strong> Applied Sciences, 3, 1428-<br />

1431<br />

Kang, J., Chen, R.-Y. <strong>and</strong> Yu, D-Q. (2005) A new isopimarane-type diterpene <strong>and</strong> a new<br />

natural atisane-type diterpene from Excoecaria agallocha, Journal <strong>of</strong> Asian Natural<br />

Products Research, 7, 729-734<br />

Kongduang, D., Wungsintaweekul, J. <strong>and</strong> De-Eknamkul, W. (2008) Biosynthesis <strong>of</strong> β-<br />

stiosterol <strong>and</strong> stigmasterol proceeds exclusively via the mevalonate pathway in cell<br />

suspension cultures <strong>of</strong> Croton stellatopilosus, Tetrahedron Letters, 49, 4067-4072<br />

Labbe, C., Castillo, M., Fainia, F., Coll, J. <strong>and</strong> Connolly, J.D. (1994) Rearranged<br />

isopimarenes <strong>and</strong> other diterpenoids from Satureja gilliesii, Phytochemistry, 36, 735-<br />

738<br />

137


Laing, M.D., Drewes, S.E. <strong>and</strong> Gurlal, P. (2006) Extracts <strong>of</strong> Plectranthus hadiensis,<br />

argentatus or myrianthus for the treatment <strong>of</strong> microbial infection, Publication number<br />

WO/2008/001278, 10pp, http://www.wipo.int/pctdb/en/wo (last date accessed<br />

05/12/2010)<br />

Langlois, A. (2000) The chemical investigation <strong>of</strong> four medicinal plants, University <strong>of</strong><br />

KwaZulu-Natal, South Africa, MSc Thesis, pp 49 <strong>and</strong> 50<br />

Li, Y. <strong>and</strong> Chen, Y. (1990) Diterpenoids from Rabdosia parvifolia, Phytochemistry, 29,<br />

3033-3034<br />

Lontsi, D., Sondengam, B.L., Martin, M.T. <strong>and</strong> Bodo, B. (1992) Musangicic acid, a<br />

triterpenoid constituent <strong>of</strong> Musanga cecropioides, Phytochemistry, 31, 4285-4288<br />

Lontsi, D., Sondengam, B.L., Martin, M.T. <strong>and</strong> Bodo, B. (1998) Cecropioic acid, a<br />

pentacyclic triterpene from Musanga cecropioides, Phytochemistry, 48, 171-174<br />

Lukhoba, C.W., Simmonds, M.S.J., Paton, A.J. (2006) Plectranthus: A review <strong>of</strong><br />

ethnobotanical uses, Journal <strong>of</strong> Ethnopharmacology, 103, 1-24<br />

Lyder, D.L., Peter, S.R., Tinto, W.F., Bissada, S.M., McLean, S. <strong>and</strong> Reynolds, W.F.<br />

(1998) Minor cassane diterpenoids <strong>of</strong> Caesalpinia bonduc, Journal <strong>of</strong> Natural<br />

Products, 61, 1462-1465<br />

Makatini, M.M. (2007) Extactives from Bersama swinnyi <strong>and</strong> Bersama lucens,<br />

University <strong>of</strong> KwaZulu-Natal, South Africa, MSc thesis, pp192<br />

Mehrotra, R., Vishwakarma, R.A. <strong>and</strong> Thakur, R.S., (1989) Abietane diterpenoids from<br />

Coleus zeylanicus, Phytochemistry, 28, 3135-3137<br />

Meragelman, T.L., Silva, G.L., Mongelli, E. <strong>and</strong> Gil, R.R. (2003) ent-Pimarane type<br />

diterpenes from Gnaphalium gaudichaudianum, Phytochemistry, 62, 56-572<br />

Mothana, R.A.A., Abdo, S.A.A., Hasson, S., Althawab, F.M.N., Alaghbari, S.A.Z. <strong>and</strong><br />

Lindequist, U. (2008) Antimicrobial, antioxidant <strong>and</strong> cytotoxic activities <strong>and</strong><br />

phytochemical screening <strong>of</strong> some Yeni medicinal plants, eCAM Advance Access, pp<br />

1-8<br />

Neuwinger, H.D. (2000) African Traditional Medicine, A Dictionary <strong>of</strong> Plant Use <strong>and</strong><br />

Applications, Mepharm Scientific Publishers, Stuttgart, pp 406-408<br />

138


Numata, A., Yang, P., Takahashi, C., Fujika, R., Nabae, M. <strong>and</strong> Fujita, E. (1989)<br />

Cytotoxic triterpenes from a Chinese Medicine, Goreishi, Chemical <strong>and</strong><br />

Pharmaceutical Bulletin, 37, 648-651<br />

Pereda-Mir<strong>and</strong>a, R. <strong>and</strong> Gascon-Figueroa, M. (1988) Chemistry <strong>of</strong> Hyptis Mutabilis:<br />

New pentacyclic triterpenoids, Journal <strong>of</strong> Natural Products, 51, 996-998<br />

Ragasa, C.Y., Alimboyoguen, A.B. <strong>and</strong> Rideout, J.A. (2007) A triterpene from Rosa sp.,<br />

Journal <strong>of</strong> Research Science, Computing <strong>and</strong> Engineering, 4, 5pp<br />

Rasikari, H. (2007) Phytochemistry <strong>and</strong> arthropod bioactivity <strong>of</strong> Australian Lamiaceae,<br />

PhD Thesis, Southern Cross University, Lismore, NSW, 290pp,<br />

http://epubs.scu.edu.au/theses/9 (accessed on 22/10/2010)<br />

Saeed, M.A. <strong>and</strong> Sabir, A.W. (2003) Irritant potential <strong>of</strong> some constituents from the seeds<br />

<strong>of</strong> Caesalpinia bonducella (L.) Fleming, Journal <strong>of</strong> Asian Natural Products<br />

Research, 5, 35-41<br />

Sakai, T. <strong>and</strong> Nakagawa, Y. (1988) Diterpenic stress metabolites from Cassava roots,<br />

Phytochemistry, 27, 3769-3779<br />

Shirota, O., Tamemura, T., Morita, H., Takeya, K. <strong>and</strong> Itokawa, H. (1996) Triterpenes<br />

from Brazilian medicinal plant “Chuchuhuasi” (Maytenus krukovii), Journal <strong>of</strong><br />

Natural Products, 59, 1072-1075<br />

Sivarajan, V.V. <strong>and</strong> Balach<strong>and</strong>ran, I. (1986) Botanical notes on the identity <strong>of</strong> certain<br />

herbs used in Ayurvedic medicines in Kerala, III. Hribera <strong>and</strong> Amrag<strong>and</strong>ha, Ancient<br />

Science <strong>of</strong> Life, 5, 250-254<br />

Takahashi, K., Kawaguchi, S., Nishimura, K-I., Kubota, K., Tanabe, Y. <strong>and</strong> Takani, M.<br />

(1974) Studies on constituents <strong>of</strong> medicinal plants. XIII. 1) Constituents <strong>of</strong> the<br />

pericarps <strong>of</strong> the capsules <strong>of</strong> Euscaphis japonica Pax. (1), Chemical <strong>and</strong><br />

Pharmaceutical Bulletin, 22, 650-653<br />

Teixeira, A.P., Batista, O., Simoes, M.F., Nascimento, J., Duarte, A., de La Torre, M.C.<br />

<strong>and</strong> Rodriguez, B. (1997) Abietane diterpenoids from Plectranthus gr<strong>and</strong>identatus,<br />

