15.03.2015 Views

Grain Legumes and Green Manures for Soil Fertility in ... - cimmyt

Grain Legumes and Green Manures for Soil Fertility in ... - cimmyt

Grain Legumes and Green Manures for Soil Fertility in ... - cimmyt

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong><br />

<strong>Fertility</strong> <strong>in</strong> Southern Africa:<br />

Tak<strong>in</strong>g Stock of Progress<br />

Proceed<strong>in</strong>gs of a Conference held 8-11 October 2002<br />

at the Leopard Rock Hotel, Vumba, Zimbabwe<br />

Edited by<br />

Stephen R. Wadd<strong>in</strong>gton<br />

Maize Programme <strong>and</strong> Natural Resources Group <br />

CIMMYT-Zimbabwe <br />

Co-coord<strong>in</strong>ator, <strong>Soil</strong> Fert Net <br />

Website:<br />

www.soilfertnetsouthemafrica.org<br />

A Publication of the <strong>Soil</strong> <strong>Fertility</strong> Management <strong>and</strong> Policy Network <strong>for</strong><br />

Maize-Based Cropp<strong>in</strong>g Systems <strong>in</strong> Southern Africa<br />

IsaN 970-648-113-3 Harare, Zimbabwe, December 2003


Pr<strong>in</strong>ted <strong>in</strong> Zimbabwe<br />

Correct citation:<br />

Wadd<strong>in</strong>gton, S.R. (ed.) 2003. <strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa:<br />

Tak<strong>in</strong>g Stock of Progress. Proceed<strong>in</strong>gs of a Conference held 8-11 October 2002 at the Leopard Rock<br />

Hotel, Vumba, Zimbabwe. <strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT-Zimbabwe, Harare,.Zimbabwe. 246 pp.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa:<br />

Tak<strong>in</strong>g Stock of Progress<br />

Wadd<strong>in</strong>gton, S.R. (ed.l<br />

AGROVOC Descriptors<br />

<strong>Soil</strong> fertility; <strong>Gra<strong>in</strong></strong> legumes; <strong>Green</strong> manures; Maize; Cowpeas Vigna<br />

unguiculata; Striga asiatica; Pigeon peas; Beans Phaseolus vulgaris;<br />

Mucuna; Biomass; Semi arid Zone; <strong>Soil</strong> chemistry <strong>and</strong> physics;<br />

Fertilizer comb<strong>in</strong>ations; <strong>Soil</strong> cultivation; L<strong>and</strong> productivity; <strong>Soil</strong><br />

management; Cropp<strong>in</strong>g systems; Intercropp<strong>in</strong>g; <strong>Gra<strong>in</strong></strong> yield; Farm<strong>in</strong>g<br />

systems; Small farn:s; Socioeconomic environment; Economic<br />

analysis; Agricultural research; Southern Africa<br />

AGRIS Category Codes<br />

P35 <strong>Soil</strong> <strong>Fertility</strong> <br />

E16 Production Economics <br />

Dewey Decimal Cla.ssif. 631.422<br />

ISBN 970-648-113-3<br />

Layout: Stephen Wadd<strong>in</strong>gton <strong>and</strong> Nigist Bekele


Acknowledgments<br />

• The Leopard Rock Hotel, Vumba <strong>for</strong> a first rate experience, <strong>in</strong>clud<strong>in</strong>g excellent<br />

conference facilities <strong>and</strong> accommodation.<br />

• The Rockefeller Foundation <strong>for</strong> its cont<strong>in</strong>ued support to <strong>Soil</strong> Fert Net <strong>and</strong> its specific<br />

fund<strong>in</strong>g of most of the participants at the conference <strong>and</strong> much of the research work<br />

presented.<br />

• Rudo Shongedza <strong>and</strong> other staff of CIMMYT-Zimbabwe <strong>for</strong> secretarial <strong>and</strong><br />

logistical support.


Key Papers<br />

Contents <br />

Introduction <strong>and</strong> conference objectives <br />

Stephen Wadd<strong>in</strong>gton <strong>and</strong> Mulugetta Mekuria ............... ............................................................... 1 <br />

Enhanc<strong>in</strong>g the contribution of legumes <strong>and</strong> biological nitrogen fixation <strong>in</strong> cropp<strong>in</strong>g systems:<br />

Experiences from West Africa<br />

Bernard Vanlauwe, Andre Bationo, R.J. Carsky, J. Diels, N. Sang<strong>in</strong>ga <strong>and</strong> S. Schulz .................,.....3 <br />

<strong>Legumes</strong> <strong>for</strong> soil fertility <strong>in</strong> Southern Africa : Needs, potential <strong>and</strong> realities <br />

Ed Rowe <strong>and</strong> Ken Giller ........ .................. ..... .... ..... ... ............... ............... .... ........... ... ...............15 <br />

Pathways <strong>for</strong> fitt<strong>in</strong>g legumes <strong>in</strong>to East African highl<strong>and</strong> farm<strong>in</strong>g systems: A dual approach <br />

Tilahun Amede .............................. ..................................................... ........... ........................21 <br />

Questions <strong>and</strong> answers............................................ ................................. ..............................31 <br />

Rhizobium, N Fixation <strong>and</strong> Microbiology<br />

Promot<strong>in</strong>g new BNF technologies among smallholder farmers: A success story from Zimbabwe <br />

Sheunesu Mpepereki <strong>and</strong> Ishmael Pompi ..................................................................................33 <br />

Response of bean (Phaseolus VUlgaris, L.) cultivars to <strong>in</strong>oculation <strong>and</strong> nitrogen fertilizer <strong>in</strong> Zambia <br />

Friday Sikombe, Obed I Lungu, Kalaluka Muny<strong>in</strong>da <strong>and</strong> Masauso Sakala ...................................... 39 <br />

Role of phosphorus <strong>and</strong> arbuscular mycorrhizal fungi on nodulation <strong>and</strong> shoot nitrogen content <strong>in</strong> <br />

groundnut <strong>and</strong> lablab bean <br />

Ylver L. Besmer, R. T. Koide <strong>and</strong> S.J. Twomlow .......................... ........... ....................................43 <br />

Soyabean yield response to different rhizobial <strong>in</strong>oculation rates on selected s<strong>and</strong>y soils <strong>in</strong> Zimbabwe<br />

Ngoni Chir<strong>in</strong>da, S. Mpepereki, R. Zengeni <strong>and</strong> K. E. Giller ............................................................47 <br />

Survival <strong>and</strong> persistence of <strong>in</strong>troduced commercial rhizobia I <strong>in</strong>oculant stra<strong>in</strong>s <strong>in</strong> selected smallholder <br />

field environments of Zimbabwe <br />

Rebecca Zengem~ Sheunesu Mpepereki <strong>and</strong> Ken E. Giller ........................................................... 53 <br />

Integrat<strong>in</strong>g organic resource quality <strong>and</strong> farmer management practices to susta<strong>in</strong> soil productivity <strong>in</strong> <br />

Zimbabwe <br />

Florence Mtambanengwe <strong>and</strong> Paul Mapfumo ......................... .. .. ............... .. ................ ..............57 <br />

Questions <strong>and</strong> answers................................: ..... .................... ............ .....................................65 <br />

Screen<strong>in</strong>g of Annual <strong>Legumes</strong> <strong>for</strong> Adaptation <strong>and</strong> Use<br />

Add<strong>in</strong>g a new dimension to the improved fallow concept through <strong>in</strong>digenous herbaceous legumes<br />

Paul Mapfum0, Florence Mtambanengwe, Sheunesu Mpepereki <strong>and</strong> Ken Giller .......... .... ................67 <br />

Screen<strong>in</strong>g of short duration pigeonpea <strong>in</strong> Matabelel<strong>and</strong><br />

Bongani Ncube, Tafadzwa Manjala <strong>and</strong> Steve Twomlow ............................................................ 75 <br />

Risk diversification opportunities through legumes <strong>in</strong> smallholder farm<strong>in</strong>g systems <strong>in</strong> ~he semi-arid <br />

areas of Zimbabwe <br />

Richard Foti, Joseph Rusike <strong>and</strong> John Dimes ............................................................................79


Evall!at<strong>in</strong>g mucuna green manure technologies <strong>in</strong> Southern Africa through crop simulation modell<strong>in</strong>g<br />

Zondai Shamudzarira ... ......... ... .. ......... ... .. .. ........ .......... ... ... ........ .............. .............. ......... ......... 87<br />

Questions <strong>and</strong> answers.. ... .................................... .. .......... ............... .............. .. ....... ............... . 93 <br />

Identification of Best Bet <strong>Legumes</strong> <strong>for</strong> On-farm Per<strong>for</strong>mance as <strong>Gra<strong>in</strong></strong><br />

<strong>Legumes</strong>, Intercrops, Rotations, <strong>and</strong> <strong>Green</strong> <strong>Manures</strong><br />

<strong>Green</strong> manure <strong>and</strong> food legumes research to <strong>in</strong>crease soil fertility <strong>and</strong> maize yields <strong>in</strong> Malawi: A<br />

review<br />

Webster Sakala <strong>and</strong> Wezi Mhango .... ... .. .......................... ..................... .. .......... ..... ..................95<br />

<strong>Green</strong> manur<strong>in</strong>g <strong>in</strong> Zimbabwe from 1900 to 2002<br />

Lucia Muza ... .. .......... .. ...... .... ... ............ .... ....................... .............. ..... .. .... ........... .. .... ......... . 103<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> green manures <strong>in</strong> East African maize systems - An overview of ECAMAW network<br />

research<br />

Dennis K. Friesen, R. Assenga, Tesfa Bogale, T.E. Mmbaga, J. Kikafunda, Wakene Negassa, J. Ojiem,<br />

<strong>and</strong> R. Onyango ....... ... ............ ......... .... .. ........... ... ... .... .. ......... .. .... ........ ... ........ .... ........ .. .... ... 113<br />

The role of cowpea (Vigna unguiculata) <strong>and</strong> other gra<strong>in</strong> legumes <strong>in</strong> the management of soil fertility <strong>in</strong><br />

the smallholder farm<strong>in</strong>g sector of Zimbabwe<br />

Nhamo Nhamo, Walter Mupangwa, Shephard Siziba, Tendai Gatsi <strong>and</strong> Davison Chikazunga .........119<br />

Biomass production of green manures <strong>and</strong> gra<strong>in</strong> legumes <strong>in</strong> soils of different characteristics <strong>in</strong> Zambia<br />

<strong>and</strong> Zimbabwe<br />

Paul<strong>in</strong>e Chivenge, Moses Mwale <strong>and</strong> Herbert Murwira ...... .. ............... ........ ................. ........ .... . 129<br />

Effect of different green manure legumes <strong>and</strong> their time of plant<strong>in</strong>g on maize growth <strong>and</strong> witchweed<br />

(Striga asiatica) control: A prelim<strong>in</strong>ary evaluation<br />

Laurence Jasi, Ost<strong>in</strong> A. Chiv<strong>in</strong>ge <strong>and</strong> Irv<strong>in</strong>e K. Mariga .. ... ............ ... ........ ........................ ... ....... 135<br />

Legum<strong>in</strong>ous agro<strong>for</strong>estry options <strong>for</strong> replenish<strong>in</strong>g soil fertility <strong>in</strong> Southern Africa<br />

Paramu L. Mafongoya, E. Kuntashula, F. Kwesiga, T. Chirwa, R. Ch<strong>in</strong>tu, G. Silesh/~ J. Matib<strong>in</strong>i .....141<br />

Pigeonpea/cowpea <strong>in</strong>tercrop + maize + cassava rotations on smallholder farms <strong>in</strong> the southern<br />

coastal area of Mozambique<br />

C<strong>and</strong>ida Cuembelo..... ........ ....... ........ ... ...... .... ............ ... ............ ........... ... ......... .. ...................155<br />

Questions <strong>and</strong> answers..... ........ ... ......... .... ........ ... .... ..... .. ................. .................... ... .............. 159 <br />

Legume Benefits on Maize Productivity <strong>and</strong> <strong>Soil</strong> Properties<br />

Mucuna-maize rotations <strong>and</strong> short fallows to rehabilitate smallholder farms <strong>in</strong> Malawi<br />

Webster D. Sakala, Ivy Ugowe <strong>and</strong> D. Kayira ...... ... .. ........... ......... .. ................................... .. ... 161 <br />

Residual effects of <strong>for</strong>age legumes on subsequent maize yields <strong>and</strong> soil fertility <strong>in</strong> the smallholder<br />

farm<strong>in</strong>g sector of Zimbabwe<br />

Walter Mupangwa, Happymore Nemasas/~ R. Muchadeyi anti G.J. Manyawu ........ ....... ...............165<br />

Time of <strong>in</strong>corporation of different legumes affects soil moisture <strong>and</strong> yields of the follow<strong>in</strong>g crop <strong>in</strong> <br />

maize based systems of Zimbabwe <br />

Bonaventure Kay<strong>in</strong>amura, Herbert K. Murwira <strong>and</strong> Paul<strong>in</strong>e P. Chivenge... .......... .. ... ....... .. ............ 169 <br />

<strong>Soil</strong> fertility improvement through the use of green manure <strong>in</strong> central Zambia<br />

Moses Mwale, Cassim Mas/~ J. Kabongo <strong>and</strong> L.K. Phiri .. ..........................................................173


Effect of surface application <strong>and</strong> <strong>in</strong>corporation of sunnhemp <strong>and</strong> velvet bean green manures on the<br />

production of field crops<br />

J. Mulambu, K. Muny<strong>in</strong>da, S. Ng<strong>and</strong>u <strong>and</strong> 0.1. Lungu .. ... ........................... ............................. . 179 <br />

Questions <strong>and</strong> answers........... ..... ........ ...... .... ... .. .... .. ...... , ... ................ ...... .. ..... ... ..... ........ ; ..... 183 <br />

Improv<strong>in</strong>g the Productivity of <strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong><br />

Per<strong>for</strong>mance of green manures <strong>and</strong> gra<strong>in</strong> legumes on severely acidic soils <strong>in</strong> northern Zambia, <strong>and</strong> <br />

their effect on soil fertility improvement <br />

Costah Malama <strong>and</strong> Kenneth Kondowe ........ ... ..... ...... .. ........ ............... ...... ............................. 185 <br />

Agronomic effectiveness of phosphate rock products, mono-ammonium phosphate <strong>and</strong> lime on gra<strong>in</strong> <br />

legumes <strong>in</strong> some Zambia soils <br />

Obed I. Lungu <strong>and</strong> Kalaluka Muny<strong>in</strong>da .. ....................... ................... .. ................................... .. 189 <br />

The effect of phosphorus <strong>and</strong> sulphur on green manure legume biomass <strong>and</strong> the yield of subsequent<br />

maize <strong>in</strong> Northern Malawi<br />

Atusaye B. Mwalw<strong>and</strong>a, Spider K. Mughogho, Webster D. Sakala <strong>and</strong> Alex R. Saka ...... ....... ... ... . 197 <br />

Management of an acid soil us<strong>in</strong>g m<strong>in</strong>e tail<strong>in</strong>gs as lime <strong>for</strong> soybean production<br />

Lackson K. Phiri, Moses Mwale <strong>and</strong> Mlotha I. Damaseke.... .. .... .. .... .. ...... .. .... .. .......... .. .. .... .. ...... .205 <br />

Questions <strong>and</strong> answers... .. ........... ....... ...... .. ...... ....... .... .... ... ... ....... .... ...... ... .. ................ .... ...... 209 <br />

Promotion, Economics <strong>and</strong> Adoption of Annual <strong>Legumes</strong><br />

Evaluation <strong>and</strong> promotion of various classes of annual legumes with farmers <strong>in</strong> Chiota, Zimbabwe <br />

Dorah Mwenye ........ ........................... ............. ....... ...... ............. ........ ....... ....... ... ................. 211 <br />

F<strong>in</strong>ancial <strong>and</strong> risk analysis to assess the potential adoption of green manure technology <strong>in</strong> Malawi <strong>and</strong><br />

Zimbabwe<br />

Mulugetta Mekuria <strong>and</strong> Shephard Siziba.... ...... .... .. ... ....... .............. ...... ...... ... ..... ............. ....... .. 215 <br />

A socio-economic analysis of legume production motives <strong>and</strong> productivity variations among<br />

smallholder farmers of Shurugwi Communal Area, Zimbabwe<br />

Charles Nhemachena, Herbert K. Murwira, Kilian Mutiro <strong>and</strong> Paul<strong>in</strong>e Chivenge ................... .........223 <br />

L<strong>in</strong>k<strong>in</strong>g technology development <strong>and</strong> dissem<strong>in</strong>ation with market competitiveness: Pigeonpea <strong>in</strong> the <br />

semi-arid areas of Malawi <strong>and</strong> Tanzania <br />

Joseph Rusike, Gabriele Lo Monaco <strong>and</strong> Geoff M. He<strong>in</strong>rich ....................... ................................227 <br />

Questions <strong>and</strong> answers.... .. ..... ... ... ............... ...... .. ...... ... .......... .... .... .................. ... ........ .. .... ... 237 <br />

Synthesis <strong>and</strong> Work<strong>in</strong>g Group Reports<br />

... , .... ..... ....... ...... ............... .. .................. ........ ................ ............. ............. ........ ..... ..... ... ......239


INTRODUCTION AND CONFERENCE OBJECTIVES<br />

STEPHEN R WADDINGTON <strong>and</strong> MULUGETTA MEKURIA<br />

One of the ma<strong>in</strong> thrusts of <strong>Soil</strong> Fert Net <strong>and</strong> its<br />

members s<strong>in</strong>ce the mid 1990s has been to develop<br />

<strong>and</strong> test under farmer conditions a wide range of<br />

annual legume options that smallholder farmers<br />

will f<strong>in</strong>d useful <strong>for</strong> soil fertility, <strong>and</strong> <strong>for</strong> food or sale.<br />

Research has also been undertaken on the mechanisms<br />

<strong>and</strong> processes by which these legumes provide<br />

their benefits <strong>and</strong> the magnitude of benefits<br />

tha t can be realized under ideal conditions <strong>and</strong> on<br />

farm. More recently, <strong>in</strong>itiatives have been undertaken<br />

to promote these technologies with farmers,<br />

get farmer feedback about which they prefer <strong>and</strong><br />

encourage farmers to experiment with the legumes.<br />

Most recently, a range of studies on the economics<br />

<strong>and</strong> policy implications of these systems have been<br />

undertaken.<br />

In recent years then, tremendous progress has been<br />

made <strong>in</strong> identify<strong>in</strong>g suitable best bets, <strong>in</strong> quantifymg<br />

their per<strong>for</strong>mance on farm, <strong>in</strong> assess<strong>in</strong>g their<br />

economic potential <strong>and</strong> their suitability with farmers,<br />

<strong>and</strong> <strong>in</strong> help<strong>in</strong>g farmers to access the technolo­<br />

. gies. Yet, outputs from these many ef<strong>for</strong>ts have been<br />

widely scattered <strong>in</strong> annual research reports, <strong>in</strong> papers<br />

<strong>and</strong> articles that are often difficult to access,<br />

<strong>and</strong> <strong>in</strong> some cases are still on computer hard disks<br />

or have yet to be written up.<br />

This conference on the soil fertility benefits from<br />

green manures <strong>and</strong> gra<strong>in</strong> legumes brought together<br />

56 participants from Malawi, Zambia, Zimbabwe<br />

<strong>and</strong> Mozambique, along with some further key presenters<br />

from Ethiopia, Kenya <strong>and</strong> the Netherl<strong>and</strong>s.<br />

The conference objectives were to:<br />

9) Provide an opportunity <strong>for</strong> <strong>Soil</strong> Fert Members<br />

<strong>and</strong> other <strong>in</strong>terested persons to present their research<br />

on gra<strong>in</strong> legumes <strong>and</strong> green manures <strong>for</strong><br />

soil fertility management, <strong>and</strong> to learn from others<br />

9) Document <strong>and</strong> synthesize the state of the art on<br />

this important topic <strong>in</strong> the region<br />

9) Showcase the benefits that these technologies are<br />

hav<strong>in</strong>g with clients, especially smallholder farmers<br />

9) Identify socio economic, <strong>in</strong>stitutional, <strong>and</strong> policy<br />

conStra<strong>in</strong>ts affect<strong>in</strong>g the promotion <strong>and</strong> lli/e of<br />

legumes <strong>and</strong> green manures<br />

9) Develop strategies to fill research gaps <strong>and</strong> maximize<br />

the benefits from these technologies.<br />

The conference was divided <strong>in</strong>to several thematic<br />

sessions where a mixture of <strong>in</strong>vited <strong>and</strong> offered oral<br />

<strong>and</strong> poster papers were presented <strong>and</strong> discussed.<br />

Several key papers were given on strategic topics by<br />

persons from the region, from East Africa <strong>and</strong> be-·<br />

yond. The conference emphasized work conducted<br />

<strong>in</strong> Malawi, Zimbabwe, Zambia <strong>and</strong> Mozambique.<br />

Session themes <strong>in</strong>cluded:<br />

9) Introductory Session of Key Themes<br />

9) Rhizobium, N fixation <strong>and</strong> Microbiology<br />

9) Screen<strong>in</strong>g of Annual <strong>Legumes</strong> <strong>for</strong> Adaptation <strong>and</strong><br />

Use<br />

9) Identification of Best Bet <strong>Legumes</strong> <strong>for</strong> On-farm<br />

Per<strong>for</strong>mance as <strong>Gra<strong>in</strong></strong> <strong>Legumes</strong>, Interc.rops, Rotations,<br />

<strong>Green</strong> <strong>Manures</strong><br />

9) Legume Benefits on Maize Productivity <strong>and</strong> <strong>Soil</strong><br />

Properties<br />

9) Improv<strong>in</strong>g the Productivity of <strong>Gra<strong>in</strong></strong> <strong>Legumes</strong><br />

<strong>and</strong> <strong>Green</strong> <strong>Manures</strong><br />

9) Target<strong>in</strong>g, Integration <strong>and</strong> Promotion of <strong>Legumes</strong><br />

9) Adoption, Economics <strong>and</strong> Impacts of Annual<br />

<strong>Legumes</strong> with Farmers.<br />

Towards the end of the conference, synthesizers reported<br />

key f<strong>in</strong>d<strong>in</strong>gs. Work<strong>in</strong>g Grqups met to summarize<br />

progress <strong>and</strong> gap~, <strong>and</strong> exam<strong>in</strong>e the way<br />

<strong>for</strong>ward. A summary of f<strong>in</strong>d<strong>in</strong>gs from the Work<strong>in</strong>g<br />

Groups is given at the end of these proceed<strong>in</strong>gs.<br />

The meet<strong>in</strong>g was a great success, with' enthusiastic<br />

participation throughout. The important papers<br />

presented that document the state of the art with<br />

green manure <strong>and</strong> gra<strong>in</strong> legume research <strong>and</strong> development<br />

<strong>for</strong> soil fertility improvement <strong>in</strong> southern<br />

Africa are given <strong>in</strong> these proceed<strong>in</strong>gs.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


ENHANCING THE CONTRIBUTION OF LEGUMES AND BIOLOGICAL<br />

NITROGEN FIXATION IN CROPPING SYSTEMS:<br />

EXPERIENCES FROM WEST AFRICA<br />

Abstract<br />

BERNARD VANLAUWE, ANDRE BATIQNO,<br />

Tropical <strong>Soil</strong> Biology <strong>and</strong> <strong>Fertility</strong> Institute of CIA T, PO Box '30677, Nairobi, Kenya<br />

RJ CARSKY, J DIELS, N SANGINGA, <strong>and</strong> S SCHULZ<br />

/ITA Nigeria, c/o Lambourn, 26 D<strong>in</strong>gwall Road, CroydonCR9 3££, UK<br />

The lack of adoption of improved soil fertility management options to counteract soil fertility decl<strong>in</strong>e has led to major<br />

changes <strong>in</strong> the research <strong>and</strong> development paradigm, lead<strong>in</strong>g to the currently widely adapted concept of Integrated <strong>Soil</strong><br />

<strong>Fertility</strong> Management. <strong>Legumes</strong> <strong>in</strong> general <strong>and</strong> biological N fixation specifically have a potentially important role to<br />

play <strong>in</strong> ISFM strategies. Four examples are summarized of attempts to enhance the soil fertility status us<strong>in</strong>g legumes <strong>in</strong><br />

various agro-ecozones of the West African savanna. These case studies cover the technical aspects of the various legumebased<br />

systems but also focus equally on the evaluation, adaptation, <strong>and</strong> adoption processes.<br />

Alley cropp<strong>in</strong>g with legum<strong>in</strong>ous hedgerows is a first example. The technology was proven to be technically sound <strong>and</strong><br />

generated a lot of process work <strong>in</strong> agro<strong>for</strong>estry systems. Especially important to note is that the impact assessment phase<br />

was not <strong>in</strong> synchrony with the technology development phase, which excluded any useful feedback <strong>and</strong> delayed the identification<br />

of the appropriate niches <strong>for</strong> this system. These were un<strong>for</strong>tunately found to be geographically limited. The<br />

Mucuna cover cropp<strong>in</strong>g system is a second example. As with alley cropp<strong>in</strong>g systems, the <strong>in</strong>clusion of Mucuna <strong>in</strong> a<br />

cropp<strong>in</strong>g system was observed to significantly enhance crop yield. Contrary to alley cropp<strong>in</strong>g, however, impact assessment<br />

was implemented dur<strong>in</strong>g the test<strong>in</strong>g <strong>and</strong> evaluation phase <strong>and</strong> useful feedback loops led to clearer <strong>in</strong>sights about<br />

the specific role Mucuna could play <strong>in</strong> farmers' fields . This role was more associated with its ability to suppress Imper­<br />

·ata cyl<strong>in</strong>drica weeds than with improv<strong>in</strong>g the soil fertility status, thereby also limit<strong>in</strong>g its niche <strong>for</strong> adoption. As a<br />

third example <strong>and</strong> a reaction to the lack of widespread adoption of the <strong>for</strong>mer two technologies, dual purpose gra<strong>in</strong> legumes<br />

- cereal rotations are evaluated. Such systems, us<strong>in</strong>g improved legume germplasm that provides net N benefits to<br />

the cropp<strong>in</strong>g system besides gra<strong>in</strong>s, significantly enhance cereal yield <strong>and</strong> supply the farmer with immediate products<br />

that can be consumed or sold. This technology shows a lot ofpromise <strong>and</strong>.is currently spread<strong>in</strong>g <strong>in</strong> the Northern Gu<strong>in</strong>ea<br />

savanna zone of Nigeria, but required the creation of local process<strong>in</strong>g skills <strong>and</strong>/Or markets <strong>for</strong> th~ gra<strong>in</strong>s <strong>and</strong> <strong>in</strong>tensive<br />

<strong>in</strong>teraction between breeders, soil fertility specialists, <strong>and</strong> farmers. A last example deals with the role ofcowpea <strong>in</strong> rotations<br />

<strong>in</strong> the dry savannas. As with soybean, improved germ plasm of cowpea can also be used to enhance the soil fertility<br />

status while yield<strong>in</strong>g immediate benefits to farmers.<br />

In conclusion, several aspects are highlighted that need to be considered when aim<strong>in</strong>g at enhanc<strong>in</strong>g the contribution of<br />

legumes <strong>and</strong> biological N fixation to cropp<strong>in</strong>g systems. These <strong>in</strong>clude the need <strong>for</strong> immediate benefits <strong>and</strong> the role of<br />

multipurpose germplasm <strong>in</strong> provid<strong>in</strong>g these, the need to identify niches <strong>and</strong> the role of markets, <strong>and</strong> the need <strong>for</strong> multidiscipl<strong>in</strong>arity<br />

<strong>and</strong> full participation of all stakeholders. F<strong>in</strong>ally, some potential routes <strong>for</strong> future research are <strong>in</strong>dicated.<br />

Key words: <strong>Gra<strong>in</strong></strong> legume, green manure legume, <strong>for</strong>age legume, dual or multi-purpose legume, biological N fixation,<br />

cropp<strong>in</strong>g system, impacts, west Africa<br />

Introduction<br />

The soil fertility status of the soils <strong>in</strong> sub-Saharan<br />

Africa (SSA) is generally believed to be poor due to<br />

poor <strong>in</strong>herent soil quality <strong>and</strong> <strong>in</strong>appropriate soil<br />

management practices. Such statements are usually<br />

backed-up by a demonstration of highly negative<br />

nutrient balances <strong>for</strong> the major plant nutrients <strong>and</strong><br />

the existence of wide gaps between yields obta<strong>in</strong>ed<br />

under well-managed compared to on-farm conditions<br />

<strong>for</strong> the major crops. These facts are generally<br />

also applicable to the West African savanna ,a.groecozone.<br />

Although soil fertility replenishment has<br />

been on the research <strong>and</strong> development agenda <strong>for</strong><br />

several decades <strong>in</strong> SSA as this is believed to have<br />

substantial impacts on the livelihoods of the rural<br />

population, relatively little has been achieved. The<br />

reasons <strong>for</strong> this are plenty <strong>and</strong> beyond the scope of<br />

this paper but importantly, the paradigms underly<strong>in</strong>g<br />

the soil fertility research <strong>and</strong> development<br />

agenda have cont<strong>in</strong>uously changed to attempt to<br />

deal with the issue· of non-adoption of improved<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 3


Table 1. Paradigm shifts underly<strong>in</strong>g the tropical soil fertility research <strong>and</strong> development agenda <strong>and</strong> accompany<strong>in</strong>g changes <strong>in</strong> the framework <strong>for</strong><br />

<strong>in</strong>teractions between the various stakeholders.<br />

Period<br />

70's<br />

Mid-80's<br />

Mid-90's<br />

Today<br />

<strong>Soil</strong> Fert~ity research <strong>and</strong> development paradigms<br />

Nutrient replenishment paradigm: 'Overcome soil constra<strong>in</strong>ts to fit plant requirements<br />

through <strong>in</strong>puts' (Sanchez, 1994); <strong>Green</strong> Revolution paradigm<br />

Focus on biological management of soil fertility; development of the term 'low <strong>in</strong>put<br />

susta<strong>in</strong>able agriculture' (LISA)<br />

Second paradigm (Sanchez, 1994): 'Overcome soil constra<strong>in</strong>ts by rely<strong>in</strong>g on biological<br />

processes by adapt<strong>in</strong>g germplasm to adverse soil conditions, enhanc<strong>in</strong>g soil biological<br />

activity, <strong>and</strong> optimiz<strong>in</strong>g nutrient cycl<strong>in</strong>g to m<strong>in</strong>imize external <strong>in</strong>puts <strong>and</strong> maximize their<br />

use efficiency'; still little or no mention of human <strong>and</strong> social factors<br />

Integrated <strong>Soil</strong> <strong>Fertility</strong> Management: 'Develop adoptable <strong>and</strong> susta<strong>in</strong>able soil<br />

management practices that <strong>in</strong>tegrate the biological, chemical, physical. social, cultural<br />

<strong>and</strong> economic processes that regulate soil fertility'; full recognition of the equal role<br />

of biophysical <strong>and</strong> social sciences <strong>in</strong> develop<strong>in</strong>g <strong>and</strong> dissem<strong>in</strong>at<strong>in</strong>g improved soil<br />

management <strong>in</strong>terventions<br />

Interactions between the various stakeholders<br />

Top-down, little underst<strong>and</strong><strong>in</strong>g of the various<br />

stakeholders <strong>in</strong> the development process<br />

Technology transfer; technologies move from research to<br />

the extension services to the farmer with little feedback<br />

Participatory approaches; feedback is sought ma<strong>in</strong>ly<br />

from the farmer community regard<strong>in</strong>g improved soil<br />

management options<br />

Integrated Natural Resource Management; recognition<br />

that all stakeholders need to dialogue with each other at<br />

all stages <strong>in</strong> the research-to-development cont<strong>in</strong>uum<br />

soil management <strong>in</strong>terventions (Table 1). The<br />

changes <strong>in</strong> paradigm with time also lead to the establishment<br />

of plat<strong>for</strong>ms <strong>for</strong> <strong>in</strong>creas<strong>in</strong>gly more <strong>in</strong>tensive<br />

<strong>in</strong>teractions between all stakeholders <strong>in</strong>volved<br />

<strong>in</strong> improv<strong>in</strong>g the status of the soil resource<br />

(Table 1).<br />

Currently, the Integrated <strong>Soil</strong> <strong>Fertility</strong> Management<br />

(lSFM) paradigm is widely adhered to. Maybe except<br />

<strong>for</strong> the Nutrient Replenishment paradigm, organic<br />

resources ' <strong>and</strong> consequently legumes, have<br />

played a major role <strong>in</strong> improved soil management<br />

strategies. This is obviously related to their capacity<br />

<strong>for</strong> biological N fixation (BNF) <strong>and</strong> other positive<br />

rotational effects. In the Integrated <strong>Soil</strong> <strong>Fertility</strong><br />

Management paradigm, which advocates the most<br />

efficient use of all sources of nutrients (organic,<br />

m<strong>in</strong>eral, soil organic matter-related) <strong>and</strong> the potential<br />

<strong>in</strong>teractions between each of these <strong>for</strong> the provision<br />

of goods <strong>and</strong> services, legumes can be hypothesized<br />

to contribute to crop growth <strong>and</strong> soil fertility<br />

improvement <strong>in</strong> many ~ays (Figure 1).<br />

Biomass:<br />

- OM production<br />

- N contributions<br />

OlJ!.aniclm<strong>in</strong>eral <strong>in</strong>teractions:<br />

- pest/disease dynamics<br />

- soil physical properties<br />

- soil P availability<br />

Efficient germplasm:<br />

- promiscuity<br />

- adapted to low P<br />

- adapted to drought<br />

Figure 1. legumes can potenti.ally contribute to the generation of a<br />

wide set of properties <strong>and</strong> functions required <strong>in</strong> an Integrated <strong>Soil</strong><br />

<strong>Fertility</strong> Management framework.<br />

This paper aims- at (i) illustrat<strong>in</strong>g relevant experiences<br />

with enhanc<strong>in</strong>g the contribution of legumes<br />

<strong>and</strong> BNF to cropp<strong>in</strong>g systems <strong>in</strong> the West-African<br />

savanna, (ii) evaluat<strong>in</strong>g the efficiency of the research<br />

<strong>and</strong> development process <strong>in</strong> relation to the paradigm<br />

underly<strong>in</strong>g this process, <strong>and</strong> (iii) highlight<strong>in</strong>g.<br />

the current l<strong>in</strong>e of thought about improved soil<br />

management through the <strong>in</strong>tegration of legumes.<br />

The paper does not <strong>in</strong>tend to cover all progress<br />

made with legumes <strong>in</strong> West Africa, but to foster the<br />

often lack<strong>in</strong>g exchange of relevant experiences <strong>and</strong><br />

<strong>in</strong><strong>for</strong>mation with other regions <strong>in</strong> SSA, that are<br />

more often than not fac<strong>in</strong>g similar soil-based constra<strong>in</strong>tsto<br />

improved crop production.<br />

The West African Savanna Agroecozone:<br />

A Biophysically <strong>and</strong> Socio-economically<br />

Diverse Environment<br />

Broadly, ra<strong>in</strong>fall decreases from South to North <strong>and</strong><br />

the ra<strong>in</strong>fall pattern changes from clearly bimodal to<br />

unimodal (Table 2). Agro-ecozones with<strong>in</strong> the region<br />

are usually def<strong>in</strong>ed <strong>in</strong> terms of length of grow<strong>in</strong>g<br />

period (Japtap et al., 1995) as highl<strong>and</strong>s are virtually<br />

absent. Livestock densities also <strong>in</strong>crease from<br />

South to North due to dim<strong>in</strong>ish<strong>in</strong>g disease pressure<br />

(Mohamed-Saleem <strong>and</strong> Fitzhugh, 1995).<br />

Human population density varies widely <strong>and</strong> is less<br />

directly l<strong>in</strong>ked to latitude, as <strong>in</strong> each agroecozone<br />

centres can be identified with large population densities<br />

(e.g., Squthern Ben<strong>in</strong> <strong>in</strong> the derived savanna,<br />

Zaria/Kaduna <strong>in</strong> the Northern Gu<strong>in</strong>ea savanna,<br />

etc). This is obviously related to pressure on l<strong>and</strong><br />

<strong>and</strong> l<strong>and</strong> use <strong>in</strong>tensification. Smith <strong>and</strong> Weber<br />

(1994) postulated that the determ<strong>in</strong>ants of <strong>in</strong>tensification<br />

are either population density or access to<br />

markets. With<strong>in</strong> each path of the evolutionary proc-<br />

4<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 2. Agro·ecozories, ra<strong>in</strong>fall distribution, presence of livestock, potentiallegume·basedtechnologies <strong>and</strong> potential problems encountered<br />

with the latter <strong>for</strong> the West African savanna lone. Source agroecolone def<strong>in</strong>ition: Jagtap et aI., 1995.<br />

Agro·ecozone Ra<strong>in</strong>fall distribution Presence of Potential legume-based technologies Potential problems encountered with<br />

(length of grow<strong>in</strong>g period)<br />

livestock<br />

legume technologies<br />

Deri~ed Savanna Bi·modal Small rum<strong>in</strong>ants <strong>Gra<strong>in</strong></strong> legume ­ cereal rotations with<strong>in</strong> one Lack of l<strong>and</strong> <strong>in</strong> densely populated<br />

(211·270 days) year; herbaceous cover crops dur<strong>in</strong>g tlie<br />

second short season; alley farm<strong>in</strong>g with tree<br />

legumes<br />

areas;<br />

Southern Gu<strong>in</strong>ea Savanna Bi· to uni·modal Few cattle, small <strong>Gra<strong>in</strong></strong> legume ­ cereal rotations with<strong>in</strong> the lack of l<strong>and</strong> <strong>in</strong> densely populated<br />

(181 ·210 days) rum<strong>in</strong>ants same year; herbaceous cover crops; alley<br />

farm<strong>in</strong>g with tree legumes<br />

areas;<br />

Northern Gu<strong>in</strong>ea Savanna Uni·modal Cattle. small <strong>Gra<strong>in</strong></strong> legume ­ cereal rotations or<br />

(151 ·180 days) rum<strong>in</strong>ants <strong>in</strong>tercrops; herbaceous cover crops; fodder<br />

banks; parkl<strong>and</strong> trees<br />

Sudano·Gu<strong>in</strong>ean Uni·modal Cattle. small Early gra<strong>in</strong> legume ­ cereal rotations or<br />

(101 ·150 days) rum<strong>in</strong>ants <strong>in</strong>tercrops; parkl<strong>and</strong> trees·<br />

Sudano·Sahelian Uni·modal Cattle. small Extra early gra<strong>in</strong> legume - cereal rotations<br />

(61·100 days) rum<strong>in</strong>ants or <strong>in</strong>tercrops; parkl<strong>and</strong> trees<br />

"­<br />

ess, Manyong, et al. (1996) made a dist<strong>in</strong>ction between<br />

an expansion <strong>and</strong> an <strong>in</strong>tensification phase. In<br />

popula.tion-driven exp<strong>and</strong><strong>in</strong>g . farm<strong>in</strong>g systems, <strong>in</strong>creased<br />

human population results <strong>in</strong> the open<strong>in</strong>g of<br />

new l<strong>and</strong>. Fallow periods are still long . enough to<br />

ma<strong>in</strong>ta<strong>in</strong> soil fertility. As new l<strong>and</strong> becomes scarcer,<br />

l<strong>and</strong> use <strong>in</strong>tensifies with little <strong>in</strong>crease <strong>in</strong> purchased<br />

<strong>in</strong>puts, lead<strong>in</strong>g to a progressive decl<strong>in</strong>e <strong>in</strong> productivity<br />

of labour <strong>and</strong> l<strong>and</strong> <strong>and</strong> eventually the ab<strong>and</strong>onment<br />

of farm<strong>in</strong>g. Market-driven systems are<br />

g~nerated through exogenous factors such as the<br />

<strong>in</strong>troduction of cash crops. In the expansion phase,<br />

purchase of <strong>in</strong>puts is still moderate, while <strong>in</strong> the <strong>in</strong>tensification<br />

phase, credit is usually available to <strong>in</strong>crease<br />

the level of purchased <strong>in</strong>puts <strong>and</strong> hired labour.<br />

Market driven systems require a good transport<br />

system that provides access to markets. In the<br />

subhumid zones, 66% of the agricultural systems<br />

are <strong>in</strong> the population-driven phase, while 34% <strong>in</strong><br />

the market-driven phase (Manyong et al., 1996).<br />

Each of the above pathways has implications <strong>for</strong> options<br />

available to the farmer to manage soil fertility<br />

<strong>in</strong> general, <strong>for</strong> the best-bet legumes to be <strong>in</strong>tegrated<br />

<strong>in</strong> exist<strong>in</strong>g cropp<strong>in</strong>g systems, <strong>and</strong> <strong>for</strong> problems related<br />

to specific legume technologies (Table 2).<br />

In what follows, specific legume-based technologies<br />

will be evaluated <strong>in</strong> terms of their agronomic benefits,<br />

niche identification, impact assessment, <strong>and</strong> the<br />

efficiency of the research <strong>and</strong> development process<br />

that brought those tecm-ologies to the farmer.<br />

Alley Cropp<strong>in</strong>g: From a Panacea to a<br />

Technology with a Very Specific Niche<br />

The first papers on alley cropp<strong>in</strong>g (sometimes called<br />

alley farm<strong>in</strong>g or hedgerow <strong>in</strong>tercropp<strong>in</strong>g) were<br />

published <strong>in</strong> the early eighties by Kang (e.g., Kang,<br />

lack of l<strong>and</strong> <strong>in</strong> densely populated<br />

areas; disappearance of legume'<br />

biomass dur<strong>in</strong>g the dry season; free·<br />

{lraz<strong>in</strong>g livestock<br />

Short cropp<strong>in</strong>g season excludes long<br />

duration legumes; disappearance of<br />

legume biomass dur<strong>in</strong>g the dry season;<br />

free·graz<strong>in</strong>g livestock<br />

Very short cropp<strong>in</strong>g season limits<br />

choice of1egumes; disappearance of<br />

legume biomass dur<strong>in</strong>g the dry season;<br />

free·graz<strong>in</strong>g livestock<br />

1985). They showed that short term yields of maize<br />

were substantially enhanced when apply<strong>in</strong>g the<br />

prun<strong>in</strong>gs of the hedgerows to the maize, once the<br />

trees were ready <strong>for</strong> prun<strong>in</strong>g, usually vary<strong>in</strong>g from<br />

1 to 2 yrs after plant<strong>in</strong>g. Legume trees were primarily<br />

targeted as hedgerow species, ma<strong>in</strong>ly because of<br />

their BNF capacity but also because of their -relatively<br />

rapid growth <strong>and</strong> potential source of fodder.<br />

The great potential demonstrated by the <strong>in</strong>itial published<br />

results led to a substantial amount of -ef<strong>for</strong>t to<br />

underst<strong>and</strong> <strong>and</strong> f<strong>in</strong>e-tune the technology <strong>and</strong> its<br />

management. Sang<strong>in</strong>ga et al. (2001) reports that certa<strong>in</strong><br />

hedgerow trees could fix between 100 <strong>and</strong> 300<br />

kg N ha·l yrl while other species fixed less than 20<br />

kg N ha·l yrl. Substantial differences between<br />

provenances from the same species were also observed.<br />

Because the recovery of applied prun<strong>in</strong>g-N<br />

was often observed to be very low <strong>and</strong> hardly exceed<strong>in</strong>g<br />

20% (Vanlauwe et al., 1998a), ef<strong>for</strong>ts were<br />

made to quantify the fate of N not taken up by a<br />

maize crop us<strong>in</strong>g isotopes (Vanlauwe et al., 1998a,<br />

1998b). Initial observations us<strong>in</strong>g litterbags to assess<br />

prun<strong>in</strong>g-N release .<strong>and</strong> the N difference method to<br />

calculate prun<strong>in</strong>g-N recovery, showed poor synchrony<br />

between N availability <strong>and</strong> dem<strong>and</strong> by the<br />

crop. Studies with isotopes, however, cpuld also<br />

quantify the fate of applied prun<strong>in</strong>g-N as it moved<br />

through other pools of the alley cropp<strong>in</strong>g system<br />

<strong>and</strong> consequently the system was observed to be<br />

tighter <strong>in</strong> terms of N cycl<strong>in</strong>g as compared to earlier<br />

estimates (Figure 2). Most of the <strong>in</strong>itial test<strong>in</strong>g of the<br />

resource quality - decomposition hypotheses <strong>for</strong>mulated<br />

by Swift etal. (1979), was also implemented<br />

us<strong>in</strong>g hedgerow species (e.g., Tiah et al.,<br />

1993). .<br />

Stimulated by these promis<strong>in</strong>g results, the Alley<br />

Farm<strong>in</strong>g Network <strong>for</strong> Tropical Africa (AFNETA)<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 5


100<br />

90<br />

80<br />

- - 0 - - Uptake by ihe maize crop<br />

- - iI- - Release from Ihe litler layer<br />

______ _______ 6<br />

t>,-- -- -- -- ----- -- -- --­<br />

Z 70 -e---- Uptake by Ihe syslem (maize. hedgerow. slable SOM pools)<br />

Gl<br />

:::::I 60<br />

"lJ<br />

'iii<br />

Gl<br />

~-50<br />

40<br />

0<br />

0<br />

~ 30<br />

20<br />

10<br />

0<br />

-J!r- Release from the litter <strong>and</strong> particulate organic matter<br />

__ .. ... _. . .. -. . ..0 ......... . -.... ....... _. .. . -··-0<br />

0 30 60 90 120<br />

Time (days after residue application)<br />

Figure 2. N released from 15N labelled Leucaena /eucocepha/a<br />

residues <strong>and</strong> recovered by the various components of an alley<br />

cropp<strong>in</strong>g system dur<strong>in</strong>g a 120-day maize cropp<strong>in</strong>g season <strong>in</strong><br />

Southwestern Nigeria. Synchrony is looked at us<strong>in</strong>g the<br />

'traditional' maize <strong>and</strong> litter decomposition data <strong>and</strong> follow<strong>in</strong>g a<br />

complete system focus. The particulate organic matter is assumed<br />

to be on the supply side of synchrony due to their high turnover<br />

(with<strong>in</strong> one maize season) while the other soil organic matter<br />

fractions are assumed to be on the dem<strong>and</strong> side. Source: Vanlauwe<br />

et aI., 1998a.<br />

was <strong>in</strong>itiated <strong>in</strong> 1989 <strong>and</strong> various alley cropp<strong>in</strong>g trials<br />

were established <strong>in</strong> countries <strong>in</strong> SSA to test the<br />

per<strong>for</strong>mance of alley cropp<strong>in</strong>g systems under a<br />

wide range of biophysical environments. Most of<br />

the <strong>in</strong>itial work was carried out on-station at UTA,<br />

Ibadan, Nigeria. Woomer et al. (1995) summarized<br />

the data obta<strong>in</strong>ed with<strong>in</strong> the AFNETA framework<br />

<strong>and</strong> concluded that the system works well with<br />

maize but not with cassava, cowpea or cotton. He<br />

also observed that the ratio <strong>in</strong>tercrop:monocrop<br />

yield was positively correlated with the soil extractable<br />

P level <strong>and</strong> negatively with the total N content,<br />

<strong>in</strong>dicat<strong>in</strong>g that the system works best on N deficient<br />

soils with a relatively high P status. Aihou et al.<br />

(1999) <strong>and</strong> Tossah et al. (1999) observed that soils<br />

with a relatively fertile subsoil led to g~eater biomass<br />

production <strong>and</strong> N accumulation than other<br />

soils. Meanwhile, trials <strong>in</strong>itiated dur<strong>in</strong>g the earlier<br />

years of alley cropp<strong>in</strong>g research showed that <strong>in</strong> the<br />

long term, alley cropp<strong>in</strong>g systems were susta<strong>in</strong>able<br />

<strong>and</strong> yields were less variable <strong>in</strong> the presence of<br />

m<strong>in</strong>imal amounts of fertilizer N, provided the trees<br />

were regularly replanted. Vanlauwe et al.<br />

(unpublished results), <strong>for</strong> <strong>in</strong>stance, observed maize<br />

gra<strong>in</strong> yields vary<strong>in</strong>g between 2500 <strong>and</strong> 4000 kg ha- 1<br />

(average of 2890 + / - 470 kg ha- I ) <strong>in</strong> a IS-year old alley<br />

cropp<strong>in</strong>g trial with Senna siamea, supplemented<br />

with 60 kg N ha- I compared to sole fertilizer gra<strong>in</strong><br />

yields vary<strong>in</strong>g between 600 <strong>and</strong> 3300 kg ha- 1<br />

(average of 2080 + / - 910 kg ha- 1 ).<br />

Whittome (1995) attempted to outl<strong>in</strong>e the regions <strong>in</strong><br />

West Africa where alley cropp<strong>in</strong>g would potentially<br />

thrive, us<strong>in</strong>g the follow<strong>in</strong>g criteria: maize-based systems,<br />

with ra<strong>in</strong>fall> 1200 mm yrl, on non-acid soils<br />

<strong>and</strong> with a human population density of > 30 person<br />

km- I . The outcome of this evaluation was a<br />

range of limited areas where alley cropp<strong>in</strong>g had potential.<br />

Most of these sites were restricted to Nigeria,<br />

obviously becaus~ of the high population density<br />

<strong>in</strong> that country. In 1996, Dvorak (1996) published<br />

a first report on the adoption potential <strong>for</strong><br />

alley cropp<strong>in</strong>g. She concluded that the potential <strong>for</strong><br />

adoption of alley cropp<strong>in</strong>g wa~ limited to areas with<br />

basel<strong>in</strong>e yields below 2 t ha- 1 , but where soils are<br />

still of good enough quality to respond to application<br />

of N, <strong>and</strong> whose farmers have a flexible dem<strong>and</strong><br />

<strong>for</strong> labour. Drawbacks when evaluat<strong>in</strong>g alley<br />

cropp<strong>in</strong>g systems on farm were: (i) hedgerow biomass<br />

production <strong>and</strong>/or yield ga<strong>in</strong>s were usually<br />

far below results reported on-station, (ii) the cost of<br />

establishment is high, (iii) there is a time lag to realization<br />

of benefits, (iv) <strong>and</strong> the cropp<strong>in</strong>g system is<br />

<strong>in</strong>flexible <strong>and</strong> 'un<strong>for</strong>giv<strong>in</strong>g' as the penalties <strong>for</strong> not<br />

manag<strong>in</strong>g the hedges properly can be high.<br />

While it is beyond doubt that the alley cropp<strong>in</strong>g<br />

concept has generated an enormous amount of<br />

process work on N cycl<strong>in</strong>g <strong>and</strong> use, organic resource<br />

decomposition dynamics, soil organic matter<br />

dynamics, <strong>and</strong> related topics, impact at tne farm<br />

level is required be<strong>for</strong>e a technology can be called<br />

successful. In the late n<strong>in</strong>eties, Ades<strong>in</strong>a et al. (1999)<br />

went back to the sites <strong>in</strong> Nigeria, Ben<strong>in</strong>, <strong>and</strong> Cameroon<br />

where attempts to dissem<strong>in</strong>ate the technology<br />

had been implemented <strong>and</strong> concluded that despite<br />

the earlier skepticism about the adoption potential<br />

of alley farm<strong>in</strong>g, the actual rates of adoption were<br />

encourag<strong>in</strong>g <strong>for</strong> the complex technology. In Nigeria,<br />

of the sample of 223 farmers, 93% had heard of the<br />

technology, 64% had adopted <strong>and</strong> 53% reta<strong>in</strong>ed the<br />

technology. They observed that the technology was<br />

be<strong>in</strong>g adopted <strong>in</strong> sites with high pressure on l<strong>and</strong>,<br />

soil fertility decl<strong>in</strong>e, erosion problems <strong>and</strong> fuel<br />

wood <strong>and</strong> fodder scarcity. Constra<strong>in</strong>ts to adoption<br />

were ma<strong>in</strong>ly technical <strong>and</strong> management related <strong>and</strong><br />

<strong>in</strong>cluded too many volunteer seeds (45% of the<br />

farmers), especially <strong>for</strong> Leucaena, high labour dem<strong>and</strong><br />

(40%), non-adaptability of trees (37%), <strong>and</strong><br />

lack of knowledge (34%). Also impor:tant to note is<br />

that the technology underwent major changes by<br />

farmers to suit their circumstances <strong>and</strong> cropp<strong>in</strong>g<br />

systems (e.g., <strong>in</strong>clusion of a fallow phase, greater<br />

height of prun<strong>in</strong>g, wider tree spac<strong>in</strong>g, etc).<br />

Summariz<strong>in</strong>g the alley cropp<strong>in</strong>g story we conclude<br />

that (i) alley cropp<strong>in</strong>g is a technically sound cropp<strong>in</strong>g<br />

system under certa<strong>in</strong> conditions related to soil<br />

fertility starns, annual ra<strong>in</strong>fall, <strong>and</strong> target crop; (ii)<br />

there are a wide range of socio-economic constra<strong>in</strong>ts<br />

to the adoption of alley cropp<strong>in</strong>g, (iii) alley crop-<br />

6<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


p<strong>in</strong>g systems are currently utilized but <strong>in</strong> a modified<br />

<strong>for</strong>,m <strong>for</strong> a variety of reasons, <strong>and</strong> (iv) the development<br />

<strong>and</strong> evaluation of the system follow<strong>in</strong>g the<br />

technology transfer paradigm took about 15 years<br />

(Figure 3). Especially important to note is that the<br />

impact assessment phase was not <strong>in</strong> synchrony with<br />

the phase dur<strong>in</strong>g which the technology was evaluated<br />

with farmers. This excluded any useful feedback<br />

be~een both.<br />

Mucuna Cover Cropp<strong>in</strong>g: Need <strong>for</strong> Benefits<br />

Beyond <strong>Soil</strong> <strong>Fertility</strong> Replenishment<br />

When it f<strong>in</strong>ally became clear the alley cropp<strong>in</strong>g systems<br />

have limitations with adoptability, another <strong>in</strong>itiative<br />

had started look<strong>in</strong>g at a basket of options to<br />

improve soil fertility <strong>in</strong> the south of the Ben<strong>in</strong> Republic.<br />

This basket <strong>in</strong>cluded alley cropp<strong>in</strong>g, pigeon<br />

pea <strong>in</strong>tercropp<strong>in</strong>g, m<strong>in</strong>eral fertilizer, <strong>and</strong> second<br />

season Mucuna cover cropp<strong>in</strong>g (Versteeg et al.,<br />

1998). The Mucuna technology was not new to West<br />

Africa, as already <strong>in</strong> the 1930s, work with Mucuna<br />

was implemented around Ibadan, Nigeria (V<strong>in</strong>e,<br />

1953). Mucuna was also observed to create large rotational<br />

benefits, e.g., <strong>in</strong>creas<strong>in</strong>g maize yields follow<strong>in</strong>g<br />

Mucuna by up to 200% on poor soils<br />

(yield<strong>in</strong>g less than 0.5 t ha·1 <strong>and</strong> even up to 50% on<br />

soils yield<strong>in</strong>g over 1.5 t ha·1 maize <strong>in</strong> the control<br />

treatments (Figure 4).<br />

Based on this <strong>in</strong>itial success, screen<strong>in</strong>g of various<br />

species <strong>and</strong> accessions was implemented <strong>in</strong> all man~<br />

date agro-ecozones of IIT A <strong>and</strong> usually Mucuna appeared<br />

as a best bet legume <strong>in</strong> most zones because<br />

of its consistently high proportion of N fixed (e.g.,<br />

91%) <strong>and</strong> total amount of N fixed (e.g., 242 kg , N<br />

ha·1) (Sang<strong>in</strong>ga et al., 2001).<br />

Dur<strong>in</strong>g the evaluation of the Mucuna technology <strong>in</strong><br />

southern Ben<strong>in</strong>, farmers observed that the legume<br />

was very effective at suppress<strong>in</strong>g one of their most<br />

serious weeds, Imperata cyl<strong>in</strong>drica. lmperata takes<br />

hold as the length of fallow <strong>in</strong>creases <strong>and</strong> soil fertility<br />

decl<strong>in</strong>es <strong>and</strong> requires a substantial ilmount of<br />

labour to deal with, often <strong>for</strong>c<strong>in</strong>g farmers to ab<strong>and</strong>on<br />

their fields. This was obviously a serious constra<strong>in</strong>t<br />

to crop production <strong>in</strong> a densely populated<br />

area as is southern Ben<strong>in</strong>. Evaluation with farmers<br />

also revealed their reluctance to lose a second season<br />

food crop because Mucuna did not yield a marketable<br />

or consumable product (Manyong et al.,<br />

1999). Farmer~ were calculat<strong>in</strong>g that the immediate<br />

opportunity cost of the lost crop "was higher than<br />

the future benefits of a Mucuna cover crop. Ef<strong>for</strong>ts<br />

to deal with that constra<strong>in</strong>t focussed arOlUld the<br />

creation of markets <strong>for</strong> Mucuna seeds, us<strong>in</strong>g its residues<br />

as fodder <strong>for</strong> livestock, <strong>and</strong> enhanc<strong>in</strong>g the edibility<br />

of Mucuna seeds <strong>for</strong> humans <strong>and</strong> livestock by<br />

remov<strong>in</strong>g toxic L-Dopa (Carsky et al., 2001a).<br />

The adoption rate of Mucuna <strong>in</strong> southern Ben<strong>in</strong> tripled<br />

to 8% of the farmers (amount<strong>in</strong>g to 14000 farmers)<br />

between 1994 <strong>and</strong> 1996 (Figure 5), largely<br />

driven by the <strong>in</strong>tensified ef<strong>for</strong>t of programs such as<br />

Sasakawa Global 2000 (SG2000) who bought about<br />

15 t of seed <strong>in</strong> 1995 (Manyong et al., 1999). The decl<strong>in</strong>e<br />

observed after 1996 is likely related to the reduced<br />

ef<strong>for</strong>t of SG2000 to buy seeds <strong>and</strong> a' collapse<br />

<strong>in</strong> the market (Doughtwaite, 2002). The major drivers<br />

<strong>for</strong> adoptio~ were need <strong>for</strong> weed<strong>in</strong>g (39% predicted<br />

probability) <strong>and</strong> cash <strong>in</strong>come (41%)<br />

(Manyong et al., 1999), the l~tter likely largely<br />

driven by the market created by SG2000. Other factors<br />

were degraded fields (25%), access to extension<br />

services (24%), <strong>and</strong> l<strong>and</strong> tenure security (22%). Although<br />

the rate of adoption is promis<strong>in</strong>g, many con­<br />

Dual pu~ gra<strong>in</strong> legumes<br />

Mucuna cover crop<br />

gerrrplasm'derr<strong>and</strong><br />

irllJact assesrrent<br />

tedln. development/evaluation<br />

irllJact assesrrent<br />

tedln .. development/evaluation<br />

Alley fann<strong>in</strong>g irllJact ~t<br />

tedlnology evaluation<br />

tedlnology developrrent<br />

1978 1982 1986 1990 1994 1998 2002<br />

Figure~. The various research <strong>and</strong> development strategies followed<br />

by the International Institute of Tropical Agriculture while test<strong>in</strong>g<br />

various systems aim<strong>in</strong>g at improv<strong>in</strong>g the soil fertility status.<br />

400<br />

~- ClIO<br />

=:~ 350<br />

Ill ....<br />

<br />

c: <br />

-0_u 0 300 <br />

._ CII" CII<br />

>-J: 29)<br />

CD ....<br />

NO<br />

.- .... 200 <br />

IIlCII<br />

E><br />

~; 1S><br />

_Ill<br />

<br />

CII'Gi 100 <br />

411~<br />

111111<br />

<br />

CIIc: S><br />

~::l <br />

Uu<br />

":::l 0<br />

~:::E<br />

0 1000<br />

Control rmize yield (kg'ha)<br />

Figure 4. Proportional <strong>in</strong>crease <strong>in</strong> maize gra<strong>in</strong> yield after aMucuna <br />

crop relative' to the yields <strong>in</strong> the cont<strong>in</strong>uous maize control plots as <br />

related to the yields <strong>in</strong> the control plots. Data are asummary of <br />

various trials <strong>in</strong> the West African moistsavanna lone. Source: <br />

Vanlauwe et ai., 2001. <br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

7


-<br />

6<br />

~<br />

9 <br />

8<br />

7 <br />

0- 5<br />

CḎ<br />

ns 4<br />

0:::<br />

3<br />

2<br />

-9-1>dopters<br />

..... ascontirued use <br />

O__--~~~_.----~----_r----._--__,<br />

1991 1992 1993 1994 1995 1996 1997<br />

Figure 5. Dynamics of Mucuna fallow adoption <strong>in</strong> southern Ben<strong>in</strong><br />

(1991·1997). Source: Manyong at ai, 1999.<br />

stra<strong>in</strong>ts are likely to halt further adoption. These <strong>in</strong>clude,<br />

loss of a second season (42% of farmers), <strong>in</strong>secure<br />

l<strong>and</strong> property rights (19%), unavailability of<br />

seed (16%), <strong>and</strong> lack of <strong>in</strong><strong>for</strong>mation (12%)<br />

(Manyong et aI., 1999).<br />

In conclusion, (i) the Mucuna cover cropp<strong>in</strong>g system<br />

is a technically sound system under most biophysical<br />

conditions, (ii) as with alley cropp<strong>in</strong>g systems,<br />

its specific niches are determ<strong>in</strong>ed by socia-economic<br />

considerations rather than biophysical ones (e.g.,<br />

not too much pressure on l<strong>and</strong>, high dem<strong>and</strong> <strong>for</strong><br />

labour due to the presence of Imperata cyl<strong>in</strong>drica<br />

weeds), (iii) <strong>in</strong> terms of adoption, the Mucuna technology<br />

is known by nearly all farmers as a tool to<br />

suppress Imperata, but its use <strong>for</strong> soil fertility purposes<br />

is low, <strong>and</strong> (iv) it took about 10 years to conclude<br />

the above, as the Mucuna technology was one<br />

of the first technologies to be evaluated us<strong>in</strong>g<br />

farmer-participatory approaches (Figure 3). The<br />

identification of an alternative niche <strong>for</strong> this technology<br />

(weed suppression) was the result of the<br />

participatory approach followed a,nd acomplete focus<br />

on farmers' needs (Houndekon <strong>and</strong> Gogan,<br />

1996). Impact assessment was implemented dur<strong>in</strong>g<br />

the test<strong>in</strong>g <strong>and</strong> evaluation phase <strong>and</strong> useful feedback<br />

loops led to clearer <strong>in</strong>sights about the potential<br />

of Mucuna <strong>in</strong> the target agroecozones.<br />

Dual Purpose <strong>Gra<strong>in</strong></strong> Legume _. Cereal Rotations:<br />

Multipurpose Options <strong>for</strong> Redress<strong>in</strong>g<br />

<strong>Soil</strong> <strong>Fertility</strong> Decl<strong>in</strong>e<br />

Whiie alley cropp<strong>in</strong>g <strong>and</strong> Mucuna systems were<br />

found to have specific <strong>and</strong> geographically limited<br />

niches, gra<strong>in</strong> legumes such as cowpea <strong>for</strong>m traditionally<br />

part of the cropp<strong>in</strong>g systems <strong>in</strong> most of the<br />

West African agroecozones. Also soybean (Glyc<strong>in</strong>e<br />

max) had become a major gra<strong>in</strong> legume <strong>in</strong> certa<strong>in</strong><br />

areas <strong>in</strong> Nigeria ma<strong>in</strong>ly due to the development of<br />

local process<strong>in</strong>g techniques <strong>and</strong> the creation of markets<br />

(Osho <strong>and</strong> Dashiell, 1998). Soybean production<br />

<strong>in</strong> Nigeria has been estimated at 405,000 t <strong>in</strong> 1999<br />

compared with less than 60,000 t<strong>in</strong> 1984 (www.fao.<br />

QIg) <strong>and</strong> this value is expected to <strong>in</strong>crease further<br />

dur<strong>in</strong>g com<strong>in</strong>g years. Sang<strong>in</strong>ga et a1. (1999) observed<br />

that the adoption rates of soybean varieties<br />

developed at lIT A were over 70% <strong>for</strong> male <strong>and</strong> over<br />

60% <strong>for</strong> female farmers <strong>in</strong> Berue State, Nigeria, <strong>in</strong> a<br />

period of 10 years. In that same area, soybean was<br />

<strong>for</strong> 45% of the farmers the most important source of<br />

<strong>in</strong>come, leav<strong>in</strong>g the second crop, rice, far beh<strong>in</strong>d<br />

(20%). Although improved varieties of these gra<strong>in</strong><br />

legumes have a great potential to be adopted by the<br />

farmers, the earlier-developed germplasm contributed<br />

little to improv<strong>in</strong>g the soH fertility status.<br />

These legumes were bred <strong>for</strong> promiscuity - or the<br />

ability to establish symbiosis with the native Bradyrhizobia<br />

- but their N harvest <strong>in</strong>dex was usually larger<br />

than the proportion of N fixed from the atmosphere,<br />

lead<strong>in</strong>g to net negative contributions to ·the<br />

soil N balance. Through <strong>in</strong>teractions between the<br />

soybean breeders <strong>and</strong> soil management staff at<br />

lITA, breeders were open to develop germplasm<br />

that produced a lot of leafy biomass without giv<strong>in</strong>g<br />

up on high gra<strong>in</strong> yields (Sang<strong>in</strong>ga et al., 2001). Such<br />

varieties usually fixed more N than was exported<br />

with the gra<strong>in</strong>s <strong>and</strong> left a significant amount of N <strong>in</strong><br />

the soil to be potentially taken up by a follow<strong>in</strong>g<br />

cereal. Such a variety is, e.g., TGX-1448-2E that produced<br />

between 470 <strong>and</strong> 2080 kg of gra<strong>in</strong> ha- 1<br />

(average of 1290 +/- 500 kg ha- 1 ), between 1000 <strong>and</strong><br />

5340 kg biomass ha- 1 at peak biomass (average of<br />

2~1@ +/- 1050 kg ha-1), :<strong>and</strong> fixed between 78 <strong>and</strong><br />

92% of its N (average of 84 +/- 4%) (Iwua<strong>for</strong> et aI.,<br />

unpublished data) when grown on 27 farmers'<br />

fields <strong>in</strong> Northern Nigeria. Not surpris<strong>in</strong>gly, maize<br />

grow<strong>in</strong>g after these improved soybean varieties had<br />

significantly higher gra<strong>in</strong> yield (1.2 - 2.3-fold <strong>in</strong>crease)<br />

compared to a maize control (Sang<strong>in</strong>ga et al.,<br />

2003). In farmer~managed demonstration trials <strong>in</strong><br />

northern Nigeria, <strong>in</strong>itiated <strong>in</strong> collaboration with the<br />

non-governmental organization Sasakawa Global<br />

2000 (SG2000), this variety yielded around 3000 kg<br />

ha-1 of gra<strong>in</strong> (Iwua<strong>for</strong> et al., unpublished data).<br />

These trials also successfully demonstrated that a<br />

maize crop grown after soybean can produce a good<br />

yield with a reduced quantity of N fertilizer compared<br />

to maize grown after maize. Maize follow<strong>in</strong>g<br />

soybean <strong>and</strong> receiv<strong>in</strong>g 85 kg N ha-1 as urea yielded<br />

slightly more than maize after maize receiv<strong>in</strong>g 135<br />

kg N ha- 1 as urea. While rotational benefits may not<br />

be as high as those observed after, <strong>for</strong> example, Mucuna,<br />

dual purpose soybeans are to be seen as a<br />

component of an ISFM technology (Table 1) that<br />

also <strong>in</strong>volved the application of sufficient fertilizer<br />

8<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


N. Apply<strong>in</strong>g a limited amoW1t of fertilizer N after a<br />

dual purpose soybean potentially leads to a more<br />

efficient use of the fertilizer N compared to a maizemaize<br />

system. This is because the soybean phase<br />

may alleviate various constra<strong>in</strong>ts to maize production,<br />

thus <strong>in</strong>creas<strong>in</strong>g the dem<strong>and</strong> <strong>for</strong> N by a follow<strong>in</strong>g<br />

maize crop (Vanlauwe et aI., 2001). This phenomenon<br />

is usually referred to as positive <strong>in</strong>teraction<br />

between organic resources <strong>and</strong> m<strong>in</strong>eral <strong>in</strong>puts.<br />

The multi-purpose nature of the above varieties are<br />

not only related to their capacity to produce a large<br />

amount of gra<strong>in</strong> <strong>and</strong> contribute to the N balance of<br />

cropp<strong>in</strong>g systems but also to their ability to suppress<br />

the parasitic weed Striga hermonthica that affects<br />

cereal production <strong>in</strong> Africa, at an estimated<br />

value of $4S0 million per year <strong>for</strong> six West African<br />

countries (Sauerborn, 1991). Soybean can br<strong>in</strong>g<br />

Striga seeds to suicidal germ<strong>in</strong>ation <strong>and</strong> thus reduces<br />

the pressure on the follow<strong>in</strong>g maize crop.<br />

Schulz et al. (2003) reported that the number of<br />

emerged Striga plants at 12 weeks after plant<strong>in</strong>g decreased<br />

from 0.43 to 0.14 maize- 1 when compar<strong>in</strong>g a<br />

maize mono-crop with an <strong>in</strong>tegrated system that<br />

<strong>in</strong>cluded a soybean cropp<strong>in</strong>g phase. Large variation<br />

among soybean cultivars has been found <strong>for</strong> suicidal<br />

Striga germ<strong>in</strong>ation capacity.<br />

The dual-purpose soybean varieties have only recently<br />

been <strong>in</strong>troduced to various farmer communities<br />

<strong>in</strong> Northern Nigeria, so exact <strong>in</strong><strong>for</strong>mation about<br />

their spread is not available at this moment. Farmers<br />

~ the target areas exposed to these varieties,<br />

however, are excited, not only because of their high<br />

yields, but also because of the other traits mentioned<br />

above. Farmer-to-farmer. seed diffusion is<br />

tak<strong>in</strong>g place <strong>and</strong> old varieties are be<strong>in</strong>g ab<strong>and</strong>oned.<br />

They also observe the improved yields of follow<strong>in</strong>g<br />

sorghum or maize crops. In farmer-managed trials<br />

<strong>in</strong> Northern Nigeria, that ran <strong>for</strong> 2 seasons, the<br />

highest net benefits were obta<strong>in</strong>ed with the rotation<br />

of TGX-144S-2E (1450 US$), followed by the local<br />

variety Samsoy 2 (1000 US$). The lowest net benefits<br />

(600 US$) were obtcr<strong>in</strong>ed with l..tIblab purpureus<br />

(Sang<strong>in</strong>ga et aI., 2001). Follow<strong>in</strong>g these promis<strong>in</strong>g<br />

results <strong>and</strong> positive <strong>in</strong>itial farmers' reactions,<br />

SG2000 has started test<strong>in</strong>g soybean rotations <strong>in</strong> six<br />

states <strong>in</strong> Northern Nigeria (lwua<strong>for</strong> et al., 2002).<br />

In conclusion, us<strong>in</strong>g resilient, multipurpose <strong>and</strong><br />

adoptable germplasm as an entry po<strong>in</strong>t to curb the<br />

downward spiral of soil fertility decl<strong>in</strong>e has proven<br />

to be a very promis<strong>in</strong>g strategy with a potentially<br />

high impact on farmers' livelihoods. This is ma<strong>in</strong>ly<br />

driven by the fact that there is no time-lag between<br />

farmers' <strong>in</strong>vestments <strong>in</strong> terms of capital <strong>and</strong> labour<br />

<strong>and</strong> returns, a substantial worry about alley cropp<strong>in</strong>g<br />

<strong>and</strong> Mucuna rotations that was commonly ex-<br />

pressed by farmers. Two factors were essential <strong>in</strong><br />

creat<strong>in</strong>g the high potential of cropp<strong>in</strong>g systems built<br />

aroW1d dual purpose soybean: (i) the creation.of the<br />

knowledge <strong>for</strong> local process<strong>in</strong>g <strong>and</strong> consumption,<br />

go<strong>in</strong>g h<strong>and</strong> <strong>in</strong> h<strong>and</strong> with the creation of markets <strong>for</strong><br />

soybean <strong>and</strong> soybean products <strong>and</strong> (ii) <strong>in</strong>tensive <strong>in</strong>teraction<br />

between sOYQean breeders, soil fertility<br />

management specialists, <strong>and</strong> farmers.<br />

Cowpea <strong>in</strong> the West African Dry<br />

Savannas<br />

In contrast with the technologies we have discus~d<br />

above, cowpea (Vigna unguiculata) has been cultivated<br />

<strong>in</strong> West Africa s<strong>in</strong>ce ancient times <strong>and</strong> appears<br />

to be a crop native to Africa (Purseglove,<br />

1991). This is best illustrated by the fact that <strong>in</strong> 1999,<br />

cowpea was cultivated on about 7 nilllion ha <strong>in</strong><br />

West Africa, compared with less than 5 million ha<br />

<strong>for</strong> groW1dnut <strong>and</strong> below 1 million ha <strong>for</strong> soybean<br />

<strong>and</strong> bambara bean (Schulz et aI, 2001). In lots of areas<br />

<strong>in</strong> Northern Nigeria, cowpea is the first crop to<br />

harvest after the ra<strong>in</strong>s have established. The crop is<br />

grown from the derived savanna to the sahel <strong>for</strong><br />

food <strong>and</strong> fodder, although the pressure of pests <strong>and</strong><br />

diseases usually decreases with latitude.<br />

As with soybean, improvement of the soil fertility<br />

status <strong>in</strong> cropp<strong>in</strong>g systems with cowpea as a com:"<br />

ponent can potentially be targeted through the <strong>in</strong>troduction<br />

of more resilient <strong>and</strong> multipurpose<br />

germplasm. There are, however,ftmdamental differences<br />

between soybean <strong>and</strong> cowpea-based systems<br />

that need to be taken <strong>in</strong>to accoW1t when devis<strong>in</strong>g<br />

such a strategy. Because cowpea is a traditional<br />

crop <strong>in</strong> West Africa, there is no need to create local<br />

process<strong>in</strong>g skills or markets <strong>for</strong> the gra<strong>in</strong>s, but it<br />

also implies that seed traits such as colour, taste, or<br />

texture become an issue. Secondly, the growth cycle<br />

of cowpea is shorter than soybean, although early,<br />

medium, <strong>and</strong> late varieties are available. This gives<br />

cowpea another biophysical niche than soybean.<br />

Thirdly, cowpea is more susceptible to a wide range<br />

of pests than soybean, <strong>and</strong> requires chemical or biological<br />

control. Incorporation of traits related to<br />

multiple resistance are to be considered when<br />

breed<strong>in</strong>g <strong>for</strong> dual purpose germplasm. Fourthly,<br />

cowpea nodulates <strong>in</strong> most cases promiscuously,<br />

while this trait had to be <strong>in</strong>corporated <strong>in</strong> improved<br />

soybean varieties.<br />

Estimates <strong>for</strong> N fertilizer replacement values <strong>for</strong><br />

cowpea range from 10 to SO kg N ha·J (Cafsky et aI.,<br />

2003). In a six-month grow<strong>in</strong>g season Carsky et al<br />

(2001b) found that cowpea dur<strong>in</strong>g the first 2 months<br />

replaced 30 kg N ha·J as fertilizer to maize dur<strong>in</strong>g<br />

the last three months. These values are usually at<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

9


Table 3. Millet gra<strong>in</strong> <strong>and</strong> total dry matter yield at harvest as <strong>in</strong>fluenced by millet/cowpea marketable cowpea that will exploit<br />

crllpp<strong>in</strong>g system at Sadore (Niger). Source: Bationo <strong>and</strong> Ntare, 2000.<br />

market<strong>in</strong>g opportunities to improve<br />

<strong>Gra<strong>in</strong></strong> yield (kg hall Total dry matter yield (kg ha·l ) household food security <strong>and</strong> open<br />

Cropp<strong>in</strong>g system 1996 1997 1998 1996 1997 1998 opportunities <strong>for</strong> susta<strong>in</strong>able im­<br />

Cont<strong>in</strong>uous millet 937 321 1557 4227 2219 6992 provement <strong>in</strong> <strong>in</strong>come.<br />

Millet after cowpea 1255 340 1904 5785 2832 8613<br />

P > F < 0.001 0.344 < 0.001 < 0.001 < 0.001 < 0.001<br />

the higher range when residues are <strong>in</strong>corporated<br />

<strong>and</strong> at the lower range after a long dry season. Like<br />

soybean (Carsky et al., 1997), benefits can be expected<br />

to be higher after longer duration varieties.<br />

Schulz et al. (2001) reported that N harvest <strong>in</strong>dices<br />

were lower <strong>and</strong> total biomass yields larger <strong>in</strong> absence<br />

of chemical treatments, potentially lead<strong>in</strong>g to<br />

higher N contributions to a subsequent cereal crop.<br />

Cereal-legume rotation effects on cereal yields have<br />

been reported <strong>for</strong> the semi-arid tropics (Table 3)<br />

(Bakayoko et al. 2000; Bationo et al. 1998; Bationo<br />

<strong>and</strong> Ntare 2000). In all these studies, the yield of the<br />

preced<strong>in</strong>g cereal was significantly higher than <strong>in</strong><br />

monocropp<strong>in</strong>g treatments. The beneficial effect of<br />

legumes on succeed<strong>in</strong>g crops is normally exclusively<br />

attributed to the <strong>in</strong>creased soil N fertility as a<br />

result of N2-fixation. However, cowpea yield significantly<br />

responded to rotations suggest<strong>in</strong>g that factors<br />

other than N alone contributed to the yield <strong>in</strong>creases<br />

<strong>in</strong> the cereal-legume rotations.<br />

Currently, ef<strong>for</strong>ts are underway to improve the<br />

germplasm of cowpea to make it more resistant to<br />

pests <strong>and</strong> diseases <strong>and</strong> adverse environmental c.onditions<br />

such as drought. Exist<strong>in</strong>g germplasm is also<br />

currently be<strong>in</strong>g screened <strong>for</strong> its ability to access soil<br />

P that is not readily accessible (Lyasse et al., 2002)<br />

<strong>and</strong> to trigger suicidal germ<strong>in</strong>ation of Striga. Carsky<br />

et al (2000a) reported that apply<strong>in</strong>g P fertilizer to<br />

soybean tended to <strong>in</strong>creased soybean root density<br />

<strong>and</strong> to strengthen its effect on Striga reduction.<br />

The presence of cowpeas <strong>in</strong> the cropp<strong>in</strong>g systems <strong>in</strong><br />

West Africa is not likely to decrease because of its<br />

high value <strong>in</strong> the region. Cowpea gra<strong>in</strong> conta<strong>in</strong>s<br />

about 22% prote<strong>in</strong>, <strong>and</strong> it constitutes a major source<br />

of prote<strong>in</strong> <strong>for</strong> the resource poor farmer. Its fodder<br />

also provides an important supplement to rum<strong>in</strong>ant<br />

diets. Cowpea is often the only crop that survives<br />

severe drought. Cowpea is grown primarily to supply<br />

farm household food needs but some farmers<br />

produce surpluses <strong>for</strong> sale to national <strong>and</strong> regional<br />

markets <strong>and</strong> there is high dem<strong>and</strong> <strong>for</strong> cowpea <strong>in</strong> the<br />

coastal countries such as Nigeria, Togo, Ben<strong>in</strong> <strong>and</strong><br />

Ivory Coast. Thus despite the substantial potential<br />

that exists <strong>for</strong> commercialization of cowpea, the opportunities<br />

are not fully be<strong>in</strong>g exploited because of<br />

weak l<strong>in</strong>kages between farmers <strong>and</strong> traders. The<br />

challenge is to help smallholder farmers to move<br />

rapidly beyond their subsistence needs to produce<br />

Conclusions <strong>and</strong> Look<strong>in</strong>g Ahead<br />

The follow<strong>in</strong>g conclusions can be drawn from what<br />

we presented above:<br />

(i) Improved soil management <strong>in</strong>terventions need to<br />

generate immediate benefits to the farmer beyond<br />

an improved soil fertility status, especially <strong>in</strong> areas<br />

where l<strong>and</strong> is scarce. Such <strong>in</strong>terventions need to address<br />

farmers' immediate <strong>and</strong> longer-term needs.<br />

(ii) Improved germplasm of commonly-grown<br />

crops, that addresses various constra<strong>in</strong>ts to higher<br />

yields, is a valid entry po<strong>in</strong>t <strong>for</strong> target<strong>in</strong>g soil fertility<br />

depletion. Germplasm that generates multiple<br />

benefits is likely to be adopted more easily <strong>and</strong> potentially<br />

tackles several constra<strong>in</strong>ts simultaneously.<br />

(iii) The role of markets <strong>in</strong> creat<strong>in</strong>g added value to<br />

certa<strong>in</strong> crops is essential. This was demonstrated<br />

above <strong>for</strong> Mucuna <strong>in</strong> the southern Ben<strong>in</strong> Republic,<br />

where an artificial market was created, <strong>and</strong> <strong>for</strong> soybean<br />

<strong>in</strong> Northern Nigeria.<br />

(iv) Inclusion of improved germplasm alone will<br />

not lead to susta<strong>in</strong>able agriculture. M<strong>in</strong>eral <strong>in</strong>puts<br />

are required, very often even to allow the legume to<br />

grow properly, but also to optimally exploit the<br />

multiple benefits created by the legumes. In the<br />

same context, rotational benefits are more often<br />

than not more than just contributions of extra N.<br />

(v) There are no panaceas. It is very important to<br />

identify the appropriate niches <strong>for</strong> specific classes of<br />

legumes, both at the macro agro-ecozone scale <strong>and</strong><br />

the farm scale.<br />

(vi) Regard<strong>in</strong>g the research <strong>and</strong> development process<br />

itself, evaluation <strong>and</strong> impact assessment are essential<br />

components of the process. Apply<strong>in</strong>g participatory<br />

approaches dur<strong>in</strong>g the earlier phases of the<br />

alley cropp<strong>in</strong>g story may have led to a much earlier<br />

recognition of the limitations of this technology.<br />

(vii) Intense contact between crop breeders, soil<br />

management specialists <strong>and</strong> farmers is essential <strong>for</strong><br />

the development of improved germplasm adapted<br />

to the biophysical <strong>and</strong> socia-economic conditions<br />

targeted. Very often, <strong>in</strong> the International as well as<br />

National Research Centres, crop improvement ac-<br />

10<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


tivities have been separated programmatically from<br />

program~ deal<strong>in</strong>g with natural resource management,<br />

result<strong>in</strong>g <strong>in</strong> products that are not adoptable<br />

by farm<strong>in</strong>g communities.<br />

Future emphasis <strong>in</strong> legume research <strong>and</strong> development<br />

activities could be put on:<br />

(i) It is important to <strong>in</strong>crease the area cropped with<br />

legumes i-!1 order to enhance the contribution of<br />

BNF to agriculture (Giller, 2001). In this context,<br />

various classes of legumes likely occupy various<br />

niches with<strong>in</strong> a farm <strong>and</strong> agro-ecozone. This is a<br />

very important consideration when target<strong>in</strong>g specific<br />

legumes <strong>for</strong> specific purposes.<br />

(ii) Dual purpose gra<strong>in</strong> <strong>and</strong> herbaceous legumes,<br />

when managed properly, do contribute N to a follow<strong>in</strong>g<br />

cereal, although recoveries are often very<br />

low. It is important to underst<strong>and</strong> the fate of the<br />

fixed N not recovered by a subsequent crop <strong>and</strong>, if<br />

lost, to underst<strong>and</strong> the major loss mechanisms. All<br />

this <strong>in</strong><strong>for</strong>mation is required to improve the management<br />

of biologically fixed N.<br />

(iii) Emphasiz<strong>in</strong>g the improvement of accepted<br />

gra<strong>in</strong> legumes is likely to result <strong>in</strong> faster pay-offs<br />

compared with try<strong>in</strong>g to enhance the utility of herbaceous<br />

legumes. Vast gene banks exist <strong>for</strong> the major<br />

gra<strong>in</strong> legumes <strong>and</strong> these could be exploited <strong>for</strong><br />

specific traits. Biotechnological approaches may<br />

make this easier <strong>in</strong> the near future..<br />

(iv) A considerable amount of <strong>in</strong><strong>for</strong>mation is available<br />

related to the per<strong>for</strong>mance <strong>and</strong> rotational benefits<br />

of all classes of legumes <strong>in</strong> a wide range of biophysical<br />

envirorunents. There is an urgent need to<br />

synthesize this <strong>in</strong><strong>for</strong>mation <strong>and</strong> avoid unnecessary<br />

legume screen<strong>in</strong>g or related activities. A plat<strong>for</strong>m<br />

such as the Legume Expert System (LEXSYS)<br />

(Carsky et al., 2000b) could be used as a framework<br />

<strong>for</strong> synthesiz<strong>in</strong>g this <strong>in</strong><strong>for</strong>mation.<br />

References<br />

Ades<strong>in</strong>a AA, Coulibaly 0, Manyong VM, Sang<strong>in</strong>ga<br />

pc, Mbila 0, Chia~u J ~nd Kamleu DG 1999.<br />

Policy shifts <strong>and</strong> adoption of alley farm<strong>in</strong>g <strong>in</strong><br />

West <strong>and</strong> Central Africa. IMPACT, IITA, Ibadan,<br />

Nigeria, pp. 20.<br />

Aihou K, Sang<strong>in</strong>ga N, Vanlauwe B, Lyasse 0, Diels<br />

J <strong>and</strong> Merckx R 1999. Alley cropp<strong>in</strong>g <strong>in</strong> the moist<br />

savanna of West-Africa: I. Restoration <strong>and</strong> ma<strong>in</strong>tenance<br />

of soil fertility on 'terre de barre' soils <strong>in</strong><br />

Ben<strong>in</strong> Republic. Agro<strong>for</strong>estry Systems 42:213-227.<br />

Bagayoko M, Buerkert A, Lung G, Bationo A <strong>and</strong><br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> Sail <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

Rornheld V 2000. Cereal/legume rotation effects<br />

on cereal growth <strong>in</strong> Sudano-Sahelian West Africa:<br />

soil m<strong>in</strong>eral nitrogen, mycorrhizae <strong>and</strong><br />

nematodes. Plant <strong>and</strong> <strong>Soil</strong> 218:103-116.<br />

Bationo A, Lompo F, Koala S 1998. Research on nutrient<br />

flows <strong>and</strong> balances <strong>in</strong> West Africa: Stateof-the-art.<br />

Agriculture, Ecosystems <strong>and</strong> Environment<br />

71:19-36.<br />

Bationo A <strong>and</strong> Ntare BR 2000. Rotation <strong>and</strong> nitrogen<br />

fertilizer effects on pearl millet, cowpea <strong>and</strong><br />

groundnut yield <strong>and</strong> soil chemical properties <strong>in</strong><br />

a s<strong>and</strong>y soil <strong>in</strong> the semi arid tropics, West Africa.<br />

Journal of Agricultural Science, Cambridge 134:277­<br />

284.<br />

Carsky RJ, Abaidoo R, Dashiell K <strong>and</strong> Sang<strong>in</strong>ga N<br />

1997. Effect of soybean on subsequent maize<br />

gra<strong>in</strong> yield <strong>in</strong> the Gu<strong>in</strong>ea savanna zone of West<br />

Africa. African Crop Science Journal 5:31-38.<br />

Carsky RJ, Berner OK, Oyewole BD, Dashiell K <strong>and</strong><br />

Schulz S 2000a. Reduction of Striga hennonthica<br />

parasitism on maize us<strong>in</strong>g soybean ro·tation. International<br />

Journal of Pest Management 46:115-120.<br />

Carsky RJ, Weber G <strong>and</strong> Robert ABC 2000b. LEX­<br />

SYS: a computerized decision-support tool <strong>for</strong><br />

select<strong>in</strong>g herbaceous. legumes <strong>for</strong> improved<br />

tropical farm<strong>in</strong>g systems. In Cover Crops <strong>for</strong> Integrated<br />

Natural Resource Management <strong>in</strong> West Africa<br />

(Eds R.J. Carsky, J.D.H. Keat<strong>in</strong>ge, V.M.<br />

Manyong, <strong>and</strong>' A.c. Eteka). Proceed<strong>in</strong>gs of a Regional<br />

Workshop, October, 1999, Cotonou, Republic<br />

of Ben<strong>in</strong>. lIT A, Ibadan, Nigeria. pp. 201­<br />

208.<br />

Carsky RJ, Becker M <strong>and</strong> Hauser S 200la. Mucuna<br />

cover crop fallow systems: potential <strong>and</strong> limitations.<br />

In: Susta<strong>in</strong><strong>in</strong>g <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> West-Africa<br />

(Eds G Tian, F Ishida <strong>and</strong> J 0 H Keat<strong>in</strong>ge), SSSA<br />

Special Publication Number 58, Madison, USA.<br />

pp.111-136.<br />

Carsky RJ, S<strong>in</strong>gh BB <strong>and</strong> Oyewole B 2001b. Contribution<br />

of early season cowpea to late season<br />

maize <strong>in</strong> the savanna zone of West Africa. Biological<br />

Agriculture <strong>and</strong> Horticulture 18:303-315.<br />

Carsky RJ, Vanlauwe B<strong>and</strong> Lyasse 0 2003. Cowpea<br />

rotation as a resource management technology<br />

<strong>for</strong> cereal-based systems <strong>in</strong> the savannas of West<br />

Africa. Third World Cowpea Research Conference<br />

held September, 2000, Ibadan, Nigeria.<br />

Douthwaite B, Manyong VM, Keat<strong>in</strong>ge JDH <strong>and</strong><br />

Chianu J 2002. The adoption of alley farm<strong>in</strong>g<br />

<strong>and</strong> Mucuna: lessons <strong>for</strong> research, development<br />

<strong>and</strong> extension. Agro<strong>for</strong>estry Systems., In Press.<br />

11


Dvorak KA 1996. Adoption potential of alley cropp<strong>in</strong>g.<br />

Resource <strong>and</strong> Crop Management Research<br />

Monographs Nr 23, International Institute of<br />

Tropical Agriculture, Ibadan, ~igeria, pp. 70.<br />

Giller KE, 2001. Nitrogen Fixation <strong>in</strong> Tropical Cropp<strong>in</strong>g<br />

Systems. Second Edition. CAB!, Wall<strong>in</strong>g<strong>for</strong>d,<br />

UK, 423 pp.<br />

Houndekon V A <strong>and</strong> Gogan AC 1996. Adoption<br />

.d'une technoloige nouvelle de gestion des re-o<br />

sources naturelles: Cas du Mucuna dans Ie sudouest<br />

du Ben<strong>in</strong>. Recherche Appliquee en Milieu<br />

Reel. M<strong>in</strong>isterer due Developpement Rural, Ben<strong>in</strong><br />

Republic, 65 pp.<br />

Iwua<strong>for</strong> ENO, Aihou K, Vanlauwe B, Diels J, Sangiriga<br />

N, Lyasse 0, Deckers J <strong>and</strong> Merckx R 2002.<br />

On-farm evaluation of the contribution of sole<br />

<strong>and</strong> mixed applications of organic matter <strong>and</strong><br />

urea to maize gra<strong>in</strong> production <strong>in</strong> the savanna.<br />

In: Integrated Plant Nutrient Management <strong>in</strong> sub­<br />

Saharan Africa: From Concept to Practice (Eds B<br />

Vanlauwe, J Diels, N Sang<strong>in</strong>ga <strong>and</strong> R Merckx).<br />

CABI, Wall<strong>in</strong>g<strong>for</strong>d, UK, pp. 185-197.<br />

Jagtap SS 1995. Environmental characterization of<br />

the moist lowl<strong>and</strong> savanna of Africa. In: Moist<br />

Savannas of Africa. Potentials <strong>and</strong> Constra<strong>in</strong>ts <strong>for</strong><br />

Crop Production (Eds BT Kang, 10 Akobundu,<br />

VM Manyong, RJ Carsky, N Sang<strong>in</strong>ga <strong>and</strong> EA<br />

Kueneman) International Institute of Tropical<br />

Agriculture, Ibadan, Nigeria, pp. 9-30.<br />

Kang BT, Grimme H <strong>and</strong> Lawson TL 1985. Alley<br />

cropp<strong>in</strong>g sequentially cropped maize <strong>and</strong> cowpea<br />

with leucaena on a s<strong>and</strong>y soil <strong>in</strong> Southern<br />

Nigeria. Plant <strong>and</strong> <strong>Soil</strong> 85: 267-277.<br />

Lyasse 0, Tossah BK, Vanlauwe,B, Diels J, Sang<strong>in</strong>ga<br />

N<strong>and</strong> Merckx R 2002. Options <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g P<br />

availability from low reactive Rock' Phosphate.<br />

In: Integrated Plant' Nutrient Management <strong>in</strong> sub­<br />

Saharan Africa: From Concept to Practice (Eds B<br />

Vanlauwe, J Diels, N Sang<strong>in</strong>ga <strong>and</strong> R Merckx).<br />

CABI, Wall<strong>in</strong>g<strong>for</strong>d, UK, pp. 225-237.<br />

Manyong VM, Smith J, Weber GK, Jagtap SS <strong>and</strong><br />

Oyewole B 1996. Macrocharacterization of agricultural<br />

systems <strong>in</strong> West Africa: an overview.<br />

Resource <strong>and</strong> Crop Management Research<br />

Monographs Nr 21, International Institute of<br />

Tropical Agriculture, Ibadan, Nigeria, 66 pp.<br />

Manyong VM, Houndekon VA, Sang<strong>in</strong>ga Pc, Vissoh<br />

P <strong>and</strong> Honlonkou AN 1999. Mucuna fallow<br />

diffusion <strong>in</strong>. southern Ben<strong>in</strong>. IMPACT, lITA,<br />

Ibadan, Nigeria, 21'pp.<br />

Mohamed-Saleem MA <strong>and</strong> Fitzhugh HA 1995. An<br />

12<br />

overview of demographic an environmental 'issues<br />

<strong>in</strong> susta<strong>in</strong>able agriculture <strong>in</strong> sub-Saharan<br />

Africa. In: Livestock <strong>and</strong> Susta<strong>in</strong>able Nutrient Cycl<strong>in</strong>g<br />

<strong>in</strong> Mixed Farm<strong>in</strong>g Systems of sub-Saharan Africa.<br />

Volume II. Technical Papers (Eds JM Powell,<br />

S Fern<strong>and</strong>ez-Rivera, TO Williams <strong>and</strong> C<br />

Renard). ILCA, Addis Ababa, Ethiopia, pp.3-20.<br />

Ogoke 1], Carsky RJ, Togun AO <strong>and</strong> Dashiell K<br />

2002. Effect of P fertilizer application on N balance<br />

of soybean crop <strong>in</strong> the gu<strong>in</strong>ea savanna of<br />

Nigeria. Agriculture, Ecosystems <strong>and</strong> Environment,<br />

In Press.<br />

Osho 0 <strong>and</strong> Dashiell KE 1998. Exp<strong>and</strong><strong>in</strong>g soybean<br />

production, process<strong>in</strong>g <strong>and</strong> utilisation <strong>in</strong> Nigeria.<br />

In: Postharvest Technology <strong>and</strong> Commodity<br />

Market<strong>in</strong>g (Ed. RSB Ferris). lIT A, Ibadan, Nigeria,<br />

pp. 151-156. '<br />

Purseglove JW 1991. Tropical Crops. Dicotyledons.<br />

Longman Scientific <strong>and</strong> Technical, Harlow, UK.<br />

Sang<strong>in</strong>ga N, Carsky RJ <strong>and</strong> Dashiell K 1999. Arbuscular<br />

mycorrhizal fungi respond to rhizobial <strong>in</strong>oculation<br />

<strong>and</strong> cropp<strong>in</strong>g systems <strong>in</strong> farmers' field<br />

<strong>in</strong> the Gu<strong>in</strong>ea savanna. Biology <strong>and</strong> <strong>Fertility</strong> of<br />

<strong>Soil</strong>s 30:179-186.<br />

Sang<strong>in</strong>ga N, Dashiell K, Diels J, Vanlauwe B, Lyasse<br />

0, Carsky RJ, Tarawali S, Asafo-Adjei B, Menkir<br />

A, Schulz S, S<strong>in</strong>g BB, Chikoye 0, Keat<strong>in</strong>ge JDH<br />

<strong>and</strong> Ortiz R 2003. Susta<strong>in</strong>able resource management<br />

coupled to resilient germplasm to provide<br />

new <strong>in</strong>tensive cereal-gra<strong>in</strong> legume-livestock<br />

systems <strong>in</strong> the dry savanna. Agriculture, Ecosystems<br />

<strong>and</strong> Environment, In Press.<br />

Sang<strong>in</strong>ga N, Okogun JA, Vanlauwe B, Diels J, Carsky<br />

RJ <strong>and</strong> Dashiell K 2001. Nitrogen contribution<br />

of promiscuous soybeans <strong>in</strong> maize-based<br />

cropp<strong>in</strong>g systems. In: Susta<strong>in</strong><strong>in</strong>g <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong><br />

West-Africa (Eds G Tian, F Ishida <strong>and</strong> J 0 H Keat<strong>in</strong>ge),<br />

SSSA Special Publication Number 58,<br />

Madison, USA, pp. 157-178.<br />

Sang<strong>in</strong>ga PC, Ades<strong>in</strong>a AA, Manyong VM, Otite 0<br />

<strong>and</strong> Dashiell KE 1999. Social impact of soybean<br />

<strong>in</strong> Nigeria's southern Gu<strong>in</strong>ea savanna. IMPACT,<br />

IITA, Ibadan, Nigeria, 32 pp.<br />

Sauerborn J 1991. The economic importance of the<br />

phytoparasites Orobanche <strong>and</strong> Striga. Proceed<strong>in</strong>gs<br />

of the 5 th International Symposium of Parasitic<br />

Weeds, Nairobi, Kenya, 1991, pp. 137-143.<br />

Schulz, S, Carsky RJ <strong>and</strong> Tarawali SA 2001. Herbaceous<br />

legumes: the panacea <strong>for</strong> West African soil<br />

fertility problems? In: Susta<strong>in</strong><strong>in</strong>g <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong><br />

West-Africa (Eds G Tian, F Ishida <strong>and</strong> J 0 H Keat-<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


<strong>in</strong>ge), SSSA Special Publication Number 58,<br />

Madison, USA, pp. 157-178.<br />

Srhulz S, Hussa<strong>in</strong>i MA, Kl<strong>in</strong>g JG, Berner OK <strong>and</strong><br />

Ikie FO 2003. Evaluation of <strong>in</strong>tegrated Striga hermonthica<br />

control technologies under farmer management.<br />

Experimental Agriculture 39:1-10.<br />

Swift MJ, Heal OW <strong>and</strong> Anderson JM 1979. Decomposition<br />

<strong>in</strong> Terrestrial Ecosystems, Studies <strong>in</strong><br />

Ecology Volume 5, Blackwell Scientific Publications,<br />

Ox<strong>for</strong>d, UK.<br />

Tian, G, Kang BT <strong>and</strong> Brussaard L 1993. Mulch<strong>in</strong>g<br />

effect of plant residues with chemically contrast<strong>in</strong>g<br />

compositions on maize growth <strong>and</strong> nutrients<br />

accumulation. Plant <strong>and</strong> <strong>Soil</strong> 153:179-187.<br />

Tossah BK, Zamba OK, Vanlauwe B, Sang<strong>in</strong>ga N,<br />

Lyasse 0, Diels J <strong>and</strong> Merckx R 1999. Alley cropp<strong>in</strong>g<br />

<strong>in</strong> the moist savanna of West-Africa: II. Impact<br />

on soil productivity <strong>in</strong> a North-to-South<br />

transect <strong>in</strong> Togo. Agro<strong>for</strong>estry Systems 42:229-244.<br />

Vanlauwe B, Sang<strong>in</strong>ga N <strong>and</strong> Merckx R 1998a: Recovery<br />

of Leucaena <strong>and</strong> Dactyladenia residue 15N<br />

<strong>in</strong> alley cropp<strong>in</strong>g systems. <strong>Soil</strong> Science Society of<br />

America Journal 62:454:460.<br />

Vanlauwe B, Sang<strong>in</strong>ga N <strong>and</strong> Merckx R 1998b. <strong>Soil</strong><br />

organic matter dynamics after addition 9f 15N<br />

labeled Leucaena <strong>and</strong>' Dactyladenia residues <strong>in</strong> alley<br />

cropp<strong>in</strong>g systems. <strong>Soil</strong> Science Society ofAmerica<br />

Journal 62:461-466.<br />

Vanlauwe B, Wendt J <strong>and</strong> Diels J 2001. Comb<strong>in</strong>ed<br />

application of organic matter <strong>and</strong> fertilizer. In:<br />

Susta<strong>in</strong><strong>in</strong>g <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> West-Africa (Eds G<br />

Tian, F.Ishida ~nd J 0 H Keat<strong>in</strong>ge), SSSA Special<br />

Publication Number 58, Madison, USA, pp. 247­<br />

280.<br />

Versteeg MN, Amadji F, Eteka A, Gogan A <strong>and</strong><br />

Koudokpon V 1998. Farmers' adoptability of Mucuna<br />

fallow<strong>in</strong>g <strong>and</strong> agro<strong>for</strong>estry technologies <strong>in</strong><br />

the coastal savanna of Ben<strong>in</strong>. Agricultural Systems<br />

56:269-287.<br />

"<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 13


LEGUMES FOR SOIL FERTILITY IN SOUTHERN AFRICA:<br />

NEEDS, POTENTIAL AND REALITIES<br />

ED ROWE <strong>and</strong> KEN GILLER<br />

Plant Production Systems, Plant Sciences, 'Wagen<strong>in</strong>gen University,<br />

P.O. Box 430, 6700 AK Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s<br />

Email: ed.rowe@wur.nl.ken.giller@wur.nl<br />

Abstract<br />

<strong>Legumes</strong> have great potential <strong>for</strong> improv<strong>in</strong>g <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g soil fertility, through mechanisms such as Nrfixation,<br />

nutrient release from plant residues, <strong>and</strong> ma<strong>in</strong>tenance of soil organic matter contents. However, this potential rema<strong>in</strong>s<br />

largely unfulfilled. <strong>Legumes</strong> have a comparatively small role <strong>in</strong> exist<strong>in</strong>g cropp<strong>in</strong>g systems, <strong>and</strong> are often used on poor<br />

soils where a restricted supply of resources such as phosphorus means that legumes fix N2 at far less than their potential<br />

rate. Fill<strong>in</strong>g gaps <strong>in</strong> our mechanistic underst<strong>and</strong><strong>in</strong>g of these processes will allow the design of better systems, but it is<br />

essential also to consider how new technologies fit <strong>in</strong>to the wholefarm<strong>in</strong>g system. New technologies will not succeed<br />

when productivity ga<strong>in</strong>s are small <strong>in</strong> relation to the amount of time or other resources they require. NUANCES is a<br />

new framework <strong>for</strong> analys<strong>in</strong>g trade-offs around soil fertility management <strong>in</strong> smallholder farm<strong>in</strong>g systems. The<br />

framework is be<strong>in</strong>g developed <strong>in</strong>to a modular quantitative dynamic model capabje of <strong>in</strong>tegrat<strong>in</strong>g crop', livestock, soil <strong>and</strong><br />

bioeconomic models. Flows of carbon <strong>and</strong> nutrients are considered with<strong>in</strong> imd between heterogeneous farms, <strong>and</strong><br />

<strong>in</strong>fluences of <strong>and</strong> on labour <strong>and</strong> f<strong>in</strong>ancial budgets are explicitly <strong>in</strong>cluded. The analysis will allow the evaluation of<br />

technologies accord<strong>in</strong>g to criteria such as agronomic yield, nutrient use efficiency, labour productivity <strong>and</strong> contribution<br />

to soil fertility, <strong>and</strong> the assessment of tradeoffs of <strong>in</strong>vestment <strong>in</strong> different farm<strong>in</strong>g strategies <strong>and</strong> their short <strong>and</strong> long<br />

term benefits <strong>for</strong> improv<strong>in</strong>g soil fertility.<br />

Key words: NUANCES, simulation model<strong>in</strong>g, annual<br />

<strong>in</strong>tegration, nutrient flows<br />

legumes, farm<strong>in</strong>g system, southern Africa,· technology<br />

I ntrod uction<br />

Poor soil fertility rema<strong>in</strong>s a major constra<strong>in</strong>t to food<br />

production <strong>in</strong> sub-saharan Africa, <strong>and</strong> thus has<br />

adverse consequences <strong>for</strong> food security <strong>and</strong> the<br />

susta<strong>in</strong>ability of livelihoods. Amounts of plant<br />

nutrients <strong>in</strong> soil are generally small, <strong>and</strong> nutrient<br />

balances often negative. In the absence of thriv<strong>in</strong>g<br />

markets <strong>for</strong> agricultural produce, there are few<br />

means <strong>for</strong> purchas<strong>in</strong>g m<strong>in</strong>eral fertilisers to address<br />

crop dem<strong>and</strong> <strong>for</strong> plant nutrients. Ef<strong>for</strong>ts have<br />

there<strong>for</strong>e focused on f<strong>in</strong>d<strong>in</strong>g low-cost solutions,<br />

which <strong>in</strong>clude mak<strong>in</strong>g efficient use of available nutrient<br />

resources (cattle manure, fertilizers, legumes)<br />

. Promis<strong>in</strong>g 'best-bet' technologies <strong>in</strong>clude<br />

use of gra<strong>in</strong> legumes such as soya bean <strong>and</strong> groundnut,<br />

green manures, fodder legumes <strong>and</strong> improved<br />

man\.lre storage (Wadd<strong>in</strong>gton et al., 1998). Creat<strong>in</strong>g<br />

better connections to markets <strong>for</strong> high-value products<br />

will also benefit soil fertility by allow<strong>in</strong>g the<br />

purchase of more <strong>in</strong>pu ts.<br />

Nitrogen fix<strong>in</strong>g legumes have great potential <strong>for</strong><br />

<strong>in</strong>clusion <strong>in</strong> African farm<strong>in</strong>g systems, whether <strong>for</strong><br />

gra<strong>in</strong> or fodder, or <strong>in</strong> fallow periods either as a<br />

green manure or a tree. fallow. Trees will rarely be<br />

worth <strong>in</strong>clud<strong>in</strong>g simply <strong>for</strong> their effect on soil fertility,<br />

but this may be an important additional benefit<br />

where trees are used <strong>for</strong> other or multiple functions,<br />

such as fruit, fuelwood, timber or stakes. Large<br />

amounts of nitrogen can potentially be <strong>in</strong>troduced<br />

<strong>in</strong>to the system through fixation by legumes (Table<br />

1).<br />

In reality however, legumes contribute far less than<br />

these potential amounts of fixed N2 (Table 2.). Small<br />

areas are planted to legumes, <strong>and</strong> often these are<br />

obta<strong>in</strong><strong>in</strong>g only 25-50% of their N from N2-fixation,<br />

result<strong>in</strong>g <strong>in</strong> overall fixation rates of 5 kg N ha·1 y.l or<br />

less on farms <strong>in</strong> Zimbabwe. This under utilization of<br />

legumes may be due to poor market development<br />

Table 1. Potential contribution of fixed Nz by legumes <strong>in</strong><br />

different systems. (Summarized from Giller, 2001)<br />

legume system %Nz fixation Nz fixed Time (days)<br />

(kg N ha')<br />

<strong>Gra<strong>in</strong></strong> legumes 60·100 105·206 60·120<br />

Pasture legumes 45·98 115·.280 120·365<br />

<strong>Green</strong> manures 50·90 11.0·280 45·200<br />

Trees .56·89 162·1063 180<br />

<strong>Gra<strong>in</strong></strong>. legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 15


Table 2. N2 fixed on smallholder farms <strong>in</strong> Zimbabwe.<br />

'Average farm size w 3 ha, (Summarized from Chikowo et al.<br />

2000)<br />

Legume N2 fixed Area Total fixed<br />

(kg Nhal) (ha I farm) (kg NI farm)<br />

Bambara nut 52 0.08 4.2<br />

Cowpea 47 0.03 1.4<br />

Peanut 33 0.22 7.3<br />

Pigeon pea 39 0.34 13.3<br />

<strong>for</strong> legume products, or because legumes are grown<br />

on poor soils where growth <strong>and</strong> N2-fixation are limited<br />

<strong>and</strong> perceived benefits are small. The aim of<br />

this paper is to exam<strong>in</strong>e the benefits of legume technologies<br />

<strong>for</strong> soil fertility, <strong>and</strong> to discuss how these<br />

benefits can be assessed with<strong>in</strong> an <strong>in</strong>tegrated farm<strong>in</strong>g<br />

system.<br />

Roles of Plant Residues<br />

Plant residues from crops, mulches or green manures<br />

have two dist<strong>in</strong>ct roles that are <strong>in</strong> the ma<strong>in</strong><br />

mutually exclusive, In the short term organic materials<br />

can, through m<strong>in</strong>eralization, supply nutrients<br />

to crop plants. In the medium to long term, the accumulation<br />

of partially decomposed organic matter<br />

gives the soil better structure, improv<strong>in</strong>g aggregation<br />

<strong>and</strong> <strong>in</strong>filtration ~d decreas<strong>in</strong>g run-off. Accumulated<br />

organic matter also improves the chemical<br />

properties of the soil, <strong>in</strong>creas<strong>in</strong>g cation exchange<br />

capacity <strong>and</strong> slow<strong>in</strong>g down leach<strong>in</strong>g. Medium- <strong>and</strong><br />

100{g-term effects on soil nutrient supply are also<br />

possible. After the first season the rate of nutrient<br />

release from a s<strong>in</strong>gle application of organic matter is<br />

likely to be small, but with the accumulation of organic<br />

matter the total nutrient release from slowlyturn<strong>in</strong>g<br />

over materials can become significant.<br />

As an example, senesc<strong>in</strong>g pigeonpea leaves .conta<strong>in</strong><br />

substantial amounts of N. Up to 90 kg N ha·J tan be<br />

added <strong>in</strong> fallen leaves (Sakala et aI., 2002). However,<br />

pigeonpea leaves immobilize N <strong>for</strong> 2 months due to<br />

low N (1.8%N) <strong>and</strong> high lign<strong>in</strong> content (16%)<br />

(Sakala et aI., 2000) so that no N is contributed <strong>for</strong><br />

companion <strong>in</strong>tercropped maize. After the <strong>in</strong>itial N<br />

immobilisation phase, net m<strong>in</strong>eralization means<br />

that substantial amounts of N are made available<br />

<strong>for</strong> subsequent crops. Follow<strong>in</strong>g extensive review of<br />

literature data, Palm et al. (1997) developed a<br />

decision tree <strong>for</strong> allocat<strong>in</strong>g organic matter resources<br />

based on their nitrogen <strong>and</strong> lign<strong>in</strong> contents;<br />

Materials with high N <strong>and</strong> "low polyphenol / lign<strong>in</strong><br />

concentrations are likely to decompose rapidly <strong>and</strong><br />

thus are suitable <strong>for</strong> direct applieation <strong>for</strong> short<br />

term nutrient supPly. ' Materials with high<br />

polyphenol / lign<strong>in</strong> <strong>and</strong> low N concentrations<br />

decompose slowly without releas<strong>in</strong>g N <strong>and</strong> are only<br />

suitable <strong>for</strong> surface application as mulch. Materials<br />

with high polyphenol / lign<strong>in</strong> <strong>and</strong> high N contents,<br />

or with low contents of both, may cause<br />

immobilization of available soil nutrients <strong>and</strong><br />

should be mixed with fertilizer or higher-quality<br />

organic material be<strong>for</strong>e apply<strong>in</strong>g. This decision tree<br />

was adapted <strong>for</strong> use <strong>in</strong> discussion with farmers by<br />

Giller (2000) by translat<strong>in</strong>g plant quality criteria <strong>in</strong>to<br />

characteristics observable <strong>in</strong> the field - green colour<br />

<strong>in</strong>dicat<strong>in</strong>g high nitrogen content, ability to crush<br />

easily <strong>in</strong>dicat<strong>in</strong>g low lign<strong>in</strong> content, <strong>and</strong> astr<strong>in</strong>gent<br />

taste <strong>in</strong>dicat<strong>in</strong>g high tann<strong>in</strong> content.<br />

Knowledge Gaps<br />

Reasearch <strong>in</strong>to the potential roles of legumes <strong>in</strong><br />

African farm<strong>in</strong>g systems has given much <strong>in</strong>sight<br />

<strong>in</strong>to the biophysical processes <strong>in</strong> which they are<br />

<strong>in</strong>volved <strong>and</strong> which affect them. In some cases this<br />

has been enough to develop technologies with a<br />

large benefit, <strong>and</strong> uptake by farmers has been<br />

substantial. As an example, cropp<strong>in</strong>g of soyabean<br />

on s<strong>and</strong>y soils <strong>in</strong> Zimbabwe has been highly<br />

productive when soil pH <strong>and</strong> phosphorus status are<br />

corrected (Mpepereki <strong>and</strong> Pompi, this volume).<br />

However, gaps still exist <strong>in</strong> our understan~<strong>in</strong>g of<br />

N2-fixation under field conditions, <strong>and</strong> of the effects<br />

of legume residues on the nutrition of subsequent<br />

crops <strong>and</strong> on the amount <strong>and</strong> effects of organic<br />

matter accumulation (Table 3).<br />

The Biggest Gap - Integration<br />

If all the gaps <strong>in</strong> our underst<strong>and</strong><strong>in</strong>g of biophysical<br />

processes were filled, systems could perhaps be<br />

designed with an optimal productivity <strong>and</strong> resource<br />

use efficiency. Ideally, legumes need to be targeted<br />

<strong>in</strong> space <strong>and</strong> time to contribute large amounts of N<br />

Table 3. Knowledge gaps related to the use of legumes <strong>for</strong><br />

improv<strong>in</strong>g soil fertility<br />

Role<br />

Knowledge gaps<br />

N2·fixation • Agroecological ,adaptation of legumes to soils <strong>and</strong> <br />

climate <br />

• Amounts of N2·fixed <strong>in</strong> different systems <strong>and</strong><br />

agroecologies<br />

Residue<br />

contribution to<br />

crop nutrition<br />

<strong>Soil</strong> organic<br />

matter<br />

accumulation<br />

Evidence <strong>for</strong> improved synchrony of nutrient release<br />

•<br />

<strong>and</strong> plant uptake <strong>in</strong> the field<br />

.Measurements of N leac~<strong>in</strong>g <strong>and</strong> gaseous losses<br />

• Provision of nutrients other than N <strong>in</strong> organic reo<br />

sources (e.g. cations, S)<br />

Effects of organic matter quality on long·term build<br />

•<br />

up of soil organic matter<br />

Trade·offs between short <strong>and</strong> long term benefits of<br />

• organic resources<br />

•<br />

Benefits of enhanced soil organic matter on water<br />

balances, soil erosion, nutrient USB efficiency etc.<br />

16<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


to the system <strong>in</strong> such a way that this contributes to<br />

both short- <strong>and</strong> long-term soil fertility. There is<br />

great potential <strong>for</strong> <strong>in</strong>tegrat<strong>in</strong>g livestock <strong>and</strong><br />

residue / manure management technologies to<br />

ma<strong>in</strong>ta<strong>in</strong> soil fertility, <strong>and</strong> <strong>in</strong> particular to make<br />

optimum use of m<strong>in</strong>eral fertilizers. Often it is the<br />

effect of a technology on weeds, pests, diseases or<br />

verm<strong>in</strong> which makes or breaks ' it. Problems with<br />

rats <strong>and</strong> snakes make many farmers <strong>in</strong> Lampung,<br />

Indonesia reluctant to use mulches, <strong>and</strong><br />

agro<strong>for</strong>estry legume fallows at Domboshawa were<br />

found to <strong>in</strong>crease cutworm populations, result<strong>in</strong>g <strong>in</strong><br />

almost complete loss of yield of a subsequent maize<br />

crop..Conversely, Mucuna pruriens can be highly<br />

effective at suppress<strong>in</strong>g weeds <strong>in</strong> some<br />

environments <strong>and</strong> this has aided its adoption as a<br />

nitrogen fix<strong>in</strong>g green manure (see Giller, 2001).<br />

Creat<strong>in</strong>g a farm system model <strong>in</strong>tegrat<strong>in</strong>g processes<br />

such as crop rotation, livestock production <strong>and</strong><br />

residue management is conceptually simple.<br />

Outputs from a crop model can provide <strong>in</strong>puts of<br />

crop residue to a decomposition model or stover as<br />

<strong>for</strong>age to a livestock production model <strong>and</strong> vice<br />

versa. Budgets can be calculated <strong>for</strong> calories, carbon,<br />

nutrients <strong>and</strong> money. Historically, agronomic<br />

model~ have been developed by a research group<br />

extendmg an exist<strong>in</strong>g model with<strong>in</strong> the orig<strong>in</strong>al<br />

software framework. However, developments <strong>in</strong><br />

software technology suggest an alternative<br />

approach that allows exist<strong>in</strong>g models to<br />

communicate with each other <strong>and</strong> be l<strong>in</strong>ked as<br />

submodels (Muetzelfeldt, 1995). In such a l<strong>in</strong>ked<br />

model, each part of the system such as a crop field<br />

or a dairy unit can be simulated by a submodel of<br />

any level of complexity, provided that st<strong>and</strong>ard<br />

<strong>in</strong>puts are required <strong>and</strong> st<strong>and</strong>ard outputs produced.<br />

Quantitative models of pests or weeds could also be<br />

l<strong>in</strong>ked. L<strong>in</strong>k<strong>in</strong>g of all of the various components of<br />

the farm system would thus allow the exploration<br />

of opportunities <strong>for</strong> comb<strong>in</strong>g different types of soil<br />

fertili.ty technologies to underst<strong>and</strong> how they can<br />

contnbute to overall improvement of productivity<br />

of the farm as a whole. Optimal farm systems could<br />

then be designed us<strong>in</strong>g techniques such as multiple<br />

goal l<strong>in</strong>ear programm<strong>in</strong>g.<br />

Such biophysically optimal systems might however<br />

rema<strong>in</strong> unadopted if they were poorly adapted to<br />

the specific needs <strong>and</strong> resources of farmers <strong>and</strong> <strong>in</strong><br />

particular the tim<strong>in</strong>g of labour availability. Labour<br />

requirements are notoriously difficult to assess,<br />

particularly <strong>for</strong> new technologies, <strong>and</strong><br />

quantific~t~on of labour supply is complicated by<br />

opportumtles <strong>for</strong> alternative employment off-farm<br />

<strong>and</strong> hired labour whether paid or unpaid. External<br />

<strong>and</strong> <strong>in</strong>ternal value judgements about the amount of<br />

time farmers spend work<strong>in</strong>g <strong>in</strong> the fields also make<br />

assessment difficult. Labour constra<strong>in</strong>ts are<br />

generally not <strong>in</strong>cluded <strong>in</strong> crop models, <strong>and</strong> labour is<br />

thus effectively <strong>and</strong> naively seen as a free resource.<br />

T~e nee~ <strong>for</strong> agro~cological models to be <strong>in</strong>tegrated<br />

w~th ~oclOeconomlc models has been identified by<br />

sCientists from both discipl<strong>in</strong>es.<br />

NUANCES (Nutrient Use <strong>in</strong> ANimal <strong>and</strong><br />

Cropp<strong>in</strong>g systems - Efficiency <strong>and</strong><br />

Scales) .<br />

NUANCES (Nutrient Use <strong>in</strong> ANimal <strong>and</strong> Cropp<strong>in</strong>g<br />

systems - Efficiency <strong>and</strong> Scales) is a conceptual<br />

framework <strong>for</strong> analysis of trade-offs <strong>in</strong> African<br />

smallholder 'farm<strong>in</strong>g systems. Heterogeneity is a<br />

key feature of most farms, as farmers tend to<br />

concentrate resources <strong>in</strong> small areas where soil<br />

fertility is ma<strong>in</strong>ta<strong>in</strong>ed while the majority of their<br />

fields are effecffvely m<strong>in</strong>ed of nutrients. The<br />

efficiency with which nutrient resources are utilized<br />

<strong>for</strong> crop production is likely to vary strongly<br />

between l<strong>and</strong> of different quality, as will the<br />

potential growth of different crops or <strong>in</strong>deed of the<br />

potentially soil-improv<strong>in</strong>g legumes. Document<strong>in</strong>g<br />

the extent of variable l<strong>and</strong> qualities with<strong>in</strong> farms is<br />

there<strong>for</strong>e an important step <strong>in</strong> underst<strong>and</strong><strong>in</strong>g the<br />

potential impact of different technologies <strong>for</strong> soil<br />

fertility improvement. The wealth or resource<br />

endowment of farm<strong>in</strong>g households also determ<strong>in</strong>es<br />

their capacity to <strong>in</strong>vest labour <strong>and</strong> other resources<br />

<strong>in</strong> agriculture as, <strong>for</strong> example, livestock ownership<br />

IS often regarded as a key <strong>in</strong>dicator of wealth <strong>in</strong><br />

rural Africa. Poorer farmers are often only able to<br />

earn <strong>in</strong>come off-farm by sell<strong>in</strong>g their labour to the<br />

wealthier farmers which then restricts the labour<br />

they can <strong>in</strong>vest <strong>in</strong> improv<strong>in</strong>g productivity of their<br />

own farms. Farm types will also be identified,<br />

which might correspond to different wealth classes<br />

or production systems, to capture the resource<br />

flows between farms (Figure 1). Resource flows are<br />

often mediated by livestock, <strong>and</strong> the framework<br />

thus <strong>in</strong>cludes livestock productivity <strong>and</strong> manure<br />

management.<br />

Resource flow mapp<strong>in</strong>g approaches have provided<br />

valuable <strong>in</strong>sights <strong>in</strong>to the allocation of crops · <strong>and</strong><br />

nutrient resources at various scales, from fields to<br />

farms, from regions to cont<strong>in</strong>ents. Assembl<strong>in</strong>g static<br />

balances <strong>for</strong> nutrients across different l<strong>and</strong> units<br />

does not however allow <strong>for</strong> test<strong>in</strong>g of future<br />

scenarios of how farms could be developed <strong>in</strong><br />

future. Flows which are difficult to measure, such as<br />

leach<strong>in</strong>g, are generally estimated us<strong>in</strong>g simple<br />

transfer functions, but these functions may not give<br />

an appropriate response to chang<strong>in</strong>g conditions.<br />

Biophysical models of various degrees of<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