Phytochemistry, 44, 325-327<br />

van Jaarsveld, E.J. (2006) The Southern African Plectranthus <strong>and</strong> the art <strong>of</strong> turning shade<br />

to glade, Fernwood Press, 176pp<br />

139


van Vuuren, S. (2007) The antimicrobial activity <strong>and</strong> essential oil composition <strong>of</strong><br />

medicinal aromatic plants used in African traditional healing, PhD thesis, University<br />

<strong>of</strong> the Witwatersr<strong>and</strong>, Johannesburg, 305pp<br />

van Zyl, R.L., Khan, F., Edwards, T.J. <strong>and</strong> Drewes, S.E. (2008) Antiplasmodial activities<br />

<strong>of</strong> some abietane diterpenes from the leaves <strong>of</strong> five Plectranthus species, South<br />

African Journal <strong>of</strong> Science, 104, 62-64<br />

Wang, B-G. <strong>and</strong> Jia, Z-J. (1998) Triterpene <strong>and</strong> triterpene glycosyl ester from Rubus<br />

pungens Camb. var. Oldhamii, Phytochemistry, 49, 185-188<br />

Wellsow, J., Grayer, R.J., Veitch, N.C., Kokubun, T., Lelli, R., Kite, G.C. <strong>and</strong><br />

Simmonds, M.S.J. (2006) Insect-antifeedant <strong>and</strong> antibacterial activity <strong>of</strong> diterpenoids<br />

from species <strong>of</strong> Plectranthus, Phytochemistry, 67, 1818-1825<br />

140


Chapter 4 Antibacterial <strong>and</strong> anticancer activity <strong>of</strong> the<br />

compounds isolated<br />

The compounds isolated were tested for their antibacterial <strong>and</strong> anticancer activity in<br />

collaboration with the CSIR as these biological screens were available at the time. The<br />

bacterial strains used were the Gram-negative Pseudomonas aeruginosa American Type<br />

Culture Collection 25922 (ATCC25922) <strong>and</strong> the Gram-positive Enterococcus faecalis<br />

(ATCC29212) whilst breast (Michigan Cancer Foundation – Seventh sample (MCF-7)),<br />

renal (TK-10) <strong>and</strong> melanoma (UACC-62) cell lines were assayed for anticancer purposes.<br />

There is no record <strong>of</strong> antibacterial, antifungal or anticancer testing being done on<br />

compounds I to IV. However, compounds 33 (6β,7α-dihydroxyroyleanone) <strong>and</strong> 36 (7α-<br />

acetoxy-6β-hydroxyroyleanone) which are 7α-isomers <strong>of</strong> compounds I <strong>and</strong> II<br />

respectively, have proven to posess antibacterial activity against six strains <strong>of</strong> methicillin<br />

resistant Staphylococcus aureus (MRSA), two strains <strong>of</strong> vancomycin-resistant<br />

Enterococcus faecalis (VRE), Bacillus subtilis, Staphylococcus aureus, Vibrio cholera<br />

<strong>and</strong> Xanthomonas campestris (Laing et al., 2006; Teixera et al., 1997; Gaspar-Marques et<br />

al., 2006), antifungal activity against Rhizoctonia solani, Sclerotinia sclerotiorum,<br />

Pythium ultimum <strong>and</strong> an unknown C<strong>and</strong>ida species (Laing et al., 2006; Teixera et al.,<br />

1997; Gaspar-Marques et al., 2006), anticancer activity against human lymphocytes<br />

induced by phytohaemagglutinin (PHA) <strong>and</strong> expression <strong>of</strong> CD69 by T- <strong>and</strong> B- mouse<br />

lymphocytes, antitumor activity against human cancer cell ines MCF-7, NCI-H460, SF-<br />

268, TK-10 <strong>and</strong> UACC-62 (Cerqueira et al., 2004; Gaspar-Marques et al., 2002) <strong>and</strong><br />

antimalarial activity against Plasmodium falciparum (van Zyl et al., 2008) (Tables 12 <strong>and</strong><br />

14).<br />

Compound V has been isolated twice before from the Plectranthus species (Simoes,<br />

2010; Yao, 2002) but this is the first time that it has been isolated from P. hadiensis.<br />

This is the first report <strong>of</strong> lupeol (VI) being isolated from the Plectranthus species.<br />

141


Since the 7α-isomers <strong>of</strong> compounds I <strong>and</strong> II (36 <strong>and</strong> 33, respectively) exhibited the<br />

above mentioned activity, it was decided to determine the antibacterial activity <strong>and</strong><br />

anticancer activity <strong>of</strong> these two compounds. The bacterial strains tested were that <strong>of</strong> E.<br />

faecalis <strong>and</strong> P. aeruginosa with the hope <strong>of</strong> these two compounds exhibiting greater<br />

activity than that reported in literature where 33 <strong>and</strong> 36 (having MIC values <strong>of</strong><br />

62.50µg/mL <strong>and</strong> 31.25µg/mL <strong>and</strong> 15.63µg/mL <strong>and</strong> 31.25µg/mL against two VRE strains,<br />

respectively) displayed stronger activity against VRE than vancomycin (having a<br />

minimum MIC value <strong>of</strong> 125µg/mL) <strong>and</strong> where 36 displayed more potent activity against<br />

MRSA (with MIC values averaging 7.8µg/mL) than oxacillin (having a MIC value <strong>of</strong><br />

15.63µg/mL) (Gaspar-Marques et al., 2006). The 7-acetoxy function also proved<br />

superior in activity to the 7-hydroxy function when tested for anticancer activity against<br />

MCF-7, NCI-H460, SF-268, TK-10 <strong>and</strong> UACC-62 cell lines (Gaspar-Marques et al.,<br />

2002). The purpose <strong>of</strong> the anticancer testing performed in this study was to see how the<br />

isomers <strong>of</strong> 36 <strong>and</strong> 33, I <strong>and</strong> II respectively, faired in the anticancer assays.<br />

Even though, compound III has been isolated by Ansell (1989) there hasn’t been any<br />

report <strong>of</strong> this compound showing biological activity. The only report <strong>of</strong> an ent-pimarene<br />

displaying antibacterial activity was by Porto et al. (2009) where ent-8(14),15-<br />

pimaradien-3β-ol was found to be active against E. faecalis having an an MIC value <strong>of</strong><br />

20µg/mL. It is still unknown as to whether ent-pimarene compounds possess anticancer<br />

activity as they have not been tested against any cell lines to date.<br />

There were three reports <strong>of</strong> anticancer testing <strong>of</strong> compound IV, however none <strong>of</strong> these<br />

studies tested for activity against the TK-10 (renal) <strong>and</strong> UACC-62 (melanoma) cell lines.<br />

Cheng et al. (2010) tested compound IV for activity against four human cancer cell lines<br />

(MCF-7, tested in this work, NCI-H460, HT-29 <strong>and</strong> CEM) (Cheng et al., 2010). The<br />

results indicated that this compound was inactive as an anticancer agent based on cancer<br />

cell proliferation (Cheng et al., 2010). Studies by Ogura et al. (1977) <strong>and</strong> Mujovo (2010)<br />

proved that compound IV does possess anticancer activity by testing positive for activity<br />

against P-388 lymphocytic leukaemia cell lines (Ogura et al., 1977) <strong>and</strong> exhibiting strong<br />

142


2<br />

19<br />

1<br />

4<br />

18<br />

cytotoxic activity against monkey kidney Vero cell lines, having IC50 values ranging<br />

between 4.52µg/mL <strong>and</strong> 19.21µg/mL (Mujovo, 2010).<br />

4.1 Antibacterial testing<br />

Compounds I to IV (7β-acetoxy-6β-hydroxyroyleanone (I), 7β,6β-dihydroxyroyleanone<br />