17


management operations, such as<br />

crop rotation, mulch<strong>in</strong>g, livestock<br />

:,; movements or manure transfer.<br />

Transfers will be possible between<br />

fields with<strong>in</strong> one farm, between<br />

farms, <strong>and</strong> between the farms <strong>and</strong><br />

rangel<strong>and</strong>. Different methods <strong>for</strong><br />

comb<strong>in</strong><strong>in</strong>g labour <strong>and</strong> crop /<br />

livestock models are be<strong>in</strong>g<br />

considered; one idea is <strong>for</strong><br />

management activities to be made<br />

cont<strong>in</strong>gent on there be<strong>in</strong>g sufficient<br />

available labour. The modular<br />

structure will allow different<br />

versions of submodels to be<br />

swapped <strong>in</strong> or out depend<strong>in</strong>g on<br />

the detail required.<br />

Figure 1. Resource flows with<strong>in</strong> <strong>and</strong> between heterogeneous farms<br />

complexity are however available <strong>for</strong> different<br />

flows, <strong>and</strong> ideally an appropriately complex model<br />

can be chosen <strong>for</strong> each part of the system <strong>and</strong> l<strong>in</strong>ked<br />

together where necessary to allow an <strong>in</strong>tegral<br />

analysis.<br />

A software framework (Figure 2) is be<strong>in</strong>g developed<br />

to <strong>in</strong>tegrate exist<strong>in</strong>g crop, soiC livestock <strong>and</strong><br />

bioeconomic models <strong>in</strong>to a model of the whole<br />

system. This <strong>in</strong>tegrated model will be used to<br />

explore nutrient use efficiency <strong>and</strong> labour<br />

productivity, <strong>and</strong> tradeoffs between short <strong>and</strong> long<br />

term contributions to soil fertility, <strong>in</strong> Afric\U1<br />

farm<strong>in</strong>g systems.<br />

The NUANCES framework will allow the<br />

simulation of spatially <strong>and</strong> temporally complex<br />

The aim is to create a model that can<br />

assist <strong>in</strong> <strong>in</strong>tegrat<strong>in</strong>g the expert<br />

knowledge of farmers <strong>and</strong> of scientists from<br />

different discipl<strong>in</strong>es. The modular structure will<br />

allow the pr<strong>in</strong>ciple of 'just-sufficient-complexity' to<br />

be upheld, s<strong>in</strong>ce simple models can be used <strong>for</strong><br />

whichever processes are peripheral to the parts of<br />

the system be<strong>in</strong>g considered. As well as provid<strong>in</strong>g a<br />

framework <strong>for</strong> iterative experimentation <strong>and</strong><br />

modell<strong>in</strong>g, the model will shed light on which<br />

processes most affect costs <strong>and</strong> benefits <strong>and</strong> thus<br />

allow recommendations to be better targeted.<br />

NUANCES will lead to the iterative <strong>and</strong><br />

collaborative design of more productive, susta<strong>in</strong>able<br />

systems, l<strong>in</strong>k<strong>in</strong>g directly to policy at local artd<br />

greater scales, <strong>and</strong> will facilitate the development of<br />

further rules-of-thumb <strong>for</strong> farmers.<br />

Farm (x J ",~arm rtln~')<br />

LV Uves(Qck<br />

(x 3 sizes· callie,<br />

sh""p+go.~,<br />

poUltry)<br />

P'L f<strong>in</strong>ance<br />

<strong>and</strong> Labour<br />

L T L<strong>and</strong> TyP


Muetzelfeldt, R.1. 1995. A framework <strong>for</strong> a modular<br />

modell<strong>in</strong>g approach <strong>for</strong> agro<strong>for</strong>estry. Agro<strong>for</strong>estry<br />

Systems 30:223-234.<br />

Palm, C. A., N<strong>and</strong>wa, S. <strong>and</strong> Myers, R.J. 1997. Comb<strong>in</strong>ed<br />

use of organic <strong>and</strong> <strong>in</strong>organic nutrient<br />

sources <strong>for</strong> soil fertility ma<strong>in</strong>tenance <strong>and</strong> nutrient<br />

replenishment. In: Buresh, R.J. <strong>and</strong> Sanchez,<br />

P.A. (eds.) Replenish<strong>in</strong>g <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Africa. Vol.<br />

ASSA, CSSA, SSSA, Madison, Wiscons<strong>in</strong>, USA.<br />

pp.193-217.<br />

Sakala, W.O., Cadisch, G. <strong>and</strong> Giller, K.E. 2000. Interactions<br />

between residues of maize <strong>and</strong> pigeonpea<br />

<strong>and</strong> m<strong>in</strong>eral N fertilizers dur<strong>in</strong>g decomposition<br />

<strong>and</strong> N m<strong>in</strong>eralization. <strong>Soil</strong> Biology <strong>and</strong><br />

Biochemistry 32:679-688.<br />

Sakala, W.o., Cadisch, G. <strong>and</strong> Giller, K.E. 2002.<br />

Intercropp<strong>in</strong>g of maize <strong>and</strong> pigeon pea <strong>in</strong> Malawi:<br />

gra<strong>in</strong> <strong>and</strong> biomass yields, N2-fixation <strong>in</strong><br />

pigeonpea, N · balances <strong>and</strong> residual effects on<br />

succeed<strong>in</strong>g crops. Plant <strong>and</strong> <strong>Soil</strong>, <strong>in</strong> press.<br />

Wadd<strong>in</strong>gton, S.R., Gilbert, R. <strong>and</strong> Giller, K.E. 1998.<br />

"Best Bet" technologies <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g nutrient<br />

supply <strong>for</strong> maize on smallholder farms. In: Wadd<strong>in</strong>gton,<br />

S.R., Murwira, H.K., Kumwenda, J.D.T.,<br />

Hikwa, D. <strong>and</strong> Tagwira, F. (eds.) <strong>Soil</strong> <strong>Fertility</strong> Research<br />

<strong>for</strong> Maize-based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi<br />

<strong>and</strong> Zimbabwe. <strong>Soil</strong>FertNet/CIMMYT-Zimbabwe,<br />

Harare, Zimbabwe,pp. 245-250:<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 19


PATHWAYS FOR FITTING LEGUMES INTO EAST AFRICAN HIGHLAND<br />

FARMING SYSTEMS: A DUAL APPROACH<br />

TILAHUN AMEDE<br />

African Highl<strong>and</strong>s Initiative (AHI) / Tropical <strong>Soil</strong>s Biology <strong>and</strong> <strong>Fertility</strong> Institute of CIA T,<br />

Code 1110, P. O. Box 1412, Addis Ababa, Ethiopia, T.Amede@CGIAR.ORG<br />

Abstract<br />

Food legumes have rema<strong>in</strong>ed important components of various farm<strong>in</strong>g systems <strong>in</strong> Eastern Africa, but attempts to <strong>in</strong>tegrate<br />

fodder legumes <strong>and</strong> legume cover crops (Lees) have been unsuccessful. Despite recognis<strong>in</strong>g their benefits as soil<br />

fertility restorers <strong>and</strong> providers of high quality fodder, farmers rema<strong>in</strong>ed reluctant to <strong>in</strong>tegrate legumes ma<strong>in</strong>ly due to<br />

communitylfanner- specific socio-economic determ<strong>in</strong>ants. This paper is based on the experiences of the African Highl<strong>and</strong>s<br />

Initiative that has worked to <strong>in</strong>tegrate legumes <strong>in</strong> Areka <strong>in</strong> "the Ethiopian Highl<strong>and</strong>s. The work has tried to underst<strong>and</strong><br />

the processes of <strong>in</strong>tegration of legumes that have different uses, through participatory research. Areka has an elevation<br />

of 1990 masl, <strong>and</strong> an annual ra<strong>in</strong>fall of 1300 mm. The area is characterised by mixed subsistence fann<strong>in</strong>g systems,<br />

poor access to resources, <strong>in</strong>tensive cropp<strong>in</strong>g, l<strong>and</strong> shortage <strong>and</strong> soil degradation . A participatory evaluation of the<br />

agronomic per<strong>for</strong>mance <strong>and</strong> adaptability of eight legumes was conducted <strong>for</strong> three consecutive years dur<strong>in</strong>g the ma<strong>in</strong><br />

<strong>and</strong> short grow<strong>in</strong>g seasons, accompanied by extensive data collection on socio-economic determ<strong>in</strong>ants. Participatory experiel1ces<br />

showed that the selection criterion of fanners went far beyond biomass production. The major biophysical<br />

traits are per<strong>for</strong>mance of the species under a specific agroecology (characterised by yield, disease <strong>and</strong> pest resistance),<br />

effect on soil fertility <strong>and</strong> the succeed<strong>in</strong>g crop <strong>and</strong> its compatibility with<strong>in</strong> the exist<strong>in</strong>g cropp<strong>in</strong>g system. Specifically,<br />

farmers identified a firm root system, early soil cover, biomass yield, decomposition rate, soil moisture conservation,<br />

drought resistance <strong>and</strong> feed value as important criteria. The total sum of farmers' biophysical criteria showed that Mucuna<br />

followed by Crotalaria should be the best fitt<strong>in</strong>g species, but fanners f<strong>in</strong>ally decided on Vetch, the low yielder, due<br />

to its fast growth <strong>and</strong> high feed value. The fanners' priority was <strong>for</strong> livestock feed rather than soil fertility. The f<strong>in</strong>al decision<br />

of the farmers on whether <strong>and</strong> where to <strong>in</strong>tegrate a food legume <strong>in</strong>to their temporal <strong>and</strong> spatial niches <strong>in</strong> the system<br />

is dictated by their food habits, while <strong>for</strong> a non-food legume it depended on l<strong>and</strong> productivity, fann size, l<strong>and</strong> ownership,<br />

access to markets <strong>and</strong> a need <strong>for</strong> livestock feed. The potential adopters of Lees <strong>and</strong> <strong>for</strong>age legumes were less than<br />

7% of the fanners, while 91 % of the fanners <strong>in</strong>tegrated new cultivars of food legumes. A strategic comb<strong>in</strong>ation of biophysical<br />

<strong>and</strong> socio-economic determ<strong>in</strong>ants <strong>in</strong> the <strong>for</strong>m of decision guides was suggested to facilitate the <strong>in</strong>tegration of<br />

legumes <strong>in</strong>to farm<strong>in</strong>g communities, <strong>and</strong> help development agencies <strong>and</strong> researchers to easily identify potential adopters,<br />

learn about thl.:; criteria of choice <strong>and</strong> suggest an improved system of management. It may also help them to identify<br />

niches or create niches, modify the exist<strong>in</strong>g systems <strong>and</strong> promote the technology <strong>for</strong> wider use.<br />

Key words: <strong>Legumes</strong>, subsistence fanners, selection criteria, <strong>in</strong>tegration, decision guides<br />

Introduction<br />

<strong>Legumes</strong> playa pivotal role <strong>in</strong> nutrient cycl<strong>in</strong>g <strong>and</strong><br />

nutrient enrichment <strong>in</strong> many subsistence-farm<strong>in</strong>g<br />

systems <strong>in</strong> Africa. They are considered drivers of<br />

susta<strong>in</strong>able farm<strong>in</strong>g because they <strong>in</strong>tensify the productivity<br />

<strong>and</strong> <strong>in</strong>teraction of soit crop, livestock,<br />

people <strong>and</strong> other components. In most parts of Africa,<br />

where livestock products are unaf<strong>for</strong>dable, legumes<br />

(especially bean, cowpea, pea, chickpea <strong>and</strong><br />

faba bean) are the major sources of prote<strong>in</strong>. The<br />

maize-based, banana-based <strong>and</strong> enset-based systems<br />

are supported ma<strong>in</strong>ly by bean <strong>and</strong> cowpea as<br />

major prote<strong>in</strong> sources. Legume fodder, as crop residues<br />

or hay, is also a high value feed <strong>for</strong> milk<strong>in</strong>g<br />

cows, calves <strong>and</strong> draught oxen, especially dur<strong>in</strong>g<br />

the dry season <strong>and</strong> <strong>in</strong> times of high energy dem<strong>and</strong>.<br />

<strong>Legumes</strong> <strong>in</strong>crease soil fertility through various<br />

mechanisms. High quality legume fodder produces<br />

a high quality manure that could improve soil fertility.<br />

<strong>Legumes</strong> can also boost the nitrogen stock <strong>in</strong> the<br />

soil through nitrogen fixation <strong>and</strong> nutrient release<br />

from their organic residues. Some legumes also release<br />

root exudates that may <strong>in</strong>crease the availability<br />

of unavailable/fixed nutrients, e.g. phosphorus,<br />

through chang<strong>in</strong>g the rhizosphere pH <strong>and</strong> <strong>in</strong>creased<br />

activity by rhizosphere biota.<br />

The <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest with organic farm<strong>in</strong>g <strong>in</strong> the<br />

developed world <strong>and</strong> the challenge to decrease<br />

costs of <strong>in</strong>organic <strong>in</strong>puts to ma<strong>in</strong>ta<strong>in</strong> soil fertility <strong>in</strong><br />

the develop<strong>in</strong>g world has focussed the attention of<br />

researchers <strong>and</strong> policy makers towards legume<br />

technology. Organic <strong>in</strong>puts from legumes could <strong>in</strong>crease<br />

crop yield through improved nutrient supply/<br />

availability <strong>and</strong> / or improved soil-water hold-<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> tor <strong>Soil</strong> Fllrtility <strong>in</strong> Southern Africa 21


<strong>in</strong>g capacity. <strong>Legumes</strong> offer other benefits that <strong>in</strong>clude<br />

provid<strong>in</strong>g cover to reduce soil erosion, ma<strong>in</strong>tenance<br />

<strong>and</strong> improvement of soil physical properties,<br />

<strong>in</strong>creas<strong>in</strong>g soil organic matter/ cation exchange<br />

capacity, microbial activity <strong>and</strong> reduction. of soil<br />

temperature (Tarawali et al. 1987; Abayomi et al.<br />

2001) <strong>and</strong> weed suppression (Versteeg et al. 1998).<br />

There are several studies <strong>in</strong> Africa that showed<br />

positive effects of Legume Cover Crops (LCCs) on<br />

subsequent crops (Abayomi et al. 2001; Fishier <strong>and</strong><br />

Wortmann, 1999; Gachene et al. 1999; Wortmann et<br />

al. 1994). Studies <strong>in</strong> Ug<strong>and</strong>a with Crotalar<strong>in</strong><br />

(Wortmann et al. 1994; Fishier <strong>and</strong> Wortmann,<br />

1999), <strong>and</strong> <strong>in</strong> Ben<strong>in</strong> with Mucuna (Versteeg et al.<br />

1998) showed that maize grown follow<strong>in</strong>g LCCs<br />

produced significantly higher yield than those without<br />

green manures, ma<strong>in</strong>ly through benefits of<br />

higher amounts of N<strong>and</strong> P <strong>and</strong> partly through nutrient<br />

pump<strong>in</strong>g from deeper horizons. LCCs could<br />

also decrease nutrient losses by trapp<strong>in</strong>g a huge<br />

amount of nitrate that could be lost by leach<strong>in</strong>g or<br />

denitrification if heavy pre-season ra<strong>in</strong>storms occur<br />

(Giller, 2001). However, the benefits vary with the<br />

legume species, their management, soil fertility<br />

status, the climate <strong>and</strong> the market value of the preced<strong>in</strong>g<br />

crop. In some cases, <strong>in</strong>tegration of legumes<br />

<strong>for</strong> green manur<strong>in</strong>g was not profitable when used<br />

just to fertilize cereals. Participatory experiments on<br />

Crotalaria <strong>in</strong> Ug<strong>and</strong>a showed that a green manure<br />

did not compensate <strong>for</strong> the time it occupied <strong>in</strong> the<br />

field, although there was an <strong>in</strong>crease <strong>in</strong> maize yield<br />

as an after effect (Fishier <strong>and</strong> Wortmann, 1999). In<br />

general, the type of LCC species desirable <strong>for</strong> green<br />

manur<strong>in</strong>g depends on the assigned use. For weed<br />

suppression or erosion control, a species capable of<br />

rapid development of a dense soil cover is required,<br />

but if the major aim is to <strong>in</strong>tercrop with a cereal,<br />

then species that grow slowly <strong>and</strong> erect are more<br />

suitable (Giller, 2001).<br />

Despite these positive benefits, there has been relatively<br />

little success <strong>in</strong> achiev<strong>in</strong>g effective adoption<br />

of soil-improv<strong>in</strong>g cover <strong>and</strong> <strong>for</strong>age legumes <strong>in</strong> Subsaharan<br />

Africa (Sumberg, 2002, Giller, 2001, Thomas<br />

<strong>and</strong> Sumberg, 1995). This could be partly because of<br />

the absence of methodologies <strong>and</strong> tools that extensionists<br />

<strong>and</strong> community mobilizers can use to facilitate<br />

the <strong>in</strong>tegration of legumes. In<strong>for</strong>mation on legume<br />

technology is diverse <strong>and</strong> it is accumulated <strong>in</strong><br />

patches. There is, there<strong>for</strong>e, a need to assemble <strong>and</strong><br />

organise the available <strong>in</strong><strong>for</strong>mation to identify gaps<br />

<strong>and</strong> synthesize the data to develop a decision support<br />

system <strong>for</strong> farmers, researchers <strong>and</strong> policy<br />

makers to select options, niches <strong>and</strong> systems.<br />

The objective of this paper is to explore experiences<br />

with the <strong>in</strong>tegration of legumes <strong>in</strong> subsistence farm<strong>in</strong>g<br />

systems of the East African Highl<strong>and</strong>s, identify<br />

the biophysical <strong>and</strong> socio-economic determ<strong>in</strong>ants<br />

affect<strong>in</strong>g their adoption <strong>and</strong> suggest how those vari-.<br />

ous determ<strong>in</strong>ants could be strategically comb<strong>in</strong>ed,<br />

processed <strong>and</strong> used to develop decision guides.<br />

<strong>Legumes</strong> <strong>in</strong> Various Farm<strong>in</strong>g Systems<br />

Although legumes are important components of<br />

various farm<strong>in</strong>g systems <strong>and</strong> farmers acknowledge<br />

the positive contributions of legumes, the amount of<br />

l<strong>and</strong> allocated to grow them as food, fodder or<br />

cover crops is relatively small. In the upper highl<strong>and</strong>s<br />

of Eastern Africa above 2700 masI, <strong>in</strong>clud<strong>in</strong>g<br />

the Ethiopian highl<strong>and</strong>s, there are few legumes <strong>in</strong><br />

most farm<strong>in</strong>g systems. Lentils are found as a food<br />

legume, <strong>and</strong> natural medics <strong>and</strong> trifolium as feed<br />

legumes, <strong>in</strong> proportions of < 2%. In the midhighl<strong>and</strong>s<br />

of East Africa (1000-2200 masl), both <strong>in</strong><br />

the cereal-based <strong>and</strong> perennial-based systems, the<br />

proportion of legumes is higher (about 20-25 %),<br />

grown as <strong>in</strong>tercrops, <strong>in</strong>termediate <strong>and</strong> break crops.<br />

Without the contribution of legumes <strong>in</strong> restor<strong>in</strong>g<br />

soil fertility <strong>and</strong> break<strong>in</strong>g pest <strong>in</strong>cidence cycles <strong>for</strong><br />

hundreds of years <strong>in</strong> this <strong>in</strong>tensively cropped agroecology,<br />

the production systems may have collapsed<br />

long ago. The proportion of the legumes decreases<br />

<strong>in</strong> the low elevations to less than 10%, because<br />

those regions are commonly too droughtprone<br />

to grow most of the traditional legume species.<br />

In the perennial-based farm<strong>in</strong>g systems of Eastern<br />

Africa, the only dom<strong>in</strong>ant legume <strong>in</strong> the cropp<strong>in</strong>g<br />

system is common bean, <strong>in</strong>tercropped with maize or<br />

grown sole as a second crop. However, the cultivation<br />

of beans may contribu te little to soil fertili ty improvement<br />

(Eyasu, 2002) ma<strong>in</strong>ly because 1) the crop<br />

is harvested by uproot<strong>in</strong>g the whole plant as it<br />

needs to be stored by hang<strong>in</strong>g bundles on a trellis<br />

<strong>and</strong> kept <strong>in</strong>doors to avoid sprout<strong>in</strong>g; 2) no residue<br />

is returned to the soil as pods <strong>and</strong> tops are fed to<br />

livestock while the stalk is used as feed or cook<strong>in</strong>g<br />

fuel <strong>and</strong> 3) beans have the least N-fix<strong>in</strong>g potential,<br />

particularly <strong>in</strong> low pH soil with low P availability.<br />

Why is Adoption of Legume Technology.<br />

so Slow?<br />

Thus the proportion of legumes, be it food, feed or<br />

cover crops, to the various systems is very low.<br />

There are multiple factors that have affected the<br />

adoption <strong>and</strong> dissem<strong>in</strong>ation of legumes, which can<br />

be nested with<strong>in</strong> <strong>and</strong> def<strong>in</strong>ed by three contextual<br />

factors i) socio-cultural, economic <strong>and</strong> political ii)<br />

agroecological <strong>and</strong> iii) management at the farm<br />

level (Sumberg, 2002).<br />

22<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


From the food legumes perspective, three factors<br />

dictate the decision of farmers to grow or not grow<br />

legumes. First, <strong>in</strong> African subsistence farm<strong>in</strong>g, the<br />

food habit dictates the amount of l<strong>and</strong> allocated <strong>for</strong><br />

various crops <strong>and</strong> the type <strong>and</strong> amount of <strong>in</strong>put <strong>in</strong>vested<br />

per crop. S<strong>in</strong>ce the food habit of most of the<br />

East African Highl<strong>and</strong>s is cereal-dom<strong>in</strong>ated, the<br />

proportion of cereal to legume consumption <strong>in</strong> the<br />

households of East Africa is about 10 to 1. For a<br />

household with five members <strong>in</strong> Kenya, on average<br />

about 500 kg of maize <strong>and</strong> 100 kg of beans is required.<br />

Similarly, <strong>for</strong> the same household size <strong>in</strong> the<br />

Ethiopian Highl<strong>and</strong>s 600 kg of barley <strong>and</strong> 70 kg of<br />

pea or faba bean is required. Secondly, the fertility<br />

status of the l<strong>and</strong> <strong>and</strong> the <strong>in</strong>cidence of pests <strong>and</strong> diseases<br />

dictate the frequency of legumes <strong>in</strong> the cropp<strong>in</strong>g<br />

systems. The proportion of legumes usually<br />

<strong>in</strong>creases with decl<strong>in</strong>e <strong>in</strong> soil productivity <strong>and</strong> <strong>in</strong>creased<br />

<strong>in</strong>cidence of pests <strong>and</strong> diseases. Thirdly, the<br />

market value of crops may dictate how much l<strong>and</strong><br />

is allocated <strong>for</strong> legumes. In a few cases, such as the<br />

Rift-valley of Ethiopia with beans, farmers <strong>in</strong>vest<br />

l<strong>and</strong> <strong>and</strong> labour to grow legumes <strong>for</strong> market. They<br />

grow legumes <strong>for</strong> the market <strong>and</strong> buy cereals <strong>for</strong><br />

consumption at home, as the price of legumes is<br />

relatively higher than that of the cereals.<br />

The <strong>in</strong>tegration of feed legumes <strong>in</strong>to African farm<strong>in</strong>g<br />

systems has also rema<strong>in</strong>ed low despite cont<strong>in</strong>uous<br />

research ef<strong>for</strong>ts s<strong>in</strong>ce the 1930s. Sumberg (2002)<br />

identified several major determ<strong>in</strong>ants that affected<br />

<strong>in</strong>tegration. There is a limited tradition to grow<br />

feed legumes <strong>in</strong> the region, hence the genetic pool<br />

of legumes available <strong>for</strong> growers is limited to a few<br />

types of recently <strong>in</strong>troduced germplasm. There is<br />

limited knowledge on legume management <strong>and</strong> the<br />

process<strong>in</strong>g <strong>and</strong> utilization of legumes to make market-orientated<br />

products. As most of those legumes<br />

orig<strong>in</strong>ated <strong>in</strong> the relatively favourable climates of<br />

the Andes, it became also challeng<strong>in</strong>g to identify<br />

high yield<strong>in</strong>g, drought-resistant species to <strong>in</strong>tegrate<br />

<strong>in</strong>to the drought-prone environments of Africa.<br />

Most importantly, because legume technology was<br />

considered gender-neutral <strong>and</strong> wealth-neutral,<br />

socio-economic dimensions were not considered<br />

dur<strong>in</strong>g research <strong>and</strong> extension.<br />

In recent years, there has been <strong>in</strong>creased research<br />

<strong>in</strong>terest across the region on the <strong>in</strong>tegration of legume<br />

cover crops (Lees) <strong>in</strong>to the farm<strong>in</strong>g systems,<br />

to help improve <strong>and</strong> susta<strong>in</strong> soil fertility. Most of<br />

the legume cover crops are known to be ideal <strong>for</strong><br />

improv<strong>in</strong>g soil fertility, as they are commonly fast<br />

grow<strong>in</strong>g, Nitrogen-fix<strong>in</strong>g, efficient <strong>in</strong> captur<strong>in</strong>g <strong>and</strong><br />

recycl<strong>in</strong>g nutrients <strong>and</strong> decompose easily (Jama et<br />

al. 1998). The problem of <strong>in</strong>tegration, however, is<br />

even worse <strong>for</strong> Lees. This is first because the opportunity<br />

cost is much higher than the immediate<br />

benefits of Lees. Second, most Lees are sensitive<br />

to unfavourable environments (water stress <strong>and</strong> nutrient<br />

deficiency.), <strong>and</strong> very few of them grow well<br />

<strong>in</strong> degraded corners of the farm where farmers want<br />

them to grow. Third, farmers would like to <strong>in</strong>tegrate<br />

legumes that have multiple benefits, i.e. <strong>for</strong> food,<br />

feed <strong>and</strong> soil fertility, while the Lees usually address<br />

one purpose, i.e. soil fertility ma<strong>in</strong>tenance/<br />

improvement through the <strong>in</strong>corporation of the<br />

green manure <strong>in</strong>to the soil.<br />

Dual Strategies <strong>for</strong> Integration of<br />

legumes<br />

There are two possibilities to facilitate the <strong>in</strong>tegration<br />

of legumes <strong>in</strong>to East African Highl<strong>and</strong> farm<strong>in</strong>g<br />

systems. Design<strong>in</strong>g a new production system with a<br />

larger legume component is one option. This could<br />

be an ideal strategy to <strong>in</strong>tegrate legumes, as the prod<br />

uction system will be geared towards the consumption<br />

of legumes as major production <strong>in</strong>puts.<br />

For example, a policy that prohibits free graz<strong>in</strong>g<br />

<strong>and</strong> free herd movements <strong>in</strong> the Ethiopian Highl<strong>and</strong>s,<br />

where free graz<strong>in</strong>g is currently practised, <strong>and</strong><br />

the <strong>in</strong>troduction of fast grow<strong>in</strong>g feed legumes <strong>for</strong><br />

cut <strong>and</strong> carry, would enhance the consumption of<br />

legume technology significantly. Promiscuous legumes,<br />

which are high yield<strong>in</strong>g <strong>in</strong> both gra<strong>in</strong> <strong>and</strong><br />

straw, are obvious choices if the system should provide<br />

high quality manure from few animals <strong>and</strong> <strong>in</strong>creased<br />

household <strong>in</strong>come <strong>and</strong> food. The second<br />

option is to underst<strong>and</strong> the various farm<strong>in</strong>g systems,<br />

identify the exist<strong>in</strong>g temporal <strong>and</strong> spatial<br />

niches, creat<strong>in</strong>g new potential. niches us<strong>in</strong>g the exist<strong>in</strong>g<br />

resources (of l<strong>and</strong>, water, nutrients, solar radiation<br />

<strong>and</strong> human resources) <strong>and</strong> then facilitate the<br />

<strong>in</strong>tegration of legumes by deliver<strong>in</strong>g options <strong>and</strong><br />

acknowledg<strong>in</strong>g diversities.<br />

Here I present a case study that justifies the second<br />

strategy; that of fitt<strong>in</strong>g the legume <strong>in</strong>to exist<strong>in</strong>g systems<br />

by identify<strong>in</strong>g the spatial <strong>and</strong> temporal niches<br />

of the exist<strong>in</strong>g system.<br />

Experiences of AHI with Integration of<br />

legumes <strong>in</strong> the Ethiopian Highl<strong>and</strong>s<br />

Characteristics of the site<br />

The research was conducted at Areka, 430 km<br />

south-west of Addis Ababa, about 1950 masl, representative<br />

of the mid highl<strong>and</strong>s, with an average<br />

l<strong>and</strong> hold<strong>in</strong>g of less than 0.5 ha. The farm<strong>in</strong>g system<br />

is a perennial highly <strong>in</strong>tensive Enset-based system,<br />

with a possibility of up to three crops per year. Due<br />

to a very high human population pressure (>450<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

23


people/km2), l<strong>and</strong> hold<strong>in</strong>gs are smaller, with fewer<br />

livestock than <strong>in</strong> the upper highl<strong>and</strong>s. The average<br />

livestock hold<strong>in</strong>g is less than 1.5 cattle per household.<br />

Only 15% of the farmers own oxen. Shar<strong>in</strong>g or<br />

hir<strong>in</strong>g of oxen <strong>for</strong> plough<strong>in</strong>g <strong>and</strong> other farm operations<br />

is a traditional practice. Unlike the upper highl<strong>and</strong>s,<br />

where communal l<strong>and</strong> natural pasture <strong>and</strong><br />

free graz<strong>in</strong>g area is available, only crop residues,<br />

weeds <strong>and</strong> aftermath graz<strong>in</strong>g are the predom<strong>in</strong>ant<br />

available feed sources <strong>in</strong> Areka. The cropp<strong>in</strong>g system<br />

is highly diversified. Different <strong>for</strong>age crop.s are<br />

grown around the home garden <strong>in</strong> association with<br />

coffee, Enset (Enset ventricosum) <strong>and</strong> fruit trees.<br />

Crop-livestock <strong>in</strong>tegration is strong; farmers use<br />

crop residues as a feed source, but also return the<br />

manure to the soil, applied ma<strong>in</strong>ly around the home<br />

garden. The farmers divided their l<strong>and</strong> <strong>in</strong>to several<br />

plots <strong>for</strong> various purposes. Trees are planted on valley<br />

bottoms, slopp<strong>in</strong>g areas, farm boundaries, <strong>in</strong><br />

front of the house <strong>and</strong> <strong>in</strong> gully areas. Graz<strong>in</strong>g l<strong>and</strong><br />

(titter<strong>in</strong>g) is found <strong>in</strong> front of the house. Some plots<br />

are left <strong>for</strong> cut <strong>and</strong> carry <strong>for</strong> livestock feed<strong>in</strong>g. These<br />

plots differ <strong>in</strong> soil fertility status, with a general decl<strong>in</strong>e<br />

<strong>in</strong> soil fertility <strong>for</strong> those plots further from<br />

houses.<br />

Determ<strong>in</strong>ants of Integration of <strong>Legumes</strong><br />

<strong>in</strong>to Systems<br />

1. Biophysical Factors Dictat<strong>in</strong>g Integration of<br />

<strong>Legumes</strong><br />

Farmers have multiple criteria to decide whether a<br />

technology would be appropriate <strong>for</strong> their circumstances,<br />

<strong>and</strong> whether to <strong>in</strong>tegrate those tedmologies<br />

<strong>in</strong>to their farm<strong>in</strong>g practices. Although farmers were<br />

keen to learn about legume technologies <strong>in</strong> a farmers'<br />

field school <strong>and</strong> at on-farm test<strong>in</strong>g sites, they<br />

dem<strong>and</strong>ed time to test them not only under optimum<br />

research conditions, but also under their own<br />

real sub-optimal conditions. Experiences from this<br />

site showed that <strong>for</strong> a legume to be selected by endusers,<br />

it should possess the follow<strong>in</strong>g biophysical<br />

traits (Amede <strong>and</strong> Kirkby, 2002):<br />

a) The biological productivity ofa legume <strong>in</strong> a<br />

given agroecology is the pr<strong>in</strong>cipal factor <strong>for</strong> a<br />

legume to be considered a potential c<strong>and</strong>idate<br />

to be <strong>in</strong>tegrated <strong>in</strong>to the exist<strong>in</strong>g system. The<br />

most favoured c<strong>and</strong>idate is the one with relatively<br />

high gra<strong>in</strong> <strong>and</strong> biomass yield under variable<br />

agro-ecological conditions (of precipitation,<br />

temperature, soil fertility <strong>and</strong> variable management).<br />

The other criterion was that when farmers<br />

tested legumes <strong>for</strong> restoration of soil fertility<br />

they assume that legumes should improve the<br />

fertility status of the degraded comers of their<br />

farm. There<strong>for</strong>e, <strong>for</strong> a legume cover crop to be<br />

selected <strong>for</strong> a short term fallow at Areka, the<br />

major biophysical criterion was whether a species<br />

can produce high biomass on degraded corner<br />

plots of the farm. Farmers were not <strong>in</strong>terested<br />

to grow the LCCs <strong>in</strong> the fertile comers as<br />

they were allocated <strong>for</strong> food crops. The l<strong>and</strong><br />

they wanted improved are the border strips, the<br />

ab<strong>and</strong>oned comers, steep slopes <strong>and</strong> the barren<br />

l<strong>and</strong> that failed to produce a reasonable crop<br />

yield. But most of the LCCs with a strong history<br />

<strong>in</strong> improv<strong>in</strong>g soil fertility need relatively<br />

fertile soils to establish, produce a large amount<br />

of biomass <strong>and</strong> to fix atmospheric nitrogen.<br />

That is the reason why farmers selected Crotalaria<br />

<strong>for</strong> improv<strong>in</strong>g degraded farml<strong>and</strong>s over Mucuna,<br />

Canavalia, Tephrosia <strong>and</strong> vetch (Amede <strong>and</strong><br />

Kirkby, 2002). On <strong>in</strong>dividual farmer's fields,<br />

Crotalaria was the best per<strong>for</strong>m<strong>in</strong>g species regardless<br />

of soil fertility. Similar results were reported<br />

from Ug<strong>and</strong>a (Wortmann et ai. 1994). On<br />

the other h<strong>and</strong>, vetch <strong>and</strong> mucuna were the best<br />

per<strong>for</strong>m<strong>in</strong>g <strong>in</strong> fertile comers of the farms. This<br />

did not agree with the f<strong>in</strong>d<strong>in</strong>gs of Versteeg et a1.<br />

(1998), which <strong>in</strong>dicated that mucuna per<strong>for</strong>med<br />

better than other green manures (<strong>in</strong>clud<strong>in</strong>g crotalaria)<br />

to help recover completely degraded<br />

soils. When those seven species (crotalaria, mucuna,<br />

canavalia, tephrosia, vetch, stylosanthus,<br />

<strong>and</strong> trifolium) were planted <strong>in</strong> the driest part of<br />

the season, crotalaria followed by mucuna, per<strong>for</strong>med<br />

best <strong>and</strong> produced up to 2.9 t ha- 1 of dry<br />

matter with<strong>in</strong> three months.<br />

b) The effect of <strong>in</strong>corporation of LCCs on the gra<strong>in</strong><br />

yield of the follow<strong>in</strong>g crop is one other very important<br />

criterion. Application of high biomass<br />

of LCCs did not necessarily guarantee high<br />

yield of the follow<strong>in</strong>g food crop, as the quality<br />

of the organic material dictates whether nutrients<br />

accumulated <strong>in</strong> the LCCs could be released<br />

a t the required time <strong>and</strong> <strong>in</strong> the required<br />

amount. Participatory experiments on the aftereffect<br />

of LCCs <strong>in</strong> Ug<strong>and</strong>a recorded good <strong>in</strong>creases<br />

<strong>in</strong> crop yields, although the green manure<br />

did not compensate <strong>for</strong> the time it occupied<br />

the l<strong>and</strong> over a three-crop cycle (Fis!"'ler<br />

<strong>and</strong> Wortmann, 1999). Moreover, how large the<br />

benefit a green manure delivers <strong>for</strong> growth of<br />

the follow<strong>in</strong>g crop depends on the <strong>in</strong>itial fertility<br />

of the soil <strong>and</strong> the amount of nutrients that<br />

the LCC contributes (Giller, 2001). In Areka,<br />

Tephrosia produced about double the dry matter<br />

of vetch, but maize yield under vetch was significantly<br />

higher than under Tephrosia (Amede<br />

<strong>and</strong> Kirkby, 2002), which could be expla<strong>in</strong>ed by<br />

quality differences <strong>and</strong> synchrony of the dem<strong>and</strong><br />

<strong>and</strong> supply of nutrients. The most important<br />

organic quality <strong>in</strong>dicators are nutrient content,<br />

lign<strong>in</strong> content <strong>and</strong> polyphenol content of<br />

24<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


the respective organic resources (Palm et al.<br />

1997).<br />

c) S<strong>in</strong>ce the opportunity cost of grow<strong>in</strong>g an Lee at<br />

a time when other food crops could be grown is<br />

very high, those fast-grow<strong>in</strong>g early matur<strong>in</strong>g legumes<br />

that can grow us<strong>in</strong>g residual moisture<br />

should be best fitt<strong>in</strong>g. In this case, farmers were<br />

able to <strong>in</strong>tegrate them as <strong>in</strong>tercrops, relay crops,<br />

<strong>and</strong> short-term fallows once the major crop is harvested.<br />

d) Those legumes that did not strongly compete<br />

with the companion food crop <strong>for</strong> water, nutrients<br />

<strong>and</strong> light when grown <strong>in</strong> comb<strong>in</strong>ation with<br />

foo


ments. It would help researchers to identify the major<br />

factors of non-adoption <strong>and</strong> prioritise them <strong>in</strong><br />

relation to socio-economic categories.<br />

2. Socio-economic Factors Dictat<strong>in</strong>g Integration of<br />

<strong>Legumes</strong><br />

After farmers went through participatory research<br />

processes <strong>for</strong> many seasons, <strong>and</strong> tested favourite<br />

legumes <strong>in</strong> their own tie Ids, they were asked to suggest<br />

the most important socio-economic criteria that<br />

dictated their selection of one or other legume species<br />

to be <strong>in</strong>tegrated <strong>in</strong>to their systems.<br />

Results from <strong>in</strong><strong>for</strong>mal monitor<strong>in</strong>g of farmers' activities<br />

accompanied by structured questions showed<br />

21 different factors that affect the <strong>in</strong>tegration of legumes<br />

<strong>for</strong> different purposes. When farmers were<br />

asked to prioritise the most important factors that<br />

affect adoption <strong>and</strong> <strong>in</strong>tegration of legumes, farmers<br />

mentioned a) farm size, b) suitability of the species<br />

<strong>for</strong> <strong>in</strong>tercropp<strong>in</strong>g with food legumes, c) productivity<br />

of their l<strong>and</strong>, d) suitability <strong>for</strong> livestock feed, e)<br />

marketability of the product, f) toxicity of the pod to<br />

children <strong>and</strong> animals, g) who manages the farm<br />

(self or share cropp<strong>in</strong>g), h) length of time needed to<br />

grow the species, <strong>and</strong> i) risk associated with grow<strong>in</strong>g<br />

LCCs -- particularly the <strong>in</strong>troduction of pests<br />

<strong>and</strong> diseases. None of the farmers mentioned labour<br />

dem<strong>and</strong> as an important criterion. Earlier work also<br />

suggested that farm size <strong>and</strong> l<strong>and</strong> ownership affect<br />

the <strong>in</strong>tegration of LCCs <strong>in</strong>to smallholder farms<br />

(Wortmann <strong>and</strong> Kirungu, 1999). After compar<strong>in</strong>g<br />

those factors <strong>in</strong> a pair-wise analysis, five major <strong>in</strong>dicators<br />

of different hierarchy were identified.<br />

1) Degree of l<strong>and</strong> productivity: farmers <strong>in</strong><br />

Gummo associated l<strong>and</strong> productivity ma<strong>in</strong>ly<br />

with the fertility status of the soil <strong>and</strong> distance<br />

of the plot from the homestead. The homestead<br />

field is commonly fertile due to a cont<strong>in</strong>ual supply<br />

of organic resources. Farmers did not apply<br />

<strong>in</strong>organic fertiliser <strong>in</strong> this part of the" farm. They<br />

rema<strong>in</strong>ed reluctant to_ allocate a portion of that<br />

l<strong>and</strong> to grow LCCs <strong>for</strong> biomass transfer or otherwise,<br />

but grow food legumes (ma<strong>in</strong>ly beans),<br />

as <strong>in</strong>tercrops <strong>in</strong> the coffee <strong>and</strong> enset fields. The<br />

potential niche that farmers were will<strong>in</strong>g to allocate<br />

<strong>for</strong> LCes is the outermost field.<br />

2) Farm size: Despite very high <strong>in</strong>terest by farmers<br />

to get alternatives to <strong>in</strong>organic fertilisers, the<br />

probability that farmers may allocate l<strong>and</strong> <strong>for</strong><br />

grow<strong>in</strong>g LCCs depended on the size of their<br />

l<strong>and</strong> hold<strong>in</strong>gs. For Areka, a farm size of 0.75 ha<br />

is considered large. There<strong>for</strong>e, farmers with<br />

very small l<strong>and</strong> hold<strong>in</strong>gs did not grow legumes<br />

as sole crops, but <strong>in</strong>tegrate them as <strong>in</strong>tercrops or<br />

relay crops. There<strong>for</strong>e, the potential niches <strong>for</strong><br />

LCCs are partly occupied unless their farm is<br />

highly depleted.<br />

3) Ownership of the farm: Whether a legume<br />

(ma<strong>in</strong>ly LCCs) could be grown by farmers or<br />

not depended on the authority of the person to<br />

decide on the exist<strong>in</strong>g l<strong>and</strong> resources, which is<br />

l<strong>in</strong>ked to l<strong>and</strong> ownership. Those farmers with<br />

<strong>in</strong>sufficient farm <strong>in</strong>puts (seed, fertilizer, labour<br />

<strong>and</strong>/or oxen) are obliged to give their l<strong>and</strong> <strong>for</strong><br />

share cropp<strong>in</strong>g. In this type of arrangement, the<br />

probability of grow<strong>in</strong>g LCCs on that farm js<br />

m<strong>in</strong>imal. Instead, farmers who contracted the<br />

l<strong>and</strong> preferred to grow high yield<strong>in</strong>g cereals<br />

(maize <strong>and</strong> wheat) or root crops (sweet potato).<br />

As share cropp<strong>in</strong>g is an exhaustive profitmak<strong>in</strong>g<br />

arrangement, the chance of grow<strong>in</strong>g<br />

LCCs <strong>in</strong> such contracts was almost nil. Without<br />

ownership or security of tenure, farmers are<br />

unlikely to <strong>in</strong>vest <strong>in</strong> new soil fertility amendment<br />

technology (Thomas <strong>and</strong> Sumberg, 1995).<br />

4) Livestock fced: In the mixed farm<strong>in</strong>g systems of<br />

Ethiopia, livestock is a very important enterprise.<br />

Farmers select crop species/ varieties not<br />

only based on gra<strong>in</strong> yield but also straw yield.<br />

Similarly, legumes with multiple use were accepted<br />

by the community better than legumes<br />

solely <strong>for</strong> green manur<strong>in</strong>g.<br />

5) Market value: For a legume technology to be<br />

appraised by farmer end-users, the legume<br />

should br<strong>in</strong>g an immediate <strong>and</strong> visible benefit,<br />

~ither direct through the generation of food or<br />

cash or <strong>in</strong>direct by mak<strong>in</strong>g a significant <strong>and</strong><br />

visible contribution to a secondary high value<br />

product.<br />

The Decision Guides<br />

In this paper, we present two guidel<strong>in</strong>es <strong>for</strong> <strong>in</strong>tegra­<br />

tion of legumes <strong>in</strong>to multiple cropp<strong>in</strong>g, perennial­<br />

based farm<strong>in</strong>g systems. The decision trees were de­<br />

veloped based on the follow<strong>in</strong>g background <strong>in</strong><strong>for</strong>­<br />

mation from the site. <br />

1) Farmers prefer food legumes over non-food leg­<br />

umes regardless of the soil fertility status of<br />

their farm.<br />

2) The above-ground biomass of food legumes<br />

(gra<strong>in</strong> <strong>and</strong> stover) is exported to the homestead<br />

<strong>for</strong> feed <strong>and</strong> food while the below-ground biomass<br />

from food legumes is too small to affect<br />

soil fertility. The probability that the manure<br />

will be returned to the same plot is less as farmers<br />

prefer to apply manure to their perennial<br />

crops (Enset <strong>and</strong> Coffee) grow<strong>in</strong>g near the<br />

homestead.<br />

3) The tested legumes may fix nitrogen to fulfil<br />

their partial dem<strong>and</strong> (we have observed nodules<br />

<strong>in</strong> all, although we did not quantify N­<br />

fixation), but <strong>in</strong> conditions where the biomass is<br />

exported -- like with vetch <strong>for</strong> feed -- most of<br />

26<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


the nutrient stock would be exported. There<strong>for</strong>e,<br />

we did not expect a significant effect on<br />

soil fertili ty.<br />

4} Lees produce much more biomass when<br />

planted as relay crops <strong>in</strong> the middle of the<br />

grow<strong>in</strong>g season than when planted late as<br />

short-term fallows due to possible effects of<br />

end-of season drought on growth.<br />

5} The homestead field is much more fertile than<br />

the outfield; hence those species sensitive to water<br />

<strong>and</strong> nutrients will do better near the homestead<br />

than <strong>in</strong> the outfield.<br />

The first guide (Figure 2) is developed based on the<br />

data obta<strong>in</strong>ed from the farmers field <strong>and</strong> on-farm<br />

experiments, verified by on-station experiments.<br />

The overall idea is that not all Lees fit everywhere.<br />

Some are very sensitive to the availability of nutrients<br />

<strong>and</strong> water, at least dur<strong>in</strong>g their establishment,<br />

<strong>and</strong> others do well across environments. When<br />

farmers got the option to select among seven commonly<br />

recommended Lees species (Vetch, Mucuna,<br />

Crotalaria, Canavalia, Tephrosia, Trifolium, 5tylosanthus),<br />

to <strong>in</strong>tegrate <strong>in</strong>to their systems, farmers <strong>in</strong> various<br />

socio-economic categories selected different<br />

species, planted them on different parts of their<br />

farm <strong>and</strong> managed them differently. Researchers<br />

have monitored how the farmers managed the<br />

Lees, where they planted them, when did they<br />

plant, how long they were left to grow, how much<br />

<strong>in</strong>put they <strong>in</strong>vest, how was the biomass production,<br />

what benefits they get from them <strong>and</strong> what are their<br />

f<strong>in</strong>al decisions to <strong>in</strong>tegrate them <strong>in</strong>to their systems.<br />

The guide, synthesised from the participatory research,<br />

has two major frames, one· <strong>for</strong> legumes suit­<br />

able <strong>for</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the fertility status of productive<br />

l<strong>and</strong> <strong>and</strong> another suitable <strong>for</strong> improv<strong>in</strong>g the fertility<br />

status of relatively less fertile cropl<strong>and</strong>. Most<br />

farmers wanted the Lees to improve the plots that<br />

are 'addicted' to m<strong>in</strong>eral fertilizers, which refers<br />

commonly to those less fertile corners of the farm,<br />

the out-fields. The guide showed that there are limited<br />

Lee options that could be used to improve degraded<br />

cropl<strong>and</strong>s, as the legumes themselves, except<br />

Crotalaria, were not able to grow under such<br />

harsh conditions. There are many more Lee options<br />

<strong>for</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the fertility status of the fertile<br />

corners of the farm. Vetch was suggested to be the<br />

best fitt<strong>in</strong>g legume <strong>for</strong> a short-term fallow. However,<br />

the guide left a space <strong>for</strong> other researchers to<br />

identify an Lee option that may fit <strong>in</strong>to their specific<br />

production systems.<br />

The second guide (Figure 3) is <strong>in</strong>tended to assist<br />

farmers <strong>and</strong> researchers to identify potential legumes<br />

that could be compatible with exist<strong>in</strong>g spatial<br />

<strong>and</strong> temporal niches. This .guide was developed<br />

based on the homestead be<strong>in</strong>g much more fertile<br />

than the outfield, <strong>and</strong> that the outfield is larger than<br />

the homestead field. The most important criterion at<br />

the lowest level is the presence or absence of livestock<br />

followed by who manages the farm, market<br />

access, the size of the l<strong>and</strong> hold<strong>in</strong>g <strong>and</strong> the l<strong>and</strong><br />

quality. The factor that dictates the decision at the<br />

highest level is l<strong>and</strong> productivity, which 'was governed<br />

ma<strong>in</strong>ly by soil fertility status. Grow<strong>in</strong>g of<br />

food legumes was the priority of every farmer regardless<br />

of wealth (l<strong>and</strong> size, l<strong>and</strong> quality <strong>and</strong> number<br />

of livestock). Farmers with)ivestock <strong>in</strong>tegrated<br />

feed crops regardless of l<strong>and</strong> size, l<strong>and</strong> productivity<br />

<strong>and</strong> market access to products.<br />

However, the size <strong>and</strong> quality of<br />

l<strong>and</strong> allocated <strong>for</strong> grow<strong>in</strong>g feed<br />

<<br />

legumes depended on market access<br />

to livestock products (milk,<br />

butter <strong>and</strong> meat). Those farmers<br />

withgood market access are expected<br />

to <strong>in</strong>vest part of their <strong>in</strong>come<br />

<strong>in</strong>to external <strong>in</strong>puts, i.e. <strong>in</strong>organic<br />

fertilisers. Hence, farmers<br />

<strong>in</strong> this category did not allocate<br />

much l<strong>and</strong> <strong>for</strong> grow<strong>in</strong>g Lees, but<br />

<<br />

applied <strong>in</strong>organic fertilisers. In<br />

or<br />

Foio 1lliCi'0000i;lIO!l.lli<br />

the homestead field, there was no<br />

AlmIHy.of<br />

CI!OP InI l<strong>and</strong> allocated <strong>for</strong> Lees <strong>in</strong> the<br />

system, because farmers gave pri­<br />

1,P.I.'!"t<br />

~talGrlo ority to food legumes there, to<br />

or "<br />

take advantage of a relatively fertile<br />

com.er of the farm. The clearest<br />

spatial niche <strong>for</strong> grow<strong>in</strong>g<br />

Figure 2. Decision guide that suggests various legumes <strong>for</strong> improv<strong>in</strong>g degraded crop Lees is .the outermost field, espel<strong>and</strong>s<br />

or ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the fertility status of relatively fertile crop l<strong>and</strong> through a short cially <strong>in</strong> poor farmers' fields with<br />

or medium term fallow<br />

exhausted l<strong>and</strong> <strong>and</strong> limited mar-<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 27


Own livestock<br />

Gununo farmers <strong>for</strong> their direct <strong>in</strong>volvement<br />

<strong>in</strong> the research.<br />

References<br />

Larg~ farm size <br />

Good market <br />

Food & feed<br />

cover<br />

'-.J"f!Ulne.~.<br />

Cover crops<br />

Figure 3. Guidel<strong>in</strong>es <strong>for</strong> <strong>in</strong>tegration of food, feed legumes <strong>and</strong> legume cover crops<br />

<strong>in</strong>to small scale farms, with heterogeneous socio·economic conditions<br />

Abayomi, Y.A., O. Fadayomi, J.O.<br />

Babatola, <strong>and</strong> G. Tian, 2001. Evaluation<br />

of selected legume cover crops<br />

<strong>for</strong> biomass production, dry season<br />

survival <strong>and</strong> soil fertility improvement<br />

<strong>in</strong> a moist savanna location <strong>in</strong><br />

Nigeria. African Crop Science Journal<br />

9:615-627.<br />

Amede, T. <strong>and</strong> R. Kirkby, 2002.<br />

Guidel<strong>in</strong>es <strong>for</strong> Integration of <strong>Legumes</strong><br />

<strong>in</strong>to the Farm<strong>in</strong>g Systems of<br />

'East African Highl<strong>and</strong>s. Afnet Pro­<br />

~eed<strong>in</strong>gs . African Academy of Sciences.<br />

In press.<br />

ket-driven farm products. Those categories of farmers<br />

experienced share cropp<strong>in</strong>g <strong>for</strong> some time, <strong>and</strong><br />

as a result their farm was on the verge of go<strong>in</strong>g out<br />

of production due to unsusta<strong>in</strong>able l<strong>and</strong> management<br />

practices.<br />

Conclusion<br />

Integration of legumes <strong>in</strong>to various production systems<br />

<strong>and</strong> <strong>for</strong> various clients is complex <strong>and</strong> requires<br />

a participatory approach to address both biophysical<br />

<strong>and</strong> socio-economic constra<strong>in</strong>ts <strong>and</strong> opportunities.<br />

The major biophysical traits that need to be addressed<br />

are adaptability of the species <strong>in</strong>to that specific<br />

agroecology (which may <strong>in</strong>clude yield, disease<br />

<strong>and</strong> pest resistance), the effect on soil fertility <strong>and</strong> its<br />

compatibility with the exist<strong>in</strong>g cropp<strong>in</strong>g system.<br />

The most determ<strong>in</strong>ant socio-economic factors are<br />

l<strong>and</strong> ownership, market value, farm size <strong>and</strong> tradeoffs<br />

<strong>for</strong> various uses. The strategic comb<strong>in</strong>ation of<br />

those biophysical <strong>and</strong> socio-economic determ<strong>in</strong>ants<br />

<strong>in</strong> the <strong>for</strong>m of decision guides will help farmers, development<br />

agencies <strong>and</strong> researchers to identify potential<br />

adopters, learn about the criteria of choice,<br />

<strong>and</strong> learn about the need <strong>for</strong> improved management<br />

of the system. Moreover, it may help them to identify<br />

niches <strong>and</strong> crea te niches, modify the exist<strong>in</strong>g<br />

systems <strong>and</strong> promote the technology <strong>for</strong> wider use.<br />

Acknowledgement<br />

I would like to thank Drs Ann Stroud, Roger Kirkby<br />

<strong>and</strong> Rob Delve <strong>for</strong> their valuable <strong>in</strong>puts <strong>and</strong> support<br />

dur<strong>in</strong>g the research process, Mr. Wondimu<br />

Wallelu <strong>for</strong> his valuable <strong>in</strong>puts <strong>in</strong> the fieldwork, <strong>and</strong><br />

28<br />

Eyasu, E., 2002. Farmers' perceptions<br />

of soil fertility change <strong>and</strong> management.<br />

50s-SAHEL, Institute <strong>for</strong> Susta<strong>in</strong>able Development,<br />

Addis Ababa, Ethiopia. 252 p.<br />

FishIer, M. <strong>and</strong> Wortmann, c., 1999. Crotal,aria (c.<br />

ochroleuca) as a green manure crop <strong>in</strong> maize-bean<br />

cropp<strong>in</strong>g systems <strong>in</strong> Ug<strong>and</strong>a. Field Crops Research<br />

61:97-107.<br />

Gachene, c.K., C. Palm <strong>and</strong> J. Mureithi, 1999. Legume<br />

cover crops <strong>for</strong> soil fertility improvement <strong>in</strong><br />

the East African Region. Report of an AHI Workshop,<br />

TSBF~ Nairobi, 18-19 February, 1999.<br />

Giller K., 2001. Nitrogen Fixation <strong>in</strong> Tropical Cropp<strong>in</strong>g<br />

Systems. 2nd edition. CAB International,<br />

Wall<strong>in</strong>g<strong>for</strong>d, UK. 423 p.<br />

Jama, B., R.J. Buresh, <strong>and</strong> F.M. Place, 1998. Sesbania<br />

tree fallows on phosphorus-deficient sites: Maize<br />

yield <strong>and</strong> f<strong>in</strong>ancial benefits. Agronomy Journal<br />

90:717-726.<br />

Palm, c., R.J. Myers, <strong>and</strong> S.M. N<strong>and</strong>wa, 1997. Comb<strong>in</strong>ed<br />

use of organic <strong>and</strong> <strong>in</strong>organic sources <strong>for</strong><br />

soil fertility ma<strong>in</strong>tenance <strong>and</strong> replenishment.<br />

SSSA Special Publication No. 51, Madison, Wiscons<strong>in</strong>,<br />

USA. pp. 193-218.<br />

Sumberg, J., 2002. The logic of fodder legumes <strong>in</strong><br />

Africa. Food Policy 27:285-300.<br />

Tarawa1i, S.A., M. Peters, <strong>and</strong> R. Schultze-Kraft,<br />

1987. Forage legumes <strong>for</strong> susta<strong>in</strong>able agriculture<br />

<strong>and</strong> livestock production <strong>in</strong> sub-humid West Africa.<br />

ILRI project report, Nairobi, Kenya. 132 p.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Thomas, D. <strong>and</strong> J. Sumberg, 1995. A review of the<br />

evaluation <strong>and</strong> use of tropical <strong>for</strong>age legumes <strong>in</strong><br />

Sub-saharan Africa. Agriculture, Ecosystems <strong>and</strong><br />

Environment 54:151-163.<br />

Wortmann, c., M. Isabirye <strong>and</strong> S. Musa, 1994. Crotalaria<br />

ochroleuca as a green manure crop <strong>in</strong><br />

Ug<strong>and</strong>a. African Crop Science Journal 2:55-61.<br />

Wortmann, C. <strong>and</strong> B. Kirungu, 1999. Adoption of<br />

soil improv<strong>in</strong>g <strong>and</strong> <strong>for</strong>age legumes by small<br />

holder farmers <strong>in</strong> Africa. Conference on Work<strong>in</strong>g<br />

with Farmers: The key to- adoption of <strong>for</strong>age<br />

technologies. Cagayan de Oro, M<strong>in</strong>dano, The<br />

·Philipp<strong>in</strong>es. 12-15 Oct., 1999.<br />

Versteeg, MN., F. Amadji, A. Eteka, A. Gogan, <strong>and</strong><br />

V. Koudokpon, 1998. farmers adaptability of<br />

MUClma fallow<strong>in</strong>g <strong>and</strong> agro<strong>for</strong>estry technologies<br />

<strong>in</strong> the coastal savanna of Ben<strong>in</strong>. Agricultural Systems<br />

56 (3):269-287.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 29


Questions <strong>and</strong> Answers<br />

~ey Papers<br />

To Bernard Vanlauwe, Andre Bationo et al.<br />

Q: Where do you place improved fallows <strong>in</strong> the<br />

systems you described?<br />

A: It is important to identify proper modes at the<br />

biophysical <strong>and</strong> socio-economic level.<br />

Q: Promotion of mucuna is limited by its lack of<br />

utilization options due to anti nutritional factors (Ldopa).<br />

What use did Sasakawa Global 2000 put<br />

mucuna to <strong>in</strong> order to <strong>in</strong>crease the adoption by<br />

farmers?<br />

A: SG 2000 bought up mucuna seeds <strong>for</strong> further<br />

distribution to <strong>in</strong>terested farmers.<br />

Q: Markets appear to be critical <strong>for</strong> the adoption of<br />

legume technologies, as shown by the mucuna case<br />

where numbers <strong>in</strong>creased from 20 to 14 000 <strong>in</strong> 10<br />

years when Sasakawa was buy<strong>in</strong>g seeds. What role<br />

have markets played <strong>in</strong> the <strong>in</strong>creased adoption of<br />

soyabean <strong>in</strong> Nigeria?<br />

A: Two routes were followed to create dem<strong>and</strong> <strong>for</strong><br />

soyabean; local process<strong>in</strong>g <strong>and</strong> development of<br />

private-sector-driven markets. Both were successful<br />

<strong>in</strong> creat<strong>in</strong>g a dem<strong>and</strong> although the proportion of<br />

both mechanisms would need to be verified<br />

through liT A.<br />

Q: It is important that we recognize the value of the<br />

word 'adaptation' <strong>in</strong> terms of develop<strong>in</strong>g<br />

dissem<strong>in</strong>ation messages. Adaptation reflects how<br />

farmers overcome complexities or constra<strong>in</strong>ts <strong>in</strong> the<br />

system.<br />

A: Agricultural adaptation is limited to the<br />

complexity of the <strong>in</strong>terventions aimed at.<br />

To Ed Rowe <strong>and</strong> Ken Giller<br />

Q: What are the <strong>in</strong>centives <strong>for</strong> organizations <strong>and</strong><br />