(II), ent-pimara-8(14),15-diene-3β,11α-diol (III) <strong>and</strong> 2α,3α,19α-trihydroxyurs-12-en-28-<br />

oic acid (IV)) were sent to the Council for Science <strong>and</strong> Industrial Research (CSIR) in<br />

Pretoria, South Africa to be assessed for their antibacterial activity. The bacterial strains<br />

used were the Gram-negative Pseudomonas aeruginosa (ATCC25922) <strong>and</strong> the Gram-<br />

positive Enterococcus faecalis (ATCC29212).<br />

O<br />

20<br />

9<br />

10<br />

5<br />

11<br />

6 7<br />

OH<br />

OH<br />

12<br />

14<br />

8<br />

R<br />

R<br />

13<br />

16<br />

(I) OC(O)CH3<br />

(II) OH<br />

15<br />

O<br />

17<br />

4.1.1 Experimental<br />

HO<br />

2<br />

3<br />

1<br />

HO<br />

20 11<br />

9<br />

4 5 6 7<br />

10 8<br />

18 19<br />

12<br />

The samples were dissolved in acetone to a known concentration (1.0 mg/mL) prior to<br />

being tested, with the exception <strong>of</strong> compound IV which was prepared to a concentration<br />

<strong>of</strong> 0.8 mg/mL due to there being insufficient sample. The antibacterial assays followed<br />

the format <strong>of</strong> the serial microdilution assay (El<strong>of</strong>f, 1998). In brief, two-fold serial<br />

dilutions <strong>of</strong> the samples were carried out <strong>and</strong> made up to 100µL in 96-well microtitre<br />

plates. Bacteria (100µL <strong>of</strong> an overnight culture) was then added to each well before<br />

143<br />

13<br />

17<br />

14<br />

15<br />

16<br />

HO<br />

HO<br />

1<br />

4<br />

25 26<br />

9<br />

5<br />

10<br />

6 7<br />

8<br />

23 24<br />

(III) (IV)<br />

2<br />

12<br />

29<br />

27<br />

18<br />

14<br />

OH<br />

15<br />

17<br />

30<br />

21<br />

22<br />

COOH


eing incubated for 24 hours at 37°C. A volume <strong>of</strong> 40µL <strong>of</strong> 0.2mg/mL<br />

Iodonitrotetrazolium chloride (INT, Sigma) was added to each well as indicator <strong>of</strong><br />

bacterial growth. INT, a colourless tetrazolium salt, is converted to a red-coloured<br />

formazan product by actively dividing cells. The minimum inhibitory concentration<br />

(MIC) was visually read as the lowest concentration <strong>of</strong> sample that inhibited microbial<br />

growth, as indicated by a visible reduction in the red colour <strong>of</strong> the INT formazan. In each<br />

assay, a negative solvent control <strong>and</strong> a positive control <strong>of</strong> the antibiotic was used.<br />

Gentamicin (Sigma) was used as the antibacterial control <strong>and</strong> the samples were tested in<br />

triplicate.<br />

4.1.2 Results <strong>and</strong> discussion<br />

The results <strong>of</strong> the Minimum Inhibitory Concentration (MIC) determinations <strong>of</strong> the four<br />

compounds against Enterococcus faecalis <strong>and</strong> Pseudomonas aeruginosa are given in<br />

Table 27. MIC values for the samples <strong>and</strong> the reference antibiotic, gentamicin are<br />

reported in µg/mL.<br />

Table 27: Antibacterial activity <strong>of</strong> compounds I to IV<br />

Compound<br />

Average MIC (µg/mL)<br />

24 hours<br />

E. faecalis P. aeruginosa<br />

I 62.50 62.50<br />

II 31.30 7.80<br />

III 125.00 15.60<br />

IV 200.00 200.00<br />

Gentamicin 0.39 0.78<br />

The antibacterial activity <strong>of</strong> compounds I to IV were evaluated relative to gentamicin.<br />

The lower the MIC value, the better the antibacterial activity <strong>of</strong> the compound. Since the<br />

MIC value for gentamicin is below 1µg/mL for both the bacterial strains tested,<br />

compounds with MIC values below 10µg/mL were noted to be potent antibacterial agents<br />

while compounds having MIC values between 10µg/mL <strong>and</strong> 100µg/mL were considered<br />

to be good antibacterial agents. Compounds exhibiting MIC values between 100µg/mL<br />

144


<strong>and</strong> 125µg/mL were categorised as being moderately active. MIC values above<br />

125µg/mL suggested poor activity.<br />

Of the four compounds tested for activity against E. faecalis <strong>and</strong> P. aeruginosa,<br />

compound IV was the only compound which showed poor activity against both<br />

microorganisms, having MIC values <strong>of</strong> 200µg/mL. This compound however was<br />

structurally different to the other three, being a tetracyclic triterpenoid whilst the other<br />

three compounds were abietane diterpenoids. In the assay against E. faecalis, compound<br />

III exhibited moderate activity having a MIC value <strong>of</strong> 125µg/mL. Compounds II <strong>and</strong> III<br />

showed good antibacterial activity with royleanone II, having a hydroxy group at<br />

position 7, having the highest activity at 31.30µg/mL.<br />

With regard to P. aeruginosa the highest activity (regarded as potent) was shown by<br />

compound II, the royleanone with the hydroxy group at position 7. In comparison to it’s<br />

acetylated counterpart, compound I, it was eight times more active. The pimarane, ent-<br />

pimara-8(14),15-diene-3β,11α-diol (III), was also very active with a MIC value <strong>of</strong><br />

15.60µg/mL.<br />

In general, the abietanes showed good to potent activity against both strains being more<br />

active against P. aeruginosa than E. faecalis, with the highest activity being shown by<br />

compound II (7β,6β-dihydroxyroyleanone). The acetyl group at position 7 <strong>of</strong> compound<br />

I seemed to lower the activity in both bacterial strains in relation to the unacetylated<br />

compound II.<br />

In comparison to the antibiotic gentamicin, compounds I-III are less potent, however<br />

they may have less side effects <strong>and</strong> be less toxic than st<strong>and</strong>ard antimicrobials used in the<br />

drug industry <strong>and</strong> are worth being investigated for development into a new range <strong>of</strong><br />

antibiotics.<br />

Compounds I (7β-acetoxy-6β-hydroxyroyleanone) <strong>and</strong> II (7β,6β-dihydroxyroyleanone)<br />

exhibited MIC values <strong>of</strong> 62.50 µg/mL <strong>and</strong> 31.30 µg/mL against E. faecalis, respectively.<br />

145


This indicated that the dihydroxy compound had better activity than its monoacetylated<br />

counterpart. This is different from that in the literature where the dihydroxy isomer (33)<br />

showed worse activity with MIC values <strong>of</strong> 62.50 <strong>and</strong> 31.25µg/mL than the isomer <strong>of</strong> the<br />

acetylated compound (36) with MIC values <strong>of</strong> 15.63 <strong>and</strong> 31.25µg/mL against two strains<br />

<strong>of</strong> vancomycin-resistant E. faecalis. Even though our compounds displayed weaker<br />

activity than the antibiotic, gentamicin, they do exhibit stronger activity than that reported<br />

for vancomycin in Gaspar-Marques et al. (2006).<br />

4.2 Anti-cancer screening<br />

An in-house test method which was developed by the CSIR was employed for the<br />

evaluation <strong>of</strong> the anticancer activity <strong>of</strong> compounds I to IV. This test method was<br />

implemented by the CSIR in 1999 <strong>and</strong> is known as the three cell prescreening method<br />