<strong>in</strong>dividuals to share <strong>in</strong><strong>for</strong>mation to develop<br />

simulation tools beyond the conceptual framework<br />

of NUANCES?<br />

A: Many people are <strong>in</strong>terested to look at the broade'r<br />

costs <strong>and</strong> benefits of the technology or <strong>in</strong>tervention<br />

that they are research<strong>in</strong>g, to see whether it really is<br />

viable <strong>for</strong> the farmer. We have already seen a great<br />

will<strong>in</strong>gness to share data, <strong>and</strong> models, which<br />

suggests that NUANCES is seen as useful <strong>and</strong><br />

timely.<br />

Q: You have <strong>in</strong>dicated that soyabean leaves little<br />

residual N, not enough to support the next cereal to<br />

maturity. Where then does the observed residual<br />

effect of soyabean on maize come from? Farmers<br />

have observed <strong>and</strong> 'harvested' maize grown on the<br />

residual effect.<br />

A: This observation, com<strong>in</strong>g directly from farmers'<br />

experience, shows that the prototype soil-crop<br />

model is not predict<strong>in</strong>g soya residue effects very<br />

well. This is great; the <strong>in</strong>tention was just to<br />

illustrate the k<strong>in</strong>d of predictions <strong>and</strong> analyses which<br />

NUANCES will provide, <strong>and</strong> the comment<br />

demonstrates the value of hav<strong>in</strong>g better <strong>and</strong> faster<br />

feedback between model predictions <strong>and</strong> farmers'<br />

practice, so both can be improved.<br />

To Tilahun Amede<br />

Q: Faba beans were described as high N-fixation.<br />

What are the attributes that may account <strong>for</strong> that<br />

characteristic?<br />

A: Firstly the seeds of faba bean are large, with a<br />

considerable nutrient concentration, good enough<br />

to support nutrient dem<strong>and</strong> dur<strong>in</strong>g the early stages<br />

of growth. This leads to a vigorous start with<br />

prolific leaves able to synthesize enough<br />

carbohydrate to support N -fixation processes.<br />

Moreover, faba bean has prolific roots that may<br />

explore nutrients like P from a wider soil space.<br />

Q: The recommendation <strong>for</strong> outfields <strong>in</strong> the absence<br />

of livestock is to grow LCe. But earlier you<br />

presented that farmers found these were not<br />

grow<strong>in</strong>g well <strong>in</strong> their outfields?<br />

A: As farmers grow ma<strong>in</strong>ly maize <strong>and</strong> potato <strong>in</strong> the<br />

outer fields, <strong>and</strong> apply some <strong>in</strong>organics like DAP,<br />

the residual nutrients could be enough to support<br />

the <strong>in</strong>itial start of LCCs.<br />

Q: To what extent have the decision guides been<br />

able to predict the grow<strong>in</strong>g of a particular gra<strong>in</strong><br />

legume <strong>in</strong> the research areas? Were you able to<br />

quantify the decision guides, e.g. size of l<strong>and</strong><br />

hold<strong>in</strong>g <strong>and</strong> a specific pH that could suit each gra<strong>in</strong><br />

legume? .<br />

A: The simple guide that <strong>in</strong>diCates which legume<br />

could be used <strong>for</strong> what purpose can be used across<br />

the board as they are developed based on .<br />

biophysical traits. The other guides may require<br />

characterization of the socio-economic components.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 31


Abstract<br />

PROMOTING NEW BNF TECHNOLOGIES AMONG SMALLHOLDER<br />

FARMERS: A SUCCESS STORY FROM ZIMBABWE<br />

SHEUNESU MPEPEREKI 1 <strong>and</strong> ISHMAEL POMPI 2<br />

1Department of <strong>Soil</strong> Science <strong>and</strong> Agricultural Eng<strong>in</strong>eer<strong>in</strong>g, University of Zimbabwe,<br />

PO Box MP167, Mount Pleasant, Harare <strong>and</strong><br />

2Agronomy Research Institute, Department of Research <strong>and</strong> Extension,<br />

M<strong>in</strong>istry of Agriculture, PO Box CY550, Causeway, Harare, Zimbabwe<br />

Biological nitrogen fixation (BNF) contributes significant amollnts of N <strong>in</strong>to both managed <strong>and</strong> natural ecosystems <strong>and</strong><br />

<strong>for</strong>n:s the basis <strong>for</strong> the age-old practice of rotat<strong>in</strong>g legumes with other crops. Benefits of legume N fixation <strong>in</strong>clude prote<strong>in</strong><br />

nutrition, soil fertility improvement, sav<strong>in</strong>gs on fertilizer costs <strong>and</strong> cash <strong>in</strong>come from sale of crop surpluses. The<br />

packag<strong>in</strong>g <strong>and</strong> use of superior N-fix<strong>in</strong>g rhizobial stra<strong>in</strong>s as commercial legume <strong>in</strong>oculants is a relatively cheap costeffective<br />

technology widely adopted by large-scale but not smallholder farmers <strong>in</strong> Zimbabwe. We report on a promotion<br />

program that used soyabean as a vehicle to convey the multiple benefits of BNF technologies to poor smallholder farmers<br />

through a multi-faceted research-extension-promotion ef<strong>for</strong>t. The primary objective was to strengthen rural food security<br />

of smallholder farmers through exploitation of soyabean BNF <strong>for</strong> soil fertility improvement aga<strong>in</strong>st ris<strong>in</strong>g <strong>in</strong>put<br />

costs. The ma<strong>in</strong> elements of the promotion strategy <strong>in</strong>cluded tra<strong>in</strong><strong>in</strong>g farmers <strong>and</strong> extension staff <strong>in</strong> technology applica­<br />

'tion, demonstration of the tangible multiple benefits <strong>and</strong> facilitation of <strong>in</strong>put/output market<strong>in</strong>g, all backed by a parallel<br />

program of adaptive research. The.basic promotion concept used was that of creat<strong>in</strong>g a closed loop with four l<strong>in</strong>ks: tra<strong>in</strong><strong>in</strong>g<br />

(<strong>in</strong> BNF technology application), production (of soyabean), process<strong>in</strong>g <strong>and</strong> market<strong>in</strong>g (TPPM). Coord<strong>in</strong>ation of<br />

stakeholder activities was <strong>and</strong> cont<strong>in</strong>ues to be a critical component of the promotion ef<strong>for</strong>t. A conceptual framework l<strong>in</strong>k<strong>in</strong>g<br />

various elements (BNF technology, food security, soil fertility, cash <strong>in</strong>come) was used to guide <strong>and</strong> focus both the<br />

promotion <strong>and</strong> research components. The rate of adoption of soyabean BNF among smallholders has been near exponential<br />

(from 50 farmers <strong>in</strong> 1996 to more than 10,000 <strong>in</strong> 2000). This paper outl<strong>in</strong>es the conceptual framework <strong>and</strong> mechanisms<br />

used <strong>in</strong> the promotion of soyabean technologies, the responses of smallholder farmers <strong>and</strong> the prospects <strong>for</strong> wider<br />

scal<strong>in</strong>g up.<br />

Key words: Soya bean, smallholder farmers, BNF, soil fertility improvement<br />

Introduction<br />

Nitrogen deficiency is the ma<strong>in</strong> limit<strong>in</strong>g factor <strong>for</strong><br />

high cereal yields iIi sub-Saharan Africa <strong>and</strong>'yet the<br />

majority of smallholder farmers use very little m<strong>in</strong>eral<br />

N fertilizer. Biological nitrogen fixation (BNF)<br />

contributes significant quantities of nitrogen (N) to<br />

both natural <strong>and</strong> managed ecosystems <strong>and</strong> offers a<br />

relatively cheap alternative source of N <strong>for</strong> resource-poor<br />

farmers. Exploitation of BNF technologies<br />

<strong>in</strong> African farm<strong>in</strong>g systems requires the identification<br />

of appropriate N-fix<strong>in</strong>g legumes that have<br />

multiple benefits to ensure adoption by risk-averse<br />

rural communities. There is need to develop a research<br />

agenda that identifies appropriate BNF technologies<br />

(e.g. effective legume-rhizobium comb<strong>in</strong>ations)<br />

that can be readily adopted by farmers with<br />

immediate demonstrable benefits to ensure adoption.<br />

Such research ef<strong>for</strong>ts will need to be l<strong>in</strong>ked to<br />

appropriate extension programs that ensure that<br />

target commlmities benefit <strong>in</strong> tangible ways.<br />

Traditional legumes such as groundnut (Arachis hy-<br />

pogaeae), cowpea (Vigna unguiculata) <strong>and</strong> bambara<br />

nut (Vigna jubterranea) that rely on BNF <strong>and</strong> contribute<br />

residual fertility to soils are low-yield<strong>in</strong>g <strong>and</strong><br />

are often viewed as m<strong>in</strong>or crops. Yields of these legumes<br />

have failed to respond consistently to <strong>in</strong>oculation<br />

with commercial rhizobiaI stra<strong>in</strong>s. Soyabean, a<br />

relatively new legume <strong>in</strong> Africa, responds well to<br />

rhizobiaI <strong>in</strong>oculation <strong>and</strong> fixes large amounts of N<br />

even <strong>in</strong> marg<strong>in</strong>al soils (Kasasa, 2000; Musiyiwa,<br />

2001). The multiple benefits of soyabean <strong>in</strong>clude soil<br />

fertility improvement, prote<strong>in</strong> nutrition <strong>for</strong> humans<br />

<strong>and</strong> livestock <strong>and</strong> cash <strong>in</strong>come from sales of gra<strong>in</strong><br />

<strong>and</strong> processed products. Soyabean is now grown <strong>in</strong><br />

several parts of sub-Saharan Africa <strong>in</strong>clud<strong>in</strong>g Malawi,<br />

Nigeria, Zambia <strong>and</strong> Zimbabwe where it is<br />

mak<strong>in</strong>g significant contributions to rural livelihoods.<br />

Due to limited <strong>in</strong>oculant production capacity<br />

<strong>in</strong> most African countries, promiscuous soyabean<br />

varieties that effectively nodulate with <strong>in</strong>digeno\.!s<br />

rhizobia have been successfully grown without <strong>in</strong>oculants<br />

demonstrat<strong>in</strong>g their potential <strong>for</strong> convey<strong>in</strong>g<br />

the benefits of BNF to poor <strong>and</strong> marg<strong>in</strong>alized<br />

communities (Mpepereki et al. 2000).<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> an,d <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> SO'il <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

3~


Historical Perspective on Soyabean <strong>in</strong><br />

Zimbabwe<br />

Soyabean was <strong>in</strong>troduced <strong>in</strong>to Zimbabwe (then<br />

Southern Rhodesia) <strong>in</strong> the 1930s as a green manure<br />

crop <strong>and</strong> later <strong>for</strong> <strong>for</strong>age. Large-scale commercial<br />

production started <strong>in</strong> the 1960s when a breed<strong>in</strong>g<br />

program <strong>and</strong> a Rhizobium <strong>in</strong>oculant factory were<br />

established (Corby, 1967). The crop was not promoted<br />

among smallholder black farmers, most of<br />

whom had been relocated onto marg<strong>in</strong>al, often<br />

s<strong>and</strong>y, soils <strong>in</strong> low ra<strong>in</strong>fall areas unsuitable <strong>for</strong> soyabean<br />

production. Apart from the real agro~<br />

ecological limitations, soyabean production, with its<br />

requirement <strong>for</strong> rhizobium <strong>in</strong>oculants that need refrigeration,<br />

was considered too sophisticated <strong>for</strong> African<br />

peasant farmers who had no knowledge on<br />

how to process it <strong>for</strong> food.<br />

After political <strong>in</strong>dependence <strong>in</strong> 1980, government<br />

adopted a policy of encourag<strong>in</strong>g smallholder farmers<br />

to <strong>in</strong>crease crop production through various <strong>in</strong>puts<br />

<strong>and</strong> market<strong>in</strong>g support programs. By the<br />

1990s, smallholder farmers were contribut<strong>in</strong>g over<br />

70% of national maize <strong>and</strong> cotton production. A<br />

soyabean BNF promotion program targeted at Hurungwe<br />

West district <strong>in</strong> northern Zimbabwe <strong>in</strong> the<br />

late 1980s boosted farmer <strong>in</strong>terest, production <strong>and</strong><br />

consumption of soyabean which all decl<strong>in</strong>ed when<br />

project support ended <strong>in</strong> 1989 (Wh<strong>in</strong>gwiri, 1996;<br />

Mudimu, 1998). Smallholder farm communities<br />

however cont<strong>in</strong>ued to face limited dietary prote<strong>in</strong><br />

sources, general decl<strong>in</strong><strong>in</strong>g soil fertility <strong>and</strong> poor<br />

household <strong>in</strong>comes aga<strong>in</strong>st a background of <strong>in</strong>creas<strong>in</strong>g<br />

m<strong>in</strong>eral N fertilizer prices, follow<strong>in</strong>g World<br />

Bank/IMF-<strong>in</strong>duced removal of government subsidies.<br />

A two-day stakeholders' workshop that was<br />

held at the University of Zimbabwe <strong>in</strong> February<br />

1996 to exam<strong>in</strong>e the potential <strong>for</strong> promiscuous soyabean<br />

<strong>for</strong> smallholder farmers recommended two<br />

major activities. First it resolved that research be <strong>in</strong>itiated<br />

to characterize <strong>in</strong>digenous soyabean rhizobia,<br />

the potential <strong>for</strong> promiscuous soyabean <strong>and</strong> to<br />

quantify the amounts of N fixed <strong>and</strong> the residual<br />

fertility benefits <strong>for</strong> maize grown <strong>in</strong> rotation. Secondly,<br />

it was resolved to extend soyabean technologies<br />

(the use of rhizobial <strong>in</strong>oculants <strong>and</strong> promiscuous<br />

varieties <strong>for</strong> BNF, production, process<strong>in</strong>g, utilization<br />

<strong>and</strong> later <strong>in</strong>put/output market<strong>in</strong>g) to smallholder<br />

farmers. A National Soyabean Promotion<br />

Task Force with representation from farmer organizations,<br />

private <strong>in</strong>dustry, NGOs <strong>and</strong> public <strong>in</strong>stitutions<br />

(research, extension, university) was <strong>for</strong>med.<br />

The Task Force was to be convened by AGRlTEX<br />

with overall coord<strong>in</strong>ation by the University of Zimbabwe<br />

Faculty of Agriculture. The Task Force objectives<br />

<strong>in</strong>cluded promotion of soyabean through appropriate<br />

research, tra<strong>in</strong><strong>in</strong>g farmers <strong>in</strong> production<br />

<strong>and</strong> process<strong>in</strong>g <strong>and</strong> coord<strong>in</strong>at<strong>in</strong>g the activities of<br />

various stakeholders.<br />

This paper outl<strong>in</strong>es the conceptual framework <strong>and</strong><br />

mechanisms used to promote soyabean technologies,<br />

the scale of operations, feedback from farmers,<br />

constra<strong>in</strong>ts <strong>and</strong> opportunities <strong>and</strong> the potential <strong>for</strong><br />

scal<strong>in</strong>g up.<br />

Conceptual Framework<br />

The context was that of smallholder cropp<strong>in</strong>g systems<br />

characterized by low productivity due to low<br />

soil fertility, with N as a major limit<strong>in</strong>g nutrient.<br />

Biological N fixation (BNF) was identified as a potential<br />

tool to address N deficiency <strong>in</strong> these systems.<br />

Soyabean was chosen as the c<strong>and</strong>idate legume because<br />

of its high N-fix<strong>in</strong>g potential <strong>and</strong> soil improv<strong>in</strong>g<br />

properties, food value as a prote<strong>in</strong> <strong>and</strong> vegetable<br />

oil source, relatively low production costs <strong>and</strong><br />

high market value. The place of soyabean BNF <strong>in</strong><br />

the total food production system of a typical smallholder<br />

farm was identified. This was an essential<br />

step to ensure that the technology would address<br />

real food security concerns of farmers, a critical element<br />

<strong>for</strong> successful adoption. The conceptual framework<br />

illustrated below (Figure 1) shows the ma<strong>in</strong><br />

l<strong>in</strong>kage loops <strong>and</strong> benefits from soyabean BNF <strong>in</strong> an<br />

<strong>in</strong>tegrated maize-based crop-livestock system.<br />

Strategies Translat<strong>in</strong>g the Concept <strong>in</strong>to<br />

an Operational Model<br />

For research, a proposal was written up, funds<br />

sourced <strong>and</strong> graduate students engaged to conduct<br />

research to quantify N <strong>in</strong>puts from promiscuous<br />

<strong>and</strong> commercially <strong>in</strong>oculated soyabean <strong>in</strong>to the<br />

cropp<strong>in</strong>g system <strong>and</strong> to measUre <strong>and</strong> demonstrate<br />

the residual soil fertility benefits <strong>for</strong> maize <strong>in</strong> subsequent<br />

seasons. Research was conducted to establish<br />

the prevalence <strong>and</strong> symbiotic effectiveness of <strong>in</strong>digenous<br />

rhizobia on both promiscuous <strong>and</strong> specific<br />

soyabean varieties <strong>and</strong> the adaptability of the latter<br />

to the more agro-ecologically marg<strong>in</strong>al smallholder<br />

areas. Experiments were conducted both on-station<br />

<strong>and</strong> on-farm under researcher <strong>and</strong> farmer-extension<br />

~ L:'::':~::d~<br />

So,_be,," BNF~ s,,;. F",~';" ~


management respectively. This meant that researcher-managed<br />

detailed replicated field experiments<br />

were placed on a few farms selected <strong>for</strong> their<br />

representative soil types, while a larger number of<br />

simple plus/m<strong>in</strong>us treatment trials were run under<br />

farmer management with extension officers monitor<strong>in</strong>g<br />

them. Rhizobial <strong>in</strong>oculation, lim<strong>in</strong>g <strong>and</strong> basal<br />

compound fertilizers <strong>and</strong> promiscuous versus specific<br />

nodulat<strong>in</strong>g soyabean varieties were tested.<br />

Both farmers <strong>and</strong> extension personnel helped to set<br />

up <strong>and</strong> monitor experiments <strong>and</strong> ga<strong>in</strong>ed valuable<br />

experience <strong>and</strong> confidence <strong>in</strong> manag<strong>in</strong>g a soya bean<br />

crop. Scientific data obta<strong>in</strong>ed was used to<br />

strengthen the extension messages that had hitherto<br />

been extrapolated from work done <strong>in</strong> large-scale<br />

commercial production under somewhat different<br />

agro-climatic conditions.<br />

For the promotion aspect, the ma<strong>in</strong> strategies were:<br />

tra<strong>in</strong><strong>in</strong>g of both farmers <strong>and</strong> extension staff on how<br />

t9 apply rhizobial <strong>in</strong>oculants, how to grow, weed<br />

<strong>and</strong> harvest soya bean; facilitat<strong>in</strong>g access to <strong>in</strong>puts,<br />

sett<strong>in</strong>g up technology transfer demonstrations that<br />

<strong>in</strong>volved farmers <strong>and</strong> extension staff, regular follow-ups<br />

<strong>and</strong> communication <strong>in</strong> local languages at<br />

all times. Tra<strong>in</strong>-the- tra<strong>in</strong>er workshops targeted extension<br />

staff <strong>in</strong> AGRITEX, NGO personnel <strong>and</strong><br />

farmer leaders identified by their organizations <strong>and</strong><br />

employed a h<strong>and</strong>s-on practical approach. Topics<br />

<strong>in</strong>cluded how to store <strong>and</strong> apply rhizobial <strong>in</strong>oculants,<br />

use of promiscuous varieties where <strong>in</strong>oculants<br />

are unavailable, how to check if nodules are effective,<br />

identification of pests <strong>and</strong> diseases <strong>and</strong> their<br />

control.<br />

Tra<strong>in</strong><strong>in</strong>g was consolidated by a vigorous pr


ganic amendment <strong>for</strong> resource-poor farmers who<br />

cannot af<strong>for</strong>d adequate m<strong>in</strong>eral fertilizers. For<br />

many African farmers, livestock represent a critical<br />

<strong>in</strong>vestment or "money <strong>in</strong> the bank", as they can be<br />

sold to meet food <strong>and</strong> other budgetary needs of the<br />

family.<br />

The lowest loop on our conceptual model (Figure 1)<br />

emphasizes the l<strong>in</strong>k between soyabean BNF <strong>and</strong><br />

cash <strong>in</strong>come. Each soyabean harvest provides food,<br />

seed <strong>and</strong> surplus <strong>for</strong> sale. In the Zimbabwean<br />

model, the Task Force work<strong>in</strong>g with farmer's organizations,<br />

commodity brokers <strong>and</strong> processors put<br />

<strong>in</strong> place market<strong>in</strong>g arrangements to ensure that<br />

farmers received fair prices <strong>for</strong> their soyabean gra<strong>in</strong>.<br />

The key to success has been effective load consolidation,<br />

identification of lucrative markets <strong>and</strong> af<strong>for</strong>dable<br />

transport. Initially volumes were small <strong>and</strong><br />

market<strong>in</strong>g costs very high, but as more farmers took<br />

up the crop, volumes <strong>in</strong>creased allow<strong>in</strong>g <strong>for</strong> economies<br />

of scale. A comprehensive study to analyze the<br />

economic potential of soyabean showed that there<br />

are'...potential benefits ... <strong>for</strong> smallholder farmers,<br />

particularly the poorer smallholders ... ' <strong>in</strong> Zimbabwe<br />

(Rusike et al. 2000).<br />

For the adoption rate to be susta<strong>in</strong>ed, there was<br />

need to coord<strong>in</strong>ate the ef<strong>for</strong>ts of many stakeholders<br />

that are <strong>in</strong>volved. Figure 2 illustrates the range of<br />

possible l<strong>in</strong>kages that are <strong>in</strong>volved <strong>in</strong> the soyabean<br />

BNF research -extension program <strong>in</strong> Zimbabwe. To<br />

facilitate coord<strong>in</strong>ation, a unit <strong>for</strong> that purpose was<br />

established <strong>in</strong> 2000 under the Promotion Task Force.<br />

Its major function was to provide technical backup<br />

<strong>and</strong> tra<strong>in</strong><strong>in</strong>g to various groups engaged <strong>in</strong> soyabean<br />

production <strong>and</strong> to mobilize stakeholders. Currently<br />

stakeholders are sett<strong>in</strong>g up a soya bean development<br />

trust to take over coord<strong>in</strong>ation of all stakeholder activities<br />

<strong>in</strong> research production, process<strong>in</strong>g, market<strong>in</strong>g<br />

<strong>and</strong> tra<strong>in</strong><strong>in</strong>g <strong>in</strong> the whole country.<br />

FMmmg communilU~S<br />

Farmer <br />

~ Ore3msatlOl1S <br />

! ~ ? \<br />

~ten"~ '"1' '"Or'"<br />

MIcro-<br />

Seed,<br />

• • credi1 tOoc ulants<br />

('oordiutiul Uuit<br />

UIl.:lnuity of Zimb .. 1I .....<br />

Figure 2. Coord<strong>in</strong>ation l<strong>in</strong>kages of stakeholders <strong>in</strong> the soyabean<br />

promotion program <strong>in</strong> Zimbabwe. Key activities <strong>in</strong> the l<strong>in</strong>ks <strong>in</strong>clude<br />

tra<strong>in</strong><strong>in</strong>g, <strong>in</strong><strong>for</strong>mation exchange, adaptive research <strong>and</strong> movement of<br />

<strong>in</strong>puts, outputs <strong>and</strong> cash.<br />

36<br />

Outcomes<br />

In general the research-extension program has successfully<br />

<strong>in</strong>troduced <strong>and</strong> brought benefits of soyabean<br />

BNF to thous<strong>and</strong>s of smallholder families <strong>in</strong><br />

Zimbabwe. Promiscuous soyabean has enabled<br />

farmers with no access to commercial <strong>in</strong>oculants<br />

also to adopt soyabean. Up to 50% of soyabean produced<br />

<strong>in</strong> Hurungwe district <strong>in</strong> northern Zimbabwe<br />

<strong>in</strong> the last four seasons (1998 -2001) was promiscuous,<br />

while <strong>in</strong> Zambia <strong>and</strong> Malawi promiscuous Magoye<br />

still <strong>for</strong>ms the backbone of smallholder soyabean<br />

production (Javaheri, 1996). Promiscuous soyabean<br />

<strong>for</strong>ms the bulk of varieties planted <strong>in</strong> Nigeria.<br />

Below we summarize results from various research<br />

<strong>in</strong>itiatives undertaken with<strong>in</strong> the conceptual framework<br />

described to illustrate the k<strong>in</strong>ds of <strong>in</strong><strong>for</strong>mation<br />

be<strong>in</strong>g generated.<br />

Quantities of N fixed by promiscuous arid specific<br />

soyabean varieties under field conditions were<br />

measured (Table 1). In demonstrat<strong>in</strong>g the residual<br />

soil fertility benefits of rotat<strong>in</strong>g maize with soyabean,<br />

yields of both gra<strong>in</strong> <strong>and</strong> stover were quantified.<br />

Yields of maize follow<strong>in</strong>g soyabean were significantly<br />

higher than those of maize after maize, demonstrat<strong>in</strong>g<br />

significant residual fertility effects of soyabean<br />

(Table 2). Residual effects ensure susta<strong>in</strong>able<br />

food production <strong>in</strong> a soyabean maize rotation. Soya-<br />

Table 1. Nitrogen yields from promiscuous <strong>and</strong> specific (improved)<br />

soyabean varieties at Hotera smallholder farm, Hurungwe,<br />

Zimbabwe, 1997<br />

Soybean variety %Nderived from fixation Fixed N(kglhal<br />

. Inoculation + Inoculation . Inoculation + Inoculation<br />

Magoye 91 90 73 58<br />

Local 90 90 57 58<br />

Roan 91 88 63 66<br />

Nyala 92 82 46 58<br />

s.e.d 3.8 15.8<br />

'Magoye' <strong>and</strong> 'local' are promiscuous; 'Roan' <strong>and</strong> 'Nyala' are specific commercial <br />

~arieties. (Adapted from Kasasa et al. 19981. <br />

Table 2. Maize yields over two seasons follow<strong>in</strong>g soyabean<br />

<strong>in</strong> as<strong>and</strong>y loam soil <strong>in</strong> asmallholder farm, Hurungwe,<br />

Zimbabwe, 1998·99<br />

Soyabean variety Soyabean biomass Maize yields (tlhal<br />

(961971 <strong>in</strong>corporated Itlhal<br />

97198 98/99<br />

Magoye (proml 5.4 2.3 1.2<br />

Local (prom.l 4.9 2.1 1.4<br />

Roan (spec.I 3.2 1.8 0.9<br />

Nyala (spec.l 2.8 1.4 0.8<br />

Maize control Nil 0.19 0.2<br />

Prom - promiscuous; Spec. - Specific<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


ean residual fertility effects on maize have been<br />

demonstrated under farmer management, boost<strong>in</strong>g<br />

adoption of soyabean BNF by smallholder farmers.<br />

M<strong>in</strong>eral fertilizer <strong>in</strong>puts (e.g, Cu, Mg, P, K) will cont<strong>in</strong>ue<br />

to be required to prevent nutrient m<strong>in</strong><strong>in</strong>g of<br />

soils. Extension messages must cont<strong>in</strong>ue to emphasize<br />

the critical importance of <strong>in</strong>organic fertilizer<br />

amendments.<br />

An important benefit of soya bean BNF has been the<br />

boost <strong>in</strong> household <strong>in</strong>comes from gra<strong>in</strong> sales by<br />

farmers (Table 3). A critical element <strong>in</strong> the promotion<br />

program was the consolidation of loads so that<br />

economies of scale have enabled the relatively small<br />

production by each farmer to be sold on the lucrative<br />

commodity exchange as part of a large batch.<br />

Thus the conceptual model <strong>for</strong> promot<strong>in</strong>g BNF <strong>in</strong>cludes<br />

produce market<strong>in</strong>g as a key element.<br />

A study of the economic potential of soyabean<br />

showed that the crop was most profitable <strong>for</strong> the<br />

poorest farmers as it had lower <strong>in</strong>put costs but gave<br />

the highest return on <strong>in</strong>vestment (Rusike et al.<br />

2000). Poor farmers who adopted soyabean <strong>for</strong> the<br />

first time between 1997 <strong>and</strong> 2001 have testified that<br />

they earned more money from soya bean sales than<br />

from any other crop that they have ever grown<br />

(Table 4). The significant boost <strong>in</strong> family dietary<br />

prote<strong>in</strong> availability (Table 4) is a critical element of<br />

household food security, a key benefit of BNF<br />

among rural communities where poor nutrition<br />

among the HIV-<strong>in</strong>fected is contribut<strong>in</strong>g to the high<br />

death toll from AIDS related illnesses.<br />

Table 3. Soyabean gra<strong>in</strong> sales by smallholder farmers from<br />

four locations over 4 market<strong>in</strong>g seasons <strong>in</strong> Zimbabwe<br />

. location Amounts sold (metric tl<br />

96/97 97/98 98/99 99/2000<br />

Guruve 6.2 53 153 210<br />

Kazangarare 58 280 475 580<br />

Sadza 0.5 3.5 7 10.2<br />

Senge 0.2 6 11 18.1<br />

Total sold 64.9 342.5 646 818.3<br />

Only sales facilitated by the Soyabean Promotion Task Force are reflected;<br />

farmers also used other market<strong>in</strong>g outlets.<br />

Table 4. <strong>Gra<strong>in</strong></strong>, prote<strong>in</strong> <strong>and</strong> cash returns from soyabean <strong>for</strong> Tapera <br />

smallhold farm <strong>in</strong> Zimbabwe (1998) <br />

Soyabean Total gra<strong>in</strong> yield Prote<strong>in</strong> from 150/0 Cash from 70% <br />

variety (kg/hal seed reta<strong>in</strong>ed gra<strong>in</strong> sold <br />

(kg/hal<br />

(US$ equivl <br />

Magoye 2100 126 471<br />

local 1900 114 302<br />

Roan L800 168 496<br />

Nyala 3100 186 560<br />

Average smallholder plant<strong>in</strong>g: 0.4 ha; average yield: 0.8 t/ha; average price; US<br />

$360/t (2001).<br />

Conclusions<br />

Our experiences with develop<strong>in</strong>g <strong>and</strong> implement<strong>in</strong>g<br />

a research-extension model <strong>for</strong> promot<strong>in</strong>g BNF<br />

technology among peasant farmers <strong>in</strong> Zimbabwe<br />

offers lessons <strong>for</strong> similar <strong>in</strong>itiatives <strong>in</strong> develop<strong>in</strong>g<br />

countries. Previous experiences of promot<strong>in</strong>g promiscuous<br />

soyabean <strong>in</strong> Nigeria (N. Sang<strong>in</strong>ga, pers.<br />

comm.), Malawi <strong>and</strong> Zambia (Mpepereki et al. 2000)<br />

also po<strong>in</strong>t to the need <strong>for</strong> <strong>in</strong>tegrated approaches that<br />

address both the scientific-technological <strong>and</strong> socioeconomic<br />

aspects <strong>in</strong> a holistic way (clos<strong>in</strong>g the<br />

loop). Demonstration of multiple benefits of N­<br />

fi x<strong>in</strong>g soyabean, use of promiscuous varieties, tra<strong>in</strong><strong>in</strong>g<br />

women <strong>in</strong> home process<strong>in</strong>g, adapt<strong>in</strong>g soya bean<br />

to local diets <strong>and</strong> facilitat<strong>in</strong>g <strong>in</strong>put/output market<strong>in</strong>g<br />

(all carried out <strong>in</strong> the context of a clear conceptual<br />

framework with stakeholder participation),<br />

have resulted <strong>in</strong> rapid adoption of soyabean by<br />

thous<strong>and</strong>s of smallholder farmers, thereby strengthen<strong>in</strong>g<br />

their food security <strong>in</strong> a susta<strong>in</strong>able way. An<br />

<strong>in</strong>tegrated program of adaptive <strong>and</strong> applied research<br />

ro support the soyabean BNF promotion <strong>in</strong>itiative<br />

has provided a scientific basis <strong>for</strong> a technical<br />

backup service to adopt<strong>in</strong>g farmers. The success of<br />

such a promotion program depends on the number<br />

of actual <strong>and</strong> demonstrable benefits to the smallholders<br />

<strong>and</strong> the commitment of all stakeholders to<br />

implement its various facets <strong>in</strong> a coord<strong>in</strong>ated way.<br />

Market<strong>in</strong>g, both <strong>in</strong> terms of <strong>in</strong>puts <strong>and</strong> outputs, is a<br />

key driv<strong>in</strong>g <strong>for</strong>ce <strong>for</strong> soya bean BNF technology<br />

adoption. More BNF grant funds must go <strong>in</strong>to activities<br />

that directly benefit farm families than project<br />

personnel salaries <strong>and</strong> per diems. Legume BNF<br />

can make a difference to rural livelihoods.<br />

Acknowledgements<br />

We thank the Rockefeller Foundation <strong>for</strong> fund<strong>in</strong>g<br />

our soyabean BNF research <strong>and</strong> extension work <strong>in</strong><br />

Zimbabwe.<br />

References<br />

Javaheri, F. 1981. Release of four new soya bean varieties.<br />

Mimeo Government of Zambia, Lusaka.<br />

Kasasa, P., Mpepereki, S. <strong>and</strong> Giller, K.E. 1998.<br />

Nodulation <strong>and</strong> yield of promiscuous soyabean<br />

(Glyc<strong>in</strong>e max L. Merr.) varieties under field conditions.<br />

In: Wadd<strong>in</strong>gton, S.R., Murwira H.K.,<br />

Kumwenda J.D.T. Hikwa D. <strong>and</strong> Tagwira, F.<br />

(eds). <strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong> Maize-based Farm<strong>in</strong>g<br />

Systems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe. <strong>Soil</strong>FertNet/<br />

CIMMYT, Harare, Zimbabwe. pp. 93-103.<br />

Kasasa, P. 1999. Quantification of nitrogen fi xation<br />

by_promiscuous soya bean <strong>in</strong> Zimbabwean soils.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

37


MPhil. Thesis. University of Zimbabwe, Harare,<br />

Zimbabwe.<br />

Mpepereki, 5., Javaheri, F., Davis, P. <strong>and</strong> Giller, K.E.<br />

2000. Soyabeans <strong>and</strong> susta<strong>in</strong>able agriculture:<br />

promiscuous soyabean <strong>in</strong> southern Africa. Field<br />

Crops Research 65:137-149.<br />

Musiyiwa, K. 2001. MPhil. Thesis. University of<br />

Zimbabwe, Harare, Zimbabwe.<br />

Rusike, J., Sukume, C. Dorward, A., Mpepereki, S.<br />

<strong>and</strong> Giller, K.E. 2000. The economic potential of<br />

smallholder soyabean production <strong>in</strong> Zimbabwe.<br />

<strong>Soil</strong> Fert Net Special Publication. CIMMYT, Harare,<br />

Zimbabwe.<br />

38<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


RESPONSE OF BEAN (PHASEOLUS VULGARIS, L.) CUL TIVARS TO<br />

INOCULATION AND NITROGEN FERTILIZER IN ZAMBIA<br />

FRIDAY SIKOMBE, OBED I LUNGU, KALALUKA MUNYINDA <strong>and</strong> MASAUSO SAKALA<br />

Abstract<br />

University of Zambia, Department of <strong>Soil</strong> Science, Lusaka,<br />

<strong>and</strong> Mount Makulu Research Station, Chilanga, Zambia<br />

Bean is an important component of the diet of people of Zambia, <strong>and</strong> many farm households grow it <strong>for</strong> subsistence <strong>and</strong><br />

barter <strong>in</strong> their communities. However, gra<strong>in</strong> yields are low, typically 500 to 700 kg ha- 1 with local cultivars <strong>and</strong> without<br />

supplemental nitrogen fertilizer application. Many soil <strong>and</strong> plant factors have been <strong>in</strong>vestigated to expla<strong>in</strong> these low<br />

yields, but there is still limited <strong>in</strong><strong>for</strong>mation on the contribution of soil fertility, variety <strong>and</strong> <strong>in</strong>oculation to improvement<br />

<strong>in</strong> bean Yi.elds. A field study was conducted to evaluate the response of bean cultivars to applied nitrogen fertilizer <strong>and</strong><br />

to <strong>in</strong>oculation with native <strong>and</strong> <strong>in</strong>troduced rhizobium stra<strong>in</strong>s. The experiment was set up as a 5 x 5 factorial design compris<strong>in</strong>g<br />

25 treatment comb<strong>in</strong>ations of five common bean cultivars <strong>and</strong> five nitrogen sources (3 stra<strong>in</strong>s <strong>and</strong> 2 nitrogen<br />

fertilizer levels). The treatments were replicated four times <strong>and</strong> arranged <strong>in</strong> a r<strong>and</strong>omized complete block design at<br />

Mount Makulu Central Research Station, Chilanga, Zambia . The data collected <strong>in</strong>cluded nodule count, dry nodule<br />

weight, dYlJ shoot weight, total nitrogen content <strong>in</strong> shoots <strong>and</strong> gra<strong>in</strong> weight. The amount of nitrogen fixed by the <strong>in</strong>oculated<br />

crop was estimated by the difference method, us<strong>in</strong>g wheat as the non-fix<strong>in</strong>g control crop. The results show that a<br />

comb<strong>in</strong>ation of some stra<strong>in</strong>s with some cultivars tested is as effective as apply<strong>in</strong>g nitrogen fertilizer to the crop. An effective<br />

stra<strong>in</strong> such as T AL1383 <strong>in</strong>creased gra<strong>in</strong> yield by 38.2% with some cultivars compared to the average gra<strong>in</strong> yield<br />

of the other four stra<strong>in</strong>s with other cultivars. The local stra<strong>in</strong> isolated from nodules of common beans grown locally was<br />

comparable to <strong>in</strong>troduced stra<strong>in</strong>s <strong>in</strong> Mbala <strong>and</strong> Lundazi cultivars. The reduction <strong>in</strong> biological nitrogen fixation (BNF)<br />

by <strong>in</strong>organic nitrogen application was more with the Lundazi cultivar than other cultivars. The native rhizobia stra<strong>in</strong>s<br />

at the trial site were as effective as the <strong>in</strong>troduced stra<strong>in</strong>s. This study has shown that optimization of the effect of <strong>in</strong>oculation<br />

lies <strong>in</strong> identify<strong>in</strong>g <strong>and</strong> match<strong>in</strong>g bean cultivar to Rhizobium stra<strong>in</strong>. There<strong>for</strong>e, because of stra<strong>in</strong>/cultivar specificity,<br />

it may be advisable to develop a broad-spectrum <strong>in</strong>oculum <strong>for</strong> use with bean cultivars <strong>in</strong> Zambia .<br />

Key words: Nz-fixation, N fertilization, rhizobium stra<strong>in</strong>s, common bean<br />

Introduction<br />

Beans are produced <strong>for</strong> both domestic consumption<br />

<strong>and</strong> sale <strong>in</strong> Zambia. Some bean leaves are consumed<br />

as a vegetable, <strong>and</strong> only cultivars with palatable<br />

leaves are consumed; other cultivars have tough<br />

textured leaves. The major production areas <strong>in</strong> this<br />

country are the high ra<strong>in</strong>fall areas of Northern,<br />

Northwestern, Luapliia Prov<strong>in</strong>ces <strong>and</strong> medium to<br />

high ra<strong>in</strong>fall areas of Eastern <strong>and</strong> Central Prov<strong>in</strong>ces.<br />

In other prov<strong>in</strong>ces, production of beans is on a small<br />

scale.<br />

Most farmers prefer to grow local cultivars <strong>for</strong> their<br />

colour <strong>and</strong> taste. However, average gra<strong>in</strong> yields of<br />

local cultivars are exceptionally low (500 -700 kg<br />

ha- I ) even under commercial production (Annual<br />

Report, 1978). Beans experience a deficient <strong>in</strong> nitrogen,<br />

which results <strong>in</strong> poor yields (Lupwayi <strong>and</strong><br />

Mk<strong>and</strong>awire, 1996).<br />

To improve bean yields, <strong>in</strong> the absence of effective<br />

rhizobia, it is recommended to apply nitrogen fertilizer.<br />

However, most resource-poor small-scale<br />

farmers are unable to af<strong>for</strong>d N fertilizers. The<br />

cheaper option, there<strong>for</strong>e, is to exploit Biological<br />

Nitrogen Fixation (BNF) through <strong>in</strong>oculation with<br />

Rhizobia, <strong>and</strong> use bean genotypes that respond well<br />

to <strong>in</strong>oculation. Llipwayi <strong>and</strong> Mk<strong>and</strong>awire (1996)<br />

made similar observations to other researchers, that<br />

<strong>in</strong>oculation with some stra<strong>in</strong>s of rhizobia <strong>in</strong>creased<br />

yield <strong>in</strong> common beans.<br />

Some factors may cause failure of applied <strong>in</strong>oculum<br />

to <strong>in</strong>crease gra<strong>in</strong> yield. Accord<strong>in</strong>g to Weiser et al.<br />

(1985), soil pH, low phosphorus, high levels of exchangeable<br />

alum<strong>in</strong>ium <strong>and</strong> manganese, poor nutritional<br />

status, <strong>and</strong> water stress may limit nodulation<br />

<strong>and</strong> nitrogen fixation. Further, high levels of applied<br />

N or soil N can <strong>in</strong>hibit nodulation (Muny<strong>in</strong>da,<br />

personal communication). Nodulation <strong>and</strong> N2 fixation<br />

is also <strong>in</strong>fluenced by climatic factors such as<br />

light (Anton<strong>in</strong>ew <strong>and</strong> Sprent, 1978), temperature<br />

(Rennie <strong>and</strong> Kemp, 1981) <strong>and</strong> cultural aspects such<br />

as plant<strong>in</strong>g density (Graham <strong>and</strong> Rosas, 1978).<br />

In Zambia, very little research work has been conducted<br />

on the <strong>in</strong>oculation of common bean. A great<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 39


deal of research work has been biased towards soyabean.<br />

Although there are numerous bean cultivars<br />

<strong>and</strong> native rhizobia stra<strong>in</strong>s, these have not been<br />

identified <strong>and</strong> exploited. There<strong>for</strong>e, extensive<br />

screen<strong>in</strong>g of bean l<strong>and</strong> races <strong>for</strong> N2 fixation is required<br />

throughout Zambia.<br />

The objectives of the study were a) to evaluate the<br />

response of some cultivars of common bean to <strong>in</strong>oculation<br />

us<strong>in</strong>g native <strong>and</strong> <strong>in</strong>troduced rhizobia<br />

stra<strong>in</strong>s, b) to identify effective stra<strong>in</strong>/cultivar comb<strong>in</strong>ation<br />

<strong>for</strong> optimal N2 fixation <strong>and</strong> c) to evaluate<br />

the response of common bean to nitrogen fe~filizer<br />

application.<br />

Materials <strong>and</strong> Methods<br />

The field experiment was conducted dur<strong>in</strong>g the<br />

2001/2002 cropp<strong>in</strong>g season at Mt. Makulu Central<br />

Research Station located 15 0 32'S 20 0 15'E near to<br />

Lusaka, Zambia. The station received 617.5 mm annual<br />

ra<strong>in</strong>fall, though normally the area receives between<br />

800 <strong>and</strong> 1000 mm ra<strong>in</strong>fall annually.<br />

The l<strong>and</strong> used <strong>for</strong> the trial had not been previously<br />

planted to any legume. Sorghum was grown dur<strong>in</strong>g<br />

the immediate previous cropp<strong>in</strong>g season<br />

(2000/2001). Be<strong>for</strong>e plant<strong>in</strong>g, soil samples were<br />

taken at r<strong>and</strong>om <strong>for</strong> analysis to establish the <strong>in</strong>itial<br />

fertility status of the site. The <strong>in</strong>itial physical <strong>and</strong><br />

chemical characteristics of the soil at the trial site are<br />

given <strong>in</strong> Table 1.<br />

The experiment was set up as a 5 x 5 factorial design<br />

compris<strong>in</strong>g 25 treatment comb<strong>in</strong>ations of five common<br />

bean cultivars/varieties <strong>and</strong> five nitrogen<br />

sources (3 <strong>in</strong>oculum stra<strong>in</strong>s <strong>and</strong> 2 nitrogen fertilizer<br />

levels). The treatments were replicated four times<br />

<strong>and</strong> arranged <strong>in</strong> a r<strong>and</strong>omized complete block design.<br />

Each treatment plot measured 3 m x 1.5 m, with<br />

four crop rows spaced at 50 cm apart. The harvest<br />

40<br />

Table 1. Initial physical <strong>and</strong> chemical characteristics<br />

of the soil used<br />

Texture<br />

pH CaCb 7.2<br />

Organic Carbon 1.37%<br />

Total Nitrogen 0.09%<br />

Available Phosphorus<br />

Potassium<br />

Calcium<br />

Magnesium<br />

Z<strong>in</strong>c<br />

Iron<br />

Manganese<br />

S<strong>and</strong> Clay l,oam<br />

13mgkg'<br />

0.84 cmol (+) kg'<br />

42.8 cmol (+) kg'<br />

2.1 cmol (+) kg"<br />

11.0 mg kg'<br />

98 mg kg'<br />

456 mg kg"<br />

area <strong>for</strong> gra<strong>in</strong> yield was a sub-plot of 2 m x 1 m, <strong>and</strong><br />

the two outer rows were used <strong>for</strong> sampl<strong>in</strong>g. Each<br />

plot was isolated from the adjacent plot by a border<br />

of 0.5 m.<br />

Five bean cultivars were evaluated; three l<strong>and</strong> races<br />

(Mba la, Solwezi <strong>and</strong> Lundazi) <strong>and</strong> two improved<br />

varieties (Carioca <strong>and</strong> Pembela). An improved<br />

wheat variety (Coucal) was used as a reference crop<br />

<strong>for</strong> N2 fixation. Two exotic rhizobia stra<strong>in</strong>s (CIAT<br />

899 <strong>and</strong> TAL 1383), one local isolate <strong>and</strong> native<br />

rhizobia at the experimental site used as a control<br />

were evaluated. Nitrogen was applied at two rates<br />

of 0 <strong>and</strong> 100 kg N ha- 1 • The nitrogen was applied as<br />

a split, 20 kg N ha- 1 at plant<strong>in</strong>g as compound 0 (N P<br />

K S: 10:20:10:10) <strong>and</strong> 80 kg N ha- 1 as urea at 25 Days<br />

After Sow<strong>in</strong>g (DAS).<br />

The ~eans were planted <strong>in</strong> rows 50 cm apart <strong>and</strong> 10<br />

cm; with<strong>in</strong> the row. The plant<strong>in</strong>g depth was approximately<br />

4-5 tm deep, <strong>and</strong> one seed per station.<br />

Wheat was grown <strong>in</strong> adjacent plots to the beans <strong>and</strong><br />

it was drilled <strong>in</strong> rows 50 cm apart. Weed<strong>in</strong>g was<br />

carried out by h<strong>and</strong> hoe<strong>in</strong>g <strong>in</strong> all the plots at 17, 28<br />

<strong>and</strong> 45 DAS.<br />

Five plants from the discard rows of each plot were<br />

r<strong>and</strong>omly sampled at 50% flower<strong>in</strong>g or 5-6 weeks<br />

after sow<strong>in</strong>g. After thorough wash<strong>in</strong>g the nodules<br />

were detached, counted <strong>and</strong> then dried <strong>in</strong> an oven<br />

at 65°C <strong>for</strong> 48 hours to obta<strong>in</strong> nodule dry weight.<br />

The shoots were dried <strong>in</strong> the oven at 70"C <strong>for</strong> 48<br />

hours to obta<strong>in</strong> shoot dry weight.<br />

The Nitrogen Difference Method by Hansen (1994)<br />

was used to determ<strong>in</strong>e the amount of nitrogen<br />

fixed. The fixed N was calCulated from:<br />

N2 fixed = NI - Nnf<br />

where:<br />

NI is the N accumulated by the fix<strong>in</strong>g legume <strong>and</strong>­<br />

Nnf is the N taken up by the rE:ference crop.<br />

The data were analyzed us<strong>in</strong>g the Genstat statistical<br />

package. The means were separated us<strong>in</strong>g the Duncans<br />

multiple range test.<br />

Results <strong>and</strong> Discussion<br />

Response to Inoculation <br />

The results show that nitrogen sources had a signifi­<br />

cant (P


4.5 .. - ---.••....---.-.-- .-----.•...-.-.----.-....--..---- ..•. - - .. ---- -.•.....•...--.-....... -­<br />

4-!---------------1'<br />

3.5 -!------==-----.---I<br />

I!! <br />

~ 3 <br />

'" 2.5 i--- ­<br />

z<br />

OJ 2<br />

:; <br />

-g 1.5 <br />

z<br />

0.5<br />

O+-J-~-r_~-L_.~-~_r~-L-,-~~~<br />

Carioca Mbala Solwezi Lu ndazi Pem be la<br />

Cultivars<br />

Figure 1. Nodule number <strong>for</strong> bean cultivars follow<strong>in</strong>g <strong>in</strong>oculation<br />

<strong>and</strong> fertilization<br />

Results of percent nitrogen content are presented <strong>in</strong><br />

Figure 2. There was a significant <strong>in</strong>teraction between<br />

nitrogen source <strong>and</strong> variety / cultivar. The<br />

highest percent nitrogen content was obta<strong>in</strong>ed from<br />

the <strong>in</strong>organic nitrogen source followed by CIAT<br />

899. Alt the cultivars responded to <strong>in</strong>organic nitrogen<br />

application except LLLndazi . All the varieties<br />

also responded to CIAT 899 except Mbala, but the<br />

response was greater with Carioca <strong>and</strong> Lundazi<br />

than wi th the other three cultivars.<br />

Results of nitrogen fixed by cultivars are presented<br />

<strong>in</strong> Figure 3. There was a significant difference (P<<br />

0.05) between cultivars <strong>and</strong> nitrogen sources. CIAT<br />

899 was more effective than other stra<strong>in</strong>s across all<br />

the varieties except Mbala, but it was most effective<br />

with Carioca <strong>and</strong> Lundazi. Pembela only responded<br />

to TAL 1383.<br />

The native rhizobia at the trial site were as effective<br />

as OAT 899 with Solwezi <strong>and</strong> Pembela. Carioca<br />

was less sensitive to the reduction of BNF by <strong>in</strong>organic<br />

nitrogen. The reduction <strong>in</strong> BNF by <strong>in</strong>organic<br />

nitrogen was more <strong>in</strong> Lundazi than other cultivars.<br />

Deibert et al (1978) reported that nitrogen levels<br />

above 45 kg ha·1 <strong>in</strong>hibited nitrogen fixation <strong>in</strong> soybeans,<br />

<strong>and</strong> the trend was the same <strong>in</strong> Lundazi. This<br />

result suggests that if Lundazi is to be grown with<br />

<strong>in</strong>oculum, the levels of <strong>in</strong>organic N <strong>in</strong> the soil<br />

should not be excessive (greater than 100 kg N ha·1).<br />

Effect of <strong>in</strong>oculation on yield<br />

Results of the shoot dry weight <strong>and</strong> gra<strong>in</strong> yield are<br />

presented <strong>in</strong> Figures 4 <strong>and</strong> 5. There was a response<br />

of shoot dry matter to nitrogen across the varieties.<br />

CIAl' 899 was more effective than other stra<strong>in</strong>s <strong>in</strong><br />

<strong>in</strong>creas<strong>in</strong>g dry matter yields across varieties. The<br />

effect was more <strong>for</strong> Carioca, Solwezi <strong>and</strong> Lundazi,<br />

than <strong>in</strong> Mbala <strong>and</strong> Pembela. This effect was comparable<br />

to the application of <strong>in</strong>organic nitrogen. The<br />

local isolate was as effective as the <strong>in</strong>troduced<br />

stra<strong>in</strong>s <strong>in</strong> Mbala <strong>and</strong> Lundazi, <strong>and</strong> <strong>in</strong> Mbala it was<br />

even more effective than CIAT 899. The native<br />

0.35<br />

0.3<br />

ImCIAT899 -TAL1383 0LOCAL o CONTROL -N FERT. I<br />

H"­<br />

; 0.25<br />

Cl<br />

o <br />

.~ 0.2 t-<br />

z<br />

Ii <br />

~ 0.15 - t- t- t- . <br />

:§<br />

~ 0 .1 r-- t- t- t­<br />

0 .05<br />

r--<br />

t- t­<br />

o<br />

t-t <br />

Carioca Mbala Solwezi Lundazi Pembela<br />

Cultivars<br />

Figure 2. Effect of Nsource on %N of bean cultivars<br />

80<br />

70<br />

~60<br />

..c:<br />

I:llJ CIAT899 .TAL1383 0 LO CAL DCONTROL.N FERT. I<br />

~50 '" " r- r­<br />

"t:J<br />

: 40 i<br />

Ii:<br />

! <br />

~ 30 t- t-- l- e-' <br />

.., '" ~ 20 l- t- t- r­<br />

z 10 - r Ir I- l I-<br />

c<br />

Carioc a Mt·ala Solwezi Lundazi Pembela<br />

Cultivars<br />

Figure 3. Nitrogen fixed by bean cultivars follow<strong>in</strong>g <strong>in</strong>oculation <strong>and</strong> <br />

fertilization <br />

-&::<br />

10<br />

ra<br />

9<br />

Q.<br />

:§<br />

8<br />

7 <br />

.r:: -<br />

0) 6 t- - - ' <br />

'0;<br />

'--::<br />

5 t- .:=-. - ­<br />

~<br />

4 - r­ -<br />

-<br />

~ 3 - t- -<br />

'0<br />

­<br />

2<br />

-<br />

- r- - r­<br />

0<br />

0 1 - r- - ­<br />

.r::<br />

(/) a<br />

IEl CI AT899 -TA11383 OLO CAL O CONTROL -N FERT. I<br />

..................... .. . ............. ............... .. .................................................. ..<br />

Carioca Mbala Solwezi Lundazi Pembela<br />

Cultivars<br />

Figure 4. Effect of N source on shoot dry weight of bean cultivars<br />

rhizobia stra<strong>in</strong>s at the trial site were as effective as<br />

the <strong>in</strong>troduced stra<strong>in</strong>s <strong>in</strong> Mbala, Solwezi <strong>and</strong> Lundazi.<br />

TAL 1383 was specifically selective to Pembela.<br />

There was a significant yield <strong>in</strong>crease (p < 0.05),<br />

with application of <strong>in</strong>oculum <strong>and</strong> <strong>in</strong>organic nitrogen<br />

fertilizer. The <strong>in</strong>crease was greatest <strong>in</strong> Lundazi<br />

with <strong>in</strong>organic nitrogen application <strong>and</strong> least <strong>in</strong><br />

Pembela. Overall TAL 1383 was more effective than<br />

other stra<strong>in</strong>s <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g gra<strong>in</strong> yield across the cultivars,<br />

<strong>and</strong> it was even more effective <strong>in</strong> Lundazi<br />

J<br />

i<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> ~ertility <strong>in</strong> Southern Africa<br />

41


1600<br />

'7<br />

ns 1400<br />

~<br />

1200<br />

Cl<br />

~<br />

1000<br />

"C 800<br />

.~<br />

>. 600<br />

c:: 400<br />

'n;<br />

... 200<br />

C)<br />

0<br />

nI<br />


ROLE OF PHOSPHORUS AND ARBUSCULAR MYCORRHIZAL FUNGI ON<br />

NODULATION AND SHOOT NITROGEN CONTENT IN<br />

GROUNDNUT AND LABLAB BEAN<br />

YLVER L. BESMER 1, R.T. KOIDE 1 <strong>and</strong> S.J. TWOMLOW 2<br />

Abstract<br />

1Pennsylvania State University, University Park, PA, USA<br />

21CRISA T, Matopos Research Station, Bulawayo, Zimbabwe<br />

Rotations with legumes have been suggested as a means to <strong>in</strong>crease cereal production <strong>in</strong> low-<strong>in</strong>put agriculture <strong>in</strong> Zimbabwe,<br />

as cereal yields are currently limited by nitrogen (N). However, NJixation by legumes is often phosphorus (P)<br />

limited. <strong>Soil</strong> availahle P expla<strong>in</strong>ed 67% of the variation <strong>in</strong> nodule numbers when groundnut was grown on a wide<br />

range of soils collected from subsistence farm er's fields <strong>in</strong> southern Zimbabwe. P applications on a luvisol <strong>and</strong> vertisol<br />

<strong>in</strong> Tsholotsho, south -western Zimbabwe, can significantly <strong>in</strong>crease nodule mass, aboveground biomass <strong>and</strong> total N <strong>in</strong><br />

residues of groundnut (Arachis hypogaea L), lablab bean (Lablab purpureus) <strong>and</strong> pigeonpea (Cajanus cajan (L)<br />

Millsp.) . However, P fertilizers are often beyond the economic means of subsistence farmers. The success of the legumes<br />

there<strong>for</strong>e, will strongly depend on their ability to utilize the P already l/1 the soil. Arbusclilar mycorrhizal fungi (AMF)<br />

are components of most natural ecosystems <strong>and</strong> <strong>for</strong>m a symbiosis, arbuscular mycorrhiza, with approximately 80 percent<br />

of all terrestrial plants. The fungi can <strong>in</strong>crease plant P uptake by <strong>in</strong>creas<strong>in</strong>g the surface uptake area. We have<br />

shown <strong>in</strong> a pot trial that by enhanc<strong>in</strong>g the AM colonization through an <strong>in</strong>oculation with AMF <strong>in</strong> a luvisol from<br />

Tsholotsho, nodule number <strong>and</strong> N content of the shoot significantly <strong>in</strong>creased <strong>in</strong> groundnut <strong>and</strong> lablab bean. This study<br />

<strong>in</strong>dicates that by explor<strong>in</strong>g the biology of the agro-ecosystem , beneficial effects could be obta<strong>in</strong>ed by optimiz<strong>in</strong>g the mlltualistic<br />

<strong>in</strong>teractions between the plant, bacteria <strong>and</strong> fungi. Ways to enhance AMF <strong>in</strong>oculum potential <strong>in</strong> the field s of<br />

subsistence farmers are currently be<strong>in</strong>g tested <strong>and</strong> are disCllssed.<br />

Key words: Arbuscular mycorrhiza, rhizobia, phosphorus, groundnut<br />

Introduction<br />

A majority of subsistence farms <strong>in</strong> Zimbabwe occur<br />

on communal l<strong>and</strong>. Maize (Zea mays) is grown as a<br />

staple, often on nutrient depleted s<strong>and</strong>y soils iow <strong>in</strong><br />

organic matter (Grant 1967, 1981, 1985). Inorganic<br />

fertilizers, once subsidized by the government, are<br />

scarce <strong>in</strong> rural areas <strong>and</strong> often beyond the economic<br />

means of subsistence farmers (Mapfumo <strong>and</strong> Giller,<br />

2001). With decl<strong>in</strong><strong>in</strong>g maize yields due to nitrogen<br />

(N) limitations (Snapp, 1998), there has been renewed<br />

<strong>in</strong>terest by researchers <strong>in</strong> us<strong>in</strong>g N2 fix<strong>in</strong>g legumes<br />

<strong>in</strong> <strong>in</strong>tercropp<strong>in</strong>g <strong>and</strong> rotational cropp<strong>in</strong>g systems<br />

to <strong>in</strong>crease soil fertility (Snapp et al., 2002; Ma<br />

et aI, 1998), a common practice <strong>in</strong> much of southern<br />

Africa prior to the <strong>in</strong>troduction of m<strong>in</strong>eral fertilizers<br />

(Howard repr<strong>in</strong>ted <strong>in</strong> Small Farmer's Journal, 1999).<br />

Groundnur (Arachis hypogaea L), cowpea (Vigna llndiculata<br />

(L) Walp.) <strong>and</strong> bambara groundnut (Vigna<br />

subterranean (L) Thou.) are currently grown <strong>for</strong> huan<br />

consumption <strong>and</strong> animal feed <strong>in</strong> Zimbabwe. However,<br />

their capacity to improve soil fertility might be<br />

limited <strong>for</strong> at least two reasons. First, they are all<br />

gra<strong>in</strong> legumes where much of the N is translocated<br />

to the seeds <strong>and</strong> removed from the field at harvest.<br />

Second, optimal N2 fixation might be limited by<br />

phosphorus (P), as soil P availabilities are generally<br />

low <strong>in</strong> the old, highly weathered soils of sub­<br />

Saharan Africa (Warren, 1992; Buresh et a L, 1997;<br />

Giller, 2001).<br />

In a previous experiment we have shown that when<br />

groundnut was grown on a wide range of soils collected<br />

from subsistence farmer's fields <strong>in</strong> southern<br />

Zimbabwe, nodule numbers differed by an order of<br />

magnitude. Further, soil available P expla<strong>in</strong>ed 67%<br />

of this variation (Besmer et al., unpublished), suggest<strong>in</strong>g<br />

the importance of this element <strong>for</strong> nodulation<br />

<strong>and</strong> N 2 fi xa tion. Applications of P (40 kg P20 s/<br />

ha) to two soils from Tsholotsho, a luvisol <strong>and</strong> vertisol<br />

(Moyo, 2001), both low <strong>in</strong> P, significantly<br />

(p


Arbuscular mycorrhizal fungi (AMF) colonize roots<br />

of about 80% of terrestrial plant species <strong>and</strong> can <strong>in</strong>crease<br />

plant P uptake by <strong>in</strong>creas<strong>in</strong>g the surface uptake<br />

area (Koide 1991). Synergistic effects on legumes<br />

are frequently seen when both symbionts (the<br />

rhizobia <strong>and</strong> the fungi) are present (Goss <strong>and</strong> de<br />

Varennes, 2002; Sang<strong>in</strong>ga et ai., 1999; Fitter <strong>and</strong> Garbaye,<br />

1994). Both nodule number <strong>and</strong> dry weight<br />

usually <strong>in</strong>crease after mycorrhizal colonization<br />

(Reddy <strong>and</strong> Bagyraj, 1991), which is often expla<strong>in</strong>ed'<br />

by <strong>in</strong>creased P uptake by the fungi. While mycorrhizal<br />

fungi are components of most natural ecosystems,<br />

their abundance <strong>and</strong> efficacy can be severely<br />

retarded by common agricultural practices such as<br />

fallow<strong>in</strong>g, soil disturbance through till<strong>in</strong>g <strong>and</strong> weed<br />

management, <strong>and</strong> prolonged cultivation of non-host<br />

plants (Boswell et al. 1998; Kabir et al., 1997; Douds<br />

et al. 1995; Har<strong>in</strong>ikumar <strong>and</strong> Bagyraj, 1989).<br />

The objective of our work was to underst<strong>and</strong> the<br />

role of AMF <strong>for</strong> legume per<strong>for</strong>mance <strong>in</strong> subsistence<br />

farmers' fields, <strong>and</strong> to determ<strong>in</strong>e if an enhanced<br />

AMF abundance can promote nodulation <strong>and</strong> N2<br />

fixation. In this paper we discuss the results of two<br />

pot experiments. In Experiment 1, the effect of an<br />

altered AMF abundance on nodulation <strong>and</strong> shoot N<br />

content on groundnut was determ<strong>in</strong>ed by enhanc<strong>in</strong>g<br />

the AMF abundance through an <strong>in</strong>oculation<br />

with a common AMF, or by reduc<strong>in</strong>g the <strong>in</strong>digenous<br />

AMF abundance through a fungicide application.<br />

In Experiment 2, the abundance of <strong>in</strong>digenous<br />

fungi was enhanced <strong>and</strong> the effects on nodule number,<br />

nodule mass <strong>and</strong> shoot N content were determ<strong>in</strong>ed<br />

on lab lab bean. Groundnut was chosen s<strong>in</strong>ce<br />

it is a common legume grown by the subsistence<br />

farmer <strong>in</strong> Zimbabwe, <strong>and</strong> lablab bean because it is a<br />

green manure crop <strong>and</strong> there<strong>for</strong>e has a higher potential<br />

to improve soil fertility.<br />

Material <strong>and</strong> methods<br />

General<br />

The soil used <strong>in</strong> both Experiment 1 <strong>and</strong> Experiment<br />

2 was a Tsholotsho luvisol (from Simeon Moyo's<br />

farm) where legume P limitations had been demonstrated<br />

previously. The pH of the soil was 6.2 (1:2 V<br />

soil: V water), <strong>and</strong> available P was 1.2 ppm (Olsen).<br />

<strong>Soil</strong> was collected to a depth of 15 cm <strong>in</strong> December<br />

1999, <strong>for</strong> Experiment 1, <strong>in</strong> April 2001 <strong>for</strong> the <strong>in</strong>oculum<br />

production part of Experiment 2, <strong>and</strong> <strong>in</strong> November<br />

2001, <strong>for</strong> the <strong>in</strong>oculation part of Experiment<br />

2. For Experiment 1 the soil was collected r<strong>and</strong>omly<br />

from the field where plants were currently grown<br />

<strong>and</strong> no fertilizers had been added, <strong>and</strong> <strong>for</strong> Experiment<br />

2 from areas where maize had been grown the<br />

previous year without fertilizer additions.<br />

Experiment 1<br />

Groundnut (var. Falcon) was planted on December<br />

28 1999, <strong>in</strong> 1.6 L pots <strong>and</strong> grown <strong>for</strong> 6 weeks <strong>in</strong> soil<br />

amended with P [2 g s<strong>in</strong>gle superphosphate pot- l<br />

(19% P20S)], AMF (2000 spores pot l of Glomus <strong>in</strong>traradices,<br />

Schenk <strong>and</strong> Smith), a fungicide Benomyl<br />

(200 mL of 0.1% solution added one day prior to<br />

plant<strong>in</strong>g), or control consist<strong>in</strong>g of non-sterile soil.<br />

No additional fertilizers were added <strong>and</strong> the plants<br />

were watered as needed. At harvest, nodule numbers<br />

were determ<strong>in</strong>ed along with shoot N<strong>and</strong> P<br />

concentrations <strong>and</strong> AM colonization us<strong>in</strong>g st<strong>and</strong>ard<br />

procedures (Brundrett et ai., 1996; Watanabe <strong>and</strong><br />

Olsen, 1965; Jensen 1962).<br />

Data were analyzed us<strong>in</strong>g a one-way ANOV A <strong>and</strong><br />

trans<strong>for</strong>med where appropriate. When trans<strong>for</strong>mation<br />

failed to generate data that fulfilled the underly<strong>in</strong>g<br />

assumptions, data were analyzed us<strong>in</strong>g nonparametric<br />

tests.<br />

Experiment 2<br />

Production ofAMF <strong>and</strong> control <strong>in</strong>oculum<br />

Maize was planted <strong>in</strong> the soil <strong>in</strong> July 2001, <strong>and</strong><br />

grown <strong>for</strong> three months to enhance the abundance<br />

of <strong>in</strong>digenous AMF. Control pots consisted of<br />

maize grown <strong>in</strong> sterile soil that had been given<br />

spore wash<strong>in</strong>gs conta<strong>in</strong><strong>in</strong>g soil bacteria <strong>and</strong> fungi<br />

but lack<strong>in</strong>g AMF. The plants were fertilized six<br />

times with Peters fertilizer 15-0-15NK plus micronutrients<br />

(at a N concentration of 100 ppm) <strong>and</strong><br />

amended with 0.15 giL MgS04 <strong>and</strong> 5 mg PIL as<br />

KH2P04. After three months the maize plants were<br />

allowed to wilt, <strong>and</strong> dry soil <strong>and</strong> cut root pieces<br />

served as a source of <strong>in</strong>oculum, which consisted of<br />

AMF spores, external hyphae <strong>and</strong> colonized root<br />

pieces. The control roots were non-mycorrhizal.<br />

Inoculation experiment<br />

Lablab bean (var. Rongai) was planted on 3 November<br />

2002, <strong>in</strong> pots amended with either 200 mL control<br />

<strong>in</strong>oculum or 200 mL of AMF <strong>in</strong>oculum, <strong>and</strong><br />

grown <strong>for</strong> 7 weeks <strong>and</strong> watered as needed. At harvest,<br />

nodule number <strong>and</strong> weight were recorded,<br />

AM colonization determ<strong>in</strong>ed <strong>and</strong> shoot N<strong>and</strong> P<br />

concentration measured (Brundrett et ai., 1996; Watanabe<br />

<strong>and</strong> Olsen, 1965; Jensen 1962). Data were<br />

analyzed us<strong>in</strong>g a one tailed paired t-test where<br />

+AMF <strong>and</strong> control pairs shared the site orig<strong>in</strong> from<br />

the field.<br />

Results<br />

Experiment 1<br />

Enhanc<strong>in</strong>g AMF <strong>in</strong> the test luvisol significantly <strong>in</strong>creased<br />

AM colonization compared to the control<br />

(Table 1). This resulted <strong>in</strong> a doubl<strong>in</strong>g <strong>in</strong> nodule<br />

numbers <strong>and</strong> a significantly higher N content <strong>in</strong> the<br />

shoot. There was a strong beneficial effect of P on<br />

the number of nodules, which resulted <strong>in</strong> almost a<br />

doubl<strong>in</strong>g <strong>in</strong> N content <strong>in</strong> the shoot. However, <strong>in</strong>ter-<br />

44<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


est<strong>in</strong>gly, P was more efficient than a fungicide <strong>in</strong> <br />

lower<strong>in</strong>g the AM colonization. Fungicide applica­<br />

tions did not differ significantly from the control <strong>in</strong> <br />

any of the variables measured. <br />

Experiment 2 <br />

Enhanc<strong>in</strong>g the <strong>in</strong>digenous AMF abundance resulted <br />

<strong>in</strong> a significantly higher AM colonization, nodule <br />

mass <strong>and</strong> N concentration <strong>in</strong> the shoot (Table 2). <br />

There were no significant differences between con­<br />

trol <strong>and</strong> +AMF <strong>in</strong> shoot weight <strong>and</strong> shoot P concen­<br />

tration. <br />

Discussion<br />

Many factors need to be considered when try<strong>in</strong>g to<br />

optimize the soil fertility benefits of legumes. Differences<br />

<strong>in</strong> residue quantity <strong>and</strong> quality among legumes<br />

grown under various conditions need to be<br />

documented, <strong>and</strong> factors limit<strong>in</strong>g legume per<strong>for</strong>mance<br />

need to be established. We have shown here<br />

by' explor<strong>in</strong>g the biology of the agro-ecosystem that<br />

beneficial effects could be obta<strong>in</strong>ed by optimiz<strong>in</strong>g<br />

the mutualistic <strong>in</strong>teractions between the plant, bacteria<br />

<strong>and</strong> fungi . Nodule number <strong>and</strong> mass <strong>in</strong><br />

groundnut <strong>and</strong> lab lab were significantly enhanced<br />

by a higher abundance of AMF when the legumes<br />

were grown <strong>in</strong> a low P luvisol. This resulted <strong>in</strong><br />

more N <strong>in</strong> the shoot tissue, a key element <strong>for</strong> optimiz<strong>in</strong>g<br />

maize production.<br />

Beneficial effects of AMF on nodulation have been<br />

documented be<strong>for</strong>e (Goss <strong>and</strong> de Varennes, 2002;<br />

Ahiabor <strong>and</strong> Hirata, 1994; Reddy <strong>and</strong> Bagyraj,<br />

1991) <strong>and</strong> have often been l<strong>in</strong>ked to the <strong>in</strong>creased P<br />

uptake provided by the fungi. However, even<br />

though AM colonization levels were higher <strong>in</strong> the<br />

Table 1. Effect of P, enhanced AMF <strong>and</strong> a fungicide on groundnut<br />

grown <strong>in</strong> aluvisol soil collected from a subsistence farmer's field <strong>in</strong><br />

Tshlotshlo. Different superscripts <strong>in</strong>dicate a significant (p < 0.05)<br />

difference between means, n= 5.<br />

Treatment Shoot OW Nodule AM Pcontent Ncontent<br />

(g) (per plant) (%) (mg shoot 1 ) (mg shoot 1 )<br />

Control 1.0 be 75 ' 25 b 1.1 b 27 '<br />

AMF 1.201> 144 b 57 ' 1.9 b 36 b<br />

Fungicide OJ' 43 ' 13 be 0.9 b 20 '<br />

Phosphorus 1.3' 290 ' 1 ' 6.9 • 46 '<br />

Table 2. Effect of enhanced <strong>in</strong>digenous AMF on lablab bean.<br />

Control consisted of non·sterile soil collected from a subsistence<br />

farmer's field <strong>in</strong> Tsholotsho. Different superscripts <strong>in</strong>dicate a<br />

significant (p < 0.05) difference between means, n~ 1O.<br />

I<br />

Variable Control + AMF<br />

(non·sterile soil) (non·sterile soil + AMF)<br />

I Shoot OW (g) 3.3' 3.6'<br />

Nodule mass (mg plant 1 ) 4S.6 b 202.1'<br />

Shoot Nconcentration ('Yo) 1.Sb 2.2'<br />

Shoot Pconcentration (%) 0.11' 0.11'<br />

AM colonization (0/,) S4.0 b 74.5'<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

+AMF treatment <strong>in</strong> our experiments, shoot P levels<br />

were not significantly <strong>in</strong>creased. If the AMF effect is<br />

P mediated, should this not be reflected <strong>in</strong> an <strong>in</strong>creased<br />

shoot P content? One possible answer to<br />

this is that the amount of P needed <strong>for</strong> optimal<br />

nodulation is an order of magnitude lower than <strong>for</strong><br />

optimal growth of plants (Gates <strong>and</strong> Wilson, 1974).<br />

S<strong>in</strong>ce available P <strong>in</strong> the luvisol soil <strong>in</strong> this experiment<br />

was very low, it is possible that the small<br />

amount of additional P taken up <strong>in</strong> the +AMF treatments<br />

rema<strong>in</strong>ed <strong>in</strong> the roots <strong>and</strong> promoted nodulation.<br />

In that case, differences would not be detected<br />

<strong>in</strong> the shoot tissue. Analyses of nodule P contents <strong>in</strong><br />

lablab are currently underway to address this issue.<br />

Further, unlike many previous experiments, the<br />

control plants <strong>in</strong> our experiments were mycorrhizal,<br />

so differences between +AMF <strong>and</strong> control plants<br />

were likely to be smaller than what is normally presented<br />

when the control plants are non-mycorrhizal.<br />

We are not propos<strong>in</strong>g large-scale <strong>in</strong>oculation projects<br />

as an outcome of these results. Rather, the<br />

abundance of <strong>in</strong>digenous fungi should be <strong>in</strong>creased.<br />

In temperate agro-ecosystems, it has been shown<br />

that fungal abundance is affected by tillage <strong>and</strong> fallow<br />

practices (Boswell et al. 1998; Kabir et a!., 1997;<br />

Douds et al. 1995; Har<strong>in</strong>ikumar <strong>and</strong> Bagyraj, 1989),<br />

but little is currently known about the effects of<br />

common management practices by subsistence<br />

farmers <strong>in</strong> the semi-arid tropiCS. Based on this,<br />

AMF responses to tillage tim<strong>in</strong>g <strong>and</strong> fallow period<br />

are currently be<strong>in</strong>g <strong>in</strong>vestigated on subsistence<br />

farmers' fields. It is important to remember though,<br />

that even if AMF abundance is <strong>in</strong>creased through a<br />

change <strong>in</strong> current management practices <strong>and</strong> beneficial<br />

effects on legume per<strong>for</strong>mance observed, it is<br />

not a susta<strong>in</strong>able substitute <strong>for</strong> P fertilizers. Whatever<br />

P is brought from the soil <strong>in</strong> harvestable products<br />

or animal feed need to be replenished. Nevertheless<br />

AMF can contribute to a better utilization of<br />

the P applied to the system, thereby reduc<strong>in</strong>g the<br />

amounts <strong>and</strong> frequency of P application <strong>in</strong> a susta<strong>in</strong>able<br />

agro-ecosystem.<br />

Acknowledgements<br />

This project could not have been conducted had it<br />

not been <strong>for</strong> our fund<strong>in</strong>g sources, the National Geographic<br />

Society <strong>and</strong> the Root Biology Program of<br />

the Pennsylvania State University, which is funded<br />

by the US National Science Foundation. Our special<br />

thanks go to the collaborat<strong>in</strong>g farmers <strong>in</strong> Tsholotsho,<br />

Gw<strong>and</strong>a <strong>and</strong> Masv<strong>in</strong>go.<br />

References<br />

Ahiabor BD, Hirata H. 1994. Characteristic responses<br />

of three legumes to the <strong>in</strong>oculation of<br />

two species of V AM fungi <strong>in</strong> Andosol soils with<br />

different fertilities. Mycorrhiza 5(1):63-70.<br />

45


Boswell EP, Koide RT, Shumway DL, Addy HD.<br />

1998. W<strong>in</strong>ter wheat cover cropp<strong>in</strong>g, VA mycorrhizal<br />

fungi <strong>and</strong> maize growth <strong>and</strong> yield. Agriclllture,<br />

Ecosystems <strong>and</strong> Environment 67:55-65.<br />

Brundrett M, Bougher N, Dell B, Grove T,<br />

Malajczuk N. 1996. Work<strong>in</strong>g with mycorrhizas<br />

<strong>in</strong> <strong>for</strong>estry <strong>and</strong> agriculture. ACIAR Monograph<br />

32, Canberra ACT, Australia. 374 pp.<br />

Buresh RJ, Sanchez PA, Calhoun F, (Eds). 1997. Replenish<strong>in</strong>g<br />

<strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Africa. SSSA Sepcial<br />

Publication No. 51. SSSA, Madison, WI., USA.<br />

Douds DO, Galvez L, Janke RR, Wagoner P. 1995.<br />

Effects of tillage <strong>and</strong> farm<strong>in</strong>g system upon populations<br />

<strong>and</strong> distributions of vesicular-arbuscular<br />

mycorrhizal fungi. Agricllltllre Ecosystems <strong>and</strong> Environment<br />

52:111-118.<br />

Fitter AH, Garbaye J. 1994. Interactions between<br />

mycorrhizal fungi <strong>and</strong> other soil organisms.<br />

Plant <strong>and</strong> <strong>Soil</strong> 159:123-132.<br />

Gates CT, Wilson JR. 1974. The <strong>in</strong>teraction of nitrogen<br />

<strong>and</strong> phosphorus on the growth, nutrient<br />

status <strong>and</strong> nodulation of Stylosanthes humilis H.B.<br />

K. (Townsville Stylo). Plant <strong>and</strong> <strong>Soil</strong> 41:325-333.<br />

Giller K. 2001. Nitrogen fixation <strong>in</strong> tropical cropp<strong>in</strong>g<br />

systems. 2nd Edition. CABl Publish<strong>in</strong>g, Wall<strong>in</strong>g<strong>for</strong>d,<br />

UK. 423 pp.<br />

Goss MJ, de Varennes A. 2002. <strong>Soil</strong> disturbance reduces<br />

the efficacy of mycorrhizal associations <strong>for</strong><br />

early soybean growth <strong>and</strong> N-2 fixation. <strong>Soil</strong> Biology<br />

<strong>and</strong> Biochemistnj 34:1167-1173.<br />

Grant PM. 1967. The fertility of s<strong>and</strong>veld soil under<br />

cont<strong>in</strong>uous cultivation. Part 1. The effect of manure<br />

<strong>and</strong> nitrogen fertilizer on the nitrogen<br />

status of soil. Rhodesia Zambia Malawi Journal of<br />

Agricultural Research 5: 71-79.<br />

Grant PM. 1981. The fertilization of s<strong>and</strong>y soils <strong>in</strong><br />

peasant agriculture <strong>in</strong> Zimbabwe. Zimbabwe Agricultural<br />

Journal 78:169-175.<br />

Grant PM. 1995. <strong>Soil</strong> fertility <strong>and</strong> organic matter<br />

management. In: Twomlow S, Ellis-Jones J, Hagmann<br />

J, Loos H (Eds) <strong>Soil</strong> <strong>and</strong> water conservation<br />

<strong>for</strong> smallholder farmers <strong>in</strong> semi-arid Zimbabwe<br />

- transfers between research <strong>and</strong> extension.<br />

Proceed<strong>in</strong>gs from a National Technical<br />

Workshop, 3-7 April 1995 <strong>in</strong> Masv<strong>in</strong>go, Zimbabwe.<br />

Silsoe Research Institute, Report<br />

00/95/16.164-171.<br />

Har<strong>in</strong>ikumar KM, Bagyraj OJ. 1989. Effect of cropp<strong>in</strong>g<br />

sequence, fertilizer <strong>and</strong> farmyard maure on<br />

vesicular-arbuscular mycorrhizal fungi <strong>in</strong> different<br />

crops over three consecutive seasons. Biology<br />

<strong>and</strong> <strong>Fertility</strong> of <strong>Soil</strong>s 7: 173-175.<br />

Howard H, 1941. <strong>Soil</strong> <strong>and</strong> Health. Repr<strong>in</strong>ted by<br />

Small Farmer's Journal <strong>in</strong> 1999, vol 22.<br />

Jensen WA (1962) Botanical histochemistry. Freeman,<br />

San Francisco, CA., USA.<br />

Koide RT. 1991. Nutrient supply, nutrient dem<strong>and</strong><br />

plant response to mycorrhizal <strong>in</strong>fection. New<br />

Phytologist 117: 365-386.<br />

Kabir Z, O'Halloran IP, Fyles JW, Hamel C. 1997.<br />

Seasonal changes of arbuscular mycorrhizal<br />

fungi as affected by tillage practices <strong>and</strong> fertilization:<br />

Hyphal density <strong>and</strong> mycorrhizal root colonization.<br />

Plant <strong>and</strong> <strong>Soil</strong> 192:285-293.<br />

Map;umo P, <strong>and</strong> Giller K. 2001. <strong>Soil</strong> fertility management<br />

strategies <strong>and</strong> practices by smallholder<br />

farmers <strong>in</strong> semi-arid areas of Zimbabwe. Bulawayo,<br />

Zimbabwe: International Crops Research<br />

Institute <strong>for</strong> the Semi-Arid Tropics. 60 pp.<br />

Moyo M. 2001. Representative soil profiles of ICRl­<br />

SAT research sites. Chemistry <strong>and</strong> <strong>Soil</strong> Research<br />

Institute, <strong>Soil</strong>s Report No. A666. pp 97.<br />

Muza L, Pashapa L, Feresu S. 1998. Need to revive<br />

green manur<strong>in</strong>g <strong>in</strong> soil fertility management <strong>in</strong><br />

Zimbabwe. Zimbabwe Science News 32:51-57.<br />

Reddy BMS, Bagyaraj OJ. 1991. The symbiotic efficiency<br />

of pigeonpea to VA mycorrhizal <strong>in</strong>oculation<br />

<strong>in</strong> an alfisol <strong>and</strong> vertisol. Biological Agriculture<br />

<strong>and</strong> Horticulture 8:177-182.<br />

Sang<strong>in</strong>ga N, Carsky RJ, Dashiell K. 1999. Arbuscular<br />

mycorrhizal fungi respond to rhizobial <strong>in</strong>oculation<br />

<strong>and</strong> cropp<strong>in</strong>g systems <strong>in</strong> farmers' fields <strong>in</strong><br />

the Gu<strong>in</strong>ea savanna. Biology <strong>and</strong> <strong>Fertility</strong> of <strong>Soil</strong>s<br />

30:179-188.<br />

Snapp SS.1998. <strong>Soil</strong> Nutrient Status of Smallholder<br />

Farms <strong>in</strong> Malawi. Commun. <strong>Soil</strong> Sci. Plant Anal.<br />

29:2171-2588.<br />

Snapp SS, Rohrbach DO, Simtowe F, Freeman liA.<br />

2002. Susta<strong>in</strong>able soil management options <strong>for</strong><br />

Malawi: can smallholder farmers grow more legumes?<br />

Agriculture Ecosystems <strong>and</strong> Environment<br />

91:159-174.<br />

Warren GP. 1992. Fertilizer Phosphorus: sorption<br />

<strong>and</strong> residual value <strong>in</strong> tropical African soils. NRl<br />

Bullet<strong>in</strong> 37, Chatham, UK: Natural Resources<br />

Institute. 91 pp.<br />

Watanabe FS, Olsen SR 1965. Test of an ascorbic<br />

acid method <strong>for</strong> determ<strong>in</strong><strong>in</strong>g phosphorus <strong>in</strong> water<br />

<strong>and</strong> NaHC03 extracts from soil. Proceed<strong>in</strong>gs<br />

<strong>Soil</strong> Science Society of America 26:677-678.<br />

46<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


SOYABEAN YIELD RESPONSE TO DIFFERENT RHIZOBIAL INOCULATION<br />

RATES ON SELECTED SANDY SOILS IN ZIMBABWE<br />

NGONI CHIRINDA 1 ', S. MPEPEREKI', R. ZENGEI\J1 1 <strong>and</strong> K.E. GILLER 2<br />

1 Department of <strong>Soil</strong> Science <strong>and</strong> Agricultural Eng<strong>in</strong>eer<strong>in</strong>g, University of Zimbabwe<br />

Box MP 167 Mt Pleasant, Harare, Zimbabwe<br />

2 Plant Production systems, Department of Plant Sciences, Wagen<strong>in</strong>gen University,<br />

P. O. Box 430 6700 AK Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s<br />

*Correspond<strong>in</strong>g author email: (ntchir<strong>in</strong>da@yahoo.com)<br />

Abstract<br />

The recommended rhizobial <strong>in</strong>oculation rate <strong>for</strong> soyabean (Glyc<strong>in</strong>e max (L) seed <strong>in</strong> Zimbabwe of 80 g (10 8 cells g-l)<br />

<strong>in</strong>oculant <strong>for</strong> 100 kg seed has generally resulted <strong>in</strong> unreliable nodulation on the s<strong>and</strong>y soils that predom<strong>in</strong>ate <strong>in</strong> most<br />

smallholder areas. In this study, it was hypothesized that a higher seed <strong>in</strong>oculation rate would improve soyabean gra<strong>in</strong><br />

yield hI the smallholder sector. The trial was set up dur<strong>in</strong>g the 2001/2002 season <strong>in</strong> two districts, Guruve <strong>and</strong> Goromonzi,<br />

to determ<strong>in</strong>e appropriate <strong>in</strong>oculation rates <strong>for</strong> maximum soyabean gra<strong>in</strong> yield on s<strong>and</strong>y soils of the smallholder<br />

sector <strong>in</strong> Zimbabwe. Two soya bean varieties, Solitaire <strong>and</strong> Storm, were <strong>in</strong>oculated with a commercial rhizobial <strong>in</strong>oculant<br />

conta<strong>in</strong><strong>in</strong>g Bradyrhizhobium japonicum (stra<strong>in</strong> MAR 1491) at the follow<strong>in</strong>g rates: 80 g <strong>in</strong>oculant per 100 kg ofseed<br />

(the recommended rate), <strong>and</strong> 2, 3, 5 <strong>and</strong> 10 times that recommended rate. Seeds were sown at the rate of 100 kg ha- J <strong>in</strong> 5<br />

m x 3.6 m field plots arranged <strong>in</strong> a r<strong>and</strong>omized block design, with each <strong>in</strong>oculation rate replicated four times. Eight<br />

weeks after plant<strong>in</strong>g, whole plant samples were dug up from the guard rows of each plot <strong>and</strong> checked <strong>for</strong> nodulation.<br />

Plants were harvested from 3 m x 3 m net plots at maturity to determ<strong>in</strong>e seed <strong>and</strong> stover yields. Results showed a significant<br />

<strong>in</strong>crease <strong>in</strong> gra<strong>in</strong> <strong>and</strong> stover yields as well as primary root nodulation with <strong>in</strong>creased <strong>in</strong>oculation rates <strong>for</strong> both<br />

varieties (P


Materials <strong>and</strong> Methods<br />

The trial was set up dur<strong>in</strong>g the 2001/2002 cropp<strong>in</strong>g<br />

season <strong>in</strong> Goromonzi District of agro-ecological region<br />

(AER) 2 <strong>and</strong> Guruve District of AER 3. Average<br />

ra<strong>in</strong>fall <strong>in</strong> AER 2 (70S-1000 mm) <strong>and</strong> 3 (6S0-800<br />

mm) is suited <strong>for</strong> soyabean production. Two weeks<br />

be<strong>for</strong>e plant<strong>in</strong>g, soils were sampled (from 0-30 em<br />

depth) <strong>in</strong> Guruve (Mrs. Kanonama's field) <strong>and</strong><br />

Goromonzi (Mr. Majuru's field). Both fields were<br />

last planted with soyabean <strong>in</strong> the 1998/1999 cropp<strong>in</strong>g<br />

season. Maize (Zea mays) was grown at both<br />

sites dur<strong>in</strong>g the 2000/2001 season. Cotton<br />

(Gossypium hirsutum) <strong>and</strong> common beans (Phaseolus<br />

vulgaris (L) .) were grown at Majuru <strong>and</strong> Kanonama<br />

respectively dur<strong>in</strong>g the 1999/2000 season. <strong>Soil</strong> texture<br />

was determ<strong>in</strong>ed us<strong>in</strong>g the hydrometer method<br />

<strong>and</strong> organic matter content (%C) by the Walkley­<br />

Black method (Nelson <strong>and</strong> Sommers, 1996). Total<br />

soil nitrogen was estimated us<strong>in</strong>g the Kjeldahl<br />

method (Bremner, 1996). Exchangeable bases were<br />

determ<strong>in</strong>ed us<strong>in</strong>g ammonium acetate as the extract<strong>in</strong>g<br />

agent (Summer <strong>and</strong> Miller, 1996). The most<br />

probable number (MPN) technique (V<strong>in</strong>cent, 1970)<br />

was used to quantify <strong>in</strong>digenous rhizobial populations<br />

<strong>in</strong> the soils. The density of Bradyrhizobium japonicum<br />

(stra<strong>in</strong> MAR 1491) <strong>in</strong> the commercial <strong>in</strong>oculants<br />

was estimated by plate counts on Yeast Extract<br />

Mannitol agar.<br />

Five <strong>in</strong>oculation rates (the recommended <strong>in</strong>oculation<br />

rate (0.8 g kg-I seed), 2, 3, S <strong>and</strong> 10 times that<br />

rate) were tested <strong>in</strong> this experiment us<strong>in</strong>g two soyabean<br />

varieties, Storm (determ<strong>in</strong>ate) <strong>and</strong> Solitaire<br />

(<strong>in</strong>determ<strong>in</strong>ate), that nodulate with specific rhizobial<br />

stra<strong>in</strong>s. Seeds were sown at 100 kg seed per hectare<br />

<strong>in</strong> S m x 3.6 m plots that were arranged <strong>in</strong> a r<strong>and</strong>omized<br />

complete block design with four replicates.<br />

Basal fertilizer, Compound L (S% N, 18% P20S,<br />

10% K20 <strong>and</strong> 0.2S% Boron) <strong>and</strong> lime were applied at<br />

rates of lS0 kg ha-I <strong>and</strong> SOO kg ha-I respectively. The<br />

crop was weeded at 2 <strong>and</strong> 6 weeks after sow<strong>in</strong>g.<br />

The un<strong>in</strong>oculated plots were weeded first, then<br />

other plots were weeded, tak<strong>in</strong>g precautions to<br />

avoid cross-contam<strong>in</strong>ation by wip<strong>in</strong>g feet, h<strong>and</strong>s<br />

<strong>and</strong> hoes with commercial methylated spirit (10%<br />

methanol) be<strong>for</strong>e weed<strong>in</strong>g a different plot. Whole<br />

plant samples (12) from the guard rows of each plot<br />

were dug up <strong>and</strong> checked <strong>for</strong> nodulation 8 weeks<br />

after sow<strong>in</strong>g. The number of nodules, nodule colour<br />

<strong>and</strong> nodule dry mass (70OC <strong>for</strong> 24 h) were deter~<br />

m<strong>in</strong>ed. Plants were harvested at ma­<br />

turity from 3 m x 3 m net plots. Pod<br />

number, gra<strong>in</strong> <strong>and</strong> stover yield, <strong>and</strong><br />

expected value (EV) concept (S<strong>in</strong>gleton et al., 1992)<br />

was used to express yield <strong>in</strong>creases <strong>in</strong> monetary<br />

terms. [EV = Y (<strong>in</strong>crease <strong>in</strong> yield result<strong>in</strong>g from <strong>in</strong>oculation)<br />

x Pr (price of the crop) x P (the probability<br />

of obta<strong>in</strong><strong>in</strong>g a yield <strong>in</strong>crease under the def<strong>in</strong>ed<br />

conditions)].<br />

Results<br />

Ra<strong>in</strong>fall amount dur<strong>in</strong>g the 200l/2002-season ra<strong>in</strong>fall<br />

was low at both the Kanonama (416 mm) <strong>and</strong><br />

Majuru (307 mm) site. Ra<strong>in</strong>fall distribution was<br />

poorer at Majuru. <strong>Soil</strong>s at both sites were s<strong>and</strong>y<br />

«7% clay) <strong>and</strong> acidic (pH


A<br />

B<br />

7 10<br />

6<br />

•<br />

8<br />

....... , 5 "7 <br />

C C 6 <br />

ell ell<br />

4<br />

0... 0...<br />

Vl<br />

0<br />

Vl 3 4<br />


0.9<br />

0.8<br />

~ 0.7 Rec<br />

'-' 0.6<br />

Vl<br />

::9 0.5<br />


esponse is site specific (S<strong>in</strong>gleton <strong>and</strong> Tavares,<br />

1986). The nodulat<strong>in</strong>g pattern of the two varieties<br />

tends to suggest that variety Solitaire is less specific<br />

than variety Storm as it had a relatively high nodule<br />

count <strong>in</strong> the absence of <strong>in</strong>oculation. Because Solitaire<br />

has an <strong>in</strong>determ<strong>in</strong>ate growth habit, like the<br />

popular promiscuous variety Magoye, it could be<br />

that the <strong>in</strong>determ<strong>in</strong>ate growth habit is related to<br />

promiscuity. At the sites used <strong>in</strong> this study, the <strong>in</strong>digenous<br />

rhizobia population was <strong>in</strong>effective <strong>in</strong> fix<strong>in</strong>g<br />

N as evidenced by the poor gra<strong>in</strong> yield <strong>in</strong> the<br />

un<strong>in</strong>oculated control. However, <strong>in</strong> the presence of<br />

effective <strong>in</strong>digenous rhizobial populations, Solitaire<br />

could be grown without <strong>in</strong>oculation.<br />

Wadisirisuk <strong>and</strong> Weaver (1985) reported that nodule<br />

OM is related to N-fixation capacity. Nodules<br />

<strong>for</strong>med on Storm <strong>in</strong>creased with <strong>in</strong>oculation rate<br />

<strong>and</strong> had a higher OM than those on Solitaire. This<br />

could have partly contributed to <strong>in</strong>creased nitrogen<br />

fixation <strong>and</strong> gra<strong>in</strong> yield <strong>for</strong> Storm.<br />

Pod count was significantly related to gra<strong>in</strong> yields<br />

(P=0.03) <strong>and</strong> <strong>in</strong>creased with <strong>in</strong>oculation rates. This<br />

result is <strong>in</strong> agreement with Jayapaul <strong>and</strong> Ganesaraja<br />

(1990) who stated that an <strong>in</strong>crease <strong>in</strong> plant nitrogen<br />

<strong>in</strong>creases pod count. The seed weight of 100 seeds<br />

did not differ <strong>for</strong> the different <strong>in</strong>oculation rates, possibly<br />

due to the poor ra<strong>in</strong>fall that could have affected<br />

seed sett<strong>in</strong>g.<br />

In the SH sector, pieces of l<strong>and</strong> allocated to soyabean<br />

are small (0.1 ha), with seed requirements of<br />

about 10 kg. Available i~oculant sachet sizes (80 g)<br />

result <strong>in</strong> farmers <strong>in</strong>oculat<strong>in</strong>g their soyabean at rates<br />

almost ten times higher than recommended. This<br />

could be the reason why dramatic yields <strong>in</strong> response<br />

to <strong>in</strong>oculation were reported <strong>in</strong> the first<br />

phase of soya bean promotion <strong>in</strong> Zimbabwe<br />

(Mpepereki et al., 2002). Results from this study<br />

suggest that the recent <strong>in</strong>troductions of <strong>in</strong>oculant<br />

sachets allow<strong>in</strong>g <strong>in</strong>oculation of small quantities of<br />

seed at the recommended rate will result <strong>in</strong> a yield<br />

decrease.<br />

As farmers become more confident <strong>in</strong> grow<strong>in</strong>g soyabeans<br />

<strong>and</strong> realiz<strong>in</strong>g they can make profits, they are<br />

<strong>in</strong>creas<strong>in</strong>g its area planted. Of the 5 million ha<br />

opened <strong>for</strong> resettlement, about30% are virg<strong>in</strong> s<strong>and</strong>y<br />

soils. If 150 VOO ha (10%) of.the s<strong>and</strong>y soils are used<br />

<strong>for</strong> soya bean production, a five times <strong>in</strong>crease <strong>in</strong> the<br />

rate of <strong>in</strong>oculation will <strong>in</strong>crease the dem<strong>and</strong> <strong>for</strong> <strong>in</strong>oculants<br />

above what the factory can supply. The <strong>in</strong>oculant<br />

factory <strong>in</strong> Zimbabwe currently produces<br />

120000 sachets <strong>in</strong> a year which are <strong>for</strong> the 75 000 ha<br />

of soya bean grown nati0nwide, 10 000 ha of which<br />

was <strong>in</strong> the SH sector.<br />

Conclusions<br />

This study has shown that the recommended <strong>in</strong>oculation<br />

rate of 0.8 g <strong>in</strong>oculant kg· l seed is <strong>in</strong>sufficient<br />

<strong>for</strong> maximum nodulation, soyabean seed yields,<br />

seed nitrogen <strong>and</strong> stover yields on s<strong>and</strong>y soils <strong>in</strong><br />

Zimbabwe. A rate of 8 g kg· l seed, currently be<strong>in</strong>g<br />

used by farmers is uneconomic <strong>for</strong> soyabean production<br />

on s<strong>and</strong>y soils. Generally, the <strong>in</strong>oculation<br />

rates of 4 g kg-l seed were observed to result <strong>in</strong><br />

maximum seed yield.<br />

Recommendations<br />

Judg<strong>in</strong>g from its current capacity (120 000 sachets<br />

per year), the <strong>in</strong>oculant factory <strong>in</strong> Zimbabwe would<br />

not meet the <strong>in</strong>creased <strong>in</strong>oculant dem<strong>and</strong> if the <strong>in</strong>oculation<br />

rates were to be <strong>in</strong>creased five times. Assur<strong>in</strong>g<br />

a higher seed <strong>in</strong>oculation rate by <strong>in</strong>creas<strong>in</strong>g<br />

the number of viable cells per sachet could be an<br />

option. While this could <strong>in</strong>crease the number of cells<br />

<strong>in</strong> an <strong>in</strong>oculant sachet, <strong>in</strong>tensify<strong>in</strong>g competition <strong>for</strong><br />

available nutrients, <strong>in</strong>creas<strong>in</strong>g cell mortality, there is<br />

need <strong>for</strong> further research to ascerta<strong>in</strong> this. Use of<br />

granular <strong>in</strong>oculants could also be considered <strong>for</strong> the<br />

harsh SH cropp<strong>in</strong>g environments. Improv<strong>in</strong>g the<br />

soil environment <strong>for</strong> better rhizobia survival by reduc<strong>in</strong>g<br />

soil acidity <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g soil organic matter<br />

could enhance rhizobial survival <strong>in</strong> the soil,<br />

elim<strong>in</strong>at<strong>in</strong>g the need <strong>for</strong> high <strong>in</strong>oculation rates. This<br />

could allow farmers to benefit from high yields at<br />

reduced <strong>in</strong>oculation rates.<br />

References<br />

Andrade, OS. <strong>and</strong> Hungria, M. 2002. Maximiz<strong>in</strong>g<br />

the contribution of biological nitrogen fixation <strong>in</strong><br />

tropical legume crops. In: F<strong>in</strong>an, T.M., O'Brian,<br />

M.R., Layzell, O.B., Vessey, J.K. <strong>and</strong> Newton, W.<br />

(eds) . Nitrogen Fixation Global Perspectives. Proceed<strong>in</strong>gs<br />

of the 13 lh International Congress on<br />

Nitrogen Fixation. Hamilton, Canada 2-7 July<br />

2001. CABI publish<strong>in</strong>g, Wall<strong>in</strong>g<strong>for</strong>d, UK. pp.<br />

341-345.<br />

Beck, O.P <strong>and</strong> Munns, O.N. 1984. Phosphate nutrition<br />

of Rhizobium spp. Applied <strong>and</strong> Environmental<br />

Microbiology 47:278-282.<br />

Boonkerd, N. <strong>and</strong> Weaver, R.W. 1982. Survival of<br />

cowpea rhizobia <strong>in</strong> soils as affected by soil temperature<br />

<strong>and</strong> moisture. Applied Environmental<br />

Microbiology 43:585-589 .<br />

Bremmer, J.M. 1996. Nitrogen-Total. In: Methods of<br />

<strong>Soil</strong> Analysis. Part 3. chemical methods. SSSA Book<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

51


Series no 5. <strong>Soil</strong> Science SOciety of America <strong>and</strong><br />

American Society of Agronomy, Madison, Wiscons<strong>in</strong>,<br />

USA. pp. 1085-1121.<br />

Davis, P.E. 1994. Seed <strong>in</strong>oculation, are we recommend<strong>in</strong>g<br />

enough? In: Harness<strong>in</strong>g Biological Nitrogen<br />

Fixation <strong>in</strong> African Agriculture. Challenges <strong>and</strong><br />

Opportunities. Mpepereki, S<strong>and</strong> F. Makonese<br />

(eds). University of Zimbabwe Publications.<br />

Harare, Zimbabwe. pp. 165-172.<br />

De Mallaro, M.s. <strong>and</strong> Izaguirre, M.L. 1994. Seasoflal<br />

dynamics, host range <strong>and</strong> symbiotic efficiencyof<br />

native rhizobial populations <strong>in</strong> three soil horizons<br />

of four contrast<strong>in</strong>g savanna sites. Symbiosis<br />

4:99-105.<br />

Dudeja, S.s. <strong>and</strong> Khurana, A.L. 1989. Persistence of<br />

Bmdyrhizobium sp. (Cajanus) <strong>in</strong> a s<strong>and</strong>y loam. <strong>Soil</strong><br />

Biology <strong>and</strong> Biochemistry 21:709-713.<br />

FAa. 1991 Expert Consultation on Legume Inoculant<br />

Production <strong>and</strong> Quality Control. 19-21<br />

March 1991. (ed.) J.A. Thompson FAa, Rome.<br />

Gardner, F. P., Pearce, R.B. <strong>and</strong> Mitchell, R.L. 1985.<br />

Physiology of Crop Plants. Iowa State University<br />

Press, USA.<br />

Giller K.E. 2001. Nitrogen Fixation <strong>in</strong> Tropical Cropp<strong>in</strong>g<br />

Systems 2nd Edition, CABI publish<strong>in</strong>g, Wall<strong>in</strong>g<strong>for</strong>d,<br />

UK. 423 pp.<br />

Jayapaul, P. <strong>and</strong> Ganesaraja, V. 1990. Studies on response<br />

of soybean varieties to N<strong>and</strong> P. Indian J.<br />

Agron. 35 (3):329-330.<br />

Mpepereki, S. <strong>and</strong> Makonese, F. 1998. Seasonal<br />

rhizobial population fluctuations under field<br />

conditions <strong>in</strong> Zimbabwean soils. In: Harness<strong>in</strong>g<br />

Biological Nitrogen Fixation <strong>in</strong> African agriculture.<br />

Challenges <strong>and</strong> Opportunities. Mpepereki, S <strong>and</strong> F.<br />

Makonese (eds). University of Zimbabwe Publications,<br />

Harare, Zimbabwe. pp. 109-115.<br />

Mpepereki, S., Makonese, F. <strong>and</strong> Giller, K.E., 2002.<br />

Soyabean N2 fixation <strong>and</strong> food security <strong>for</strong><br />

smallholder farmers: A research-extension<br />

model <strong>for</strong> sub-Saharan Africa. h1: F<strong>in</strong>an, T.M.,<br />

O'Brian, M.R., Layzell, D.B., Vessey, J.K. <strong>and</strong><br />

Newton, W. (eds). Nitrogen Fixation Global Perspectives.<br />

Proceed<strong>in</strong>gs of the 13 lh International<br />

congress on Nitrogen Fixation. Hamilton, Canada<br />

2-7 July 2001. CABI publish<strong>in</strong>g, Wall<strong>in</strong>g<strong>for</strong>d,<br />

UK. pp. 346-351.<br />

Nelson, D.W <strong>and</strong> Sommers, L.E. 1996. Total carbon,<br />

organic carbon, <strong>and</strong> organic matter. In: Methods<br />

of soil analysis. Part 3. chemical methods-SSSA<br />

Book Series no 5 <strong>Soil</strong> Science Society of American<br />

Society of Agronomy, Madison, Wiscons<strong>in</strong>,<br />

USA. pp. 961-1010.<br />

O'Hara, G.W. 2001. Nutritional constra<strong>in</strong>ts on root<br />

nodule bacteria affect<strong>in</strong>g symbiotic nitrogen fixation.<br />

Australian Journal of Experimental Agriculture<br />

41.<br />

Sang<strong>in</strong>ga, N., Abaidoo, R., Deshiell, K., Carsky, R.J.<br />

<strong>and</strong> Okogun, A. 1996. Persistence <strong>and</strong> effectiveness<br />

of rhizobia nodulat<strong>in</strong>g promiscuous soyabeans<br />

<strong>in</strong> moist savanna zones of Nigeria. Applied<br />

<strong>Soil</strong> Ecology 3:215-224.<br />

S<strong>in</strong>gleton, P.W. <strong>and</strong> Tavares, J. W., 1986. Inoculation<br />

response of legumes <strong>in</strong> relation to the number<br />

<strong>and</strong> effectiveness of <strong>in</strong>digenous rhizobium<br />

populations. Applied Environmental Microbiology.<br />

51:1013-1018.<br />

Summer. M.E. <strong>and</strong> W.P. Miller. 1996. Cation exchange<br />

capacity <strong>and</strong> exchange coefficients. In:<br />

Methods of <strong>Soil</strong> Analysis. Part 3. Chemical Methods-SSSA<br />

Book Series no 5. <strong>Soil</strong> Science Society<br />

of America <strong>and</strong> American Society of Agronomy,<br />

Madison, Wiscons<strong>in</strong>, USA. pp. 1201-1229.<br />

Thompson J.G. <strong>and</strong> W.O. Purves 1981. A guide to<br />

the soils of Zimbabwe. Zimbabwe Agricultural<br />

Journal, Technical H<strong>and</strong>book No.3. Chemistry<br />

<strong>and</strong> <strong>Soil</strong> Research Institute. Department of Research<br />

<strong>and</strong> Specialist Services. Harare, Zimbabwe.<br />

43 pp.<br />

V<strong>in</strong>cent, J.M. 1970: A Manual <strong>for</strong> the Practical Study<br />

of Root Nodule Bacteria. Blackwell Scientific<br />

Publications Ltd., Ox<strong>for</strong>d, UK.<br />

Wadisirisuk, P. <strong>and</strong> R.W. Weaver. 1985. Importance<br />

of bateroid number <strong>in</strong> nodules <strong>and</strong> effective nodule<br />

mass to d<strong>in</strong>itrogen fixation by cowpeas. Plant<br />

<strong>and</strong> <strong>Soil</strong> 87:223-231.<br />

Watk<strong>in</strong>, E.L.J., O'Hara, G.W. <strong>and</strong> Glenn, A.R. 1997.<br />

Calcium <strong>and</strong> acid stress <strong>in</strong>teract to affect the<br />

growth of Rhizobium legum<strong>in</strong>osarum biovar trifoli.<br />

<strong>Soil</strong> Biology <strong>and</strong> Biochemistry 29:1427-1432.<br />

Zapata F., A.s.K Danso, G. Hardarson <strong>and</strong> Fried, M.<br />

1987. Time course of nitrogen fixation <strong>in</strong> field<br />

grown soyabeans us<strong>in</strong>g 15N methodology.<br />

Agronomy Journal 79: 172-176.<br />

52<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


SURVIVAL AND PERSISTENCE OF INTRODUCED COMIVIERCIAL<br />

RHIZOBIAL INOCULANT STRAINS IN SELECTED SMALLHOLDER FIELD<br />

ENVIRONMENTS OF ZIMBABWE<br />

Abstract<br />

REBECCA ZENGENI', SHEUNESU MPEPEREKI' <strong>and</strong> KEN E. GILLER 2<br />

1 <strong>Soil</strong> Science Department, University of Zimbabwe, P. O. Box MP 167, <br />

Mount Pleasant, Harare, Zimbabwe <br />

2 Department of Plant Sciences, Wagen<strong>in</strong>gen University, P. O. Box 430, <br />

6700 AK Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s <br />

The persistence of an <strong>in</strong>troduced rhizobial <strong>in</strong>oculant stra<strong>in</strong> <strong>in</strong> smallholder field environments of Zimbabwe was<br />

determ<strong>in</strong>ed at two sites with no history of sdyabean production <strong>in</strong> Goromonzi district. An <strong>in</strong>oculated soyabean crop was<br />

<strong>in</strong>troduced <strong>in</strong> the first season us<strong>in</strong>g Magoye, Solitaire <strong>and</strong> Vik<strong>in</strong>g soyabean varieties. There was a positive response to<br />

<strong>in</strong>oculation <strong>in</strong> the first season (2000/2001) with <strong>in</strong>oculated plants hav<strong>in</strong>g higher nodule numbers, gra<strong>in</strong> yields <strong>and</strong> total<br />

nitrogen contents than the un<strong>in</strong>oculated plants (p < 0.05). Re-<strong>in</strong>oculation of previol/sly <strong>in</strong>oculated plots <strong>in</strong> the follow<strong>in</strong>g<br />

season (2001/2002) however did not result <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> nodulation or yields of soyabean <strong>in</strong>dicat<strong>in</strong>g that the<br />

rhizobial stra<strong>in</strong> <strong>in</strong>troduced <strong>in</strong> the first season persisted <strong>in</strong>to the second season. In a separate experiment to determ<strong>in</strong>e the<br />

persistence of an <strong>in</strong>oculant stra<strong>in</strong> over many seasons, soils that had been last <strong>in</strong>oculated <strong>in</strong> the years 1996, 1998, 1999<br />

<strong>and</strong> 2000 were sampled from three districts <strong>and</strong> assessed <strong>for</strong> rhizobia I population sizes <strong>in</strong> the greenhouse. Rhizobial<br />

numbers were correlated with soil properties <strong>and</strong> the occupy<strong>in</strong>g stra<strong>in</strong>s identified.<br />

Results <strong>in</strong>dicated that rhizobial numbers were positively correlated with soil pH, clay percent <strong>and</strong> organic carbon, with<br />

numbers significantly <strong>in</strong>creas<strong>in</strong>g at pHs above 5.5. Rhizobial numbers decreased with year s<strong>in</strong>ce last <strong>in</strong>oculation, with<br />

populations as high as 10 3 cells /g of soil be<strong>in</strong>g obta<strong>in</strong>ed <strong>in</strong> fields last <strong>in</strong>oculated <strong>in</strong> the year 2000 <strong>and</strong> less thnn 30 cells /g<br />

of soil <strong>in</strong> fields last <strong>in</strong>oculated <strong>in</strong> 1996. The rhizobial stra<strong>in</strong> MAR 1491 (USDA 110) was obta<strong>in</strong>ed <strong>in</strong> most fields with a<br />

history of rhizobial <strong>in</strong>oculation.<br />

Key words: Rhizobia, persistence, soyabean, <strong>in</strong>oculation<br />

Introduction<br />

Soyabean, a crop previously restricted to the.largescale<br />

farm<strong>in</strong>g sector of Zimbabwe, has been<br />

promoted to smallholder farmers through first the<br />

Soyabean Promotion Programme from 1986-89 then<br />

more recently through the Soyabean Promotion<br />

Task Force from 1996 to the present (Rusike et al.,<br />

2000). Soyabean production requires the use of<br />

rhizobial <strong>in</strong>oculants to atta<strong>in</strong> optimum nodulation<br />

<strong>and</strong> high yields. Commercial rhizobial <strong>in</strong>oculants<br />

are however not readily available <strong>for</strong> use by<br />

smallholder farmers. This is because market<strong>in</strong>g<br />

channels <strong>for</strong> rhizobial <strong>in</strong>oculants to smallholders<br />

were not sufficiently developed to match their<br />

dem<strong>and</strong>.<br />

A solution to the problem of limited <strong>in</strong>oculant<br />

availabilily could be the use of promiscuous<br />

soyabean varieties such as 'Magoye' that readily<br />

nodulate with <strong>in</strong>digenous rhizobia <strong>and</strong> hence do<br />

not require rhizobiaI <strong>in</strong>oculation (Mpepereki et al.,<br />

1999). These varieties are however not available on<br />

the local market, they produce lower gra<strong>in</strong> yields<br />

<strong>and</strong> their pods readily shatter compared to specific<br />

soyabean varieties (Kasasa, 1999). The locally<br />

available commercial specific soyabean varieties on<br />

the other h<strong>and</strong> require rhizobial <strong>in</strong>oculation to<br />

obta<strong>in</strong> high yields. S<strong>in</strong>ce the use of rhizobia I<br />

<strong>in</strong>oculants <strong>in</strong> smallholder field environments is a<br />

relatively new technology, little <strong>in</strong><strong>for</strong>mation is<br />

availaole on the survival <strong>and</strong> persistence of an<br />

<strong>in</strong>troduced <strong>in</strong>oculant stra<strong>in</strong> <strong>in</strong> field soils. Persistence<br />

of an <strong>in</strong>oculant stra<strong>in</strong> would obviate the need <strong>for</strong><br />

<strong>in</strong>oculation each time soyabean is cropped thereby<br />

allow<strong>in</strong>g <strong>for</strong> susta<strong>in</strong>ed productivity. The objective of<br />

this study was there<strong>for</strong>e to assess survival <strong>and</strong><br />

persistence of <strong>in</strong>troduced rhizobiaI <strong>in</strong>oculant stra<strong>in</strong>s<br />

<strong>in</strong> field soils. It was hypothesized that <strong>in</strong>oculant<br />

stra<strong>in</strong>s survive <strong>and</strong> persist poorly <strong>in</strong> smallholder<br />

field environments due to unfavourable soil<br />

condi.tions of low soil pH, poor clay <strong>and</strong> low<br />

organic matter amounts.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 53


Materials <strong>and</strong> Methods<br />

Persistence of an <strong>in</strong>troduced rhizobial <strong>in</strong>oculant<br />

stra<strong>in</strong> over one season was assessed by sett<strong>in</strong>g up<br />

an experiment on two field sites <strong>in</strong> Goromonzi<br />

district. The first site Mudzivare, is a s<strong>and</strong>y soil with<br />

a low soil pH of 5 <strong>and</strong> poor nutrient status. The<br />

second site, Majuru, has a contrast<strong>in</strong>g clay soil with<br />

a slightly higher pH of 5.8 <strong>and</strong> favourable nutrient<br />

amounts. Three soyabean varieties, namely Magoye<br />

(promiscuous variety), Solitaire <strong>and</strong> Vik<strong>in</strong>g (specific<br />

varieties) were planted on 5 x 5 m plots set up <strong>in</strong> a<br />

completely r<strong>and</strong>omized design replicated four<br />

times. Treatments <strong>in</strong>cluded <strong>in</strong>oculated <strong>and</strong><br />

un<strong>in</strong>oculated field plots <strong>in</strong> the first season<br />

(2000/2001). In the second season (2001 / 2002), half<br />

of the previously <strong>in</strong>oculated plot was re<strong>in</strong>oculated<br />

while the other half rema<strong>in</strong>ed un<strong>in</strong>oculated. The<br />

control plots that were not <strong>in</strong>oculated <strong>in</strong> the first<br />

season rema<strong>in</strong>ed un<strong>in</strong>oculated <strong>in</strong> the second season.<br />

Data on nodulation was collected at eight weeks<br />

after plant<strong>in</strong>g (W AP) while gra<strong>in</strong> <strong>and</strong> total dry<br />

matter yield <strong>in</strong> the different <strong>in</strong>oculation treatments<br />

was assessed at physiological maturity. An analysis<br />

of variance of treatment means was determ<strong>in</strong>ed<br />

us<strong>in</strong>g GENST AT.<br />

Persistence of an <strong>in</strong>oculant stra<strong>in</strong> over many<br />

seasons was assessed under greenhouse conditions.<br />

<strong>Soil</strong> samples with a previous history of rhizobial<br />

<strong>in</strong>oculation were collected up to a 20 cm depth <strong>in</strong><br />

October 2001 from Guruve district. The fields had<br />

las t been <strong>in</strong>ocu la ted <strong>in</strong> the 1996, 1998, 1999 <strong>and</strong> 2000<br />

grow<strong>in</strong>g seasons. Populations of rhizobia <strong>in</strong> each<br />

soil were quantified us<strong>in</strong>g the most probable<br />

number method with the variety Solitaire as the<br />

trap host. Serial dilutions of each soil were done<br />

us<strong>in</strong>g a base dilution of 10. Three plants were<br />

planted per pot <strong>and</strong> <strong>in</strong>oculated with 1ml of soil<br />

<strong>in</strong>oculum. Plants were scored <strong>for</strong> nodulation at 6<br />

WAP. Data on nodulation, <strong>in</strong>oculation volume <strong>and</strong><br />

number of replicates used was fed <strong>in</strong>to the MPNES<br />

computer programme <strong>and</strong> populations of rhizobia<br />

<strong>in</strong> the different soils estimated. The rhizobial stra<strong>in</strong><br />

occupy<strong>in</strong>g nodule sites was identified with the<br />

enzyme-l<strong>in</strong>ked immuno sorbent assay. Population<br />

sizes of rhizobia were then compared with soil<br />

properties us<strong>in</strong>g regression analysis.<br />

Results<br />

Number of nodules <strong>in</strong> different <strong>in</strong>oculation<br />

treatments at 8 WAP <strong>for</strong> three soyabean varieties.<br />

Although <strong>in</strong>oculation of the specific varieties<br />

Solitaire <strong>and</strong> Vik<strong>in</strong>g resulted <strong>in</strong> <strong>in</strong>creased nodule<br />

numbers, yields <strong>and</strong> total N amounts <strong>in</strong> the first<br />

season, re<strong>in</strong>oculation of the same varieties <strong>in</strong> the<br />

second season did not result <strong>in</strong> <strong>in</strong>creased<br />

nodulation at both sites (Table 1). No significant<br />

differences <strong>in</strong> nodule numbers <strong>in</strong> the different<br />

<strong>in</strong>oculation treatments were recorded <strong>for</strong> the<br />

promiscuous variety Magoye. More nodules were<br />

also obta<strong>in</strong>ed from the clayey Majuru site than from<br />

the s<strong>and</strong>y Mudzivare (p < 0.001).<br />

<strong>Gra<strong>in</strong></strong> _<strong>and</strong> total dry matter yield <strong>in</strong> different<br />

<strong>in</strong>ocuIation treatments<br />

Re-<strong>in</strong>oculation of the different soyabean varieties <strong>in</strong><br />

the second season also did not result <strong>in</strong> <strong>in</strong>creased<br />

gra<strong>in</strong> <strong>and</strong> total dry matter yields at both sites<br />

(Figure 1). An exception was Vik<strong>in</strong>g, which gave a<br />

positive response to re-<strong>in</strong>oculation <strong>for</strong> total dry<br />

matter yield at Mudzivare. The gra<strong>in</strong> yield obta<strong>in</strong>ed<br />

at this site was however very low when compared<br />

with the total dry matter yield.<br />

Changes <strong>in</strong> rhizobial populations <strong>in</strong> <strong>in</strong>oculated<br />

fields over time<br />

An assessment of persistence of rhizobia over many<br />

seasons showed that the rhizobial stra<strong>in</strong> used <strong>in</strong><br />

<strong>in</strong>oculant production persists <strong>in</strong> smallholder fields<br />

s<strong>in</strong>ce a good rhizobial count was obta<strong>in</strong>ed from<br />

fields last <strong>in</strong>oculated as far back as 1998 (Table 2).<br />

Rhizobial populations were positively correlated<br />

with soil pH, clay <strong>and</strong> organic carbon contents. The<br />

year s<strong>in</strong>ce last <strong>in</strong>oculation also strongly <strong>in</strong>fluenced<br />

rhizobial numbers, with numbers decreas<strong>in</strong>g with<br />

<strong>in</strong>creas<strong>in</strong>g year s<strong>in</strong>ce last <strong>in</strong>oculation (p < 0.001). As<br />

many as 10 3 rhizobial cells / g of soil were obta<strong>in</strong>ed<br />

<strong>in</strong> fields last <strong>in</strong>oculated <strong>in</strong> the year 2000 while less<br />

than 30 cells / g of soil were found <strong>in</strong> fields last<br />

<strong>in</strong>oculated <strong>in</strong> 1996. The stra<strong>in</strong> MAR 1491 was<br />

detected <strong>in</strong> most previously <strong>in</strong>oculated fields <strong>and</strong> <strong>in</strong><br />

one <strong>in</strong>stance both MAR 1491 <strong>and</strong> 1495 were<br />

Table 1. Number of nodules at eight WAP <strong>in</strong> different <strong>in</strong>oculation <br />

treatments at two sites <strong>in</strong> Zimbabwe <br />

Variety Majuru Mudzivare <br />

-<strong>in</strong>oc <strong>in</strong>oc SI <strong>in</strong>oc S2 -<strong>in</strong>oc <strong>in</strong>oc Sl <strong>in</strong>oc S2 <br />

Magoye 7 7 8 3 1 2<br />

Solitaire 2 14 7 0 2<br />

Vik<strong>in</strong>g 3 8 5 0<br />

sed 0.639<br />

<strong>in</strong>oc - no <strong>in</strong>oculation<br />

Inoc 51 - <strong>in</strong>oculation <strong>in</strong> season 1 only<br />

<strong>in</strong>oc 51 - <strong>in</strong>oculation <strong>in</strong> both seasons<br />

sed - st<strong>and</strong>ard error of differences of means<br />

Table 2. Changes <strong>in</strong> rhizobial population <strong>in</strong> <strong>in</strong>oculated fields from<br />

Guruve district over time<br />

....................................... - ........... ........ <br />

Site Year last Rhizobia cellsl <strong>Soil</strong> pH % %C rhizobia I<br />

No. <strong>in</strong>oculated gsoil x 10 3 <strong>in</strong> water Clay stra<strong>in</strong><br />