(Fouche et al., 2006; 2008). Breast (MCF-7), renal (TK-10) <strong>and</strong> melanoma (UACC-62)<br />

cell lines were three human cell lines chosen for anticancer testing due to their high<br />

sensitivity to detect anticancer activity (Fouche et al., 2008). Compounds need to<br />

demonstrate growth inhibitory activity in this pre-screen panel before proceeding to<br />

advanced testing in the full 60-cell-line screen.<br />

Melanoma refers to cancer <strong>of</strong> the skin <strong>and</strong> occurs when a UV photon strikes a<br />

chromophore in a skin cell. A chromophore is the part <strong>of</strong> a molecule which gives it<br />

colour. When the chomophore is struck by the UV photon, a singlet oxygen ( 1 O2) or<br />

hydroxyl (•OH) free radical is produced, which then travels about the body until it finds a<br />

home in a melanocyte, where DNA is mutated by means <strong>of</strong> oxidation. The damaged<br />

melanocyte then becomes a malignant tumour, which is apparent by a change in skin<br />

colour, usually to a darker shade. Genetic predisposition, excessive, unprotected<br />

exposure to the sun as well as the use <strong>of</strong> tanning or sun beds are some <strong>of</strong> the factors<br />

which lead to the formation <strong>of</strong> melanomas.<br />

Breast cancer is a form <strong>of</strong> cancer which originates from breast tissue, commonly found in<br />

the inner lining <strong>of</strong> milk ducts or lobules, the ducts responsible for the supply <strong>of</strong> milk.<br />

146


Breast cancer can develop in both males <strong>and</strong> females <strong>and</strong> is detectable by means <strong>of</strong> self-<br />

examination <strong>of</strong> the breast area. The presence <strong>of</strong> lumps or masses in this area is usually an<br />

indication <strong>of</strong> cancerous matter, however a mammogram which is performed at most<br />

medical centres, must be done to confirm the presence <strong>of</strong> such matter. Prognosis <strong>and</strong><br />

survival rate varies greatly depending on cancer type <strong>and</strong> staging. Treatment includes<br />

surgery, drugs (hormonal therapy <strong>and</strong> chemotherapy) <strong>and</strong> radiation.<br />

Renal cancer otherwise known as renal cell carcinoma refers to cancer <strong>of</strong> the kidney.<br />

Since the kidney is responsible for the filtration <strong>of</strong> blood <strong>and</strong> removal <strong>of</strong> waste products<br />

from the body, renal cell carcinoma affects the lining <strong>of</strong> the small tubes within the kidney<br />

which in turn affects the filtering system. Unfortunately renal cancer is not detected as<br />

easily as breast cancer is. Chronic fatigue, hypertension, fever, presence <strong>of</strong> blood in the<br />

urine, pain in the side or lower back as well as a mass or lump in the abdomen are a few<br />

<strong>of</strong> the signs <strong>and</strong> symptoms associated with this cancer. Chemotherapy, radiation therapy<br />

<strong>and</strong> surgery are some <strong>of</strong> the treatment options available to patients diagnosed with this<br />

particular cancer.<br />

4.2.1 Experimental<br />

In the three cell prescreening method, the three cell lines were grown in Roswell Park<br />

Memorial Institute 1640 (RPMI 1640) medium containing 5% fetal bovine serum <strong>and</strong><br />

2µM L-glutamine. The cells were then inoculated into 96-well microtiter plates with<br />

densities ranging between 5,000 <strong>and</strong> 40,000 cells per well. A volume <strong>of</strong> 100µL <strong>of</strong> the<br />

medium was introduced into the microtiter plates <strong>and</strong> subsequently incubated at 37 o C in a<br />

5:95 (carbon dioxide:air) atmosphere with 100% relative humidity for 24 hours.<br />

Compounds I-IV were dissolved in dimethyl suphoxide (DMSO) <strong>and</strong> then added to the<br />

cells at concentrations ranging between 0.001µg/ml <strong>and</strong> 100µg/ml. These cells were then<br />

incubated for a further 48 hours at 37 o C in a humidified atmosphere, followed by the<br />

fixing <strong>of</strong> the cells in situ with trichloroacetic acid (TCA) <strong>and</strong> staining with 100µL<br />

sulforhodamine B (SRB) solution. Unbound dye was removed by washing with 1%<br />

147


acetic acid <strong>and</strong> air drying the plates. Bound stain was solubilized with 10µM trizma base<br />

<strong>and</strong> the optical density was read on an automated plate reader at a wavelength <strong>of</strong> 540nm.<br />

The percentage growth <strong>of</strong> human tumor cells was determined spectrophotometrically by<br />

measuring the difference in optical density <strong>of</strong> the control (C) at the start (T0) <strong>and</strong> end <strong>of</strong><br />

drug exposure (T). If T≥T0 either no effect is experienced or inhibition occurs. Inhibition<br />

occurs if T


surprising since this compound, a pentacyclic triterepenoid, is structurally different to the<br />

other three abietane diterpenoids.<br />

The criteria followed by the CSIR states that compounds with TGI > 50µg/mL are<br />

regarded as being inactive, TGI ranging between 15µg/mL <strong>and</strong> 50µg/mL are weakly<br />

active whilst TGI values between 6.25µg/mL <strong>and</strong> 15µg/mL are indicative <strong>of</strong> compounds<br />

which are moderately active. Any compound having a TGI value <strong>of</strong> less that 6.25µg/mL<br />

for at least two <strong>of</strong> the three cell lines, is considered to be potent (Fouche et al., 2008).<br />

According to these criteria, compounds I to III are weakly active towards the melanoma<br />

cell line (44.71 µg/mL (I), 42.18µg/mL (II) <strong>and</strong> 44.64µg/mL (III)) while the TGI values<br />

obtained for the breast (51.20µg/mL, 52.72µg/mL <strong>and</strong> 81.22µg/mL, respectively) <strong>and</strong><br />

renal (49.10µg/mL, 55.84µg/mL <strong>and</strong> 53.99µg/mL, respectively) cell lines were only<br />

slightly above 50µg/mL suggesting that these compounds could also be regarded as<br />

weakly active anticancer agents against these cell lines (Table 28). Since I to III are<br />

regarded as weakly active, slight chemical modifications to the structure may enhance it’s<br />

anticancer activity. The chemical modifications could not be carried out in this work<br />

since the samples isolated were insufficient for chemical derivatisation.<br />

The st<strong>and</strong>ard used in the three cell pre-screening method was Etoposide having TGI<br />

values <strong>of</strong> >100µg/mL, 36.20µg/mL <strong>and</strong> 27.00µg/mL for breast (MCF-7), melanoma<br />

(UACC-62) <strong>and</strong> renal (TK-10) human cell lines, respectively. In comparison to the<br />

st<strong>and</strong>ard, compounds I to III were proven to be less active with regard to the renal <strong>and</strong><br />

melanoma cell lines. Compounds II <strong>and</strong> III displayed TGI values <strong>of</strong> 55.84µg/mL <strong>and</strong><br />

53.99ug/mL respectively for the renal cell line. These values are twice that <strong>of</strong> etoposide<br />

having a TGI value <strong>of</strong> 27.00µg/mL against the same cell line. Compounds I to III were<br />

found to be more active against the breast cell line than the control with compounds I <strong>and</strong><br />

II having TGI values measuring half at most <strong>of</strong> that <strong>of</strong> etoposide with values <strong>of</strong><br />