1491 1495<br />

1 2000 4.5 5.9 32 2.3 +<br />

2 1999 3.0 6.1 29 0.9 + +<br />

3 1998 0.44 6 36 0.79 +<br />

4 1996 0.029 6.6 24 1.3 +<br />

5 Control 0.01 5.5 23 0.8<br />

54<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


1.5 1.5 ~-----------,<br />

<strong>Gra<strong>in</strong></strong> yield In a clayey soil (Majuru)<br />

<strong>Gra<strong>in</strong></strong> yield <strong>in</strong> a s<strong>and</strong>y soil (Mudzivare)<br />

Ii<br />

S -1.0 1.0<br />

"C<br />

-a;<br />

'>'<br />

c<br />

~ 0.5 0.5 I<br />

None - un<strong>in</strong>oculated plots<br />

Season 1 - <strong>in</strong>oculated <strong>in</strong> first<br />

season only<br />

Both seasons - <strong>in</strong>oculated <strong>in</strong><br />

both seasons<br />

0.0 o.0 ...L.L.J::+,ll!a.....----L-l4"~-.........+""""---_1 <br />

5 5 -r------------, <br />

Dry matter <strong>in</strong> s<strong>and</strong>y soil (Mudzivare)<br />

4 4<br />

Ii<br />

oE<br />

:::..<br />

...<br />

3 3<br />

~<br />

E "' 2 2<br />

... >­<br />

a<br />

I<br />

o<br />

o<br />

Magoye Solitaire Vik<strong>in</strong>g Magoye Solitaire Vik<strong>in</strong>g<br />

Variety<br />

Variety<br />

Figure 1. <strong>Gra<strong>in</strong></strong> <strong>and</strong> total dry rr.atter yield at Majuru <strong>and</strong> Mudzivare <strong>in</strong> the second season<br />

identified. Fields with no history of rhizobial<br />

<strong>in</strong>oculation (controls) had none of these stra<strong>in</strong>s.<br />

Discussion<br />

Although soyabean responded to <strong>in</strong>oculation <strong>in</strong> the<br />

first season of cropp<strong>in</strong>g through <strong>in</strong>creased nodule<br />

number <strong>and</strong> yields, re-<strong>in</strong>oculation <strong>in</strong> the second<br />

season did not result <strong>in</strong> a similar <strong>in</strong>crease. This<br />

<strong>in</strong>dicates that rhizobial stra<strong>in</strong>s <strong>in</strong>troduced <strong>in</strong> the<br />

first season persisted <strong>in</strong>to the second season.<br />

Mapfumo (2000) noted that legumes often<br />

responded to <strong>in</strong>oculation dur<strong>in</strong>g the first year of<br />

<strong>in</strong>troduction <strong>in</strong>to new areas but not <strong>in</strong> subsequent<br />

years on the same piece of l<strong>and</strong>. The <strong>in</strong>itially low<br />

population of <strong>in</strong>digenous rhizobia may necessitate<br />

the use of commercial <strong>in</strong>oculants but as high<br />

populations of effective rhizobia build up <strong>in</strong> the<br />

soil, the need <strong>for</strong> <strong>in</strong>oculation may be obviated <strong>in</strong><br />

subsequent years.<br />

The response to rhizobial <strong>in</strong>oculation through<br />

<strong>in</strong>creased nodule numbers <strong>and</strong> yield <strong>for</strong> the specific<br />

varieties Solitaire <strong>and</strong> Vik<strong>in</strong>g <strong>and</strong> not the<br />

promiscuous Magoye correspond with results<br />

obta<strong>in</strong>ed by Kasasa (1999) where significantly<br />

higher nodule numbers were obta<strong>in</strong>ed after<br />

<strong>in</strong>oculat<strong>in</strong>g specific soyabean varieties. Studies by<br />

Mpepereki et al. (1999) revealed that promiscuously<br />

nodulat<strong>in</strong>g soya bean varieties such as Hernon 147<br />

<strong>and</strong> Magoye nodulate <strong>and</strong> fix nitrogen well <strong>in</strong> fields<br />

with no history of rhizobial <strong>in</strong>oculation, hence no<br />

significant changes were observed after <strong>in</strong>oculat<strong>in</strong>g<br />

Magoye <strong>in</strong> either season. More nodules at the clayey<br />

Majuru site than the s<strong>and</strong>ier Mudzivare can be<br />

expla<strong>in</strong>ed by the observation that a high clay soil<br />

gives rise to many small nodules because of a better<br />

moisture retention capacity while s<strong>and</strong>ier soils<br />

result <strong>in</strong> larger but fewer nodules due to their poor<br />

water retention capacity (Mapfumo, 2000). The very<br />

low amount of gra<strong>in</strong> produced at Mudzivare <strong>in</strong><br />

comparison with its total dry matter yield is a result<br />

of mid season dry spells experienced at flower<strong>in</strong>g<br />

result<strong>in</strong>g <strong>in</strong> reduced gra<strong>in</strong> production.<br />

Results from the greenhouse experiment showed<br />

that rhizobial stra<strong>in</strong>s persist <strong>in</strong> smallholder fields<br />

<strong>and</strong> that <strong>in</strong>oculation history <strong>and</strong> pH strongly<br />

<strong>in</strong>fluence the populations. This trend is consistent<br />

with work covered by Mpepereki <strong>and</strong> Makonese<br />

(1995) where soyabean rhizobia were not detected<br />

<strong>in</strong> fields with no history of legume cultivation. They<br />

similarly observed that cowpea rhizobia were<br />

lowest <strong>in</strong> communal areas that were generally<br />

acidic, s<strong>and</strong>y <strong>and</strong> with low nutrients. Acidic soils of<br />

pHs below 5 are known to be detrimental to<br />

rhizobial survival <strong>and</strong> are unfavourable <strong>for</strong><br />

soyabean-rhizobia symbiosis (Tattersfield, 1996). In<br />

this experiment, a rise <strong>in</strong> soil clay <strong>and</strong> carbon<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

55


content resulted <strong>in</strong> <strong>in</strong>creased rhizobial populations.<br />

Chatel <strong>and</strong> Parker (1972) noted that heavy textured<br />

soils <strong>for</strong>med micro aggregates, which af<strong>for</strong>ded some<br />

protection to rhizobia aga<strong>in</strong>st high temperatures.<br />

Rhizobia also survive saprophytically <strong>in</strong> the absence<br />

of a legume host, there<strong>for</strong>e organic carbon is an<br />

essential source of energy required <strong>for</strong> their growth<br />

<strong>and</strong> survival. The rhizobial stra<strong>in</strong> MAR 1491 was<br />

found <strong>in</strong> most <strong>in</strong>oculated field soils s<strong>in</strong>ce it is the<br />

most widely used stra<strong>in</strong> <strong>in</strong> soyabean <strong>in</strong>oculant<br />

production <strong>in</strong> Zimbabwe. In some soils, the stra<strong>in</strong><br />

MAR 1495 was also found because it was once used<br />

<strong>in</strong> comb<strong>in</strong>ation with MAR 1491 dur<strong>in</strong>g <strong>in</strong>oculant<br />

production. The un<strong>in</strong>oculated field controls had<br />

none of the tested stra<strong>in</strong>s because they have no<br />

history of rhizobial <strong>in</strong>oculation.<br />

Conclusion <strong>and</strong> Recommendations<br />

Rhizobial <strong>in</strong>oculant stra<strong>in</strong>s survive <strong>in</strong> smallholder<br />

field environments <strong>for</strong> at least three seasons, so re<strong>in</strong>oculation<br />

of previously <strong>in</strong>oculated fields is not<br />

beneficial to the farmer. Inoculation when<br />

<strong>in</strong>troduc<strong>in</strong>g a soyabean crop <strong>in</strong> a new area <strong>for</strong> the<br />

first time is essential. Thereafter, a second soyabean<br />

crop grown after rotation with a cereal does not<br />

require <strong>in</strong>oculation s<strong>in</strong>ce a significant population of<br />

rhizobia will still be present <strong>in</strong> the soil. Rhizobial<br />

survival can be further enhanced by rais<strong>in</strong>g soil pH<br />

<strong>and</strong> organic matter content <strong>and</strong> <strong>in</strong> soils with high<br />

clay amount. Re-<strong>in</strong>oculation may there<strong>for</strong>e need to<br />

be more frequent <strong>in</strong> s<strong>and</strong>y soils.<br />

Acknowledgements <br />

The Rockefeller Foundation <strong>for</strong> fund<strong>in</strong>g the project. <br />

Also the farmers, project assistants <strong>and</strong> the <strong>Soil</strong> <br />

Science Department of the University of Zimbabwe. <br />

References<br />

Chatel, D.L <strong>and</strong> Parker, c.A. 1972. Survival of field<br />

grown rhizobia over the dry summer period <strong>in</strong><br />

western Australia. <strong>Soil</strong> Biol. Biochem. 5:415-423.<br />

Kasasa P., 1999. Biological nitrogen fixation by<br />

promiscuous nodulat<strong>in</strong>g soyabean Glyc<strong>in</strong>e max<br />

[L] Merr) varieties <strong>in</strong> communal soils of<br />

Zimbabwe. MPhii Thesis. University of<br />

Zimbabwe, Harare, Zimbabwe, pp 37-41.<br />

Mapfumo, P. 2000. Potential contributions of<br />

legumes to soil fertility management <strong>in</strong><br />

sIPallholder systems of Zimbabwe: the case of<br />

pigeon pea (Cajam!s cajan [L] Millsp.). DPhii<br />

Thesis. University of Zimbabwe, Harare.<br />

Zimbabwe, pp 62-64.<br />

Mpepereki, S<strong>and</strong> Makonese F. 1995. Prevalence of<br />

cowpea <strong>and</strong> soyabean rhizobia <strong>in</strong> field soils of<br />

Zimbabwe. Zimbabwe Journal of Agriculture<br />

33:191-205.<br />

Mpepereki S., Javaheri F., Davis P. <strong>and</strong> Giller K.E.<br />

1999. Soyabean <strong>and</strong> susta<strong>in</strong>able agriculture.<br />

Promiscuous soyabeans <strong>in</strong> southern Africa. Field<br />

Crop Research 65:137-149.<br />

Rusike J., Sukume c., Dorward A., Mpepereki S.<br />

<strong>and</strong> Giller K. E. 2000. The economic potential of<br />

soyabean production <strong>in</strong> Zimbabwe. <strong>Soil</strong> Fert Net<br />

Special Publication. Harare, Zimbabwe, pp 1-3.<br />

Tattersfield, J.R. 1996. Soyabean Production <strong>and</strong><br />

Research <strong>in</strong> Zimbabwe. Seed Co-op Company of<br />

Zimbabwe, Harare, Zimbabwe.<br />

56<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


INTEGRATING ORGANIC RESOURCE QUALITY AND FARMER MANAGE­<br />

MENT PRACTICES TO SUSTAIN SOIL PRODUCTIVITY IN ZIMBABWE<br />

Abstract<br />

FLORENCE MTAMBANENGWE <strong>and</strong> PAUL MAPFUMO<br />

Department of <strong>Soil</strong> Science <strong>and</strong> Agricultural Eng<strong>in</strong>eer<strong>in</strong>g, University of Zimbabwe,<br />

P. O. Box MP 167 Mt Pleasant, Harare, Zimbabwe<br />

Ma<strong>in</strong>tenance of soil fertility on smallholder farms <strong>in</strong> Southern Africa is almost entirely dependant on locally available<br />

organic resources, with m<strong>in</strong>eral fertilizers only dom<strong>in</strong>at<strong>in</strong>g <strong>in</strong> exceptional cases <strong>for</strong> relatively wealthy fc:nners. The exploitation<br />

of nitrogen-fix<strong>in</strong>g legumes <strong>for</strong> soil fertility purposes, be it <strong>in</strong> the <strong>for</strong>m of residues from gra<strong>in</strong> or green manure<br />

legumes, is not widespread <strong>in</strong> Zimbabwe smallholder farm<strong>in</strong>g systems .. In a newly <strong>in</strong>itiated study <strong>in</strong> three agroecological<br />

regions <strong>in</strong> Zimbabwe, we focus on the differential effects o<strong>for</strong>ganic resource quality <strong>and</strong> quantity on the manifestation<br />

of soil fertility gradients <strong>and</strong> subsequently on crop yields as <strong>in</strong>fluenced by fanner management practices. Both<br />

Master/Innovator farmers <strong>and</strong> poor farmers are targeted <strong>in</strong> the exploration of the with<strong>in</strong>1arm soil fertility gradients<br />

(usually giv<strong>in</strong>g rise to high yield<strong>in</strong>g 'rich' <strong>and</strong> low yield<strong>in</strong>g 'poor' fields) observed under different management regimes.<br />

Prelim<strong>in</strong>ary results showed that m<strong>in</strong>eral fertilizer was the most common nutrient source used by over 85% of the fanners<br />

from three identified farmer groups (Class A - Master farmers, Class B -. Innovator fanners <strong>and</strong> Class C - Resource<br />

poor farmers). Livestock manure <strong>and</strong> woodl<strong>and</strong> litter featured as common organic nutrient sources <strong>in</strong> Zimuto, while <strong>in</strong><br />

Ch<strong>in</strong>yika <strong>and</strong> Chikwaka, less than 50% of the farmers used these as additional nutrient sources. As a result of frequent<br />

organic nutri~nt source usage, soil organic carbon contents of the rich <strong>and</strong> poor fields of Zimuto was significantly<br />

higher than from the other two agro-ecological regions (p < 0.05) with values reach<strong>in</strong>g 11.5 mg C g-l soil (rich field) <strong>and</strong><br />

8.5 mg C g.l soil (poor field) . The bulk of the tested soil had very little total nitrogen « 1 mg Ng-l soil). Although the<br />

chances of build<strong>in</strong>g soil organic matter (SOM) under granitic s<strong>and</strong>s <strong>in</strong> Zimbabwe are slim, underst<strong>and</strong><strong>in</strong>g the <strong>in</strong>fluence<br />

of organic resource management on SOM dynamics, short-term N availability <strong>and</strong> m<strong>in</strong>eral fertilizer use efficiency is<br />

critically important. Target farm sites serve to complement long-term experiments <strong>in</strong> expla<strong>in</strong><strong>in</strong>g the <strong>in</strong>teraction between<br />

organic resource management <strong>and</strong> crop yields. In addition to these prelim<strong>in</strong>ary results, the pr<strong>in</strong>ciples <strong>and</strong> approaches of<br />

the study are also discussed <strong>in</strong> this paper.<br />

Key words: Organic resource quality, soil organiC matte~, m<strong>in</strong>eral fertilizer<br />

Introduction<br />

Marked differences <strong>in</strong> soil fertility levels <strong>and</strong> nutrient<br />

balances can often be observed <strong>for</strong> the different<br />

fields with<strong>in</strong> one smallholder farm. These with<strong>in</strong>farm<br />

soil fertility gradients have a major impact on<br />

overall farm productivity, yet their dynamics are<br />

often poorly understood. Several reasons could be<br />

attributed to this high variability, although <strong>in</strong>herent<br />

soil properties, micro-climatic conditions <strong>and</strong><br />

farmer management practices may be obvious determ<strong>in</strong><strong>in</strong>g<br />

factors (Mapfumo <strong>and</strong> Giller; ~001; Sanchez<br />

<strong>and</strong> Jama, 2002; ·Smal<strong>in</strong>g et aI., 1997). Farmer<br />

management of fields varies with time of plant<strong>in</strong>g,<br />

type of crop planted, type <strong>and</strong> quality of added <strong>in</strong>puts<br />

(<strong>in</strong>clud<strong>in</strong>g access to cash <strong>for</strong> purchas<strong>in</strong>g <strong>in</strong>puts)<br />

<strong>and</strong> the efficiency with which nutrients are<br />

used. Most smallholder farmers <strong>in</strong> Zimbabwe recognize<br />

the importance of soil fertility <strong>and</strong> its conservation.<br />

There is also general knowledge among both<br />

scientists <strong>and</strong> farmers that the application of organic<br />

residues improves the physical conditions of soil,<br />

although <strong>in</strong>fonnation as to why this happens is still<br />

often very limited (Sanchez etal., 1989; Palm et aI.,<br />

1998).<br />

Agricultural activities <strong>and</strong> ma<strong>in</strong>tenance of soil fertility<br />

<strong>in</strong> a smallholder farm<strong>in</strong>g commUnity is almost<br />

entirely dependant on locally available resources.<br />

However, given the present scenario where traditional<br />

strategies <strong>for</strong> susta<strong>in</strong><strong>in</strong>g soil <strong>and</strong> crop productivity<br />

have been outpaced by the grow<strong>in</strong>g human<br />

population, a dim<strong>in</strong>ish<strong>in</strong>g natural resources base,<br />

<strong>and</strong> the downward spiral of many national economies,<br />

the question of resource availability has become<br />

topical. The big question is: what options are<br />

available to the smallholder fanner <strong>for</strong> soil amelioration?<br />

Annual woodl<strong>and</strong> litterfall may be as much as 5 t<br />

ha- l <strong>and</strong> measured annual litter collections <strong>in</strong> Masv<strong>in</strong>go,<br />

southern Zimbabwe, by Nyathi <strong>and</strong> Campbell<br />

(1993), ranged from 0.2 to 1.2 tonnes per household.<br />

In reality, most communal areas are <strong>in</strong> a severe<br />

~tate of de<strong>for</strong>estation. Livestock manure, cattle<br />

manure <strong>in</strong> particular, is a traditional source of plant<br />

nutrients <strong>and</strong> can be one of the cheapest sources of<br />

organic fertilizer <strong>in</strong> many smallholder communities<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 57


(Mugwiia <strong>and</strong> Murwira, 1997). However, use of manure<br />

is a privilege <strong>for</strong> owners. Cereal <strong>and</strong> legume<br />

residues are available to many but ~heir uses as soil<br />

ameliorants is not widespread as these are usually<br />

fed to livestock or even burnt <strong>in</strong> some cases to prepare<br />

l<strong>and</strong> <strong>for</strong> the next grow<strong>in</strong>g season.<br />

. M<strong>in</strong>eral fertilizers are accepted as a way to <strong>in</strong>crease<br />

productivity (Piha, 1993), but the extent to which<br />

farmers can depend on this <strong>in</strong>put is constra<strong>in</strong>ed by<br />

the low purchas<strong>in</strong>g power of the majority of farmers<br />

(Ashworth, 1990). M<strong>in</strong>eral fertilizers are often purchased<br />

<strong>in</strong> amounts <strong>in</strong>adequate to replace those nutrients<br />

lost alU1ually·<strong>in</strong> harvested produce. Where<br />

ecological conditions are not particularly favourable<br />

<strong>for</strong> farm<strong>in</strong>g or the soil has been degraded, us<strong>in</strong>g<br />

m<strong>in</strong>eral fertilizers alone may be <strong>in</strong>sufficient<br />

(Smal<strong>in</strong>g et al., 1997). The <strong>for</strong>ego<strong>in</strong>g discussion <strong>in</strong>dicates<br />

the critical need to <strong>in</strong>crease the efficiency with<br />

which the little available nutrients should be used.<br />

Consequently, nutrient outflows from <strong>in</strong>dividual<br />

farm hold<strong>in</strong>gs have progressively become much<br />

higher than <strong>in</strong>puts supplied <strong>in</strong> both organic <strong>and</strong><br />

m<strong>in</strong>eral nutrient sources. This paper discusses prelirri<strong>in</strong>ary<br />

results of a recently <strong>in</strong>itiated study<br />

"Manag<strong>in</strong>g soil organic matter <strong>for</strong> improved nutrient<br />

use efficiency on smallholder farms <strong>in</strong> Zimbabwe<br />

- the NUESOM Project" which aims at address<strong>in</strong>g<br />

the role of organic residue quality <strong>and</strong><br />

quantity on soil organic matter (SOM) dynamics <strong>in</strong><br />

smallholder farmers' fields under different management<br />

systems <strong>in</strong> Zimbabwe. The study is part of a<br />

larger collaborative research ef<strong>for</strong>t by the African<br />

Network (AfNet) members of the Tropical <strong>Soil</strong> Biol- ·<br />

ogy <strong>and</strong> <strong>Fertility</strong> (TSBF - CIAT) on " <strong>Soil</strong> Organic<br />

M?tter Dynamics <strong>for</strong> Susta<strong>in</strong>able Cropp<strong>in</strong>g <strong>and</strong> Environmental<br />

Management <strong>in</strong> Tropical Systems: Effect<br />

of Organic Resource Quality <strong>and</strong> Diversity"<br />

(Mapfumo et al. 2001a). The study aims to answer<br />

the follow<strong>in</strong>g questio~,s:<br />

(i) Can the reason <strong>for</strong> crop yield success be attributed<br />

to gra<strong>in</strong> legume rotations, litter <strong>and</strong> livestock<br />

manure applications <strong>and</strong> / or simply efficient<br />

m<strong>in</strong>eral fertilizer management techniques?<br />

(ii) Do legumes playa role <strong>in</strong> the superior fertility<br />

status or productive capacity of soils often observed<br />

on Master <strong>and</strong>/or IlU1ovator farmer's<br />

fields?<br />

(iii) What is the comparative advantage of legumes<br />

<strong>in</strong> these circumstances given the current state of<br />

knowledge on legume technologies?<br />

This paper discusses the prelim<strong>in</strong>ary results of this<br />

research.<br />

Materials <strong>and</strong> Methods<br />

Study sites<br />

Three communal areaS <strong>in</strong> different agro-ecological<br />

.regions of Zimbabwe, namely Chikwaka <strong>in</strong> Natural<br />

Region (NR) II (31°30'E <strong>and</strong> 17°40'S; 80 km northeast<br />

of Harare), Ch<strong>in</strong>yika <strong>in</strong> NR III (32°25'E <strong>and</strong> 18°15'S;<br />

250 km east of Harare) <strong>and</strong> Zimuto <strong>in</strong> NR IV (30°<br />

52'E <strong>and</strong> 19°50'S; 320 km southeast of Harare) were<br />

chosen <strong>for</strong> the major part of the study. Natural Region<br />

II is a sub-humid zone that receives summer<br />

ra<strong>in</strong>s of between 700 - 1000 mm of ra<strong>in</strong>fall, NR III<br />

receives ra<strong>in</strong>fall of between 650 <strong>and</strong> 750 mm with<br />

relatively high temperatures <strong>and</strong> <strong>in</strong>frequent, heavy<br />

fall of ra<strong>in</strong> while NR IV is a semi-arid area <strong>in</strong> which<br />

alU1ual ra<strong>in</strong>fall is between 450 <strong>and</strong> 650 mm <strong>and</strong> is<br />

subject to frequent seasonal droughts (V<strong>in</strong>cent <strong>and</strong><br />

Thomas, 1961). Chikwaka <strong>and</strong> Zimuto have a long<br />

history of settlement (over 70 years of settlement)<br />

while Ch<strong>in</strong>yika is a resettlement area first cropped<br />

by smallholder farmers less than 20 years ago.<br />

Farm<strong>in</strong>g systems <strong>in</strong> all the three areas are maizebased,<br />

with strong crop-livestock <strong>in</strong>teractions. These<br />

sites were found to be representative of dom<strong>in</strong>ant<br />

soil types found <strong>in</strong> most parts of the country <strong>in</strong> addition<br />

to ra<strong>in</strong>fall regimes. Although the overall focus<br />

of the project is on-farm, replicate on-station experiments<br />

were established at Domboshawa Tra<strong>in</strong><strong>in</strong>g<br />

Centre (NR II) located about 30 km north of Harare<br />

(31°19'E <strong>and</strong> 17°36'S) <strong>and</strong> Makoholi Research<br />

Station <strong>in</strong> NR IV (about 280 km south of Harare (30°<br />

45'E <strong>and</strong> 19°47'S) <strong>for</strong> detailed measurement on the<br />

<strong>in</strong>fluence of C quality on SOM <strong>for</strong>mation.<br />

Selection of farm sites<br />

On-farm sites that have been systematically <strong>and</strong><br />

consistently managed by known groups of farmers<br />

were chosen <strong>for</strong> field monitor<strong>in</strong>g <strong>and</strong> experimentation.<br />

Gathered <strong>in</strong><strong>for</strong>mation based on farmer participation,<br />

key <strong>in</strong><strong>for</strong>mant <strong>in</strong>terviews <strong>and</strong> literature on<br />

biophysical <strong>and</strong> socio-economic characteristics of<br />

the respective farm<strong>in</strong>g systems, was used to classify<br />

farmers accord<strong>in</strong>g to resource endowment <strong>and</strong> competence<br />

<strong>in</strong> farm<strong>in</strong>g. The focus was on the farmers'<br />

history of organic matter management. Detailed key<br />

<strong>in</strong><strong>for</strong>mant <strong>in</strong>terviews conducted <strong>in</strong> the three study<br />

sites revealed that farmers basically fell <strong>in</strong>to three<br />

groups: Class A - Master Farmers; Cla'ss B - IlU1ovator<br />

Farmers; <strong>and</strong> Class C - Resource-poor Farmers<br />

(Table 1).<br />

Field surveys<br />

Participatory rural appraisal (PRA) techniques<br />

helped to identify the range <strong>and</strong> determ<strong>in</strong>e the<br />

quantities of organic resources available to smallholder<br />

farmers. Particular attention was paid to C<br />

<strong>in</strong>puts <strong>in</strong> relation to general soil fertility management<br />

practices. Focused group discussions, priority-rank<strong>in</strong>g,<br />

transect walks <strong>and</strong> <strong>in</strong><strong>for</strong>mal <strong>in</strong>terviews<br />

constituted the major PRA tools. Six replicate sites<br />

across farms, two from each class (Table 1) were selected<br />

<strong>in</strong> each Natural Region <strong>for</strong> further <strong>in</strong>vestiga-<br />

58<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 1. Classification of smaliscale farmers of Chikwaka, Ch<strong>in</strong>yika <strong>and</strong> Zimuto accord<strong>in</strong>g to key Data on maize yield estimates<br />

<strong>in</strong><strong>for</strong>mants<br />

<strong>in</strong> the riCh <strong>and</strong> poor fields were<br />

Class Description Resource endowment<br />

also collected dur<strong>in</strong>g <strong>in</strong><strong>for</strong>mal<br />

<strong>in</strong>terviews with the selected<br />

Class A • The Master Farmer class • livestock (at least 2 cattle)<br />

• Undergo all tra<strong>in</strong><strong>in</strong>g as recommended by<br />

farmers.<br />

• plough <br />

AREX<br />

• scotchcart <br />

• Tra<strong>in</strong><strong>in</strong>g is on· site <strong>and</strong> <strong>in</strong>volves crop <strong>and</strong> • adequate accommodation whether <strong>Soil</strong> sampl<strong>in</strong>g <strong>and</strong> analyses<br />

animal production <strong>in</strong>clud<strong>in</strong>g general farm galvanized iron sheets, asbestos or grass.<br />

management • Small livestock (chickens! goats) The'key question was whether<br />

the local <strong>in</strong>dices <strong>for</strong> productiv­<br />

Class B • Group conta<strong>in</strong>s the Innovator Farmers The majority has the same resources as<br />

ity could be given a scientific<br />

• Group comprises mostly the eager·to· Master farmers.<br />

learn type farmers The rema<strong>in</strong>der normally have at least: mean<strong>in</strong>g. To ,answer this, soils<br />

• Maximize production through <strong>in</strong><strong>for</strong>mal • some livestock were collected <strong>for</strong> analysis<br />

consultation with AREX Officers <strong>and</strong>! or • a plough<br />

other farmers<br />

• a scotchcart<br />

from the top 20 cm of the rich<br />

• Generally do not attend tra<strong>in</strong><strong>in</strong>g sessions • adequate accommodation <strong>and</strong> poor fields be<strong>for</strong>e the onset<br />

of the 2002-2003 ra<strong>in</strong>y sea­<br />

Class C • The group <strong>in</strong>cludes farmers who take Usually those who don't or have little of:<br />

time to adopt a technology • livestock son. At least ten auger samples<br />

• The majority of the members are • plough were collected from each field<br />

resource constra<strong>in</strong>ed! resource poor • scotchcart<br />

site, bulked <strong>in</strong> a bucket <strong>and</strong><br />

• have little or no ambition to learn or know<br />

what is happen<strong>in</strong>g <strong>in</strong> the local environment. then thoroughly mixed to give<br />

• rarely attend tra<strong>in</strong><strong>in</strong>g meet<strong>in</strong>gs<br />

one composite sample that was<br />

sub-sampled <strong>for</strong> laboratory<br />

analysis. These soils were analyzed <strong>for</strong> total organic<br />

C <strong>and</strong> N us<strong>in</strong>g methods described by to Anderson<br />

<strong>and</strong> Ingram, (1993). The C <strong>and</strong> N data from the rich<br />

<strong>and</strong> poor fields from the three Natural Regions<br />

were subjected to a Two-sample T-Test <strong>for</strong> mean<br />

comparisons (M<strong>in</strong>itab Inc., 2000).<br />

tions br<strong>in</strong>g<strong>in</strong>g the total number of farm sites to 36.<br />

The farm owners assisted <strong>in</strong> identify<strong>in</strong>g appropriate<br />

field sites with attributes that <strong>in</strong>cluded:<br />

• a known history of organic matter applications<br />

(at least 5 years)<br />

• fields with no external C application <strong>in</strong> the past 5<br />

years<br />

• type of predom<strong>in</strong>ant management systems <strong>in</strong>clud<strong>in</strong>g<br />

m<strong>in</strong>eral fertilizer application~, organic<br />

matter management (cereal or other stover, livestock<br />

manure, green manures, woodl<strong>and</strong> litter,<br />

compost or household waste, termitaria) <strong>and</strong> legume/<br />

cereal <strong>in</strong>tercrops or rotations.<br />

• dist<strong>in</strong>ct soil textures.<br />

The 36 sites reported here are part of a total of 120<br />

field sites be<strong>in</strong>g <strong>in</strong>vestigated <strong>in</strong> the three Natural<br />

Regions <strong>for</strong> the same attributes. Transect walks <strong>and</strong><br />

<strong>in</strong><strong>for</strong>mal <strong>in</strong>terviews were conducted with the selected<br />

farmers to help identify the different productivity<br />

capacity of their fields. We specifically identified<br />

the mdices that the farmers used to classify the<br />

yield potential of their fields. Some of the productivity<br />

<strong>in</strong>dices <strong>for</strong> rich <strong>and</strong> poor fields <strong>in</strong>cluded:<br />

a) high yield<strong>in</strong>g (Rich) fields<br />

• high crop per<strong>for</strong>mance<br />

• crops respond well to additional nutrient <strong>in</strong>puts<br />

• heavy soils usually with a high humus content<br />

• isl<strong>and</strong>s of termitaria present<br />

• soils do not easily dry out.<br />

b) low yield<strong>in</strong>g (Poor) fields<br />

• poor crop pe;-iormance despite external nutrient<br />

<strong>in</strong>puts<br />

• very light (s<strong>and</strong>y) free dra<strong>in</strong><strong>in</strong>g soils<br />

• low humus content.<br />

Results<br />

Maize yields<br />

Maize yields were higher <strong>in</strong> Ch<strong>in</strong>yika compared to<br />

Zimuto <strong>and</strong> Chikwaka (Table 2). Yields of up to 7.0 t<br />

ha·J were realized by Class A farmers <strong>in</strong> Ch<strong>in</strong>yika.<br />

A verage yields from rich fields were highest <strong>in</strong><br />

Ch<strong>in</strong>yika (5.1 t ha·1) followed by Chikwaka (3.5 t ha'<br />

1) <strong>and</strong> Zimuto had lowest yields of 2.7 t ha· J• In all<br />

the 'three regions, yields from rich fields were <strong>in</strong> the<br />

order of Class A > Class B > Class C. However, differences<br />

between yields from poor fields of the<br />

three identified farmer groups with<strong>in</strong> each NR <strong>in</strong><br />

the three study sites were <strong>in</strong>significant (p > 0.05).<br />

Compar<strong>in</strong>g the three agro-ecological regions, average<br />

yields from the poor fields also followed the<br />

same trend with Ch<strong>in</strong>yika hav<strong>in</strong>g the highest yields<br />

(1.3 t ha·1) followed by Chikwaka (0.9 t ha·J) <strong>and</strong> Zimuto<br />

with the lowest yields (0.5 t ha·1).<br />

Nutrient sources<br />

All host farmers <strong>in</strong> Chikwaka applied m<strong>in</strong>eral fertilizer<br />

to their rich fields with at least half of them also<br />

apply<strong>in</strong>g livestock manure to the' same fields (Table<br />

2). Two out of the six poor fields did not receive<br />

m<strong>in</strong>eral fertilizer. In Ch<strong>in</strong>yika, there appeared to be<br />

a strong dependency on m<strong>in</strong>eral fertilizer by all, <strong>in</strong>clud<strong>in</strong>g<br />

Class C farmers. Only one Class C farmer<br />

failed to apply any external nutrient to his fields,<br />

although he still managed to achieve relatively good<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

59


Table 2. Average maize yield estimates <strong>and</strong> farmer management of fields perceived as rich <strong>and</strong> poor fields <strong>in</strong> the three agroeco·regions <strong>in</strong><br />

Zimbabwe<br />

Agro· Farmers' name <strong>and</strong> Field status Average . Farm management<br />

reoion Class maiz&- yields<br />

M<strong>in</strong>eral fertilizer Organic fertilizilr Legume rotations<br />

(kg hal)<br />

NR II Mr G2 - Class A Rich 5.0 150 D*; 100 ANI 7.0 t ha" manure Groundnut (4 years)<br />

Chikwaka Poor 0.9 OD;100AN 0 None <br />

Mrs K -Class A Rich 4.0 oD; 0 AN 6.0 t ha" manure None <br />

Poor 0.8 150 D; 100 AN 0 None <br />

Mr Ml - Clas.s B Rich 3.7 150 D; 100 AN 6.0 t ha l manure Groundnut (3 years)<br />

Poor 2.0 1500; 150 AN 0 Soyabeanl runnerbean<br />

Mrs M2 - Class B Rich 2.5 1500; 150 AN 0 None<br />

Poor 0.2 150D;100AN 0 None<br />

Mrs C - Class C Rich 1.5 150 D; 100 AN 0 Groundnut (5 years)<br />

Poor 1.0 150 D; 100 AN 2.0 t ha I manure Groundnut <strong>in</strong>tercrop<br />

Mr Gl - Class C Rich 4.5 00; 0 AN 0 None<br />

Poor 0.6 150 D; 100 AN 0 None<br />

NR III Mr Cl - Class A Rich 7.0 2000; 200 AN 5.0 t ha l manure None <br />

Ch<strong>in</strong>yika Poor 1.0 2000; 200 AN 0 Groundnut (2 years) <br />

Mr C2 - Class A Rich 6.0 150 D; 100 AN 4.5 t ha l manure Soyabean (3 years) <br />

Poor 2.0 150 D; 100 AN 0 None <br />

Mr Ml - Class B Rich 6.5 200 D; 200 AN 2.5 t ha" groundnut stover Groundnut (2 years) <br />

Poor 0.7 2000; 200 AN 0 None <br />

Mr M2 - Class B Rich 4.5 200 D; 200 AN 0 None <br />

Poor 1.5 2000; 200 AN 0 None <br />

Mr W - Class C Rich 2.5 00; 0 AN 0 None <br />

Poor 0.5 oD; 0 AN 0 None <br />

Mr Z - Class C Rich 4.0 150 D; 100 AN 0 Groundnut/bambara (4 yrs)<br />

Poor 2.0 1500; 100 AN 4.5 t ha" manure Groundnut/bambara (4 yrs)<br />

NR IV Mr Ml - Class A Rich 3.7 1000; 100 AN 0 None <br />

Zimuto Poor 0.2 00; 100 AN 4.5 t hal manure None <br />

Mrs M2 - Class A Rich 3.0 1000; 100 AN 2.5 t ha" manure None <br />

Poor 0.6 100 D; lDO AN 2.5 t ha" manure None <br />

Mrs C - Class B Rich 2.5 00; 200 AN 2.5 t ha'composted litter Groundnut/cowpea/bambara <strong>in</strong>tercrp<br />

Poor 0.4 oD; 200 AN 4.0 t ha" manure None<br />

Mr Z - Class B Rich 2.7 100D;100AN 0.4 t ha ' litter/2 t ha" manure Groundnuts (2 years)<br />

Poor 0.4 OD;100AN 1.0 t ha I manure None <br />

Mrs N- Class C Rich 2.0 50 D; 100 AN 0.7 t ha I manure None <br />

Mrs T - Class C<br />

Poor 0.3 50 D; 100 AN 0 None <br />

Rich 2.1 oD; 0 AN 2.5 tha I manure Bambara (2 years)<br />

Poo: 0.8 oD; 0 AN 0.9 t hal manure None<br />

• 0 - Compound 0 fertilizer (7% N; 14% P205; 7K20); I AN - Ammonium Nitrate (34.5%N<br />

<strong>Gra<strong>in</strong></strong> legume adoption<br />

Less than half of the 18 <strong>in</strong>terviewed farmers <strong>in</strong> the<br />

three study areas grow gra<strong>in</strong> legumes <strong>in</strong> their fields.<br />

In Chikwaka, groundnut rotations <strong>in</strong> rich fields<br />

range from 1 <strong>in</strong> 3 to 1 <strong>in</strong> 5 years. Only one Class B<br />

farmer had tried to rotate maize with 'soya <strong>and</strong> run­<br />

ner beans <strong>in</strong> his poor field. In Ch<strong>in</strong>yika, legume ro­<br />

tations <strong>in</strong>cluded groundnut, bambara nut <strong>and</strong> soya­<br />

bean on a two to four year cycle <strong>for</strong> all the three<br />

farmer classes, <strong>and</strong> only one Class B farmer utilized<br />

groundnut residues <strong>for</strong> soil fertility purposes. In Zi­<br />

muto, only two farmers (Class B<strong>and</strong> C) grow leg­<br />

umes <strong>in</strong> 2-year rotations (Table 2). Another Class B<br />

farmer <strong>in</strong>tercropped groundnut, cowpea <strong>and</strong> bambara<br />

nut with maize <strong>in</strong> their rich field.<br />

maize yields (about 2.5 t ha- 1 from the ric.h field) .<br />

Manure usage <strong>in</strong> Ch<strong>in</strong>yika was far lower than that<br />

<strong>in</strong> Zimuto <strong>and</strong> Chikwaka. Only one farmer (Class B)<br />

used legume stover as a soil ameliorant <strong>in</strong> Ch<strong>in</strong>yika.<br />

In Zimuto, organic nutrient resource usage was<br />

more widespread with livestock manure <strong>and</strong> woodl<strong>and</strong><br />

litter be<strong>in</strong>g the common sources among the<br />

three farmer classes (Table 2). Most of the farmers<br />

who used organic fertilizers did not apply basal<br />

Compound 0 fertilizer. However, except <strong>for</strong> one<br />

resource-poor farmer, farmers <strong>in</strong> Zimuto applied<br />

the recommended rates of between 100 <strong>and</strong> 200 kg<br />

ha- 1 ammonium-nitrate fertilizer to both their rich<br />

<strong>and</strong> poor fields.<br />

60<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


<strong>Soil</strong> carbon <strong>and</strong> nitrogen<br />

<strong>Soil</strong> organic carbon content of the soils from the rich<br />

fields <strong>in</strong> Ch<strong>in</strong>yika ranged from about 4.5 (Classes B<br />

<strong>and</strong> C fields) to 8.2 mg C g-l soil (Class A farmer)<br />

while that from the poor fields ranged from 3.2<br />

(Class B farmer) to 8.3 mg C g.l soil (Class A<br />

farmer) . In five out of six cases, organic carbon was<br />

consistently higher <strong>in</strong> the rich than the poor fields<br />

(Figure la). The only exception observed was that of<br />

a Class C farmer whose poor field had about 2.5 mg<br />

g -1 soil more C than his rich field. Total soil nitrogen<br />

was less than 1- mg N g.l rang<strong>in</strong>g from 0.5 to 0.8<br />

mg N g-l soil <strong>in</strong> Ch<strong>in</strong>yika. There was little difference<br />

<strong>in</strong> the soil nitrogen contents between rich <strong>and</strong> poor<br />

fields <strong>in</strong> Ch<strong>in</strong>yika <strong>for</strong> all the farmer classes (Figure<br />

Ib). In Zimuto, soil C contents ranged between 2.0<br />

(Class B farmer) <strong>and</strong> 11.5 mg C g.l soil (Class A<br />

farmer) <strong>in</strong> rich fields <strong>and</strong> between 2.0 (Class C<br />

farmer) <strong>and</strong> 8.2 mg C g-l soil (Class A farmer) <strong>in</strong><br />

poor fields (Figure 2a). Unlike the Ch<strong>in</strong>yika case,<br />

soil nitrogen was relatively higher <strong>in</strong> Zimuto, with<br />

results rang<strong>in</strong>g from 0.6 to 1.2 mg N g.l soil (Figure<br />

2b). In all the selected field sites, the nitrogen content<br />

of the rich fields was higher than that of the<br />

poor fields regardless of farmer class.<br />

Discussion<br />

Ownership of resources was the key attribute differentiat<strong>in</strong>g<br />

farmer classes. When it came to farm management,<br />

the more resource-endowed Class A farmers<br />

had more soil fertility options at their disposal.<br />

The biophysical characterization of the smallholder<br />

farm<strong>in</strong>g systems has shown that nutrient sources<br />

accessible to farmers <strong>in</strong> the different agroecosystems<br />

were highly heterogeneous <strong>and</strong> varied <strong>in</strong> quantity.<br />

There was a general appreciation of the role of organic<br />

nutrient sources <strong>in</strong> soil amelioration <strong>in</strong> the<br />

three Natural Regions, particularly livestock manure_<br />

However, it was Class A farmers who frequently<br />

used m<strong>in</strong>eral fertilizers <strong>for</strong> crop production<br />

although they could af<strong>for</strong>d to use other available<br />

resources. Although there was widespread use of<br />

manure among all classes, the survey also showed<br />

that application of woodl<strong>and</strong> litter, composted<br />

household waste <strong>and</strong> crop residues to field crops<br />

was deemed experimental by the <strong>in</strong>novator farmers<br />

(Class B) <strong>and</strong> was also perceived as an option <strong>for</strong><br />

resource poor farmers. In many <strong>in</strong>stances, manure,<br />

when available, was preferentially applied to the<br />

rich fields particularly by the Class A farmers. This<br />

Ch<strong>in</strong>yika (NR ·111)<br />

12.---------------------------,-------,<br />

.RiCh field<br />

a) {2J Poor field<br />

I - ·0.02; df - 9; p > 0.05<br />

Zimuto (NR IV)<br />

t - 1.89; df - 9; p > 0.05<br />

.Rich field<br />

EJPoor field<br />

0><br />

.§.<br />

'6 1 2 b)<br />

'" t - 0.71; df - 9; p > 0.05<br />

; 1<br />

0><br />

E<br />

:; 0 .8<br />

::><br />

iii<br />

"iii<br />

z 0. 6<br />

u <br />

C <br />

~0.4<br />

o<br />

MrCl MrC2 MrMI MrM2 MrZ MrW <br />

Class A Class B Class C <br />

Farme r' s name <strong>and</strong> class<br />

Figure 1. Pre-season soil organic carbon (a) <strong>and</strong> nitrogen (b) <br />

contents of rich <strong>and</strong> poor fields belong<strong>in</strong>g to six three different <br />

farmer groups <strong>in</strong> Ch<strong>in</strong>yika, Zimbabwe <br />

Mr Ml Mrs M2 Mrs C Mr Z Mrs T Clk);rstt<br />

Class A<br />

Class B<br />

Farmer's name <strong>and</strong> class<br />

Figure 2. Pre-season soil organic carbon (a) <strong>and</strong> nitrogen (b)<br />

contents of rich <strong>and</strong> poor fields belong<strong>in</strong>g to six three different<br />

farmer groups <strong>in</strong> Zimuto, Zimbabwe<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

61


implied that most fanners prefer to <strong>in</strong>vest their labour<br />

<strong>in</strong>puts where returns are already favourable,<br />

thus apparently follow<strong>in</strong>g a nutrient concentration<br />

strategy - the poorer or less productive the field, the<br />

less applied. The ameliorative role of manure to soil<br />

was not a new concept to the smallholder farm<strong>in</strong>g<br />

community where cattle manure was viewed as a<br />

. common <strong>and</strong> significant soil fertility <strong>in</strong>put <strong>in</strong> maize<br />

systems (Tanner <strong>and</strong> Mugwira, 1984; Mugwira <strong>and</strong><br />

Murwira, 1997). Livestock manure applications to<br />

soil have been known to <strong>in</strong>crease soil pH, <strong>in</strong>filtration<br />

rates, water hold<strong>in</strong>g capacities <strong>and</strong> decrease<br />

bulk densities (Grant, 1967; Murwira, 1993).<br />

Prelim<strong>in</strong>ary results from this study have revealed<br />

that cultivation of gra<strong>in</strong> legumes <strong>for</strong> food is at a low<br />

scale <strong>in</strong> all the three Natural Regions, be it as rotations<br />

or <strong>in</strong>tercrops while exploitation of legumes <strong>for</strong><br />

soil fertility management is virtually non-existent.<br />

While <strong>in</strong><strong>for</strong>mation on the role of legum<strong>in</strong>ous plants<br />

<strong>in</strong> replenish<strong>in</strong>g soil fertility is available (Sanchez,<br />

1995; Giller, 1998; Mapfumo, 2000), these results<br />

suggest that the strategies to translate this valuable<br />

<strong>in</strong><strong>for</strong>mation to the smallholder farm<strong>in</strong>g community<br />

need diversification. Currently there is a general belief<br />

among smallholder communities that legumes<br />

are a women's crop (Mapfumo et al., 200tb) <strong>and</strong> this<br />

belief coupled with poor extension methods <strong>and</strong><br />

over emphasis on cereal production, have led to reduced<br />

legume cultivation. Application of legum<strong>in</strong>ous<br />

residues <strong>in</strong> arable farm<strong>in</strong>g systems provides a<br />

ready supply of N to grow<strong>in</strong>g crops. While very few<br />

farmers appreciate the role of gra<strong>in</strong> legume residues<br />

<strong>in</strong> soil amelioration, some results have shown that<br />

<strong>in</strong> cereal cultivation, N contributions from legumes<br />

can be as high as 250 kg N ha- 1 yrl (Giller, 2001).<br />

However, <strong>in</strong> poor s<strong>and</strong>y soils, reported values have<br />

mostly been less than 30 kg N ha- 1 (Mapfumo, 2000).<br />

It is imperative to note that the impact of legumes<br />

on soil productivity may not only be restricted to N<br />

contributions, which has been the major focus of<br />

previous work on organic <strong>in</strong>put research. The quantity<br />

<strong>and</strong> quality of C supplied by many of these organic<br />

materials may also playa significant role <strong>in</strong><br />

soil productivity. In<strong>for</strong>mation of the role of decomposable<br />

C on nutrient release <strong>and</strong> soil amelioration<br />

from high quality organics <strong>in</strong>clud<strong>in</strong>g legume residues<br />

is not well documented (Kirchmann <strong>and</strong> Bergquist,<br />

1989). This <strong>in</strong><strong>for</strong>mation is essential <strong>in</strong> guid<strong>in</strong>g<br />

farmers <strong>and</strong> l<strong>and</strong>-managers to optimally use<br />

their organic resources, both <strong>in</strong> the short <strong>and</strong> <strong>in</strong> the<br />

long term. Legume resid ues are most beneficial <strong>in</strong><br />

provid<strong>in</strong>g nutrients <strong>in</strong> the short-term, an option<br />

more likely to be appeal<strong>in</strong>g to most smallholder<br />

farmers (Palm et al., 2001). In the wake of dim<strong>in</strong>ish<strong>in</strong>g<br />

resources, the groyv<strong>in</strong>g of legumes <strong>and</strong> utiliz<strong>in</strong>g<br />

their residues may be a realistic way of <strong>in</strong>creas<strong>in</strong>g<br />

soil available C <strong>in</strong> s<strong>and</strong>y soils. This study aims to<br />

address the practicalities of these issues. Are we as<br />

'researchers do<strong>in</strong>g enough to promote soil organic<br />

matter build-up <strong>in</strong> our <strong>in</strong>herently poor soils? Participatory<br />

experiments with fanners <strong>in</strong> Murewa (NR<br />

II) suggested that Cajanus cajan (pigeonpea) could<br />

be successfully grown by farmers yield<strong>in</strong>g very<br />

high biomass of up to 23 t ha- 1 <strong>in</strong> 2 years (Mapfumo<br />

et al., 2001).<br />

While it is difficult to make conclusive statements<br />

based on these prelim<strong>in</strong>ary results, a few lessons<br />

can be drawn. In Zimuto, use of organic fertilizers<br />

<strong>in</strong> arable farm<strong>in</strong>g showed that soil C reserves could<br />

be improved judg<strong>in</strong>g from the relatively high contents<br />

of soil organic C, compared to the soils <strong>in</strong><br />

Ch<strong>in</strong>yika where m<strong>in</strong>eral fertilizer usage takes precedence.<br />

Although cultivation <strong>in</strong> Ch<strong>in</strong>yika is barely 20<br />

years old, soil C <strong>and</strong> N are already depressed<br />

probably stemm<strong>in</strong>g from the heavy dependency on<br />

m<strong>in</strong>eral fertilizer with little or no organic <strong>in</strong>puts. We<br />

there<strong>for</strong>e conclude that there is merit to develop<br />

strategies <strong>for</strong> the use of organic <strong>in</strong>puts, to not only<br />

improve the soil organic C status, but also crop<br />

yields through efficient nutrient uptake. The term<br />

organic fertilizer should be given a new mean<strong>in</strong>g<br />

<strong>for</strong> the smallholder environment to not only mean<br />

manure qut crop residues as well. For the nonowners<br />

of cattle, the w<strong>in</strong>dow of opportunity rests<br />

with the grow<strong>in</strong>g of legumes with the N-rich stover<br />

be<strong>in</strong>g reta<strong>in</strong>ed <strong>in</strong> the field.<br />

It is imperative to <strong>in</strong>vestigate how nutrient availability<br />

is related to the quantity <strong>and</strong> quality of C<br />

supplied <strong>in</strong> organic resources used by farmers <strong>in</strong> the<br />

medium- to long-term if comb<strong>in</strong>ed use of organics<br />

<strong>and</strong> m<strong>in</strong>eral fertilizer is to be optimized.<br />

References<br />

Anderson, }.M. <strong>and</strong> Ingram, }.S.1. 1993. Tropical <strong>Soil</strong><br />

Biology <strong>and</strong> <strong>Fertility</strong>: A H<strong>and</strong>book of Methods. Second<br />

Edition. CAB International. Wall<strong>in</strong>g<strong>for</strong>d,<br />

UK. 221 pp.<br />

Ashworth, V.A. 1990. Agricultural Technology <strong>and</strong> the<br />

Communal Farm Sector. Ma<strong>in</strong> Report. Background<br />

paper prepared <strong>for</strong> the Zimbabwe Agricultural<br />

Sector Memor<strong>and</strong>um. The World. Bank, Agriculture<br />

Division, Southern Africa Department,<br />

Wash<strong>in</strong>gton DC, USA. 159 pp.<br />

Giller, K.E. 1998. Tropical legumes: Providers <strong>and</strong><br />

plunderers of nitrogen. In: Carbon <strong>and</strong> Nutrient<br />

Dynamics <strong>in</strong> Natural <strong>and</strong> Agricultural Tropical Ecosystems.<br />

L. Bergstrom <strong>and</strong> H. Kirchmann (Eds.).<br />

CAB International, Wall<strong>in</strong>g<strong>for</strong>d, UK, pp. 33-46.<br />

Giller, K.E. 2001. Nitrogen Fixation <strong>in</strong> Tropical Crop-<br />

62<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


p<strong>in</strong>g Systems. 2nd Edition. CAB International,<br />

Wall<strong>in</strong>g<strong>for</strong>d, UK. 423 pp.<br />

Grant, P.M. 1967. The fertility of s<strong>and</strong>veld soil under<br />

cont<strong>in</strong>uous cultivation. Part I. The effect of<br />

manure <strong>and</strong> nitrogen fertilize"r on the" nitrogen<br />

status of the soil. Rhodesia Zambia Mal'lwi Journal<br />

of Agricultural Research 5:71-79.<br />

Kirchmann, H. <strong>and</strong> Bergquist, R 1989. Carbon <strong>and</strong><br />

nitrogen m<strong>in</strong>eralization of white clover<br />

(Trifohum repens) of different age dur<strong>in</strong>g aerobic<br />

<strong>in</strong>cubation with soil. Zeitschrijt fur Pflanzenernahrung<br />

und Bodenkunde 152:283-88.<br />

Ma·pfumo, P. 2000. Potential Contribution of <strong>Legumes</strong><br />

to <strong>Soil</strong> <strong>Fertility</strong> Management <strong>in</strong> Smallholder Farm<strong>in</strong>g<br />

Systems of Zimbabwe: The Case of Pigeonpea<br />

(Cajanus cajan fL] Millsp.). DPhil Thesis. Department<br />

of <strong>Soil</strong> Science <strong>and</strong> Agricultural Eng<strong>in</strong>eer<strong>in</strong>g.<br />

University of Zimbabwe, Harare, Zimbabwe.198pp.<br />

Mapfumo, P, Campbell, B.M., Mpepcreki, S. <strong>and</strong><br />

Mafongoya, P.L. 2001b. <strong>Legumes</strong> <strong>in</strong> soil fertility<br />

management: The case of pigeon pea <strong>in</strong> smallholder<br />

farm<strong>in</strong>g systems of Zimbabwe. African<br />

Crop Science Journal 9:629-644.<br />

Mapfumo, P. <strong>and</strong> Giller, K.E. 2001. <strong>Soil</strong> <strong>Fertility</strong><br />

Management Strategies <strong>and</strong> Practices by Smallholder<br />

Farmers <strong>in</strong> Semi-Arid Areas of Zimbabwe. PO Box<br />

776, Bulawayo, Zimbabwe: International Crops<br />

Research Institute <strong>for</strong> the Semi-Arid Tropics<br />

(ICRISAT) with permission from the Food <strong>and</strong><br />

Agriculture Organization of the United Nations<br />

(FAO). 60 pp.<br />

Mapfumo, P., Mtambanengwe, F., N<strong>and</strong>wa, S., Yeboah,<br />

E. <strong>and</strong> Vanlauwe B. 2001a. <strong>Soil</strong> Organic<br />

Matter Dynamics <strong>for</strong> Susta<strong>in</strong>able Cropp<strong>in</strong>g <strong>and</strong> Environmental<br />

Management <strong>in</strong> Tropical Systems: Effect<br />

of Organic Resource Quality <strong>and</strong> Diversity. TSBF­<br />

AfNet SOM Network Proposal. (Typed script).<br />

M<strong>in</strong>itab Inc. 2000. M<strong>in</strong>itab Statistical Software. M<strong>in</strong>itab<br />

Release 13.1. M<strong>in</strong>itab Inc.<br />

Mugwira, L.M. <strong>and</strong> Murwira, H.K. 1997. Use of cattle<br />

manure to improve soil fertility <strong>in</strong> Zimbabwe:<br />

Past <strong>and</strong> current research <strong>and</strong> future research<br />

needs. <strong>Soil</strong> Fert Net Network Research Results<br />

Work<strong>in</strong>g Paper No.2. <strong>Soil</strong> <strong>Fertility</strong> Network <strong>for</strong><br />

Maize-Based Cropp<strong>in</strong>g Systems <strong>in</strong> Malawi <strong>and</strong><br />

Zimbabwe. CIMMYT, Harare. 33 pp.<br />

Murwira, 1993. Nitrogen dynamics <strong>in</strong> a Zimbabwean<br />

granite derived s<strong>and</strong>y soil under manure<br />

fertilization. DPhil Thesis, University of Zimbabwe,<br />

Harare, 194 pp.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

Nyafhi, P. <strong>and</strong> Campbell, B.M. 1993. The acquisition<br />

<strong>and</strong> use of miombo litter by small-scale farmers<br />

<strong>in</strong> Masv<strong>in</strong>go, Zimbabwe. " Agro<strong>for</strong>estry Systems<br />

22:43-48.<br />

Palm, CA., Murwira, H.K. <strong>and</strong> Carter, S.E. 1998. In:<br />

<strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong> Maize-Based Farm<strong>in</strong>g Systems<br />

<strong>in</strong> Malawi <strong>and</strong> Zimbabwe. S.R. Wadd<strong>in</strong>gton,<br />

H.K. Murwira, JD.T. Kumwenda, D. Hikwa <strong>and</strong><br />

F. Tagwira (Eds.). Proceed<strong>in</strong>gs of the <strong>Soil</strong> Fert<br />

Net Results <strong>and</strong> Plann<strong>in</strong>g Workshop, 7-11 July,<br />

1997. Africa University, Mutare. <strong>Soil</strong> Fert Net<br />

<strong>and</strong> CIMMYT-Zimbabwe, Harare. pp 21-29.<br />

Palm, CA., Gachengo, CN., Delve, R.J., Cadisch, G.<br />

<strong>and</strong> Giller, K.E. 2001. Organic <strong>in</strong>puts <strong>for</strong> soil fertility<br />

management <strong>in</strong> tropical agroecosystems:<br />

application of an organic resource database. Agriculture,<br />

Ecosystems <strong>and</strong> Environment. 83: 27-42.<br />

Piha, M.1. 1993. Optimiz<strong>in</strong>g fertilizer use <strong>and</strong> practical<br />

ra<strong>in</strong>fall capture <strong>in</strong> a semi-arid environment<br />

with variable ra<strong>in</strong>fall. Experimental Agriculture<br />

29:404-15.<br />

Sanchez, P.A. 1995. The science of agro<strong>for</strong>estry.<br />

Agro<strong>for</strong>estry Systems 30:5-55.<br />

Sanchez, P.A. <strong>and</strong> Jama, B.A. 2002. <strong>Soil</strong> fertility replenishment<br />

takes off <strong>in</strong> East <strong>and</strong> Southern Africa.<br />

In: Integrated Plant Nutrient Management <strong>in</strong><br />

Sub-Saharan Africa: From Concept to Practice. B.<br />

Vanlauwe, J. Diels, N. Sang<strong>in</strong>ga <strong>and</strong> R Merckx<br />

(Eds.). pp. 23-45. CAB International, Wall<strong>in</strong>g<strong>for</strong>d,<br />

UK.<br />

Sanchez, P.A., Palm, CA., Szott, L.T., Cuevas, E.<br />

<strong>and</strong> Lal. R 1989. Organic <strong>in</strong>put management <strong>in</strong><br />

tropical agroecosystems. In: Dynamics of Organic<br />

Matter <strong>in</strong> Tropical Ecosystems. D.C Coleman, J.M.<br />

Oades <strong>and</strong> G. Uehara (Eds.). NifTAL" Project,<br />

University of Hawaii, Honolulu, Hawaii, USA .<br />

pp. 125-152.<br />

Smal<strong>in</strong>g, E.M.A., N<strong>and</strong>wa, S.M. <strong>and</strong> Janssen, B.H.<br />

1997. <strong>Soil</strong> fertility <strong>in</strong> Africa is at stake. In: Replenish<strong>in</strong>g<br />

<strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Africa. Buresh, RJ., Sanchez,<br />

P.A. <strong>and</strong> Calhoun, F. (Eds.). <strong>Soil</strong> Science Society<br />

of America Special Publication 51. Madison,<br />

Wiscons<strong>in</strong>, USA.pp. 47-62.<br />

Tanner, p.o. <strong>and</strong> Mugwira, L.M. 1984. Effectiveness<br />

of communal area manure as sources of nutrients<br />

<strong>for</strong> young maize plants. Zimbabwe Agricultural<br />

Journal 81 :31-35.<br />

V<strong>in</strong>cent, V. <strong>and</strong> Thomas, RG. 1961. An Agroecological<br />

Survey of Southern Rhodesia: Part 1-Agro­<br />

Ecological Survey. Government Pr<strong>in</strong>ters, Salisbury,<br />

Rhodesia.<br />

63


]<br />

Questions <strong>and</strong> Answers<br />

Rhizobium, N Fixation <strong>and</strong> Microbiology<br />

To Sheunesu Mpepereki <strong>and</strong> Ishmael Pompi<br />

Q: How did you h<strong>and</strong>le market<strong>in</strong>g among<br />

smallholder farmers?<br />

A: In Zimbabwe, lucrative markets exist <strong>for</strong><br />

soyabean, e.g. <strong>for</strong> oil expression <strong>and</strong> livestock feeds.<br />

Smallholder farmers come together <strong>in</strong> groups to<br />

consolidate their harvest <strong>in</strong>to large enough loads <strong>for</strong><br />

transport to market. (:ontracts have been negotiated<br />

with buyers to accommodate all smallholder crops.<br />

The Soyabean Promotion Task Force has played a<br />

coord<strong>in</strong>ation role that has been progressively<br />

passed on to farmers' own organizations. Private<br />

buyers have supplied weigh scales.<br />

Q: Is <strong>in</strong>oculation a full component of the soyabean<br />

tedmology or do farmers often grow soya bean<br />

without <strong>in</strong>oculation?<br />

A: Yes <strong>in</strong>oculation is the key technology be<strong>in</strong>g<br />

promoted. The <strong>in</strong>puts package conta<strong>in</strong>s seed,<br />