51.20µg/mL <strong>and</strong> 52.72µg/mL, respectively.<br />

Compounds I to III inhibited the growth <strong>of</strong> the melanoma cell line (UACC-62) more than<br />

the other two cell lines having GI50 values ranging between 12.05µg/mL <strong>and</strong> 13.53µg/mL<br />

149


whereas GI50 values for the renal <strong>and</strong> breast cell lines ranged between 21.02µg/mL <strong>and</strong><br />

26.50µg/mL, <strong>and</strong> 20.57µg/mL <strong>and</strong> 39.08µg/mL, repectively. These GI50 values indicate<br />

weak activity as considered by the NCI’s criteria (Fouche et al., 2008).<br />

Net Growth (%)<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

Compound 1<br />

0.01 0.10 1.00 10.00 100.00<br />

Concentration (µg/ml)<br />

Cell line 1 (TK-10) Cell line 2 (UACC) Cell line 3 (MCF)<br />

Figure 20: Dose response curve for 7β-acetoxy-6β-hydroxyroyleanone (I) against TK-10,<br />

UACC-62 <strong>and</strong> MCF-7 cell lines<br />

Net Growth (%)<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

Compound 2<br />

0.01 0.10 1.00 10.00 100.00<br />

Concentration (µg/ml)<br />

Cell Line 1 (TK-10) Cell Line 2 (UACC) Cell Line 3 (MCF)<br />

Figure 21: Dose response curve for 7β,6β-dihydroxyroyleanone (II) against TK-10, UACC-62 <strong>and</strong><br />

MCF-7 cell lines<br />

150


Net Growth (%)<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

Compound 3<br />

0.01 0.10 1.00 10.00 100.00<br />

Concentration (µg/ml)<br />

Cell line 1 (TK-10) Cell line 2 (UACC) Cell line 3 (MCF)<br />

Figure 22: Dose response curve for ent-pimara-8(14),15-diene-3β,11α-diol (III) against TK-<br />

10, UACC-62 <strong>and</strong> MCF-7 cell lines<br />

Compound IV, the only triterpenoid tested was only capable <strong>of</strong> inhibiting the growth<br />

(GI50) <strong>of</strong> the melanoma <strong>and</strong> breast cancer cell lines at concentrations which classified this<br />

compound as inactive <strong>and</strong> showed no potential killing activity (LC50 or LC100) even at<br />

100µg/mL.<br />

Net Growth (%)<br />

150<br />

100<br />

50<br />

0<br />

-50<br />

-100<br />

-150<br />

Compound 4<br />

0.01 0.10 1.00 10.00 100.00<br />

Concentration (µg/ml)<br />

Cell Line 1 (TK-10) Cell Line 2 (UACC) Cell Line 3 (MCF)<br />

Figure 23: Dose response curve for 2α,3α,19α-trihydroxyurs-12-en-28-oic acid (IV) against TK-10,<br />

UACC-62 <strong>and</strong> MCF-7 cell lines<br />

151


Table 28: Growth inhibition values for compounds I-IV against TK-10, UACC-62<br />

<strong>and</strong> MCF-7 cell lines<br />

Compound<br />

I<br />

II<br />

III<br />

IV<br />

Doseresponse<br />

parameters<br />

Line 1<br />

(TK-10)<br />

renal<br />

Line 2<br />

(UACC-62)<br />

melanoma<br />

Line 3<br />

(MCF-7)<br />

breast<br />

GI50 21.02 13.42 20.57<br />

TGI 49.10 44.71 51.20<br />

LC50 77.18 76.00 81.84<br />

LC100 N/A N/A N/A<br />

GI50 24.06 12.05 23.63<br />

TGI 55.84 42.18 52.72<br />

LC50 87.63 72.32 81.82<br />

LC100 N/A N/A N/A<br />

GI50 26.50 13.53 39.08<br />

TGI 53.99 44.64 81.22<br />

LC50 81.48 75.74 N/A<br />

LC100 N/A N/A N/A<br />

GI50 N/A 48.67 92.57<br />

TGI N/A N/A N/A<br />

LC50 N/A N/A N/A<br />

LC100 N/A N/A N/A<br />

Etoposide TGI 27.00 36.20 >100<br />

NB. N/A denotes inactivity<br />

The GI50 values for compounds I <strong>and</strong> II are compared to that <strong>of</strong> their isomers (Gaspar-<br />

Marques et al., 2002) in Table 29. In our results, the GI50 values <strong>of</strong> both I <strong>and</strong> II are<br />

similar. However, this is not the case with the GI50 values for the isomers, compounds 33<br />

<strong>and</strong> 36 reported in the literature. Compound 36 displayed significantly better activity<br />

than any <strong>of</strong> the other three compounds against the three cell lines used. Our two<br />

compounds I <strong>and</strong> II however showed better activity than the dihydroxy isomer (33).<br />

Table 29: GI50 values (µM) <strong>of</strong> compounds I <strong>and</strong> II <strong>and</strong> their 7α-isomers<br />

Compound<br />

MCF-7<br />

Cell line<br />

TK-10 UACC-62<br />

I 34.41 53.90 52.74<br />

36 6.4 7.4 4.5<br />

II 34.63 69.14 67.90<br />

33 48.3 107.6 77.9<br />

Doxorubicin 0.055 0.570 0.094<br />

152


References<br />

Ansell, S.M. (1989) The diterpenes <strong>of</strong> the genus Erythroxylum P. Browne, University <strong>of</strong><br />

Natal, South Africa, PhD Thesis, pp. 37-43, 247-248, 250-251<br />

Banno, N., Akihisa, T., Tokuda, H., Yasukawa, K., Taguchi, Y., Akazawa, H., Ukiya, M.,<br />

Kimura, Y., Suzuki, T. <strong>and</strong> Nishino, H. (2005) Anti-inflammatory <strong>and</strong> anti-tumor<br />

promoting effects <strong>of</strong> the triterpene acids from the leaves <strong>of</strong> Eriobotrya japonica,<br />

Biological <strong>and</strong> Pharmaceutical Bulletin, 28, 1995-1999<br />

Brieskorn, C.H. <strong>and</strong> Riedel, W. (1977) Triterpene acids from Coleus amboinicus<br />

Loureiro, Archiv der Pharmazie, 310, 910-916 (abstract from Scifinder Scholar 2007)<br />

Cerqueira, F., Cordeira-Da-Silva, A., Gaspar-Marques, C., Simoes, F., Pinto, M.M.M.<br />

<strong>and</strong> Nascimento, M.S.J. (2004) Effect <strong>of</strong> abietane diterpenes from Plectranthus<br />

gr<strong>and</strong>identatus on T- <strong>and</strong> B-lymphocyte proliferation, Bioorganic <strong>and</strong> Medicinal<br />

Chemistry, 12, 217-223<br />

Ch<strong>and</strong>el, R.S. <strong>and</strong> Rastogi, R.P. (1977) Acuminatic acid, a new triterpene from Pygeum<br />

acuminatum Coleb., Indian Journal <strong>of</strong> Chemistry, Section B: Organic Chemistry<br />

including Medicinal Chemistry, 15B, 914-16 (abstract from Scifinder Scholar 2007)<br />

Cheng, J.-J., Zhang, L.-J., Cheng, H.-L., Chiou, C.-T., Lee, I.-J. <strong>and</strong> Kuo, Y.-H. (2010)<br />

Cytotoxic hexacyclic triterpene acids from Euscaphis japonica, Journal <strong>of</strong> Natural<br />

Products, 73, 1655-1658<br />

El<strong>of</strong>f, J.N. (1998) A sensitive <strong>and</strong> quick microplate method to determine the minimal<br />

inhibitory concentration <strong>of</strong> plant extracts for bacteria, Planta Medica, 64, 711-713<br />

Fouche, G., Cragg, G.M., Pillay, P., Kolesnikova, N., Maharaj, V.J. <strong>and</strong> Senabe, J. (2008)<br />

In vitro anticancer screening <strong>of</strong> South African plants, Journal <strong>of</strong> Ethnopharmacology,<br />

119, 455-461<br />

Fouche, G., Khorombi, E., Kolesnikova, N., Maharaj, V.J., van der Merwe, M. <strong>and</strong><br />

Nthambeleni, R. (2006) Investigation <strong>of</strong> South African plants for anticancer activity,<br />

Pharmacologyonline, 3, 494-500<br />

Gaspar-Marques, C., Pedro, M., Simoes, M.F.A., Nascimento, M.S.J., Pinto, M.M.M. <strong>and</strong><br />

Rodriguez, B. (2002) Effect <strong>of</strong> abietane diterpenes from Plectranthus gr<strong>and</strong>identatus<br />

on the growth <strong>of</strong> human cancer cell lines, Planta Medica, 68, 839-840<br />

153


Gaspar-Marques, C., Duarte, M.A., Simoes, M.F., Rijo, P. <strong>and</strong> Rodriguez, B. (2006)<br />

Abietanes from Plectranthus gr<strong>and</strong>identatus <strong>and</strong> P. hereroensis against methicillin-<br />

<strong>and</strong> vancomycin-resistant bacteria, Phytomedicine, 13, 267-271<br />

Guerrero, I.C., Andres, L.S., Leon, L.G., Machin, R.P., Padron, J.M., Luis, J.G. <strong>and</strong><br />

Delgadillo, J. (2006) Abietane diterpenoids from Salvia pachyphylla <strong>and</strong> S.<br />

clevel<strong>and</strong>ii with cytotoxic activity against human cancer cell lines, Journal <strong>of</strong> Natural<br />

Products, 69, 1803-1805<br />

Jovel, E.M., Zhou, X.L., Ming, D.S., Wahbe, T.R. <strong>and</strong> Towers, G.H.N. (2007)<br />

Bioactivity-guided isolated <strong>of</strong> the active compounds from Rosa nutkana <strong>and</strong><br />

quantitative analysis <strong>of</strong> ascorbic acid by HPLC, Canadian Journal <strong>of</strong> Physiology <strong>and</strong><br />

Pharmacology, 85, 865-871<br />

Kunzle, J.M., Ruedi, P. <strong>and</strong> Eugster, C.H. (1987) Isolation <strong>and</strong> structure elucidation <strong>of</strong> 36<br />

diterpenoids from trichomes <strong>of</strong> Plectranthus edulis (Vatke) T.T. Aye., Helvetica<br />

Chimica Acta, 70, 1911-29<br />

Heinrich, M., Barnes, J., Williamson, E.M. <strong>and</strong> Gibbons, S. (2004) Fundamentals <strong>of</strong><br />

Pharmacognosy <strong>and</strong> Phytotherapy, Churchill Livingstone, 131pp<br />

Lai, C.-S., Mas, R.H.M.H., Nair, N.K., Mansor, S.M. <strong>and</strong> Navaratnam, V. (2010)<br />

Chemical constituents <strong>and</strong> in vitro anticancer activity <strong>of</strong> Typhonium flagelliforme<br />

(Araceae), Journal <strong>of</strong> Ethnopharmacology, 127, 486-494<br />

Laing, M.D., Drewes, S.E. <strong>and</strong> Gurlal, P. (2008) Extracts <strong>of</strong> Plectranthus hadiensis,<br />

argentatus or myrianthus for the treatment <strong>of</strong> microbial infection, Publication number<br />

WO/2008/001278, 10pp, http://www.wipo.int/pctdb/en/wo (last date accessed<br />

05/12/2010)<br />

Misra, P.S., Misra, G., Nigam, S.K., Mitra, C.R. (1971) Constituents <strong>of</strong> Plectranthus<br />

rugosus, Llyodia, 34, 265-266<br />

Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C.,<br />

Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo,<br />

J. <strong>and</strong> Boyd, M. (1991) Feasibility <strong>of</strong> a high-flux anticancer drug screen using a<br />

diverse panel <strong>of</strong> cultured human tumor cell lines, Articles, 83, 757-766<br />

Moodley, N. (2004) The chemical investigation <strong>of</strong> the Amaryllidaceae <strong>and</strong><br />

Hyacinthaceae, University <strong>of</strong> KwaZulu-Natal, South Africa, PhD thesis, pp 162-167<br />

154


Mujovo, S.F. (2010) Antimicrobial activity <strong>of</strong> compounds isolated from Lippia javanica<br />

(Burm.f.) Spreng <strong>and</strong> Hoslundia opposita against Mycobacterium tuberculosis <strong>and</strong><br />

HIV-1 reverse transcriptase, PhD thesis, University <strong>of</strong> Pretoria, Pretoria, 105pp<br />

Ogura, M., Cordell, G.A. <strong>and</strong> Farnsworth, N.R. (1977) Potential anticancer agents. IV.<br />

Constituents <strong>of</strong> Jacar<strong>and</strong>a caucana Pittier (Bignoniaceae), Lloydia, 40, 157-168<br />

(abstract from Scifinder Scholar 2007)<br />

Porto, T.S., Furtado, N.A.J.C., Heleno, V.C.G., Martins, C.H.G., Da Costa, F.B.,<br />

Severiano, M.E., Silva, A.N., Veneziani, R.C.S. <strong>and</strong> Ambrosio, S.R. (2009)<br />

Antimicrobial ent-pimarane diterpenes from Viguiera arenaria against gram-positive<br />

bacteria, Fitoterapia, 80, 432-436<br />

Razdan T.K., Kachroo, V., Harkar, S., Koul, G.L. <strong>and</strong> Dhar, K.L. (1982) Plectranthoic<br />

acid, acetyl plectranthoic acid <strong>and</strong> plectranthadiol – Three new triterpenoids from<br />

Plectranthus rugosus, Phytochemistry, 21, 409-412<br />

Simoes, M.F., Rijo, P., Duarte, A., Matias, D. <strong>and</strong> Rodriguez, B. (2010) An easy <strong>and</strong><br />

stereoselective rearrangement <strong>of</strong> an abietane diterpenoid into a bioactive microstegiol<br />

derivative, Phytochemistry Letters, 3, 234-237<br />

Teixeira, A.P., Batista, O., Simoes, M.F., Nascimento, J., Duarte, A., de La Torre, M.C.<br />

<strong>and</strong> Rodriguez, B. (1997) Abietane diterpenoids from Plectranthus gr<strong>and</strong>identatus,<br />

Phytochemistry, 44, 325-327<br />

van Zyl, R.L., Khan, F., Edwards, T.J. <strong>and</strong> Drewes, S.E. (2008) Antiplasmodial activities<br />

<strong>of</strong> some abietane diterpenes from the leaves <strong>of</strong> five Plectranthus species, South<br />

African Journal <strong>of</strong> Science, 104, 62-64<br />

Yao, C., Shen, Y. <strong>and</strong> Xu, Y. (2002) Chemical constituents <strong>of</strong> Coleus forskohlii, Tianran<br />

Chanwu Yanjiu Yu Kaifa, 14, 1-6<br />

155


Chapter 5 Conclusion<br />

The aim <strong>of</strong> this research project was to isolate <strong>and</strong> identify the compounds extracted from<br />