<strong>in</strong>oculant, lime (<strong>for</strong> acid soils), base fertilizer <strong>and</strong><br />

fungicides (<strong>for</strong> rust disease). No farmer will plant<br />

soyabean without rhizobia <strong>in</strong>oculants if they can<br />

help it. Some plant promiscuous varieties.<br />

Un<strong>for</strong>tunately, there is no breed<strong>in</strong>g program <strong>for</strong><br />

promiscuous varieties <strong>in</strong> Zimbabwe.<br />

Q: Where does the soyabean fit with<strong>in</strong> the whole<br />

farm system ~iven soil fertility gradients?<br />

A: In Zimbabwe soyabean is planted <strong>in</strong> outfields,<br />

often not the most fertile fields. Farmers are<br />

encouraged to grow soyabean <strong>in</strong> the more fertile<br />

fields to enhance yields <strong>and</strong> <strong>in</strong>come from sales.<br />

Q: What is the percentage of smallholder farmers<br />

adopt<strong>in</strong>g soyab.ean production technology <strong>in</strong><br />

Zimbabwe?<br />

A: Adoption rates have been near experiential.<br />

Numbers <strong>in</strong>creased from a few hundred to over 10<br />

000 <strong>in</strong> three grow<strong>in</strong>g seasons (1996 -1999). Area<br />

planted has <strong>in</strong>creased from about 240 ha (1995) to 44<br />

000 ha <strong>in</strong> 2000. In one communal area, Kazangarure,<br />

with about 3000 families, AGRlTEX estimates over<br />

98% have adopted soyabean BNF technology over a<br />

four year period (1997 - 2000).<br />

Q: To what extent could you have soil residual<br />

effects of the <strong>in</strong>oculants <strong>in</strong> the field?<br />

A: Residual effects of <strong>in</strong>oculants depend on the<br />

survival <strong>and</strong> persistence of <strong>in</strong>oculation stra<strong>in</strong>s. In<br />

heavy soils (with high clay <strong>and</strong> organic matter<br />

content), rhizobia stra<strong>in</strong>s survive <strong>and</strong> are effective<br />

<strong>for</strong> up to three seasons or more if the legume is<br />

grown <strong>in</strong> a regular rotation. Survival <strong>and</strong><br />

persistence are poor <strong>in</strong> s<strong>and</strong>y soils where the<br />

legume requires to be <strong>in</strong>oculated every time it is<br />

planted.<br />

To Friday Sikombe, et al.<br />

Q: What were the optimum levels of nitrogen<br />

fertilizers <strong>and</strong> <strong>in</strong>oculation <strong>for</strong> bean yields?<br />

A: The optimum levels of nitrogen recommended<br />

o<br />

were 100 kg N ha ] which is called the Lima<br />

recommendation. For the <strong>in</strong>oculum, the optimum<br />

level is two 250g-packets of <strong>in</strong>oculant per hectare.<br />

Q: The pH of the soils at your site was 7.2. What<br />

could have been the effects on N- fixation? You also<br />

applied N-fertilizers at two rates; 0 <strong>and</strong> 100 kg N<br />

hao<br />

]. Don't you th<strong>in</strong>k that 100 kg N hao<br />

] was rather<br />

too high <strong>and</strong> could have suppressed nodulation?<br />

Do you th<strong>in</strong>k we have farmers who can apply<br />

fertilizers at this rate?<br />

A: The pH 7.2 had no effect on N- fixation. The<br />

level of 100 kg N hao is the Lima recommendation.<br />

This level did not affect nodulation except with the<br />

cultivar, Lundazi. It is true that small-scale farmers<br />

are unable to apply fertilizer nitrogen at this rate.<br />

The option, there<strong>for</strong>e, is to exploit Biological<br />

Nitrogen Fixation (BNF) through <strong>in</strong>oculation with<br />

RhizobiJ, <strong>and</strong> the use of bean genotypes that<br />

respond well to <strong>in</strong>oculation.<br />

C: A rate of 100 kg N/ha is certa<strong>in</strong>ly too high <strong>for</strong> a<br />

legume. Its effect would be to limit nodulation <strong>and</strong><br />

N fixation <strong>in</strong> the beans.<br />

To Ylver Besmer, et al.<br />

Q: Did you quantify the AMF <strong>in</strong>oculants, e.g. spore <br />

numbers? And is the <strong>in</strong>tervention one that f.umers <br />

can <strong>in</strong>troduce <strong>and</strong> manage? <br />

Why lab lab? Does it h,l\'e any utility Y,11ue <strong>for</strong> <br />

farmers or a chance of be<strong>in</strong>g <strong>in</strong>tegrated <strong>in</strong>to the <br />

cropp<strong>in</strong>g system? <br />

Quantities of N from groundnut appear e:dremel~' <br />

low, contrary to common knowledge that the <br />

residues of groundnut have high amounts of N. <br />

How do you expla<strong>in</strong> this? <br />

How did yOll account <strong>for</strong> Iitterfall by pigeonpe'l <strong>in</strong> <br />

calculat<strong>in</strong>g N <strong>in</strong>put? <br />

How was the control <strong>for</strong> trapp<strong>in</strong>g the Aiv1F treated? <br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

65


General Discussion<br />

C: Recovery of legume N may be low <strong>in</strong> a<br />

subsequent cereal crop but a substantial part often<br />

rema<strong>in</strong>s <strong>in</strong> the SOM pool, which may build soil<br />

fertility <strong>and</strong> benefit future crops.<br />

C: The N recovery of legum<strong>in</strong>ous tree rotations with<br />

maize is 10-20% <strong>and</strong> subsequent recovery is 3-5%.<br />

However we need fertilizer equivalencies of organic<br />

based technologies <strong>and</strong> these should be presented <strong>in</strong><br />

extension manuals.<br />

C: In relation to the recovery of N from soyabean<br />

residues by a subsequent maize crop. Results from<br />

work carried out at CIAT (1993-98) on the Colombia<br />

Savannas on an Oxisol <strong>in</strong> the humid tropical<br />

lowl<strong>and</strong>s (150 masl, >2600 mm ra<strong>in</strong>fall) us<strong>in</strong>g ISN<br />

techniques found 10-20% recovery of N from<br />

soyabean residue by a subsequent maize crop. A<br />

substantial amount was lost by leach<strong>in</strong>g (>50%). N<br />

recovery was


ADDING A NEW DIMENSION TO THE IMPROVED FALLOW CONCEPT<br />

THROUGH INDIGENOUS HERBACEOUS LEGUMES<br />

PAUL MAPFUMO', FLORENCE MTAMBANEI\JGWE',<br />

SHEUNESU MPEPEREKI' <strong>and</strong> KEN GILLER 2<br />

1Department of <strong>Soil</strong> Science <strong>and</strong> Agricultural Eng<strong>in</strong>eer<strong>in</strong>g, University of Zimbabwe,<br />

P. O. Box MP 167 Mt Pleasant, Harare, Zimbabwe 2Department of Plant Sciences,<br />

Plant Produc'tion Systems, Wagen<strong>in</strong>gen University, Wagen<strong>in</strong>gen, The Netherl<strong>and</strong>s<br />

Abstract<br />

Opportunities <strong>for</strong> harness<strong>in</strong>g biological nitrogen fixation of non-cultivated herbaceous legllmes <strong>in</strong> order to improve soil<br />

productivity on smallholder farms <strong>in</strong> Zimbabwe were explored <strong>in</strong> a study <strong>in</strong>itiated <strong>in</strong> Decem ber 2001. Over 30 <strong>in</strong>digenous<br />

legume species .were jo<strong>in</strong>tly identified with farm ers across three agro-ecological regions, rang<strong>in</strong>g from sub-humid<br />

(800 mm annually) to semi-arid «650 mm). A ewezu Smell Technique, based on the odour released from freshly harvested<br />

legume roots, greatly enhanced the capacity of farmers to participate <strong>in</strong> the identification process, The legume diversity<br />

was highest <strong>in</strong> Ch<strong>in</strong>yika Resettlement Area where cropp<strong>in</strong>g had been go<strong>in</strong>g jllst over 20 years. This was contran)<br />

to the loss of diversity <strong>in</strong> old Communal Areas where dom<strong>in</strong>ance of clean weed<strong>in</strong>g practices <strong>for</strong> over 70 years has led to<br />

depletion of the weed seed bank. Legume contribution to the total above grollnd biomass ranged from 3% <strong>in</strong> 1-year fallows<br />

under semi-arid conditions to 88% <strong>in</strong> afield ab<strong>and</strong>oned soon after crop establishment llnder sub-humid conditions.<br />

The latter case <strong>in</strong>dicated an opportunity <strong>for</strong> manipulat<strong>in</strong>g legume popl/lations to <strong>in</strong>crease their contribution, Overall,<br />

total fallow productivity did not exceed 3.2 t ha- J dl/e to extreme conditions of poor soil fertility, where soils had generally<br />


logical processes <strong>in</strong> the given agro-ecosystems. Despite<br />

the advocacy <strong>for</strong> <strong>in</strong>tegrated nutrient management<br />

<strong>and</strong> ecological approaches to agriculture (e.g.<br />

Giller <strong>and</strong> Cadisch, 1995i Breman, 1998), little or no<br />

research work <strong>in</strong> Zimbabwe <strong>and</strong> other parts of<br />

Southern Africa has focused on natural weeds as an<br />

organic nutrient resource that can be exploited by<br />

smallholder farmers <strong>for</strong> their management of soil<br />

. fertility. This study, there<strong>for</strong>e, focused on selfregenerat<strong>in</strong>g<br />

N2-fix<strong>in</strong>g <strong>in</strong>digenous legumes. These<br />

legumes are considered an under-utilized component<br />

of an organic resource pool that may be readily<br />

available to smallholder farmers <strong>in</strong> many parts of<br />

Africa. Assess<strong>in</strong>g <strong>and</strong> manipulat<strong>in</strong>g the diverse N2­<br />

fix<strong>in</strong>g herbaceous legumes <strong>in</strong> local agro-ecosystems<br />

provide a good start<strong>in</strong>g po<strong>in</strong>t to meet these challenges.<br />

Based on results of a study <strong>in</strong>itiated <strong>in</strong> December 2001,<br />

this paper explores the concept <strong>and</strong> scope <strong>for</strong> <strong>in</strong>digenous<br />

fallows (Indifallows). The general objective was<br />

to make an appraisal on the potential <strong>for</strong> <strong>in</strong>digenous<br />

legumes to contribute towards combat<strong>in</strong>g the problem<br />

of poor soil fertility which underlies rural poverty <strong>in</strong><br />

Zimbabwe <strong>and</strong> other parts of Africa.<br />

The Indifallow concept<br />

The Indifallow concept is based on harness<strong>in</strong>g biological<br />

nitrogen fixation (BNF) of herbaceous annual<br />

legumes native to or naturalized under given agroecological<br />

environments <strong>in</strong> order to improve the N<br />

economy of natural fallows at m<strong>in</strong>imal establishment<br />

<strong>and</strong> management costs. While it is traditional<br />

practice to fallow unproductive l<strong>and</strong>, effectiveness<br />

of fallows as a means <strong>for</strong> soil fertility restoration has<br />

often been compromised by the reduction <strong>in</strong> fallow<br />

periods as l<strong>and</strong> becomes limit<strong>in</strong>g <strong>and</strong> also the poor<br />

quality of the plant biomass generated <strong>in</strong> the fallow<strong>in</strong>g<br />

phase. Ef<strong>for</strong>ts to improve the quality of faHows<br />

through agro<strong>for</strong>estry tree crops such as Leucaena,<br />

Sesbania <strong>and</strong> Acacia spp. have often been h<strong>in</strong>dered<br />

by high establishment costs <strong>and</strong> lack of immediate<br />

benefits to the farmer (Cook <strong>and</strong> Gmt, 1993; Kwesiga<br />

<strong>and</strong> Coe, 1994; Snapp et al. 1998). Through use<br />

of self-regenerat<strong>in</strong>g <strong>and</strong> well-adapted <strong>in</strong>digenous<br />

annual legumes, constra<strong>in</strong>ts related to seed costs<br />

<strong>and</strong> availability, nursery management <strong>and</strong> biomass<br />

management are m<strong>in</strong>imized. Thus a focus on BNF<br />

of <strong>in</strong>digenous herbaceous legumes will not only<br />

help to provide a basis <strong>for</strong> <strong>in</strong>tegrat<strong>in</strong>g weeds as a<br />

potential source of N <strong>and</strong> soil organic matter <strong>in</strong><br />

cropp<strong>in</strong>g systems, but also to improve <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong><br />

the biodiversity <strong>in</strong> smallholder agro-ecosystems.<br />

Most studies on weed management <strong>in</strong> smallholder<br />

fann<strong>in</strong>g systems have been concerned with the adverse<br />

effects of weed competition on moisture <strong>and</strong><br />

nutrient uptake by crops, <strong>and</strong> the labour costs <strong>in</strong>volved<br />

<strong>in</strong> manag<strong>in</strong>g the weeds. As a result, the<br />

strategy has been to eradicate weeds, ma<strong>in</strong>ly by deplet<strong>in</strong>g<br />

the seed bank (weed plants are killed be<strong>for</strong>e<br />

flower<strong>in</strong>g). Clean weed<strong>in</strong>g, which <strong>in</strong>volves ma<strong>in</strong>tenance<br />

of weed-free fields until the end of the cropp<strong>in</strong>g<br />

season, is a common practice among smallholder<br />

farmers <strong>in</strong> Zimbabwe. This is still driven by<br />

extension recommendations based on 'green revolution'<br />

technologies. Although this weed management<br />

approach has become a tradition, it may compromise<br />

tl}e long-term susta<strong>in</strong>ability of these cropp<strong>in</strong>g<br />

systems· thro_ugh loss of bio-diversity <strong>and</strong> reduced<br />

organic matte'i- <strong>in</strong>puts. It also leads to the dom<strong>in</strong>ance<br />

of pernicious weeds that are by def<strong>in</strong>ition difficult<br />

to control by h<strong>and</strong> weed<strong>in</strong>g <strong>and</strong> cultivation.<br />

An analysis of 'green revolution' technologies <strong>in</strong><br />

sub-Saharan Africa has shown that they are largely<br />

<strong>in</strong>compatible with the socio-economic environment<br />

on smallholder farms (Qu<strong>in</strong>ones et al. 1997). It is imperative<br />

that the current weed management regimes<br />

be revised to match the dem<strong>and</strong>s <strong>for</strong> <strong>in</strong>tegrated nutrient<br />

management <strong>and</strong> reduce labour requirements.<br />

This may reduce the burden on women <strong>and</strong> children<br />

who usually provide labour <strong>for</strong> key agricultural<br />

activities such as weed<strong>in</strong>g <strong>and</strong> seedl<strong>in</strong>g establishment<br />

<strong>and</strong> transplant<strong>in</strong>g <strong>in</strong> agro<strong>for</strong>estry. Technologies<br />

with m<strong>in</strong>imal labour dem<strong>and</strong>s are likely to<br />

be particularly appropriate <strong>for</strong> the poorest farmers<br />

who are often women <strong>in</strong> s<strong>in</strong>gle-headed households,<br />

or families where key members provid<strong>in</strong>g labour<br />

have been lost due to AIDS. As we explore the feasibility<br />

<strong>and</strong> merit of <strong>in</strong>difallows from a soil fertility<br />

perspective, the key question is whether such legumes<br />

do exist <strong>in</strong> smallholder farm<strong>in</strong>g systems <strong>and</strong><br />

under what soil conditions. .<br />

Study Sites<br />

The research was conducted <strong>in</strong> three communal<br />

(smallholder) areas found <strong>in</strong> different eco-zones of<br />

Zimbabwe, namely Chikwaka (31° 30' Ei 17° 40' S)<br />

<strong>in</strong> Natural Region II, Ch<strong>in</strong>yika (32° 25' Ei 18° 15' S)<br />

<strong>in</strong> NR III <strong>and</strong> Zimuto (30 0<br />

52' E; 19° 50' S) Communal<br />

Areas <strong>in</strong> NR IV. Natural Region II receives over<br />

750 mm of ra<strong>in</strong>fall annually between November <strong>and</strong><br />

March while NR's III <strong>and</strong> IV receive 650-750 mm<br />

<strong>and</strong> 450-650 mm of unimodal ra<strong>in</strong>fall per annum<br />

respectively. The soils <strong>in</strong> all sites are granite-derived<br />

s<strong>and</strong> to loamy s<strong>and</strong>s, Haplic Lixisol/ Arenosols accord<strong>in</strong>g<br />

to the F AO classification. The sites were<br />

ma<strong>in</strong>ly chosen based on their be<strong>in</strong>g representative<br />

of most smallholder farmmg areas. Chikwaka <strong>and</strong><br />

Zimuto are old Communal Areas where cultivation<br />

by smallholders has been go<strong>in</strong>g on <strong>for</strong> over 70<br />

years. The a:verage household l<strong>and</strong>hold<strong>in</strong>g <strong>in</strong> Chikwaka<br />

<strong>and</strong> Zimuto was 3 ha, while <strong>in</strong> Ch<strong>in</strong>yika, a<br />

resettlement area established <strong>in</strong> 1982, the l<strong>and</strong>hold<strong>in</strong>g<br />

was 6 ha per household.<br />

68<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Materials <strong>and</strong> Methods<br />

The study used farmer participatory approaches,<br />

complemented with laboratory-based analyses of<br />

soils <strong>and</strong> plant materials. At least two participatory<br />

rural appraisal (PRA) workshops were held at each<br />

study site to discuss broader issues of soil fertility<br />

management <strong>and</strong> local knowledge of legum<strong>in</strong>ous<br />

plants. Farmer <strong>in</strong>volvement ranged from identification<br />

of the legumes, <strong>and</strong> their niches, to seed collection.<br />

Members of the local community leadership<br />

that <strong>in</strong>cluded councilors, headmen <strong>and</strong> resident national<br />

extension officers organized <strong>and</strong> participated<br />

<strong>in</strong> transect walks dur<strong>in</strong>g the <strong>in</strong>itial legume identification<br />

exercise.<br />

Transect walks <strong>and</strong> legume identification us<strong>in</strong>g<br />

the Gwezu smell technique<br />

Tr~ect walks were conducted <strong>in</strong> all study sites.<br />

Based on the physical slope, farmers identified three<br />

ma<strong>in</strong> field positions, namely, topl<strong>and</strong>, midslope <strong>and</strong><br />

the relatively moist bottoml<strong>and</strong> positions. Dur<strong>in</strong>g<br />

the transect walk, particular attention was paid to<br />

cropp<strong>in</strong>g patterns (<strong>in</strong>clud<strong>in</strong>g crop types), weed<br />

status of the fields, <strong>and</strong> occurrence of naturally<br />

grow<strong>in</strong>g herbaceous legumes. General discussions<br />

ensued dur<strong>in</strong>g the course of the walks <strong>and</strong> details of<br />

cropp<strong>in</strong>g history <strong>and</strong> predom<strong>in</strong>ant weed species<br />

were specifically discussed with farmers whose<br />

fields were surveyed. Farmers were generally able<br />

to dist<strong>in</strong>guish legumes from non-legum<strong>in</strong>ous plants<br />

by consider<strong>in</strong>g ma<strong>in</strong>ly fruit morphology <strong>and</strong> liken<strong>in</strong>g<br />

them to traditionally grown legum<strong>in</strong>ous crops<br />

such as groundnut (Arachis hypogaea), common bean<br />

(Phaseolus vulgaris) <strong>and</strong> cowpea (Vigna unguiculata).<br />

Because identification was done when most of the<br />

species were not yet fruit<strong>in</strong>g, applicability of this<br />

approach was limited. To aid this process, the research<br />

scientists then came up with an identification<br />

approach based on the human sense of smell, here<strong>in</strong>after<br />

called the Gwezu smell technique. The researchers<br />

discovered that freshly harvested roots of<br />

all the identified legumes <strong>in</strong>variably had ,a dist<strong>in</strong>ct<br />

smell characteristic of an immature groundnut pod.<br />

An immature groundnut pod is known as Gwezu <strong>in</strong><br />

Shona (Karanga dialect), a Zimbabwean vernacular<br />

language. Plants were also uprooted, <strong>and</strong> presence<br />

of root nodules was considered <strong>in</strong>dicative of a legume,<br />

tak<strong>in</strong>g care to differentiate true root nodules<br />

from the galls caused by root-knot nematodes. The<br />

field-identified legumes were then taken to the National<br />

Herbarium laboratory of the Zimbabwe M<strong>in</strong>istry<br />

of L<strong>and</strong>s~ Agriculture <strong>and</strong> Rural Resettlement,<br />

<strong>for</strong> botanic identification.<br />

Measur<strong>in</strong>g species diversity <strong>and</strong> abundance<br />

Transect walks <strong>and</strong> PRA group discussions resulted<br />

<strong>in</strong> three possible scenarios <strong>for</strong> legume sampl<strong>in</strong>g to<br />

determ<strong>in</strong>e the diversity <strong>and</strong> abundance of the legume<br />

species: Scenario I - natural graz<strong>in</strong>g areas that<br />

have not been cultivated <strong>for</strong> more than five years;<br />

Scenario II - fields that had not been cropped <strong>in</strong> the<br />

current season (first season of fallow<strong>in</strong>g); <strong>and</strong> Scenario<br />

III - cultivated fields <strong>in</strong> which only the first<br />

weed<strong>in</strong>g had been done. After further consultation<br />

with farmers, it was decided that measurement of<br />

species abundance be focused on the latter two scenarios<br />

s<strong>in</strong>ce graz<strong>in</strong>g by livestock would affect measurements<br />

under natural graz<strong>in</strong>g areas. Consequently,<br />

the emphasis on Scenario I was only on determ<strong>in</strong><strong>in</strong>g<br />

species diversity. Individual plant samples<br />

were collected by farmers, field assistants <strong>and</strong><br />

researchers enclosed <strong>in</strong> polythene bags, <strong>and</strong> put <strong>in</strong><br />

cooler boxes <strong>for</strong> transportation to the National Herbarium<br />

<strong>for</strong> identification. For Scenario II, only those<br />

fields that were free from livestock disturbance dur<strong>in</strong>g<br />

the cropp<strong>in</strong>g season were sampled. The only<br />

exception to the sampl<strong>in</strong>g protocol was at Mr Z<strong>in</strong>doma's<br />

farm where a maize field ab<strong>and</strong>oned soon<br />

after crop emergence due to lack of fertilizer <strong>in</strong>puts<br />

was additionally <strong>in</strong>cluded.<br />

Sampl<strong>in</strong>g <strong>and</strong> analyses of plants <strong>and</strong> soils<br />

Sampl<strong>in</strong>g <strong>for</strong> Scenarios II <strong>and</strong> III was done by us<strong>in</strong>g<br />

a network of 4 m x 4 m grids that were made out of<br />

metal pegs <strong>and</strong> tw<strong>in</strong>e. The grid network was spread<br />

over the desired field area <strong>and</strong> four replicate grids<br />

r<strong>and</strong>omly selected <strong>for</strong> sampl<strong>in</strong>g. For each replicate<br />

sampl<strong>in</strong>g grid, all legume plants belong<strong>in</strong>g to the<br />

same species were uprooted, checked <strong>for</strong> nodulation<br />

<strong>and</strong> put <strong>in</strong> a khaki sampl<strong>in</strong>g bag after cutt<strong>in</strong>g<br />

off the roots from just above the soil l<strong>in</strong>e. Nonlegum<strong>in</strong>ous<br />

plants were collectively sampled from 2<br />

r<strong>and</strong>omly located grids of 0.5 x 0.5 m 2 drawn from<br />

with<strong>in</strong> the 4 x 4 m 2 grid. In each agro-region the<br />

process was repeated at each of the selected 10 farm<br />

sites where fields meet<strong>in</strong>g desired criteria were<br />

found. All plant samples were oven-dried to constant<br />

weight at 60°C <strong>and</strong> then measured <strong>for</strong> dry<br />

mass. The dried samples were then ground <strong>in</strong> a<br />

Wiley Mill to pass through a 1 mm sieve, Determ<strong>in</strong>ation<br />

of N, P <strong>and</strong> K concentrations was then done<br />

us<strong>in</strong>g the methods given by Anderson <strong>and</strong> Ingram<br />

(1993).<br />

<strong>Soil</strong>s were sampled from the respective field sites by<br />

collect<strong>in</strong>g 15 sub-samples from the 0 - 20 cm depth<br />

per field site us<strong>in</strong>g a spade. The sub-samples were<br />

mixed thoroughly <strong>in</strong> a clean polystyrene bucket, after<br />

which a 1 kg composite sample was withdrawn<br />

<strong>and</strong> put <strong>in</strong>to a polythene bag <strong>for</strong> laboratory analysis.<br />

The soils were analyzed <strong>for</strong> texture, pH, organic<br />

C <strong>and</strong> plant available P accord<strong>in</strong>g to methods by<br />

Anderson <strong>and</strong> Ingram (1993).<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

69


Seed collection <br />

Seed collection was considered an important entry <br />

po<strong>in</strong>t <strong>for</strong> farmer <strong>in</strong>volvement, <strong>and</strong> would enhance <br />

farmers' capacity to identify the legumes. No spe­<br />

cific assignment was given to <strong>in</strong>dividual farmers. <br />

All volunteers made collections <strong>for</strong> more than one <br />

species, tak<strong>in</strong>g <strong>in</strong>to consideration the spatial distri­<br />

bu tion, time differences <strong>in</strong> reach<strong>in</strong>g maturity <strong>and</strong> <br />

the differences <strong>in</strong> growth patterns among the differ­<br />

ent species. <br />

Results<br />

Species diversity <strong>and</strong> abundance<br />

Thirty-three <strong>in</strong>digenous herbaceous legume species,<br />

ma<strong>in</strong>ly of the genera Crotalaria, Indigofera <strong>and</strong><br />

Tephrosia, were identified among the three agrozones.<br />

Us<strong>in</strong>g the Gwezu smell technique, participat<strong>in</strong>g<br />

farmers <strong>and</strong> field assistants were able, not only<br />

to identify the legumes, but also to collect seed. The<br />

highest number of 28 legume species (Table 1) was<br />

recorded <strong>in</strong> Ch<strong>in</strong>yika resettlement area. Ten of the<br />

total of 33 species were only present <strong>in</strong> Ch<strong>in</strong>yika<br />

<strong>and</strong> not <strong>in</strong> the other two Communal Areas, while a<br />

further 10 species were commonly found <strong>in</strong> all areas.<br />

There was a critical lack of <strong>in</strong><strong>for</strong>mation on <strong>in</strong>digenous<br />

names <strong>for</strong> the diverse legumes identified.<br />

Farmers attributed this to fact that these species<br />

were generally not rated as problem weeds, neither<br />

were they used as a source of food at household<br />

level. They were there<strong>for</strong>e unlikely to be given specific<br />

names because of their little economic importance.<br />

Seed collection by farmers was feasible <strong>for</strong> all<br />

species except Alysicarpus ovalifolius.<br />

Because of a severe drought that started mid-way<br />

through the grow<strong>in</strong>g season, the determ<strong>in</strong>ation of<br />

species abundance under cropped areas was rendered<br />

impossible. Weeds failed to germ<strong>in</strong>ate after<br />

the first weed<strong>in</strong>g due to lack of moisture. Results on<br />

legumes species abundance were there<strong>for</strong>e only<br />

available from fallowed areas (Scenario II). Rothia<br />

hirsuta was the most dom<strong>in</strong>ant species <strong>in</strong> Ch<strong>in</strong>yika<br />

where it constituted 71% of total legume biomass,<br />

while Indigofera astragal<strong>in</strong>a was predom<strong>in</strong>ant <strong>in</strong><br />

Chikwaka contribut<strong>in</strong>g 47% (Figure la <strong>and</strong> b). Crotalaria<br />

pisicarpa, predom<strong>in</strong>ated <strong>in</strong> semi-arid Zimuto<br />

where it contributed 39% to the total legume biomass,<br />

followed by R. hirsuta with 32% (Figure lc).<br />

.. Apart from R. hirsuta <strong>and</strong> I. astragal<strong>in</strong>a which featured<br />

prom<strong>in</strong>ently across all agro-regions, there<br />

were significant differences <strong>in</strong> the abundance of<br />

species from one region to another. For <strong>in</strong>stance,<br />

Crotalaria cyl<strong>in</strong>drostachys only featured prom<strong>in</strong>ently<br />

<strong>in</strong> Ch<strong>in</strong>yika while the most significant amounts of<br />

Zornia glochidiata biomass were measured <strong>in</strong> Zimuto<br />

(Figure 1). At Mr Z<strong>in</strong>doma's additional field site<br />

70<br />

Table 1. Species of <strong>in</strong>digenous herbaceous legumes identified<br />

to grow as weeds on smallholder farms <strong>in</strong> three agro·ecological<br />

regions <strong>in</strong> Zimbabwe<br />

legume species<br />

Agro·ecological region (NR) <strong>and</strong> site<br />

NR II: NR III: NR IV:<br />

Chikwaka Ch<strong>in</strong>yika Zimuto<br />

Alysicarpus ovalifolius NI I NI<br />

Eflosema ellipticum NI I NI<br />

Crotalaria cyl<strong>in</strong>drostachys I I I<br />

C. glauca NI I NI<br />

C. laburnifolia I NI I<br />

C. microcarpa I I I<br />

C. ochreleuca I I NI<br />

C. pisicarpa NI NI I<br />

C. rhodesiae I NI NI<br />

C. sphaerocarpa I NI<br />

Chamaecrista absus I I<br />

C. mimosoides I I<br />

Indigofera antunesiana NI NI<br />

I. astragal<strong>in</strong>a I I<br />

I. brachynema NI NI<br />

I. demisa I NI<br />

I. fla vicans NI I<br />

I. nummularifolia NI NI<br />

I. praticola I NI<br />

I. vicioides I NI<br />

I. wildiana I NI NI<br />

Macrotyloma daltonii NI I I<br />

Neonotonia wightii I I I<br />

Rothia hirsuta I I I<br />

Stylosanthses fruticosa NI I NI<br />

Tephrosia acaciifolia NI I NI<br />

T. longipes NI I I<br />

T. lurida NI I NI<br />

T. purpurea NI I NI<br />

T. radicans I I I<br />

T. reptans I I NI<br />

Vigna vexillata NI NI I<br />

Zornia glochidiata I I I<br />

Total number of species 18 28 15<br />

identified<br />

I - identified; NI - not identified <strong>in</strong> the area; NR II - 750 mm annual ra<strong>in</strong>fall;<br />

NR III - 650·750 mm; NR IV - 450·650 mm<br />

(outside the regular sampl<strong>in</strong>g doma<strong>in</strong>), there was a<br />

dense natural st<strong>and</strong> of legumes dom<strong>in</strong>ated by C.<br />

cyl<strong>in</strong>drostachys with legumes contributed up to 88%<br />

of the above ground biomass (Figure '2), suggest<strong>in</strong>g<br />

populations of the exist<strong>in</strong>g species are highly dynamic<br />

with<strong>in</strong> a s<strong>in</strong>gle grow<strong>in</strong>g season depend<strong>in</strong>g on<br />

soil management.<br />

No observable patterns <strong>in</strong> species distribution<br />

across catenary pOSitions were apparent <strong>in</strong> all areas<br />

dur<strong>in</strong>g transect walks. The only notable exception<br />

was the growth <strong>and</strong> abundance of Vigna vexillata<br />

<strong>and</strong> Zornia glochidiata <strong>in</strong> bottoml<strong>and</strong> positions<br />

(seasoIlally waterlogged or dambo fields) where the<br />

rest of the species were excluded. While the <strong>for</strong>mer<br />

was only restricted to dambo fields, the latter also<br />

occurred on topl<strong>and</strong> <strong>and</strong> mid-slope positions down<br />

the catena.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


a) Chikwaka<br />

b) Ch<strong>in</strong>yika<br />

!21 C. absus<br />

[!] C. cyl<strong>in</strong>drostachys<br />

• C. microcarpa<br />

01. astragal<strong>in</strong>a<br />

[j I. demisa<br />

12:11. praticola<br />

.1. wildiana<br />

47% BZl R. hirsuta<br />

tSI T. radicans<br />

Il§I Z. glochidiata<br />

i] C. cyl<strong>in</strong>drostachys<br />

• C. microcarpa<br />

lID C. mimosoides<br />

3% GI E. ellipticum<br />

01. astragal<strong>in</strong>a<br />

2%<br />

1(9/. praticola<br />

71%<br />

0%<br />

lID I. vicioides<br />

1151 R. hirsuta<br />

!lim Z. glochidiata<br />

c) Zimuto<br />

range, <strong>for</strong> Zimbabwean soils, <strong>in</strong> Chikwaka<br />

<strong>and</strong> Zimuto. Overall, legumes contributed<br />

a maximum 12% of the total biomass<br />

harvested under high relative ra<strong>in</strong>fall<br />

conditions (average 800 mm y r· l ) <strong>in</strong><br />

Chikwaka, <strong>and</strong> as low as 3% <strong>in</strong> semi-arid<br />

Zimuto (Figure 3). The total biomass productivity<br />

was highest <strong>in</strong> Ch<strong>in</strong>yika Resettlement<br />

Area, with slightly over 3 t ha- 1 ,<br />

while Zimuto had no more than 0.75 t<br />

ha- 1 . Plant productivity was evidently reduced<br />

by drought <strong>in</strong> the second half of<br />

the season.<br />

N, P <strong>and</strong> K contents of identified species<br />

There were high variations <strong>in</strong> the tissue<br />

N, P <strong>and</strong> K concentrations of the legumes<br />

across the three study areas. About 12 out<br />

of the 35 sample entries across sites had<br />

more than 2% N (Table 3). In general<br />

there were more entries with high tissue<br />

N concentration from the semi-arid area<br />

than from the other two regions. Surpris<strong>in</strong>gly<br />

high total N values of 5.02 <strong>and</strong><br />

5.88% were measured <strong>for</strong> C. <strong>in</strong>bul'izijol<strong>in</strong><br />

<strong>and</strong> T. pUrpllrl!n, respectively, both of<br />

which were sampled <strong>in</strong> Zimuto. The<br />

number of samples with relatively high<br />

concentrations of P <strong>and</strong> K was generally<br />

high <strong>in</strong> Ch<strong>in</strong>yika.<br />

t;] C. cyl<strong>in</strong>drostachys<br />

o C. microcarpa<br />

Discussion<br />

!ill C. mimosoides The Gwezu Smell Technique <strong>for</strong> identification<br />

of legumes by farmers<br />

13 C. pisicarpa<br />

39% [] I. astragal<strong>in</strong>a<br />

Participatory research is often constra<strong>in</strong>ed<br />

by lack of a common tool <strong>for</strong> as­<br />

32%<br />

D I. flavicans<br />

sess<strong>in</strong>g or evaluat<strong>in</strong>g technologies. In<br />

&3 M. daltonii<br />

several <strong>in</strong>stances, there is a technical language<br />

barrier between farmers <strong>and</strong> re­<br />

~R. hirsuta<br />

!Ill V. vexillata<br />

searchers. The Gwezu Smell Technique<br />

IIJ!l Z. glochidiata provides an identification tool that can be<br />

shared by researchers <strong>and</strong> farmers. The<br />

technique is easy <strong>and</strong> accessible to all<br />

Figure 1. The relative abundance of legume species, expressed as %of total legume farmers, <strong>and</strong> could the re<strong>for</strong>e provide an<br />

biomass per unit area, identified <strong>in</strong> communal areas fall<strong>in</strong>g under different agro· opportunity <strong>for</strong> them to dist<strong>in</strong>guish <strong>and</strong><br />

ecoregions <strong>in</strong> Zimbabwe<br />

utilize legumes <strong>in</strong> their own environments.<br />

It could be comb<strong>in</strong>ed with other<br />

Productivity of the legumes on ab<strong>and</strong>oned <strong>in</strong>fertile<br />

soils<br />

nodulation <strong>and</strong> nodule colour development used <strong>in</strong><br />

assessment tools such as physical <strong>in</strong>spections <strong>for</strong><br />

Most of the identified species were adapted to much the field <strong>for</strong> legume N 2-fixa tion appra!sals . There is,<br />

depleted coarse s<strong>and</strong>y soils with organic C averag­ however, a research challenge to identify the chemi­<br />

<strong>in</strong>g less than 0.4% <strong>and</strong> mean available (Olsen) P lev­ cal substance responsible <strong>for</strong> giv<strong>in</strong>g this characteris­<br />

els below 3 ppm (Table 2). About 89% of all the soils tic smell. <br />

sampled had less than 10% clay. The pH was <br />

slightly acidic <strong>in</strong> Ch<strong>in</strong>yika but <strong>in</strong> the strongly acidic <br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 71


Other weeds <br />

12% <br />

C.<br />

<strong>in</strong>drostachys<br />

T. radicans 49%<br />

22%<br />

R. hirsuta,__--IOCIf""",<br />

6%<br />

Figure 2. Weed composition of a maize<br />

field ab<strong>and</strong>oned soon after crop<br />

establishment due to lack of fertilizer<br />

<strong>in</strong>puts <strong>in</strong> Ch<strong>in</strong>yika smallholder farm<strong>in</strong>g<br />

area, Zimbabwe<br />

Chamaecrista<br />

absus<br />

0.4%<br />

• Crola/aria microcarpa<br />

fl C. cyt<strong>in</strong>droslachys<br />

Kl Chamaecrisla absus<br />

[j /ndigofera aslraga/<strong>in</strong>a<br />

1lI/. Demisa<br />

III Rolhia hirsula<br />

~ Tephros/a radicans<br />

• Other IIeeds<br />

14 T"'......~~-"-"'O:"'""'..................---,......,,-.,. .wOO <br />

~ <br />

g 12 3500 ~<br />

~ _ 10 3000 "" g<br />

o~<br />

."<br />

n -; 8<br />

.....<br />

2500 e_<br />

~ :; 2000 :: ~<br />

on E 6 .. ""<br />

.. 0<br />

w:E<br />

~ 4 <br />

" go<br />

...J<br />

1500 ~ ­<br />

1000 ~ <br />

2 500<br />

... ~<br />

o<br />

o<br />

Chlkwaka Chlnylka Zlmuto<br />

Site<br />

1_%LegulTIII -+-Total Productivity I<br />

Figure 3. Legume biomass contribution to total biomass product<br />

under a one·year natural fallow <strong>in</strong> smallholder farm<strong>in</strong>g areas across<br />

three agro·ecologicai regions <strong>in</strong> Zimbabwe<br />

Legume diversity <strong>and</strong> adaptability<br />

Diversity of legumes was higher <strong>in</strong> the relatively<br />

new resettlement area of Ch<strong>in</strong>yika, where smallholder<br />

cropp<strong>in</strong>g has been tak<strong>in</strong>g place <strong>for</strong> about 20<br />

years, than <strong>in</strong> the old smallholder farm<strong>in</strong>g areas of<br />

Chikwaka <strong>and</strong> Zimuto where cultivation had been<br />

go<strong>in</strong>g on <strong>for</strong> over 70 years. The trend on legume diversity<br />

contrasted with the pattern <strong>in</strong> biomass produ£tivity,<br />

which showed a decl<strong>in</strong>e <strong>in</strong> legume biomass<br />

from Chikwaka (-12% of total), a high ra<strong>in</strong>fall<br />

area, to Zimuto (-3%) a semi-arid area. This suggests<br />

a loss of legume diversity <strong>in</strong> the old communal<br />

(smallholder) areas of Chikwaka <strong>and</strong> Zimuto,<br />

<strong>and</strong> we attributed this to cont<strong>in</strong>uous depletion of<br />

the seed bank due to cont<strong>in</strong>uous cultivation coupled<br />

with clean weed<strong>in</strong>g approaches. However, the 88%<br />

contribution by legumes to total biomass productivity<br />

<strong>in</strong> an ab<strong>and</strong>oned field suggests that boost<strong>in</strong>g the<br />

population density can enhance the legume contri­<br />

Table 2. Major soil characteristics <strong>for</strong> selected fallowed field sites on<br />

which <strong>in</strong>digenous herbaceous legumes were naturally grow<strong>in</strong>g <strong>in</strong><br />

smallholder areas of Zimbabwe<br />

Areas <strong>and</strong> Farmer's %Clay %S<strong>and</strong> pH Olsen P %C<br />

Agro·region Name (H2O) (ppm)<br />

Chikwaka Kaseke 6 85 4.8 3 0.40<br />

NR II Mutawu 6 87 5.5 1 0.33<br />

Tafirenyika 6 83 5.3 1 0.32<br />

Ch<strong>in</strong>yika Majaji 9 78 5.8 3 0.41<br />

NR III Razio 13 75 6.0 1 0.49<br />

liodoma 7 82 6.0 3 0.52<br />

Zimuto Madhava 4 81 5.0 1 0.40<br />

NRIV Makonese 8 81 5.3


Table 3. N, P <strong>and</strong> Kconcentrations (means of ~ 5 samples) of <strong>in</strong>digenous legume species sampled identified species by farmers<br />

from fields fallowed <strong>for</strong> as<strong>in</strong>gle grow<strong>in</strong>g season <strong>in</strong> three smallholder farm<strong>in</strong>g areas across different themselves was fea-sible is<br />

agro·regions <strong>in</strong> Zimbabwe<br />

<strong>in</strong>dicative of the potential to<br />

Species Nutrient Concentration manipulate legume densities<br />

<strong>in</strong> the st<strong>and</strong>s, once the popu­<br />

Chikwaka (NR II) Ch<strong>in</strong>yika (NR III) Zimuto (NR IV)<br />

lation dynamics are under­<br />

'lioN %P %K %N %P %K %N %P %K stood. We consider Indifal­<br />

Alysicarpus ovalifolius 1.53 0.04 0.73<br />

lows as a technology <strong>for</strong><br />

Chamaecrista absus 1.19 0.11 0.77 those poor <strong>and</strong> vulnerable<br />

C. rotundifolia 2.12 0.08 1.75 farmers <strong>for</strong> whom current<br />

C. mimosoides 1.45 0.07 1.44 1.45 0.05 0.48 research <strong>and</strong> development<br />

Crotalaria cyl<strong>in</strong>drostachys 1.63 0.09 2.11 2.09 0.09 2.33 1.77 0.06 1.79 <strong>in</strong>itiatives have failed to<br />

C. laburnifolia 5.02 0.12 1.04 draw their participation.<br />

C. microcarpa 2.09 0.08 1.71 .1.99 0.18 2.19 2.81 0.11 1.14<br />

These poor groups often<br />

C. pisicarpa 2.67 0.08 1.14<br />

Eriosema ellipticum 1.62 0.05 0.99 <br />

lack m<strong>in</strong>imal cash require­<br />

Indigofera astragal<strong>in</strong>a 1.95 0.08 0.89 1.62 0.14 2.16 1.18 0.04 0.33 ments to <strong>in</strong>vest <strong>in</strong>to cur­<br />

I. demisa 1.81 0.10 1.28 rently available soil fertility<br />

I. flavicans 1.71 0.05 1.29 technologies. The challenge,<br />

I. praticola 1.74 0.13 1.14 however, is that of develop­<br />

I. vicioides 1.41 0.07 1.75 2.59 0.11 1.24 <strong>in</strong>g strategies <strong>for</strong> <strong>in</strong>tegration<br />

I. wildiana 2.38 0.10 0.84<br />

of these legumes <strong>in</strong>to exist­<br />

Macrotyloma daltonii 1.66 0.06 1.14<br />

Rothia hirsuta 1.59 0.09 1.72 1.91 0.10 2.44 1.66 0.06 1.02 <strong>in</strong>g cropp<strong>in</strong>g systems, <strong>and</strong><br />

Tephrosia longipes 1.32 0.05 0.33<br />

def<strong>in</strong><strong>in</strong>g the practical do­<br />

T. purpurea 1.76 0.04 0.43 5.88 0.04 0.73 ma<strong>in</strong> with<strong>in</strong> which the tech­<br />

T. radicap~ 2.22 0.07 1.19 nology can work. The exis­<br />

Vigna vexillata 1.65 0.06 1.40 tence of regional research<br />

Zornia glochidiata 2.72 0.09 1.14 1.59 0.17 1.45 2.27 0.08 0.96 networks such as the TSBF­<br />

Other weeds (mostly grasses) 0.75 0.07 0.73 0.63 0.07 1.35 0.69 0.05 0.59<br />

CIA T African Network<br />

I Each value·is a mean of four samples; NR - natural (agro·ecologicalJ region; H implies amiss<strong>in</strong>g value due to absence 01 (AfNet) <strong>and</strong> <strong>Soil</strong> <strong>Fertility</strong><br />

particular species <strong>in</strong> the sampl<strong>in</strong>g framework<br />

Network <strong>for</strong> Maize-Based<br />

1. Abundant seed<strong>in</strong>g to allow ready propagation<br />

Cropp<strong>in</strong>g Systems <strong>in</strong> Southern Africa (SoiIFertNet)<br />

<strong>and</strong> ready seed collection to re<strong>in</strong><strong>for</strong>ce popula<strong>and</strong><br />

test<strong>in</strong>g of Indifallow technologies on a regional<br />

provide an opportunity <strong>for</strong> a wider development<br />

tions.<br />

basis.<br />

2. A long-lived seed bank.<br />

3. Rapid establishment <strong>and</strong> growth.<br />

4. Adaptation to poor soils with restricted availability<br />

of phosphorus.<br />

Conclusions<br />

5. Good N2-fix<strong>in</strong>g potential <strong>in</strong> terms of spontaneous<br />

nodulation with <strong>in</strong>digenous rhizobia, good Several conclusions were drawn based on this ex­<br />

nodulation potential <strong>and</strong> high N concentrations ploratory study. Results showed that smallholder<br />

<strong>in</strong> the shoots.<br />

farm<strong>in</strong>g systems across different agro-ecological re­<br />

6. Easy to remove by h<strong>and</strong> pull<strong>in</strong>g or hoe<strong>in</strong>g gions <strong>in</strong> Zimbabwe conta<strong>in</strong> sufficient diversity of<br />

should weed<strong>in</strong>g be required.<br />

<strong>in</strong>digenous herbaceous legumes to warrant more<br />

The legumes thatbestfit these characteristics are STrategic research on Indifallows as a component of<br />

largely annuals, biennials or short-lived perennials. <strong>in</strong>tegrated soil fertility management. However,<br />

there are <strong>in</strong>dications that that current clean weed<strong>in</strong>g<br />

Opportunities <strong>for</strong> Indifallows <strong>in</strong> small!:tolder practices recommended <strong>for</strong> these farmers may be<br />

farm<strong>in</strong>g systems<br />

contribut<strong>in</strong>g to loss of agro-biodiversity <strong>in</strong> farm<strong>in</strong>g<br />

The potential <strong>for</strong> Indifallows lie1' <strong>in</strong> the existence of systems. Most of the dom<strong>in</strong>ant species were evia<br />

diversity of annual legumes that can grow <strong>in</strong> their dently tolerant to poor fertility soils with low P <strong>and</strong><br />

mixtures with little dem<strong>and</strong> <strong>for</strong> management of <strong>in</strong>on<br />

pH levels, yet it was apparent that most of the soils<br />

terspecific competition. Unlike agro<strong>for</strong>estry improved<br />

fields fallowed by farmers <strong>in</strong> Zimbabwe are too<br />

fallows <strong>and</strong> annual green manures, which poor to support any mean<strong>in</strong>gful cropp<strong>in</strong>g us<strong>in</strong>g the<br />

are often constra<strong>in</strong>ed by conditions of poor <strong>in</strong>itial currently available low cost soil fertility technolo­<br />

soil fertility, establishment costs <strong>and</strong> high labour gies. Although there is still need to establish why<br />

dem<strong>and</strong>s, the most significant cost variables <strong>for</strong> In­ farmers have not significantly exploited these re­<br />

difallows are likely to be seed collection <strong>and</strong> sow­ sources over time, we advocate <strong>for</strong> a paradigm shift <br />

<strong>in</strong>g. The fact that seed collection <strong>for</strong> most of the <strong>in</strong> weed management approaches towards enhance-<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 73


ment of agro-biodiverse smallholder farm<strong>in</strong>g systems.<br />

There is scope <strong>for</strong> wider network<strong>in</strong>g <strong>and</strong> collaboration<br />

on development of Indifallow technologies<br />

<strong>in</strong> the sub-regions <strong>in</strong> Africa.<br />

Acknowledgements<br />

This research was funded by the Rockefeller Foundation<br />

through a grant to the senior author under<br />

the African Careers Award (ACA) Programme. We<br />

thank Dr Stephen Wadd<strong>in</strong>gton, coord<strong>in</strong>ator of the<br />

<strong>Soil</strong> <strong>Fertility</strong> Network <strong>for</strong> Maize-Based Cropp<strong>in</strong>g<br />

Systems <strong>in</strong> Southern Africa (<strong>Soil</strong>FertNet) <strong>for</strong> support<br />

<strong>and</strong> encouragement <strong>in</strong> the development of this<br />

paper.<br />

References<br />

Anderson, LP., Br<strong>in</strong>n, P.J., Moyo, M. <strong>and</strong> Nyamwanza,<br />

B. 1993. Physical Resource Inventory of the Communal<br />

L<strong>and</strong>s of Zimbabwe - An Overview. NRI Bullet<strong>in</strong> 60.<br />

Natural Resources Institute, Chatham, UK. 186 pp.<br />

Breman, H. 1998. <strong>Soil</strong> fertility improvement <strong>in</strong> Africa,<br />

a tool <strong>for</strong> or a by-product of susta<strong>in</strong>able production?<br />

African Fertilizer lvIarket 11:2-10.<br />

Carter, S.E., Chidiamassamba, A., Jeranyama, P., Mafugidze,<br />

B., Maleleka, G.P., Mvena, Z., Mudhara,<br />

M., Nabane, N., van Oosterhout, S.A.M., Price, L.,<br />

Sithole, N. <strong>and</strong> Dhalimi, R 1993. <strong>Soil</strong> fertility management<br />

<strong>in</strong> Mutoko Communal ArPa, Zimbamue. Report<br />

of a field exercise, August 12 - September 3<br />

1992. TSBF, Nairobi, Kenya. 75 pp.<br />

Cook. c.c. <strong>and</strong> M. Grut. 1989. Agro<strong>for</strong>estry In Sub­<br />

Saharan Africa: A Farmer's Perspective. World<br />

Bank Technical Paper No. 112, Wash<strong>in</strong>gton D.C.,<br />

USA. 94 pp.<br />

Giller K.E. <strong>and</strong> Cadisch, G. 1995. Future benefits from<br />

biological nitrogen fixation: An ecological approach<br />

to agriculture. Plant <strong>and</strong> <strong>Soil</strong> 174:255-277.<br />

Giller, K.E. 2001. Nitrogen Fixation <strong>in</strong> Tropical Cropp<strong>in</strong>g<br />

Systems. 2nd ed. CAB International, Wall<strong>in</strong>g<strong>for</strong>d,<br />

UK. 458 pp.<br />

Giller, K.E. <strong>and</strong> Wilson, K.J. 1991. Nitrogen Fixation <strong>in</strong><br />

Tropical Cropp<strong>in</strong>g Systems. CAB International, Wall<strong>in</strong>g<strong>for</strong>d,<br />

UK. 313 pp.<br />

Grant, P.M. 1981. The fertilization of s<strong>and</strong>y soils <strong>in</strong><br />

peasant agriculture. Zimbamue Agricultural Journal<br />

78:169-175.<br />

Kwesiga, F., <strong>and</strong> Coe, R 1994. The effect of short<br />

rotation Sesbania sesban planted fallows on maize<br />

yields. Forest Ecology <strong>and</strong> Management 64:199-208.<br />

Mapfumo, P. <strong>and</strong> Giller, K.E. 2001. <strong>Soil</strong> <strong>Fertility</strong><br />

Management Strategies <strong>and</strong> Practices by Smallholder<br />

Farmers <strong>in</strong> Semi-Arid Areas of Zimbamue. Bulawayo,<br />

Zimbabwe: International Crops Research<br />

Institute <strong>for</strong> the Semi-Arid Tropics (ICRISAT)<br />

with permission from the Food <strong>and</strong> Agriculture<br />

Organization of the United Nations (FAO). 60<br />

pp.<br />

Mapfumo, P. Giller, K.E. Mpepereki S. <strong>and</strong> Mafongoya,<br />

P.L. 1999b. D<strong>in</strong>itrogen fixation by pigeonpea<br />

of different maturity types on granitic s<strong>and</strong>y soils<br />

<strong>in</strong> Zimbabwe. Symbiosis 27:305-318.<br />

Mugwira, L.M. <strong>and</strong> Murwira, H.K. 1997. Use ofCattle<br />

lvIanure to Improve <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Zimbamue: Past<br />

<strong>and</strong> Current Research <strong>and</strong> Future Research Needs. Network<br />

Work<strong>in</strong>g Paper No. 2. <strong>Soil</strong> <strong>Fertility</strong> Network<br />

<strong>for</strong> Maize-Based Cropp<strong>in</strong>g Systems <strong>in</strong> Zimbabwe<br />

<strong>and</strong> Malawi. CIMMYT, Harare, Zimbabwe. 33 pp.<br />

Qu<strong>in</strong>ones, A.M., Borlaug, N.E. <strong>and</strong> Dowswell, C.R<br />

1997. A fertilizer-based green revolution <strong>for</strong> Africa.<br />

In: Replenish<strong>in</strong>g <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Africa. RJ. Buresh<br />

<strong>and</strong> P.A. Sanchez (Eds.). SSSA Special Publication<br />

51. SSSA, Madison, WI, USA. pp. 81-96.<br />

Scoones, L, Chibudu, c., Chikura, S., Jeranyama, P.,<br />

Machaka, D., Machanja, W., Mavedzenge, B.,<br />

Mombeshora, B., Mudhara, M., Mudziwo, c.,<br />

Murimbarimba, F. <strong>and</strong> Zirereza, B. 1996. Hazards<br />

<strong>and</strong> Opportunities.' Farm<strong>in</strong>g Livelihoods <strong>in</strong> Drylanil<br />

Africa: Lessons from Zimbamue. Zed Books Ltd,<br />

London <strong>and</strong> New Jersey, <strong>in</strong> association with International<br />

Institute <strong>for</strong> Environment <strong>and</strong> Development,<br />

London, UK. 267 pp.<br />

Snapp, S.5., Mafongoya, P.L. <strong>and</strong> Wadd<strong>in</strong>gton, S.<br />

1998. Organic rna tter technologies <strong>for</strong> <strong>in</strong>tegra ted<br />

nutrient management <strong>in</strong> smallholder cropp<strong>in</strong>g<br />

systems of southern Africa. Agriculture, Ecosystems<br />

<strong>and</strong> Environment 71:185-200.<br />

Wadd<strong>in</strong>gton, S.R, Murwira, H.K., Kurnwenda, J.D.<br />

T. Hikwa, D. <strong>and</strong> Tagwira, F. (Eds.). 1998. <strong>Soil</strong><br />

<strong>Fertility</strong> Research <strong>for</strong> Maize-Based Farm<strong>in</strong>g Systems<br />

<strong>in</strong> Malawi <strong>and</strong> Zimbamue; <strong>Soil</strong> Fert Net <strong>and</strong> CIM­<br />

MYT-Zimbabwe, Harare, Zimbabwe. 312 pp.<br />

74<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Abstract<br />

SCREENING OF SHORT DURATION PIGEON PEA IN MATABElElAND<br />

BONGANI NeuBE, TAFADZWA MANJALA <strong>and</strong> STEVE TWOMLOW<br />

feR/SA T-Bu/awayo, P. O. Box 776, Bu/awayo, Zimbabwe<br />

Pigeonpea is a new crop fer the semi-arid tropics of Zimbabwe that offers substantial benefits to rural households. These<br />

benefits <strong>in</strong>clude soil fertility enhancement, improved household nutrition <strong>and</strong> <strong>in</strong>come diversification. To identify adaptable<br />

varieties <strong>for</strong> farmers, ICRISAT-Bulawayo conducted screen<strong>in</strong>g trials <strong>for</strong> 10 short duration determ<strong>in</strong>ate <strong>and</strong> 12<br />

short duration <strong>in</strong>determ<strong>in</strong>ate pigeonpea varieties on heavy clay (Matopos site) <strong>and</strong> s<strong>and</strong>y (Lucydale site) soils dur<strong>in</strong>g<br />

the 2001/2002 ra<strong>in</strong>y season at Matopos Research Station.<br />

At each site, pigeonpea varieties were planted <strong>in</strong> a r<strong>and</strong>omized block design with three replicates. The crops were planted<br />

on 10 (Matopos) <strong>and</strong> 11 (Lucydale) December 2001. Agronomic data <strong>in</strong>cluded date of plant<strong>in</strong>g <strong>and</strong> emergence, days to<br />

50% flower<strong>in</strong>g <strong>and</strong> maturity, plant height, gra<strong>in</strong> yield <strong>and</strong> woody biomass yield.<br />

Total ra<strong>in</strong>fall <strong>for</strong> the season (October 2001 to June 2002) was close to the long-term average, with 537 mrr. at the Matopos<br />

site <strong>and</strong> 427 mm at Lucydale. However, it was poorly distributed, <strong>and</strong> crops effectively received 124 mm at Matopos<br />

<strong>and</strong> 133 mm at Lucydale from the date they were planted until harvest. Generally, varieties planted on the clay outper<strong>for</strong>med<br />

those planted on the s<strong>and</strong> because of a more favorable soil water balance. Determ<strong>in</strong>ate pigeonpea planted at<br />

Matopos flowered <strong>and</strong> matured earlier <strong>and</strong> on average yielded more gra<strong>in</strong> compared to the crop at Lucydale. The earliest<br />

matur<strong>in</strong>g determ<strong>in</strong>ate varieties on both soils (average 114.5 days on s<strong>and</strong>) were ICPL 86012 <strong>and</strong> ICPL 87105. However,<br />

the gra<strong>in</strong> yield <strong>for</strong> these two varieties (744 kg/ha <strong>and</strong> 841 kg/ha respectively) was lower than the highest yield<strong>in</strong>g determ<strong>in</strong>ate<br />

varieties, ICEAP 00781 (1058 kg/haY, ICEAP 00535 (902 kg/luz) <strong>and</strong> ICEAP 00536 (849 kg/ha), which matl/red<br />

at about 116 days. The earliest matur<strong>in</strong>g <strong>in</strong>determ<strong>in</strong>ate varieties <strong>for</strong> both soils were ICPL87091 (114 days) <strong>and</strong><br />

ICEAP00718 (140 days). For the <strong>in</strong>determ<strong>in</strong>ate types, earl<strong>in</strong>ess was associated with highest gra<strong>in</strong> yield ICPL87091<br />

(829 kg/ha), ICEAP 00721 (682 kg/ha) <strong>and</strong> ICEAP 00718 (641 kg/ha), but these were much lower yields than from the<br />

best per<strong>for</strong>m<strong>in</strong>g determ<strong>in</strong>ate varieties.<br />

Key words: Short duration pigeonpea, early maturity, high gra<strong>in</strong> yield, screen<strong>in</strong>g, benefits<br />

Introduction <strong>and</strong> Background<br />

Pigeonpea (Cajanus cajan (L.) Millsp.) is a multipurpose<br />

drought tolerant gra<strong>in</strong> legume crop (Kimani et<br />

al., 1994) that offers substantial benefits to many<br />

smallholder farm<strong>in</strong>g systems that dom<strong>in</strong>ate the<br />

semi-arid tropics (SAT) of Africa <strong>and</strong> Asia. These<br />

benefits <strong>in</strong>clude improved household nutrition, fodder<br />

<strong>and</strong> browse, soil fertility enhancement, <strong>and</strong> <strong>in</strong>come<br />

diversification (Holden, 1993; Karachi <strong>and</strong><br />

Zengo, 1998; Mapfumo et ai, 1998).<br />

Over the last 30 years, the area cultivated to pigeonpea<br />

has <strong>in</strong>creased substantially, as have the countries<br />

that now produce it. Traditionally, pigeonpea<br />

production <strong>in</strong> the semi-arid tropics was pr<strong>in</strong>cipally<br />

conf<strong>in</strong>ed to the Indian subcont<strong>in</strong>ent. However, over<br />

the last 25 years the ef<strong>for</strong>ts of the International<br />

Crops Research Institute <strong>for</strong> the Semi-Arid Tropics<br />

(ICRlSAT) <strong>and</strong> oLher organizations have ensured<br />

that the crop is now widely grown <strong>in</strong> the SAT of<br />

Asia, Africa <strong>and</strong> the Caribbean under a wide variety<br />

of cropp<strong>in</strong>g systems (Kollipara et ai, 1994). In Africa,<br />

considerable amounts of pigeonpea are produced<br />

<strong>in</strong> Kenya, Malawi <strong>and</strong> Zambia, with varieties<br />

such as ICP 9145 hav<strong>in</strong>g been cultivated <strong>in</strong> Malawi<br />

s<strong>in</strong>ce 1987 (Reddy et ai, 1993). Pigeon pea is also an<br />

important gra<strong>in</strong> legume crop <strong>for</strong> smallholder farmers<br />

<strong>in</strong> Tanzania (Mligo et ai, 2001). Despite the <strong>in</strong>creased<br />

cultivated area <strong>in</strong> many countries of sub­<br />

Saharan Africa, few studies have been done on the<br />

adaptability of pigeonpea <strong>in</strong> Zimbabwe, through<br />

ef<strong>for</strong>ts by the Department of Research <strong>and</strong> Specialist<br />