Plectranthus hadiensis <strong>and</strong> to compare the phytochemistry with previous studies as well<br />

as to test the compounds isolated for antibacterial <strong>and</strong> anticancer proprties.<br />

According to literature (Abdel-Mogib et al., 2002), abietane diterpenes are the most<br />

abundantly occurring compounds in the genus Plectranthus with there being two<br />

instances where ten triterpenes (oleanolic acid, ursolic acid, betulin, β-sitosterol,<br />

plectranthoic acid, plectranthoic acid A, plectranthoic acid B, acetylplectranthoic acid,<br />

plectranthadiol <strong>and</strong> hexacosanol) have been isolated (Misra et al., 1971; Razdan et al.,<br />

1982).<br />

Compounds I <strong>and</strong> II have been isolated only once before (Mehrotra et al., 1989) from<br />

Coleus zeylanicus which is a synonym for Plectranthus hadiensis. This is the first report<br />

<strong>of</strong> compounds III to VI being isolated from P. hadiensis. Lupeol has never been isolated<br />

in the Plectranthus genus, however an isopimarane (7α,18-dihydroxy-isopimara-<br />

8(14),15-diene) was reported in Plectranthus diversus (Rasikari, 2007) <strong>and</strong> stigmasterol<br />

has been isolated twice before, once from Coleus <strong>and</strong> once from Plectranthus.<br />

Three <strong>of</strong> the six compounds isolated from P. hadiensis, (7β-acetoxy-6β-<br />

hydroxyroyleanone (I), 7β,6β-dihydroxyroyleanone (II) <strong>and</strong> ent-pimara-8(14),15-diene-<br />

3β,11α-diol (III)) were abietanes while the other three were common pentacyclic<br />

triterpenes known as euscaphic acid (IV), stigmasterol (V) <strong>and</strong> lupeol (VI). These three<br />

triterpenoids add to the ten previously isolated from the Plectranthus species. Even<br />

though ethyl acetate <strong>and</strong> methanol were used as extraction solvents, nothing <strong>of</strong> interest<br />

was isolated from these solvents. The relatively non-polar hexane extract yielded five <strong>of</strong><br />

the six compounds with euscaphic acid IV being isolated from the dichloromethane<br />

extract. The isolation <strong>of</strong> triterpenoids in P. hadiensis is not surprising as most plant<br />

species contain these common sterols.<br />

156


The isolation <strong>of</strong> a pimarane in Plectranthus was an interesting find as pimarane-type<br />

diterpenes are abundant in the Lamiaceae family (to which Plectranthus belongs) being<br />

found predominantly in the Salvia <strong>and</strong> Nepeta genera <strong>and</strong> to a lesser extent in the<br />

Rabdosia, Callicarpa, Premna, Amaracus, Orthosipho <strong>and</strong> Satureja genera (Alvarenga et<br />

al., 2001). The finding <strong>of</strong> a pimarane from Plectranthus may now provide a biochemical<br />

link between Plectranthus <strong>and</strong> these genera. Pimarane-type diterpenes have also been<br />

isolated from the Erythroxylum genus (Ansell, 1989) which suggests a link between the<br />

Lamiaceae family to which Plectranthus is a member <strong>of</strong> <strong>and</strong> the Erythroxylaceae to<br />

which Erythroxylum belongs.<br />

Compounds I <strong>and</strong> II showed good activity against Enterococcus faecalis <strong>and</strong><br />

Pseudomonas aeruginosa with MICs for compound I being 62.5µg/mL against both<br />

bacterial strains <strong>and</strong> that <strong>of</strong> compound II being 31.30µg/mL <strong>and</strong> 7.8µg/mL for E. faecalis<br />

<strong>and</strong> P. aeruginosa, respectively. This result is unexpected as royleanones having a highly<br />

oxidised substituent at C-7 (such as the acetyl group in compound I) are usually more<br />

active than those bearing a hydroxyl group at positions C-6 <strong>and</strong> C-7 (Teixeira et al.,<br />

1997; Gaspar-Marques et al., 2006). The pimarane, ent-pimara-8(14),15-diene-3β,11α-<br />

diol (III), although inactive against E. faecalis was very active against P. aeruginosa.<br />

Based on criteria set by the CSIR where the total growth inhibition (TGI) value is used to<br />

evaluate the anticancer activity <strong>of</strong> compounds, compounds I to III are considered to be<br />

weakly active against breast (MCF-7), renal (TK-10) <strong>and</strong> melanoma (UACC-62) cell<br />

lines. However when compared to the positive control, etoposide, compounds I to III<br />

exhibit better antitumor activity against the breast cell line than the control. Compound<br />

IV was inactive against all three cell lines.<br />

Because compounds I to IV showed weak activity in the three cell prescreen against the<br />

breast, renal <strong>and</strong> melanoma cell lines, there was no need to to pursue further anticancer<br />

testing i.e. the 60-cell-line screen.<br />

157


References<br />

Abdel-Mogib, M., Albar, H.A. <strong>and</strong> Batterjee, S.M. (2002) Chemistry <strong>of</strong> the genus<br />

Plectranthus, Molecules, 7, 271-301<br />

Alvarenga, S.A.V., Gastmans, J.P., do Vale Rodrigues, G., Moreno, P.R.H. <strong>and</strong> de Paulo<br />

Emerenciano, V. (2001) A computer-assisted approach for chemotaxonomic studies –<br />

diterpenes in Lamiaceae, Phytochemistry, 56, 583-595<br />

Ansell, S.M. (1989) The diterpenes <strong>of</strong> the genus Erythroxylum P. Browne, University <strong>of</strong><br />

Natal, South Africa, PhD Thesis, pp. 37-43, 247-248, 250-251<br />

Gaspar-Marques, C., Duarte, M.A., Simoes, M.F., Rijo, P. <strong>and</strong> Rodriguez, B. (2006)<br />

Abietanes from Plectranthus gr<strong>and</strong>identatus <strong>and</strong> P. hereroensis against methicillin-<br />

<strong>and</strong> vancomycin-resistant bacteria, Phytomedicine, 13, 267-271<br />

Mehrota, R., Vishwakarma, R. A. <strong>and</strong> Thakur, R. S. (1989) Abietane diterpenoids from<br />

Coleus zeylanicus, Phytochemistry, 28, 3135-3137<br />

Misra, P.S., Misra, G., Nigam, S.K., Mitra, C.R. (1971) Constituents <strong>of</strong> Plectranthus<br />

rugosus, Llyodia, 34, 265-266<br />

Rasikari, H. (2007) Phytochemistry <strong>and</strong> arthropod bioactivity <strong>of</strong> Australian Lamiaceae,<br />

PhD Thesis, Southern Cross University, Lismore, NSW, 290pp,<br />

http://epubs.scu.edu.au/theses/9 (accessed on 22/10/2010)<br />

Razdan T.K., Kachroo, V., Harkar, S., Koul, G.L. <strong>and</strong> Dhar, K.L. (1982) Plectranthoic<br />

acid, acetyl plectranthoic acid <strong>and</strong> plectranthadiol – Three new triterpenoids from<br />

Plectranthus rugosus, Phytochemistry, 21, 409-412<br />

Teixeira, A.P., Batista, O., Simoes, M.F., Nascimento, J., Duarte, A., de La Torre, M.C.<br />

<strong>and</strong> Rodriguez, B. (1997) Abietane diterpenoids from Plectranthus gr<strong>and</strong>identatus,<br />

Phytochemistry, 44, 325-327<br />

158


Appendix<br />

Spectra<br />

159


Table <strong>of</strong> Contents<br />

Page<br />

Compound I, 7β-acetoxy-6β-hydroxyroyleanone 161<br />

Compound II, 7β,6β-dihydroxyroyleanone 175<br />

Compound III, ent-pimara-8(14),15-diene-3β,11α-diol 189<br />

Compound IV, euscaphic acid 202<br />

Compound V, stigmasterol 217<br />

Compound VI, lupeol 223<br />

160


Compound I, 7β-acetoxy-6β-acetoxyroyleanone<br />

2<br />

19<br />

1<br />

4<br />

O<br />

20<br />

18<br />

9<br />

10<br />

5<br />

11<br />

6 7<br />

OH<br />

OH<br />

12<br />

14<br />

8<br />

13<br />

16<br />

15<br />

O<br />

OCCH 3<br />

Spectrum 1a: 1 H NMR spectrum 162<br />

Spectrum 1b: 13 C NMR spectrum 163<br />

Spectrum 1c: Exp<strong>and</strong>ed 13 C NMR spectrum 164<br />

Spectrum 1d: Exp<strong>and</strong>ed DEPT spectrum 165<br />

Spectrum1e: HSQC spectrum 166<br />

Spectrum 1f: Exp<strong>and</strong>ed HSQC spectrum 167<br />

Spectrum 1g: HMBC spectrum 168<br />

Spectrum 1h: Exp<strong>and</strong>ed HMBC spectrum 169<br />

Spectrum 1i: COSY spectrum 170<br />

Spectrum 1j: NOESY spectrum 171<br />

Spectrum 1k: IR spectrum 172<br />

Spectrum 1l: UV spectrum 173<br />

Spectrum 1m: GC-MS spectrum 174<br />

O<br />

17<br />

Page<br />

161


Compound II, 6β,7β-dihydroxyroyleanone<br />

2<br />

19<br />

1<br />

4<br />

O<br />

20<br />

18<br />

9<br />

10<br />

5<br />

11<br />

6 7<br />

OH<br />

Spectrum 2a: 1 H NMR spectrum 176<br />

Spectrum 2b: 13 C NMR spectrum 177<br />

Spectrum 2c: Exp<strong>and</strong>ed 13 C NMR spectrum 178<br />

Spectrum 2d: Exp<strong>and</strong>ed DEPT spectrum 179<br />

Spectrum 2e: HSQC spectrum 180<br />

Spectrum 2f: Exp<strong>and</strong>ed HSQC spectrum 181<br />

Spectrum 2g: HMBC spectrum 182<br />

Spectrum 2h: Exp<strong>and</strong>ed HMBC spectrum 183<br />

Spectrum 2i: COSY spectrum 184<br />

Spectrum 2j: NOESY spectrum 185<br />

Spectrum 2k: IR spectrum 186<br />

Spectrum 2l: UV spectrum 187<br />

Spectrum 2m: LC-MS spectrum 188<br />

OH<br />

12<br />

14<br />

8<br />

13<br />

OH<br />

16<br />

15<br />

O<br />

17<br />

Page<br />

175


Compound III, ent-pimara-8(14),15-diene-3β,11α-diol<br />

HO<br />

2<br />

3<br />

1<br />

HO<br />

20 11<br />

9<br />

4 5 6 7<br />

10 8<br />

18 19<br />

Spectrum 3a: 1 H NMR spectrum 190<br />

Spectrum 3b: 13 C NMR spectrum 191<br />

Spectrum 3c: Exp<strong>and</strong>ed DEPT spectrum 192<br />

Spectrum 3d: HSQC spectrum 193<br />

Spectrum 3e: Exp<strong>and</strong>ed HSQC spectrum 194<br />

Spectrum 3f: HMBC spectrum 195<br />

Spectrum 3g: Exp<strong>and</strong>ed HMBC spectrum 196<br />

Spectrum 3h: COSY spectrum 197<br />

Spectrum 3i: NOESY spectrum 198<br />

Spectrum 3j: IR spectrum 199<br />

Spectrum 3k: UV spectrum 200<br />

Spectrum 3l: GC-MS spectrum 201<br />

12<br />

13<br />

17<br />

14<br />

15<br />

16<br />

Page<br />

189


Compound IV, euscaphic acid<br />

HO<br />

HO<br />

2<br />

23<br />

1<br />

4<br />

24<br />

25 26<br />

9<br />

5<br />

10<br />

6 7<br />

8<br />

12<br />

29<br />

27<br />

18<br />

14<br />

OH<br />

15<br />

17<br />

30<br />

21<br />

22<br />

COOH<br />

Spectrum 4a: 1 H NMR spectrum 203<br />

Spectrum 4b: 13 C NMR spectrum 204<br />

Spectrum 4c: Exp<strong>and</strong>ed 13 C NMR spectrum 205<br />

Spectrum 4d: DEPT spectrum 206<br />

Spectrum 4e: Exp<strong>and</strong>ed DEPT spectrum 207<br />

Spectrum 4f: HSQC spectrum 208<br />

Spectrum 4g: Exp<strong>and</strong>ed HSQC spectrum 209<br />

Spectrum 4h: HMBC spectrum 210<br />

Spectrum 4i: Exp<strong>and</strong>ed HMBC spectrum 211<br />

Spectrum 4j: COSY spectrum 212<br />

Spectrum 4k: NOESY spectrum 213<br />

Spectrum 4l: IR spectrum 214<br />

Spectrum 4m: UV spectrum 215<br />

Spectrum 4n: GC-MS spectrum 216<br />

Page<br />

202


HO<br />

Compound V, stigmasterol<br />

3<br />

19<br />

5<br />

10<br />

6<br />

7<br />

21<br />

Spectrum 5a: 1 H NMR spectrum 218<br />

Spectrum 5b: Exp<strong>and</strong>ed 1 H NMR spectrum 219<br />

Spectrum 5c: 13 C NMR spectrum 220<br />

Spectrum 5d: Exp<strong>and</strong>ed 13 C NMR spectrum 221<br />

Spectrum 5e: IR spectrum 222<br />

18<br />

14<br />

20<br />

22<br />

29<br />

16<br />

23<br />

28<br />

27<br />

25<br />

26<br />

Page<br />

217


HO<br />

Compound VI, lupeol<br />

3<br />

24<br />

25 26<br />

23<br />

10<br />

Spectrum 6a: 1 H NMR spectrum 224<br />

Spectrum 6b: Exp<strong>and</strong>ed 1 H NMR spectrum 225<br />

Spectrum 6c: 13 C NMR spectrum 226<br />

Spectrum 6d: Exp<strong>and</strong>ed 13 C NMR spectrum 227<br />

Spectrum 6e: IR spectrum 228<br />

30<br />

20<br />

29<br />

27<br />

18<br />

19<br />

17<br />

22<br />

28<br />

Page<br />

223


HO<br />

Compound VI, lupeol<br />

3<br />

24<br />

25 26<br />

23<br />

10<br />

Spectrum 6a: 1 H NMR spectrum 224<br />

Spectrum 6b: Exp<strong>and</strong>ed 1 H NMR spectrum 225<br />

Spectrum 6c: 13 C NMR spectrum 226<br />

Spectrum 6d: Exp<strong>and</strong>ed 13 C NMR spectrum 227<br />

Spectrum 6e: IR spectrum 228<br />

30<br />

20<br />

29<br />

27<br />

18<br />

19<br />

17<br />

22<br />

28<br />

Page<br />

223


HO<br />

218


219


HO<br />

220


221


222


HO<br />

224


225


HO<br />

226


227


228

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!