Services <strong>in</strong> the late 1980s. Those that have been<br />

done were conf<strong>in</strong>ed to the higher ra<strong>in</strong>fall areas of<br />

the country. Dzowela et al (1995, 1997) carried out<br />

trials on pigeonpea to establish its potential as livestock<br />

fodder <strong>in</strong> Domboshava <strong>and</strong> Makoholi Zimbabwe<br />

whilst Mapfumo et al (1998) <strong>in</strong>vestigated the<br />

potential contribution of pigeonpea to soil fertility<br />

<strong>in</strong> Domboshava <strong>and</strong> Murewa communal l<strong>and</strong>s dur<strong>in</strong>g<br />

the 1996/97 cropp<strong>in</strong>g season. Consequently,<br />

ICRISAT-Bulawayo conducted screen<strong>in</strong>g trials <strong>for</strong><br />

10 short duration determ<strong>in</strong>ate <strong>and</strong> 12 short duration<br />

<strong>in</strong>determ<strong>in</strong>ate pigeon pea varieties on heavy clay<br />

(Matopos) <strong>and</strong> s<strong>and</strong>y (Lucydale) '<strong>Soil</strong>s dur<strong>in</strong>g the<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 75


2001/2002 ra<strong>in</strong>y season. Short duration varieties<br />

were selected to suit the weather conditions of the<br />

region that is characterized by low <strong>and</strong> unpredictable<br />

ra<strong>in</strong>fall patterns. This parer summarizes results<br />

<strong>for</strong> the 2001/2002 season.<br />

Materials <strong>and</strong> Methods<br />

Site Characteristics<br />

Matopos. The Matopos site is 1344 m above sea<br />

level, with flat l<strong>and</strong> on the lower slope with<strong>in</strong> the<br />

Matopos Hills. The soil at the site is classified as the<br />

Matopos 3E.4 us<strong>in</strong>g the Zimbabwe Classification<br />

system (Pellic-Eutric Vertisol), which describes an<br />

imperfectly dra<strong>in</strong>ed vertisol derived from igneous/<br />

metamorphic rocks. The soil is deep (l30 cm+) <strong>and</strong><br />

is water-saturated <strong>for</strong> short periods every year. It is<br />

mostly made of black clay with a granular structure<br />

<strong>in</strong> the top layers. This soil is fertile with 100% base<br />

saturation <strong>and</strong> a high cation exchange capacity<br />

(CEC) (Moyo, 2001). Prior to the 2001/2002 cropp<strong>in</strong>g<br />

season the l<strong>and</strong> had been planted to millet<br />

breed<strong>in</strong>g trials that had received 300 kg ha- I basal<br />

Compound D fertilizer.<br />

Lllcydale. The Lucydale site is l378 m above sea<br />

level, located on a gently undulat<strong>in</strong>g pla<strong>in</strong>. The soil<br />

type at the site is described as a Eutric Arenosol<br />

5G.2 (Zimbabwe Classification) that is a typical<br />

moderately deep to deep well-drai.'1ed fersiallitic<br />

soil derived from granite. The soil is excessively<br />

well dra<strong>in</strong>ed. The tops layers of the soil are coarsegra<strong>in</strong>ed<br />

s<strong>and</strong> <strong>and</strong> loamy s<strong>and</strong> with apedal structure.<br />

The soil has a slightly acidic pH 5 <strong>in</strong> the top layers.<br />

This soil is less fertile compared to the Matopos soil<br />

<strong>and</strong> has a base saturation of 60% <strong>in</strong> the top layer<br />

(Moyo, 2001).<br />

Experimental Design<br />

At each site, 10 determ<strong>in</strong>ate <strong>and</strong> 12 <strong>in</strong>determ<strong>in</strong>ate<br />

varieties were planted. The selected fields at both<br />

Matopos <strong>and</strong> Lucydale were previously under millet<br />

breed<strong>in</strong>g trials. Prior to plant<strong>in</strong>g the pigeonpea,<br />

both sites received a basal dress<strong>in</strong>g of 300 kg ha- i<br />

Comp--ound D <strong>and</strong> the soil was ploughed us<strong>in</strong>g a<br />

tractor drawn disc plough to a depth of 0.20 m.<br />

The design was a complete r<strong>and</strong>omized block design<br />

with three replicates. The determ<strong>in</strong>ate pigeonpea<br />

plot size was 5.0 m x 2.0 m, with a between row<br />

spac<strong>in</strong>g of 0.5 m <strong>and</strong> with<strong>in</strong> row spac<strong>in</strong>g of 0.2 m.<br />

The <strong>in</strong>determ<strong>in</strong>ate plots were 5.0 m x 3.0 m <strong>in</strong> size<br />

with a row spac<strong>in</strong>g of 0.75 m <strong>and</strong> plant-to-plant<br />

spac<strong>in</strong>g of 0.3 m. These are recommended plant<br />

densit!~s <strong>for</strong> the Matopos elevation.<br />

The Matopos plots (both determ<strong>in</strong>ate <strong>and</strong> <strong>in</strong>determ<strong>in</strong>ate)<br />

were h<strong>and</strong> planted on 10 December 2001<br />

<strong>and</strong> the Lucydale plots were planted on 12 December<br />

2001. Four seeds were planted per station about<br />

5 cm deep to !Ilaximize germ<strong>in</strong>ation.<br />

Crop Management <strong>and</strong> Records of Observations<br />

All plots were th<strong>in</strong>ned to one plant per plant<strong>in</strong>g station<br />

three weeks after plant<strong>in</strong>g the two sites. Weed<strong>in</strong>g<br />

was done us<strong>in</strong>g h<strong>and</strong> hoes, as weed pressure<br />

dictated. A s<strong>in</strong>gle spray<strong>in</strong>g of Dimethoate was carried<br />

out at both- sites on 12 March to destroy leaf<br />

eaters.<br />

Observations were done every day <strong>and</strong> records<br />

were taken <strong>for</strong> date to 50% flower, date to 75% maturity,<br />

plant height, f<strong>in</strong>al plant st<strong>and</strong>, harvest date,<br />

woody biomass yield <strong>and</strong> gra<strong>in</strong> yield.<br />

The crop at Matopos was affeCted by frost <strong>and</strong> both<br />

the <strong>in</strong>determ<strong>in</strong>ate <strong>and</strong> determ<strong>in</strong>ate crops wilted. At<br />

the Lucydale site the crops received a further 20 mm<br />

of ra<strong>in</strong>fall <strong>in</strong> June <strong>and</strong> all the varieties started flower<strong>in</strong>g<br />

aga<strong>in</strong>. The <strong>in</strong>determ<strong>in</strong>ate varieties could not<br />

reach maturity due to destruction by animals at the<br />

podd<strong>in</strong>g stage.<br />

A one way Analysis of Variance (<strong>for</strong> r<strong>and</strong>omized<br />

blocks) was per<strong>for</strong>med on woody biomass <strong>and</strong><br />

gra<strong>in</strong> yield us<strong>in</strong>g Genstat <strong>for</strong> W<strong>in</strong>dows (5 th Edition).<br />

Results <strong>and</strong> Discussion<br />

Ra<strong>in</strong>fall Data<br />

Total ra<strong>in</strong>fall <strong>for</strong> the season, October 2001 to June<br />

2002 (Table I), was close to the long-term average<br />

with 536.5 mm at the Matopos site <strong>and</strong> 427 mm at<br />

Lucydale. However, it was poorly distributed, <strong>and</strong><br />

the determ<strong>in</strong>ate varieties received effectively 124<br />

mm at Matopos <strong>and</strong> 133 mm at Lucydale. Given the<br />

moist condition of the seedbeds at plant<strong>in</strong>g at both<br />

sites, germ<strong>in</strong>ation was good.<br />

Responses of Determ<strong>in</strong>ate Pigeon Pea Varieties<br />

Short duration determ<strong>in</strong>ate pigeonpea varieties<br />

flowered approximately two weeks earlier at the<br />

Matopos heavy· clay site, when compared to the<br />

s<strong>and</strong>y Lucydale site, despite that plant<strong>in</strong>g was only<br />

one day apart (Table 2). Despite the earl<strong>in</strong>ess of<br />

flower<strong>in</strong>g at Matopos, a similar length of time was<br />

required <strong>for</strong> the pigeonpea varieties to reach<br />

physiological maturity; typically 116 days from<br />

plant<strong>in</strong>g. However, the early flower<strong>in</strong>g at Matopos<br />

Table 1. Total ra<strong>in</strong>fall (mm) at ICRISAT Research fields from October<br />

2001 to April 2002.<br />

Season longterm<br />

Month OctOl NovOl OecOl Jan02 Feb02 Mar02 Apr02 Total mean<br />

Matopos 64 108 134 44 12 2 134 536.5 590<br />

lucydale 41 132 112 41 16 3 46 427<br />

76<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 2. Characteristics of short duration determ<strong>in</strong>ate pigeon pea varieties grown dur<strong>in</strong>g the 2001/2002 For the <strong>in</strong>determ<strong>in</strong>ate<br />

season at Matopos <strong>and</strong> lucydale.<br />

varieties, early ma turity<br />

Days to 50% flower<strong>in</strong>g Days to 75% maturity <strong>Gra<strong>in</strong></strong> yield kg ha I Biomass kg ha I<br />

was associated with<br />

Site/variety Matopos Lucydale Matopos Lucydale Matopos Lucydale Matopos Lucydale<br />

highest gra<strong>in</strong> yield. Variety<br />

ICPL87091 (829 kg/<br />

Var 1 IGEAP 00360 61 77 118 118 739.3 504.0 7383.9 6329.9<br />

ha), ICEAP 00721 (682<br />

Var 2 IGEAP 00394 61 71 118 118 746.7 343.3 6538.9 8521.7<br />

kg/ha) <strong>and</strong> ICEAP 00718<br />

Var 3 IGEAP 00535 61 73 115 114 902.0 614.0 5201 .0 4468 .9<br />

(641 kg/ha) were the<br />

Var 4 IGEAP 00536 61 77 115 115 848.7 634.7 5224.4 4555 .6 highest yield<strong>in</strong>g <strong>in</strong>deter­<br />

Var 5 IGEAP 00753 61 77 116 118 705.3 360.7 6642.9 5785.8 m<strong>in</strong>ate varieties, but<br />

Var 61GEAP 00781 61 75 117 118 1058.0 370.7 5815 .6 5129.0 these gave lower yields<br />

Var 7 IGPL 86012 61 73 115 114 744.0 458.0 4365.7 4177.3 than the best per<strong>for</strong>m<strong>in</strong>g<br />

Var 81GPL 87091 61 77 115 118 773.3 398.0 6114.3 4909.1 determ<strong>in</strong>ate varieties.<br />

Var 9 IGPL 87105 61 71 115 114 840.7 592.7 4109.6 4668.1 The average <strong>for</strong> the <strong>in</strong>de­<br />

Var 10 IGEAP 93027 61 77 118 115 749.3<br />

Site mean 61 75 116 116 810.7<br />

SED 0 3 0.901 0.870 172.3<br />

had a major <strong>in</strong>fluence on yields. The pigeonpea<br />

yields at Mqtopos averaged 810.7 kg ha- I compared<br />

with 482.3 kg ha- I <strong>for</strong> Lucydale. There was no statistical<br />

difference between varieties at both sites.<br />

Variety ICEAP 00394 yielded significantly (P>O.OOl)<br />

more woody biomass than other varieties at Lucydale,<br />

<strong>and</strong> per<strong>for</strong>med similarly to the other varieties<br />

at Matopos. However, it had the lowest gra<strong>in</strong> legume<br />

yield of any variety on the s<strong>and</strong>s at Lucydale<br />

<strong>and</strong> gave one of the lowest yields at Matopos. Varieties<br />

ICEAP 00535 <strong>and</strong> ICEAP 00536 per<strong>for</strong>med<br />

above average at Matopos <strong>and</strong> significantly<br />

(P


The <strong>in</strong>determ<strong>in</strong>ate varieties that can be tried are<br />

rCPL 87091, ICEAP 00721 <strong>and</strong> ICEAP 00718. The<br />

<strong>in</strong>determ<strong>in</strong>ate varieties however need to be planted<br />

early if they are to reach full maturity under the low<br />

ra<strong>in</strong>fall conditions <strong>in</strong> Matabelel<strong>and</strong>.<br />

Woody biomass (with leaves dropped) yield can be<br />

used as a rough <strong>in</strong>dicator of the fodder yield potential<br />

of the pigeonpea varieties. Promis<strong>in</strong>g determ<strong>in</strong>ates<br />

are ICEAP00394 <strong>and</strong> ICEAP 00360. The <strong>in</strong>determ<strong>in</strong>ate<br />

varieties that can be tried <strong>in</strong>clude ICEAP<br />

00728 <strong>and</strong> ICEAP 00722. These recommendations<br />

are tentative because several abnormalities occurred<br />

dur<strong>in</strong>g the 2001/2002 season at Matopos where the<br />

trials were carried out.<br />

The 2001/2002 ra<strong>in</strong>y season had poorly distributed<br />

ra<strong>in</strong>. There<strong>for</strong>e it is difficult to predict what would<br />

have happened under a normal season. Pigeonpea<br />

is known to be prone to Fusarium wilt but the disease<br />

was not observed dur<strong>in</strong>g the season. Some IC­<br />

RISAT l<strong>in</strong>es are tolerant to the disease, like ICP 9145<br />

<strong>and</strong> ICEAP 40 which is commercially grown <strong>in</strong> Malawi.<br />

Reco m mendations<br />

This trial was able to give <strong>in</strong><strong>for</strong>mation about the<br />

short duration pigeopnpea varieties that can be<br />

grown <strong>in</strong> Matabelel<strong>and</strong>. There is need to determ<strong>in</strong>e<br />

how the crops per<strong>for</strong>m <strong>in</strong> a more normal season <strong>in</strong><br />

which ra<strong>in</strong>fall is evenly distributed. There is also<br />

need to further exp<strong>and</strong> the studies to <strong>in</strong>clude soil<br />

fertility benefits, fodder yield <strong>and</strong> other benefits<br />

such as the use as firewood. There is also need to<br />

explore the market <strong>for</strong> the crop <strong>in</strong> Matabelel<strong>and</strong>.<br />

Tsholotsho farmers were shown the crop <strong>and</strong> they<br />

expressed an <strong>in</strong>terest to grow it, but only if a market<br />

<strong>for</strong> the crop could be found. The drive to promote<br />

pigeonpea should also <strong>in</strong>clude show<strong>in</strong>g the farmer!,<br />

how to utilize it as a food crop.<br />

References<br />

Ozowela, B., Holden, S.T., 1993. The potential of<br />

agro<strong>for</strong>estry <strong>in</strong> the high ra<strong>in</strong>fall areas of Zambia:<br />

A peasant programm<strong>in</strong>g model approach. Agro<strong>for</strong>estry<br />

Systems 24:39-55.<br />

Kimani, P.M., Benzioni, A., <strong>and</strong> M. Ventura 1994.<br />

Genetic variation <strong>in</strong> pigeonpea (Cajanus cajan<br />

(L.) Mill sp.) <strong>in</strong> response to successive cycles of<br />

water stress. Plant <strong>and</strong> <strong>Soil</strong> 158:193-201.<br />

Karachi, M., <strong>and</strong> Zengo, M., 1998. Legume <strong>for</strong>ages<br />

from pigeonpea, leucaena <strong>and</strong> sesbania as supplements<br />

to natural pastures <strong>for</strong> goat production<br />

<strong>in</strong> western Tanzania. Agro<strong>for</strong>estry Systems 39:13­<br />

21.<br />

Kollipara, K.P., L. S<strong>in</strong>gh <strong>and</strong> T. Hymowitz 1993. Genetic<br />

variation <strong>and</strong> chymotryps<strong>in</strong> <strong>in</strong>hibitors <strong>in</strong><br />

pigeonpea [Cajanus cajan (L.) Millsp.] <strong>and</strong> its<br />

wild relatives. Theoretical <strong>and</strong> Applied Genetics<br />

88:986-993.<br />

Mapfumo, P., Mpepereki, S., <strong>and</strong> Mafongoya, P.,<br />

1998. Pigeonpea <strong>in</strong> Zimbabwe: A new crop with<br />

potential. In: Wadd<strong>in</strong>gton, S.R., H.K., Murwira,<br />

J.FO.T. Kumwenda, O. Hikwa <strong>and</strong> F. Tagwira<br />

(eds). <strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong> Maize-Based Farm<strong>in</strong>g<br />

Systems <strong>in</strong> Zimbabwe. Proceed<strong>in</strong>gs of the <strong>Soil</strong><br />

Fert Net Results <strong>and</strong> Plann<strong>in</strong>g Workshop held<br />

from 7 to 11 July 1997 at Africa University, Mutare,<br />

Zimbabwe. <strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT­<br />

Zimbabwe, Harare, Zimbabwe. pp. 93-98.<br />

Mligo, J .K., Myaka, F.A., Mbwaga, A., <strong>and</strong> Mpangala,<br />

B.A., 2001. On station research, technology<br />

exchange, <strong>and</strong> seed systems <strong>for</strong> pigeonpea <strong>in</strong><br />

Tanzania. In: SHim. S.N., Mergeai, G., <strong>and</strong> Kimani<br />

P. (eds). Pigeonpea Status <strong>and</strong> Potential <strong>in</strong><br />

Eastern <strong>and</strong> Southern Africa. Gemblox, Belgium:<br />

Gembloux Agricultural University; <strong>and</strong><br />

Patancheru, AP, India: International Crops Research<br />

Institute <strong>for</strong> the Semi-Arid Tropics.<br />

Moyo, M., 2001. Representative <strong>Soil</strong> Profiles of ICRI­<br />

SAT Research Sites. Chemistry <strong>and</strong> <strong>Soil</strong> Research<br />

Institute, Zimbabwe, <strong>Soil</strong>s Report No. A666.<br />

Reddy, M. V. Nene, Y. L., Raju, T. N., Kannaiyan, J.,<br />

Reman<strong>and</strong>an, P., Mengesha, M. H. <strong>and</strong> Am<strong>in</strong>, K.<br />

S., 1995. Registration of pigeonpea germplasm<br />

l<strong>in</strong>e ICP 9145 resistant to fusarium wilt. Crop Science<br />

35(4):1231.<br />

78<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


RISK DIVERSIFICATION OPPORTUNITIES THROUGH LEGUMES IN<br />

SMALLHOLDER FARMING SYSTEMS IN THE<br />

SEMI-ARID AREAS OF ZIMBABWE<br />

RICHARD FOTI, JOSEPH RUSIKE <strong>and</strong> JOHN DIMES<br />

feR/SA T-Bu/a wa yo, PO Box 776, Matopos Research Station, Bu/awayo, Zimbabwe<br />

Abstract<br />

This paper uses a simulation model<strong>in</strong>g approach to evaluate the long-term diversification ga<strong>in</strong>s <strong>and</strong> risks associated with<br />

adoption of a range of fertility options, <strong>in</strong>clud<strong>in</strong>g legumes, manure, <strong>and</strong> small doses of <strong>in</strong>organic fertilizer <strong>in</strong> semi-arid<br />

areas. These options were tested by the Department of Agricultural Research <strong>and</strong> Extension (AREX), the International<br />

Crops Research Institute <strong>for</strong> the Semi-Arid Tropics (ICRISAT), the Tropical <strong>Soil</strong> Biology <strong>and</strong> <strong>Fertility</strong> Programme<br />

(TSBF), the International Maize <strong>and</strong> Wheat Improvement Center (CIMMYT) <strong>and</strong> the Smallholder Dry Areas Resource<br />

Management Project (SDARMP) <strong>in</strong> farmer participatonj research trials dur<strong>in</strong>g the 1999/2000 <strong>and</strong> 2000/2001 cropp<strong>in</strong>g<br />

seasons <strong>in</strong> pilot areas <strong>in</strong> three semi-arid regions <strong>in</strong> Zimbabwe. The study tests the hypothesis that legume-based soil fertility<br />

technologies wi(l benefit farmers if diversification <strong>in</strong>to legumes complements farmers' current <strong>in</strong>vestments compared<br />

to alternative <strong>in</strong>vestments <strong>and</strong> the dem<strong>and</strong> on resources is with<strong>in</strong> the boundaries of the resource-endowments of<br />

the fanners.<br />

Results <strong>in</strong>dicate that maize-cowpea <strong>and</strong> maize-groundnut rotations <strong>and</strong> maize-pigeon pea <strong>in</strong>tercrops <strong>and</strong> rotations are<br />

good <strong>in</strong>vestment opportunties <strong>for</strong> diversification from the traditional maize <strong>and</strong> sorghum soil-m<strong>in</strong><strong>in</strong>g practices currently<br />

be<strong>in</strong>g pursued by the majority of farm households.<br />

Key words: <strong>Legumes</strong>, <strong>in</strong>tercropp<strong>in</strong>g, rotation, risk simulation, diversification, return on <strong>in</strong>vestment<br />

Introduction<br />

Dur<strong>in</strong>g the past decade, there has been grow<strong>in</strong>g <strong>in</strong>terest<br />

<strong>in</strong> the use of legume-based technologies as<br />

nutrient sources <strong>in</strong> smallholder farm<strong>in</strong>g systems <strong>in</strong><br />

Sub-Saharan Africa because of constra<strong>in</strong>ts on exp<strong>and</strong>ed<br />

use of <strong>in</strong>organic fertilizers. Historically,<br />

legumes were grown as <strong>in</strong>tercrops with cereals, especially<br />

dur<strong>in</strong>g pre-colonial times. In Zimbabwe,<br />

agricultural extension has discouraged <strong>in</strong>tercropp<strong>in</strong>g<br />

<strong>in</strong> the pasf5() years <strong>and</strong> encouraged farmers to<br />

grow pure crops targeted at commercial markets.<br />

Despite this advice, farmers have cont<strong>in</strong>ued to grow<br />

legwnes <strong>in</strong>tercropped with cereals albeit <strong>in</strong> small<br />

areas. To re-<strong>in</strong>troduce legumes <strong>in</strong>to the system at<br />

large enough scale to enable farmers to capture potential<br />

benefits of biological i'h-fixation (BNF), the<br />

legume technologies need to give a competitive rate<br />

of return on <strong>in</strong>vestment compared to alternative <strong>in</strong>vestment<br />

options available to households, meet<br />

farmers' requirements <strong>for</strong> risk, <strong>and</strong> fit with<strong>in</strong> the<br />

boundaries of resource er~dowments of smallholders.<br />

This paper uses a simulation model<strong>in</strong>g approach to<br />

evaluate the long-term diversification ga<strong>in</strong>s <strong>and</strong><br />

risks associated with adoption of a range of soil fertility<br />

options, <strong>in</strong>clud<strong>in</strong>g legumes, animal manure,<br />

small doses of <strong>in</strong>organic fertilizer <strong>and</strong> water management.<br />

These were tested by the Department of<br />

Agricultural Research <strong>and</strong> Extension (AREX), the<br />

International Crops Research Institute <strong>for</strong> the Semi­<br />

Arid Tropics (ICRISAT), the Tropical <strong>Soil</strong> Biology<br />

<strong>and</strong> <strong>Fertility</strong> Programme (TSBF), the International<br />

Maize <strong>and</strong> Wheat Improvement Center (CIMMYT)<br />

<strong>and</strong> the Smallholder Dry Areas Resource Management<br />

Project (SDARMP) <strong>in</strong> farmer participatory research<br />

dur<strong>in</strong>g the 1999/2000 <strong>and</strong> 2000/2001 cropp<strong>in</strong>g<br />

seasons <strong>in</strong> pilot areas <strong>in</strong> the semi-arid regions<br />

<strong>in</strong> Zimbabwe.<br />

Objectives<br />

The general objective of the study was to assess the<br />

potential <strong>for</strong> adoption of legume-based soil fertility<br />

improvement technologies. The specific objectives<br />

are to:<br />

o Estimate expected profitability <strong>and</strong> risk<strong>in</strong>ess of<br />

alternative legume technologies<br />

o Determ<strong>in</strong>e the benefits offered by legume-based<br />

soil fertility management tedmologies through<br />

diversification to households with different resource<br />

endowments <strong>and</strong> risk preferences.<br />

Research Approach: Theory <strong>and</strong> Methods<br />

The conceptual framework used <strong>for</strong> guid<strong>in</strong>g the<br />

study is derived from portfolio choice theory. Portfolio<br />

theory provides analytical tools <strong>and</strong> methods<br />

<strong>for</strong> analyz<strong>in</strong>g farmers' decision-mak<strong>in</strong>g under risk<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 79


<strong>and</strong> how best to <strong>in</strong>vest a given bundle of resources<br />

among several alternatives while m<strong>in</strong>imiz<strong>in</strong>g the<br />

risk of their portfolios.<br />

Conceptual Framework <strong>and</strong> Hypotheses<br />

For farmers to <strong>in</strong>vest resources <strong>in</strong> new technologies<br />

such as organic <strong>and</strong> <strong>in</strong>organic fertilizers, the rates of<br />

return on these <strong>in</strong>vestments need to be competitive<br />

with returns on available alternative <strong>in</strong>vestment<br />

opportunities. With<strong>in</strong> a s<strong>in</strong>gle crop enterprise such<br />

as maize production, the return on <strong>in</strong>vestment <strong>in</strong><br />

new fertilizer technologies is compared with the<br />

return on capital us<strong>in</strong>g traditional soil-m<strong>in</strong><strong>in</strong>g<br />

methods. Between different crop enterprises,<br />

returns on <strong>in</strong>vestment <strong>in</strong> new management<br />

technologies are compared aga<strong>in</strong>st other<br />

<strong>in</strong>vestments <strong>in</strong>clud<strong>in</strong>g livestock, off-farm activities,<br />

temporary <strong>and</strong> permant labor migration. Because<br />

of the uncerta<strong>in</strong>ty of payoffs to alternative<br />

<strong>in</strong>vestments, new <strong>in</strong>vestments must fit farmers'<br />

objectives <strong>and</strong> requirements <strong>for</strong> risk <strong>in</strong> addition to<br />

profitability. Because high returns are associated<br />

with high risks, farmers face trade-offs between<br />

allocat<strong>in</strong>g resources to activities with high profits<br />

<strong>and</strong> more desirable but riskier <strong>and</strong> there<strong>for</strong>e less<br />

attractive outcomes compared to activities with low<br />

profits <strong>and</strong> yet less riskier, which makes them more<br />

appeal<strong>in</strong>g.<br />

Moss, Weldon, <strong>and</strong> Featherstone (1991) have developed<br />

an approach <strong>for</strong> evaluat<strong>in</strong>g risk-return tradeoffs<br />

<strong>and</strong> diversification opportunities of alternative<br />

farm <strong>in</strong>vestments that is based on the portfolio theory<br />

of f<strong>in</strong>ancial markets <strong>and</strong> the capital asset pric<strong>in</strong>g<br />

model (CAPM). These analysts argue that <strong>for</strong> a new<br />

or c<strong>and</strong>idate enterprise to improve the risk-return<br />

tradeoff provided by any exist<strong>in</strong>g group or portfolio<br />

of enterprises, the follow<strong>in</strong>g condition must hold<br />

If the mean return divided by the st<strong>and</strong>ard deviation<br />

of new <strong>in</strong>vestment alternative is greater than<br />

the mean of the whole farm plan's return divided<br />

by the st<strong>and</strong>ard deviation times the correlation between<br />

<strong>in</strong>vestments the new <strong>in</strong>vestment will complement<br />

the current operation from a risk-return perspective.<br />

Based on this risk-return condition necessary<br />

<strong>for</strong> a new enterprise to improve the risk-return<br />

trade-off provided by the current farm's portfolio,<br />

one can calculate a risk diversification <strong>in</strong>dex (RDI)<br />

as follows:<br />

r r<br />

RDI _i _.-L n<br />

r'ip<br />

a: I<br />

a: I<br />

If the RDI is greater than zero, the c<strong>and</strong>idate technology<br />

is a good <strong>in</strong>vestment opportunity <strong>for</strong> diversification.<br />

But if RDI is less than zero the c<strong>and</strong>idate<br />

technology offers no ga<strong>in</strong>s through diversification<br />

to the farm household.<br />

Apply<strong>in</strong>g this conceptual framework generates the<br />

follow<strong>in</strong>g two hypotheses about relationships between<br />

the ~'isk-return characteristics of new technologies,<br />

farmers' risk management strategies, <strong>and</strong><br />

potential <strong>for</strong> adoption that are tested <strong>in</strong> the study:<br />

l. Legume-based soil fertility management technologies<br />

are attractive if they lie on the riskefficient<br />

frontier <strong>and</strong> offer farmers expected returns<br />

that are high enough to compensate them<br />

<strong>for</strong> additional risks; <strong>and</strong><br />

2. Diversification <strong>in</strong>to legume-based soil fertility<br />

management technologies will benefit farmers if<br />

the new technologies complement the current<br />

farm portfolio <strong>and</strong> better offset the total risk of<br />

the whole farm compared to allocat<strong>in</strong>g resources<br />

to alternative farm <strong>and</strong> non-farm <strong>in</strong>vestment<br />

opportunities available to farmers.<br />

Where<br />

O'i<br />

= the meim return of the potential new <strong>in</strong>vestment<br />

alterna tive,<br />

= the st<strong>and</strong>ard deviation of the new alternative,<br />

= the mean return of the current whole farm<br />

r" plan, <br />

CY p<br />

= the st<strong>and</strong>ard deviation of the current whole<br />

farm plan, <strong>and</strong><br />

= the correlation between the current whole<br />

farm plan's return <strong>and</strong> the new enterprise's<br />

return.<br />

Methods<br />

The study uses enterprise <strong>and</strong> whole-farm budget<strong>in</strong>g,<br />

<strong>and</strong> simtllation model<strong>in</strong>g with APSIM <strong>and</strong><br />

@RISK to evaluate the hypotheses. Enterprise<br />

budgets are constructed <strong>for</strong> alternative <strong>in</strong>vestment<br />

technologies. Different enterprises are def<strong>in</strong>ed by<br />

different outputs such as maize, sorghum, chickens,<br />

goats <strong>and</strong> cattle; sole st<strong>and</strong>s <strong>and</strong> crop mixtures; <strong>and</strong><br />

different crop prod uction technologies, <strong>in</strong>clud<strong>in</strong>g<br />

low <strong>and</strong> high rates of application of kraal manure,<br />

pit-treated manure, <strong>in</strong>organic Nitrogen fertilizer<br />

<strong>and</strong> organic <strong>and</strong> <strong>in</strong>organic fertilizer comb<strong>in</strong>ations.<br />

Enterprise budgets are used to compare the profitability<br />

of maize <strong>and</strong> sorghum crop production us<strong>in</strong>g<br />

traditional methods <strong>and</strong> improved soil fertility<br />

80<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


management technologies with different activities aggregat<strong>in</strong>g the returns per unit over the number of<br />

available to farmers <strong>and</strong> the profitability of different units produced by 'the households. Because there<br />

~nterprises <strong>for</strong> households with different resource are expenses <strong>and</strong> 'revenues that cannot be allocated<br />

endowments. The budgets are constructed us<strong>in</strong>g to particular enterprises, <strong>and</strong> cases where we do.not<br />

yield <strong>and</strong> <strong>in</strong>put-output coefficients data from farm have a l<strong>in</strong>ear budget this may under~stimate resurveys,<br />

Farmer Participatory Research experi­ turns to some activities. The budgets are used to esments,<br />

<strong>and</strong> yields predicted by the Agric:dtural Pro­ timate the expected annual returns, the degree of<br />

duction Systems Simulator (APSIM) model. 'D'e risk, <strong>and</strong> correlation coefficients <strong>for</strong> different crop<br />

<strong>in</strong>put-output coefficients are comb<strong>in</strong>ed with prices <strong>and</strong> livestock comb<strong>in</strong>ations.<br />

from the M<strong>in</strong>istry of Agriculture, Zimbabwe Farmerst<br />

Union <strong>and</strong> Commercial Farmers' Union to calculate<br />

gross marg<strong>in</strong>s per hectare <strong>for</strong> crops <strong>and</strong> per<br />

breed<strong>in</strong>g animal unit <strong>for</strong> livestock. Input prices are<br />

Results <strong>and</strong> Discussion<br />

reported at the supply po<strong>in</strong>t. Input prices paid by Tables I, 2, <strong>and</strong> 3 present the annual returns <strong>and</strong><br />

farmers are estimated by add<strong>in</strong>g <strong>in</strong>put prices re­ risks per hectare above fixed costs <strong>for</strong> 11 years from<br />

ported by suppliers <strong>and</strong> the cost of transport. Out­ 1990/91 to 2000/01 on alternative maize <strong>and</strong> sorput<br />

prices are reported at the market<strong>in</strong>g po<strong>in</strong>t. ghum soil fertility production technologies by farm<br />

Farm gate prices are estimated conservatively by household typology. The tables also <strong>in</strong>clude the <strong>and</strong>educt<strong>in</strong>g<br />

cost of transportation from prices at mar­ nual return <strong>and</strong> risk of <strong>in</strong>vest<strong>in</strong>g funds <strong>in</strong> a risk-free<br />

ket<strong>in</strong>g po<strong>in</strong>ts. The opportunity cost of family labor asset, the POSB sav<strong>in</strong>gs account. For male-headed<br />

is estimated by multiply<strong>in</strong>g the m<strong>in</strong>imum wage rate households with resident husb<strong>and</strong> <strong>and</strong> higher labor<br />

of engag<strong>in</strong>g <strong>in</strong> urban employment multiplied by the <strong>and</strong> draft animal resource-endowments, the most<br />

probability of f<strong>in</strong>d<strong>in</strong>g a job.<br />

profitable production technologies are, <strong>in</strong>decreas<strong>in</strong>g<br />

order of importance, maize plus 9 kilograms of<br />

Because APSIM crop yield predictions are only ritrogen per hectare, maize plus kraal manure plus<br />

available <strong>for</strong> 10 year,s from 1990 to 2000 <strong>and</strong> <strong>for</strong> a 18 kilograms of nitrogen per hectare, maizefew<br />

improved technology options this analysis focuses<br />

on sole maize <strong>and</strong> sorghum<br />

Table 1. Expected annual returns (Zimbabwe $/ha) <strong>and</strong> risk of alternative maize <strong>and</strong> sorghum<br />

grown without fertilizer <strong>and</strong> with<br />

soil fertility management technologies <strong>for</strong> male·headed households, Gw<strong>and</strong>a, Tsholotsho <strong>and</strong><br />

small quantities of Nitrogen fertilizer;<br />

kraal <strong>and</strong> pit manure; manure<br />

Zimuto, 1990/91,2000/01<br />

Gw<strong>and</strong>a Tsholo'tsho Zirnuto<br />

<strong>and</strong>, Nitrogen fertilizer comb<strong>in</strong>ations;<br />

sole cowpeas <strong>and</strong> groundnuts;<br />

Activity<br />

Return Risk Return Risk Return Risk<br />

maize <strong>and</strong> sorghum-cowpea<br />

<strong>and</strong> groimdnut <strong>in</strong>tercrops <strong>and</strong> rotations,<br />

maize-cowpea <strong>and</strong> maizegroundnut<br />

rotations. The budgets<br />

<strong>in</strong>clude only the physical gra<strong>in</strong> output<br />

of crop enterprises <strong>for</strong> primary<br />

<strong>and</strong> secondary crops valued at<br />

pose sav<strong>in</strong>gs account<br />

Sorghum+kraal manure<br />

Sorghum +Okraal manure +ON<br />

Maize+Okraal manure+ON<br />

Sorgirum+9N<br />

Maize +groundnut <strong>in</strong>tercrop<br />

Sorghum+groundnut <strong>in</strong>tercrop<br />

289<br />

·15272<br />

-2440<br />

3286<br />

-849<br />

1738<br />

-3486<br />

328<br />

3948<br />

4350<br />

4526<br />

5856<br />

6302<br />

6403<br />

289<br />

·13793<br />

·156<br />

5046<br />

1911<br />

1260<br />

·43,83<br />

328<br />

5310<br />

6347<br />

5759<br />

7642<br />

8213<br />

8872<br />

289<br />

4249<br />

·2285<br />

328<br />

7688<br />

5969<br />

farm gate prices. Farmers frequently<br />

produce crops <strong>in</strong> mixtures<br />

of more than two crops <strong>and</strong> the<br />

budget needs to <strong>in</strong>clude the whole<br />

mixture. The values of byproducts<br />

such as stalks, which have value as<br />

livestock feed, <strong>in</strong> construction <strong>and</strong><br />

composts are not <strong>in</strong>cluded. Livestock<br />

budgets <strong>in</strong>clude the market<br />

value of the animal, depreciation<br />

on the value of breed<strong>in</strong>g animals,<br />

milk, eggs, <strong>and</strong> draught power.<br />

Values of animal manure <strong>and</strong> tradi­<br />

'tiona I religious ceremonies are not<br />

<strong>in</strong>cluded. The enterprise budgets<br />

are used to construct whole farm<br />

budgets <strong>for</strong> current farm plans <strong>for</strong><br />

different household categories by<br />

Sorghum +pit manure -1888 6752 542 8752<br />

Sorghum·groundnut rotation 554 7033 2914 8054<br />

Sorghum+cowpea rotation ·319 7422 8769 11024<br />

Maize+9N<br />

4286 7450 7188 7160 6860 7913<br />

Maize groundnut rotation 3888 7535 6800 8902 5764 7862<br />

Maize +cowpea rotation 3412 7545 12743 10542 8591 10656<br />

Sorghum +18N -2330 7703 788 9718<br />

Sorghum+ ~raal +18N ·154 7759 3314 10160<br />

Maize +kraal manure +9N 2629 8296 6547 7984 6127 8498<br />

Maize+pit manure 2414 8723 6417 7768 6281 9q2<br />

Maize+ cowpea <strong>in</strong>tercrop -1179 9006 6875 10783 168 9807<br />

Maize +kraal manure 3717 9220 5557 9774 4303 9785<br />

Sorghum +cowpea <strong>in</strong>tercrop ·5177 9306 3498 13359<br />

Sorghum +kraal manure +9N -450 9765 2711 11107<br />

Maize+ 18N 1614 9804 5588 8436 6081 10255<br />

Maize +kraal manure +18N 3894 10286 8293 8874 8951 10480<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 81


estimated <strong>for</strong> the soil fertility man­<br />

agement <strong>in</strong>vestment options <strong>for</strong> the<br />

farm households.<br />

Table 2. Expected ~nnual returns (Zimbabwe $/ha) <strong>and</strong> risk of alternative maize <strong>and</strong> sorghum<br />

soil fertility management technologies <strong>for</strong> de facto female·headed households, Gw<strong>and</strong>a,<br />

Tsholotsho <strong>and</strong> Zimuto, 1990/91·2000/01<br />

Gw<strong>and</strong>a<br />

Tsholotsho<br />

Activity Return Risk Return Risk<br />

POSB sav<strong>in</strong>gs account 289 328 289 328<br />

Sorghum +kraal manure ·12801 3654 ·10128 4911<br />

Sorghum +Okraal manure +ON 62 4366 3177 6334<br />

Maize+Okraal manure+ON 3378 4422 5042 5965<br />

Sorghum+9N 2203 6042 4874 7642<br />

Maize+groundnut <strong>in</strong>tercrop 2007 6352 1417 8479<br />

Sorghum +pit manure 344 6435 4908 8839<br />

Sorghum +groundnut <strong>in</strong>tercrop ·1151 6542 ·843 8883<br />

Maize+9N 5591 6699 6657 7505<br />

Sorghum +groundnut rotation 1886 7039 5374 8204<br />

Sorghum +cowpea rotation 1509 7264 11369 11236<br />

Maize cowpea rotation 4456 7470 13524 10753<br />

Maize +groundnut rotation 4422 7564 7563 9056<br />

Maize +kraal +9N 4505 7767 5937 7952<br />

Sorghum +18N 697 7863 3548 9749<br />

Sorghum +kraal manure +18N 2873 7911 6205 10293<br />

Maize +pit manure 3884 8166 5791 8155<br />

Maize +cowpea <strong>in</strong>tercrop -482 9005 7217 11232<br />

Sorghum +cowpea <strong>in</strong>tercrop ·1860 9220 8243 13643<br />

Maize+ 18N 3491 9286 4625 8780<br />

Maize +kraal manure 4031 9334 4946 9764<br />

Maize +kraal +18N 5770 9611 7682 8839<br />

Sorghum +kraal manure +9N 2577 9980 3890 8759<br />

groundnut rotation, <strong>and</strong> maize cowpea rotations.<br />

The rank<strong>in</strong>g is similar <strong>in</strong> the lower ra<strong>in</strong>fall sites<br />

(Gw<strong>and</strong>a <strong>and</strong> Zimuto) but <strong>in</strong> wetter sites<br />

(Tsholotsho) groundnut <strong>and</strong> cowpea rotation give<br />

the highest expect annual returns. For de facto female-headed<br />

households with <strong>in</strong>termediate resource<br />

endowments but better access to off-farm<br />

cash, maize plus kraal plus 18 kilograms of nitrogen,<br />

maize plus 9 kilograms of nitrogen, <strong>and</strong> maize<br />

plus kraal plus 9 kilograms of nitrogen give the best<br />

returns followed by maize cowpea <strong>and</strong> maizegroundnut<br />

rotation <strong>in</strong> the drier sites. But the maizecowpea<br />

rotation, sorghum-cowpea rotation, <strong>and</strong><br />

sorghum-cowpea <strong>in</strong>tercrop gives the best returns <strong>in</strong><br />

the wetter sites. For the de jure households who are<br />

most resource-constra<strong>in</strong>ed, the most profitable technologies<br />

are the same as <strong>for</strong> the de facto households<br />

<strong>for</strong> drier <strong>and</strong> wetter sites although the legume rotations<br />

<strong>and</strong> <strong>in</strong>tercrops are more profitable <strong>for</strong> de jure<br />

households compared to de facto households across<br />

all sites. For all household categories, higher ex­<br />

!Jected returns are associated with higher risks <strong>and</strong><br />

lower expected returns with lower risks irrespective<br />

of site. This shows that the Capital Asset Pric<strong>in</strong>g<br />

Model approximates the risk-return characteristics<br />

Zimuto<br />

Figures I, 2, <strong>and</strong> 3 show trade-offs<br />

Return Risk<br />

between expected returns <strong>and</strong> risks<br />

289 328<br />

of the alternative soil fertility production<br />

technologies. The dom<strong>in</strong>at<strong>in</strong>g<br />

technologies are reflected by<br />

3200 7619 the set of po<strong>in</strong>ts on the frontier.<br />

Technology <strong>in</strong>vestments that lie<br />

·11012 7138<br />

<strong>in</strong>side the frontier can be elim<strong>in</strong>ated<br />

from further analysis as <strong>in</strong>ferior<br />

because households can choose<br />

from among better options on the<br />

·1802<br />

6449<br />

22751<br />

10686<br />

frontier that give higher expected<br />

returns <strong>for</strong> the same level of risk.<br />

The efficiency frontier <strong>for</strong> maleheaded<br />

households <strong>in</strong> Gw<strong>and</strong>a <strong>in</strong>cludes,<br />

<strong>in</strong> <strong>in</strong>creas<strong>in</strong>g order of risks<br />

427 8424 <strong>and</strong> r,eturns, POSB sav<strong>in</strong>gs account,<br />

·1924 22736 sorghum plus kraal manure, traditional<br />

maize production technology<br />

without manure <strong>and</strong> nitrogen fertilizer,<br />

traditional sorghum, maize<br />

4974 9054<br />

plus 9 kilograms of nitrogen per<br />

·896 9912<br />

hectare, maize plus pit manure,<br />

maize plus kraal manure plus 9<br />

·10118 40691 kilograms of nitrogen, maize plus<br />

3170 9678 18 kilograms of nitrogen, <strong>and</strong><br />

·6049 39594<br />

maize plus kraal manure plus 18<br />

kilograms of nitrogen. The frontier<br />

<strong>for</strong> male-headed households <strong>in</strong><br />

Tsholotsho is dom<strong>in</strong>ated by POSB sav<strong>in</strong>gs account,<br />

traditional maize, maize plus 9 kilograms of nitrogen,<br />

maize-cowpea rotation, maize plus kraal manure<br />

<strong>and</strong> maize plus kraal manure plus 18 kilograms<br />

of nitrogen. Zimuto male-headed households<br />

have a smaller available set of risk-efficient<br />

technologies: POSB sav<strong>in</strong>gs account, traditional<br />

maize, maize-groundnut rotation, maize plus 9 kilograms,<br />

<strong>and</strong> maize plus kraal manure plus 18 kilograms<br />

of nitrogen. In contrast, the frontier <strong>for</strong> de<br />

facto female-headed households <strong>in</strong> Gw<strong>and</strong>a <strong>in</strong>cludes<br />

POSB sav<strong>in</strong>gs accounts, traditional maize<br />

technology, maize plus 9 kilograms of nitrogen, <strong>and</strong><br />

maize plus kraal manure plus 9 kilograms of nitrogen.<br />

For Tsholotsho de facto female-headed households,<br />

the frontier consists of POSB sav<strong>in</strong>gs account,<br />

traditional maize, maize plus pit manure, maize<br />

plus kraal manure plus 18 kilograms nitrogen,<br />

maize-groundnut, sorghum-cowpea, <strong>and</strong> maizecowpea<br />

rotations. The risk-return frontier available<br />

<strong>for</strong> de facto households <strong>in</strong> Zimuto comprises POSB<br />

sav<strong>in</strong>gs accounts, traditional maize, maize plus pit<br />

manure <strong>and</strong> maize-cowpea rotation. The frontiers<br />

<strong>for</strong> de jure female-headed households are similar to<br />

those <strong>for</strong> de facto female-headed households across<br />

82<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 3. Expected annual returns (Zimbabwe $/ha) <strong>and</strong> risk of alternative rnaize <strong>and</strong> sorghum<br />

the three sites although cowpea<br />

soil fertility management technologies <strong>for</strong> de jure female·headed households, Gw<strong>and</strong>a,<br />

dom<strong>in</strong>ates the efficient sets <strong>for</strong> de<br />

Tsholotsho <strong>and</strong> Zimuto, 1990/91·2000/01<br />

jure compared to de facto house­<br />

Gw<strong>and</strong>a Tsholotsho Zimuto holds. We conclude that legumes<br />

Activity Return Risk Return Risk Return Risk lie on the frontier <strong>and</strong> dom<strong>in</strong>at<strong>in</strong>g<br />

POSB sav<strong>in</strong>gs account 289 328 289 328 289 328 set <strong>for</strong> especially de facto <strong>and</strong> de jure<br />

Sorghum +kraal manure ·13023 3668 ·7821 4410 households <strong>in</strong> Tsholotsho <strong>and</strong><br />

Sorghum +Okraal manure +ON 1704 8129 5419 6018<br />

Gw<strong>and</strong>a <strong>and</strong> there<strong>for</strong>e are attrac­<br />

Maize+Okraal manure+ON 3692 4422 5375<br />

tive to farmas. The mix of legume­<br />

5986 5560 7518<br />

based technologies <strong>in</strong> the portfolio<br />

Sorghum+ 9N 1981 5994 7181 7347<br />

will depend on the tolerance <strong>for</strong><br />

Maize +groundnut <strong>in</strong>tercrop 1976 6364 4721 8216 ·15949 6092<br />

risk of different households. Be­<br />

Sorghum +pit manure 122 6398 6405 8531<br />

cause legume technologies are asso­<br />

Sorghum +groundnut <strong>in</strong>tercrop ·1795 6476 3966 8355 ciated with high risks <strong>and</strong> high re­<br />

Maize+ 9N 5954 6714 7759 7529 ·1997 22645 turns, especially maize-groundnut<br />

Sorghum +groundnut rotation 1696 7024 7986 7992 rotations, they are likely to be at­<br />

Sorghum +cowpea rotation 2296 7278 12735 11081 tractive to mostly households with<br />

Maize cowpea rotation 5534 7482 14288 10698 6349 10647 a high tolerance <strong>for</strong> risk.<br />

Maize +groundnut rotation 4524 7571 9573 8990 ·1777 7727<br />

Maize +kraal +9N 4869 7796 7044 7976<br />

Because different technology <strong>in</strong>­<br />

·2111 22647<br />

vestments are differently correlated<br />

Sorghum + 18N 475 7814 5855 9464<br />

with the current farm plan <strong>and</strong><br />

Sorghum +kraal manure +18N 2650 7861 8512 9992<br />

farm households can choose to <strong>in</strong>­<br />

Maize +pit manure 4247 8185 6893 8175 4779 8970<br />

vest resources among several <strong>in</strong>­<br />

Maize +cowpea· <strong>in</strong>tercrop 800 9076 8291 11151 ·1108 9812 vestments <strong>in</strong> order to reduce risk<br />

Sorghum +cowpea <strong>in</strong>tercrop ·545 9171 10167 13431 without reduc<strong>in</strong>g expected returns,<br />

Maize+ 18N 3855 9310 5727 8796 2983 9632 we need to consider the effects of<br />

Maize +kraal manure 4394 9397 6053 9785 ·6237 39510 <strong>in</strong>clud<strong>in</strong>g a production technology<br />

Maize+kraal+ 18N 6134 9632 8789 8865 ·10313 40600 on the whole farm portfolio when<br />

Sorghum +kraal manure+ 9N 2355 9926 G197 8470<br />

decid<strong>in</strong>g whether or not to <strong>in</strong>clude<br />

it <strong>in</strong> the current farm plan. Tables<br />

15000 • Gwanaa 4, 5, <strong>and</strong> 6 report the risk diversification <strong>in</strong>dices <strong>for</strong><br />

11 Tsholotsho<br />

10000 .<br />

the whole farm <strong>for</strong> different household typologies.<br />

..Zimuto<br />

The analysis is extended to <strong>in</strong>clude the benefits of<br />

5000<br />

·M :~"<br />

.l:<br />

• •• a<br />

•<br />

• • ~ •<br />

peas <strong>and</strong> temporary migration to urban labor marc<br />

~000".· • 10000 15000<br />

:; -5000 kets. The risk <strong>in</strong>dices <strong>for</strong> maize-cowpea <strong>and</strong> maize­<br />

C; •<br />

a: groundnut . rotations <strong>and</strong> maize-pigeon pea <strong>in</strong>ter­<br />

-10000<br />

crops <strong>and</strong> rotations are positive <strong>for</strong> different k<strong>in</strong>ds<br />

-15000 +--- _.o_---- - ---- of households across sites <strong>in</strong>dicat<strong>in</strong>g that these legume-based<br />

soil fertility production technologies of­<br />

-20000 -'--------------­<br />

Risk ($/ha)<br />

fer significant ga<strong>in</strong>s through diversification. There<strong>for</strong>e<br />

they are likely to be adopted by farmers.<br />

Figure 1. Risk-return tradeoffs of alternative maize <strong>and</strong> sorghum<br />

soil fertility management technologies <strong>for</strong> male-headed households,<br />

Gw<strong>and</strong>a, Tsholotsho <strong>and</strong> Zimuto, 1990/91-2000/01<br />

.GNan:l:l<br />

iii<br />

..-. .. .... diversify<strong>in</strong>g to medium <strong>and</strong> long duration pigeon<br />

~.---------------<br />

..<br />

1WOO~-~r------------<br />

10000 l s~_________<br />

i woo ~~~~'-------------<br />

~ ~~, ~~<br />

o ~·-~~~~--~-~--~-~<br />

E<br />

;;" -woo<br />

. ~ OO:O<br />

II:: -100Xl -1--_"_ ________----.._ _<br />

·1 WOO +--. c-r ....­ - - ---------­<br />

-20).)) '------ - ------ ----­<br />

II Tsrobtsro<br />

A ZimJD<br />

Figure 2. Risk-return tradeoffs of alternative maize <strong>and</strong> sorghum <br />

soil fertility management technologies <strong>for</strong> de facto female·headed <br />

households, Gw<strong>and</strong>a, Tsholotsho <strong>and</strong> Zimuto, 1990/91·2000/01<br />

Figure 3. Risk-return tradeoffs of alternative maize <strong>and</strong> sorghum<br />

soil fertility management technologies <strong>for</strong> de jure fem


Table 4. Risk diversification <strong>in</strong>dices of alternative maize <strong>and</strong><br />

s~ghum soil fertility management technologies <strong>for</strong> male·headed<br />

households. Gw<strong>and</strong>a. Tsholotsho <strong>and</strong> Zimuto. 1990/91·2000/01<br />

Activity Gw<strong>and</strong>a ,.shelotsho Zimuto<br />

Sorghwn+ kraal manure ·4.00 ·2.30<br />

Sorghum +groundnut <strong>in</strong>tercrop ·0.92 ·1.10<br />

Sorghwn +cowpea <strong>in</strong>tercrop ·0.91 ·0.40<br />

Sorghum +18N ·0.69 ·0.55<br />

Sorgum +pit manure ·0.67 ·0.52<br />

Sorghum+9N ·0.53 ·0.31<br />

Sorghum +kraal manure +18N ·0.41 ·0.31<br />

Sorghum +cowpea rotation ·0.37 0.09<br />

Sorghum +kraal +9N ·0.36 ·0.26<br />

Sorghum +groundnut rotation ·0.25 ·0.21<br />

Maize +cowpea <strong>in</strong>tercrop ·0.14 ·0.23 0.14<br />

Maize+18N ·0.13 0.02 0.13<br />

Maize +groundnut <strong>in</strong>tercrop ·0.09 .·0.33 0.09<br />

Maize +pit manure 0.02 0.28 ·0.02<br />

Maize +kraal +9N 0.04 0.29 ·0.04<br />

maize+kraal+ 18N 0.09 0.34 ·0.09<br />

Maize +cowpea rotation 0.09 0.55 ·0.09<br />

Maize +kraal manure 0.16 0.27 ·0.16<br />

Maize +groundnut rotation 0.24 0.26 ·0.24<br />

Maize+9N 0.31 0.53 ·0.31<br />

Maize +long pigeonpea <strong>in</strong>tercrop 0.56 0.19 0.14<br />

maize +medium pigeonpea <strong>in</strong>tercrop 0.61 0.53 0.13<br />

POSB sav<strong>in</strong>gs account 0.65 0.74 0.80<br />

Maize +long pigeonpea rotation 0.89 0.74 ·0.02<br />

Maize +medium pigeonpea rotation 1.13 0.95 ·0.04<br />

Urban labor market 7.96 7.57 7.80<br />

Conclusion <strong>and</strong> Recommendations<br />

The paper evaluates the attractiveness of alternative<br />

soil fertility management technologies <strong>for</strong> adoption<br />

by farm households with vary<strong>in</strong>g resources, <strong>and</strong><br />

risk preferences. Results <strong>in</strong>dicate that maize-cowpea<br />

<strong>and</strong> maize-groundnut rotations <strong>and</strong> maize-pigeon<br />

pea <strong>in</strong>tercrops <strong>and</strong> rotations are good <strong>in</strong>vestment<br />

opportunties <strong>for</strong> diversification with traditional<br />

maize <strong>and</strong> sorghum soil-m<strong>in</strong><strong>in</strong>g practices currently<br />

be<strong>in</strong>g pursued by the majority of farm households.<br />

Consequently, these legume-based soil fertility<br />

Table 5. Risk diversification <strong>in</strong>dices of alternative maize <strong>and</strong><br />

sorghum soil fertility management technologies <strong>for</strong> de facto<br />

female·headed households. Gw<strong>and</strong>a. Tsholotsho <strong>and</strong> Zimuto.<br />

1990/91·2000/01<br />

Activity Gw<strong>and</strong>a Tsholotsho Zimuto<br />

Sorghum+ kraal manure ·3.64 ·1.52<br />

Sorghum+ groundnut <strong>in</strong>tercrop ·0.84 ·1.20<br />

Sorghum +cowpea <strong>in</strong>tercrop ·0.81 ·0.62<br />

Sorgum +pit manure ·0.60 ·0.48<br />

Sorghum +18N ·0.58 ·0.82<br />

Maize +cowpea <strong>in</strong>tercrop ·0.44 ·0.76 ·0.38<br />

Sorgbum +cowpea rotation ·0.35 ·0.16<br />

Maize +groundnut <strong>in</strong>tercrop ·0.33 ·0.72 ·2.51<br />

Sorghum +groundnut rotation ·0.32 ·0-'5<br />

Sorghum+9N ·0.31 ·0.39<br />

Sorghum +kraal manure+ 18N ·0.30 ·0.55<br />

Sorghum +kraal +9~ ·0.28 ·0.72<br />

Maize+18N ·0.26 ·0.60 ·0.18<br />

Maize +pit manure ·0.09 ·0.25 ·0.10<br />

Maize +kraal +9N ·0.05 ·0.19 ·0.03<br />

ma.ize +kraal +18N ·0.03 ·0.18 0.05<br />

Maize +cowpea rotation ·0.03 ·0.03 ·0.28<br />

Maize+kraal manure 0.01 ·0.24 ·0.12<br />

Maize +groundnut rotalion 0.08 ·0.13 ·1.14<br />

Maize+9N 0.24 0.05 0.16<br />

Maize+ long'pigeon pea <strong>in</strong>tercrop 0.49 0.52 ·0.01<br />

POSB sav<strong>in</strong>gs account 0.. 50 0.30 ·0.22<br />

maize +medium pigeonpea <strong>in</strong>tercrop 0.53 0.20 0.68<br />

Maize +long pigeonpea rotation 0.80 0.45 1.18<br />

Maize +medium pigeon pea rotation 0.99 0.76 1.34<br />

Urban labor market 8.13 7.42 8.14<br />

The risk analysis presented <strong>in</strong> this paper is a first<br />

cu~ to evaluate technologies that merit further<br />

study. In addition to meet<strong>in</strong>g requirements <strong>for</strong> risk<br />

<strong>and</strong> return, new technologies must fit with the re­<br />

source boUndaries of farmers <strong>and</strong> management capabilities.<br />

Mathematical optimization provides<br />

tools <strong>for</strong> a more detailed analysis of the benefits <strong>and</strong><br />

adoption potential of the technologies under the se­<br />

vere resource <strong>and</strong> <strong>in</strong>stitutional constra<strong>in</strong>ts faced by<br />

households <strong>in</strong> semi-arid areas.<br />

production technologies are likely to be adopted by<br />

farmers. Significant ga<strong>in</strong>s can also result from<br />

diversification <strong>in</strong>to non-farm assets such as POSB<br />

sav<strong>in</strong>gs accounts <strong>and</strong> urban employment.<br />

However, more detailed analysis us<strong>in</strong>g<br />

mathematical programm<strong>in</strong>g is needed to evaluate<br />

the· feasibilibity <strong>and</strong> sensitivity of options to<br />

changes <strong>in</strong> environmental factors.<br />

Reference<br />

Moss B.C., Weldon N.R. <strong>and</strong> Feartherstone A.M.,<br />

1991. A simple approach to evalaut<strong>in</strong>g risk<br />

diversification opportunties. Journal of American<br />

Society of Farm Managers <strong>and</strong> Rural Appraisors<br />

55:20-24.<br />

84 <strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 6. Risk diversification <strong>in</strong>dices of alternative maize <strong>and</strong><br />

sorghum soil fertility management technologies <strong>for</strong> de jure female·<br />

headed households, Gw<strong>and</strong>a, Tsholotsho <strong>and</strong> Zimuto, 1990/91·<br />

2000/01<br />

Activity<br />

Sorghum +kraal manure<br />

Sorghum +groundnut <strong>in</strong>tercrop<br />

Maize +cowpea <strong>in</strong>tercrop<br />

Sorghum +cowpea <strong>in</strong>tercrop<br />

Sorghum +18N<br />

Sorgum +pit manure<br />

Sorghum +kraal +9N<br />

Maize +groundnut <strong>in</strong>tercrop<br />

Sorghum+9N<br />

Sorghum +kraal manure +18N<br />

Sorghum +groundnut rotation<br />

Maize+ 18N<br />

Sorghum +cowpea rotation<br />

Maize +kraal manure<br />

Maize +pit manure<br />

Maize+kraal+9N<br />

maize +kraal +18N<br />

Maize +groundnut rotation<br />

Maize +cowpea rotation<br />

Maize+9N<br />

POSB sav<strong>in</strong>gs account<br />

Maize+long pigeonpea <strong>in</strong>tercrop<br />

maize +medium pigeonpea <strong>in</strong>tercrop<br />

Maize +long pigeonpea rotation<br />

Maize+medium pigeonpea rotation<br />

Urban labor market<br />

Gw<strong>and</strong>a<br />

·3.55<br />

·0.79<br />

·0.58<br />

·0.54<br />

·0.49<br />

·0.44<br />

·0.33<br />

·0.23<br />

·0.22<br />

·0.20<br />

·0.17<br />

·0.11<br />

·0.07<br />

·0.05<br />

0.07<br />

0.09<br />

0.12<br />

0.25<br />

0.30<br />

0.43<br />

0.44<br />

0.51<br />

0.56<br />

0.83<br />

1.08<br />

4.02<br />

Tsholotsho<br />

·1.81<br />

·0.82<br />

·0.70<br />

·0.35<br />

·0.59<br />

·0.55<br />

0.01<br />

·0.78<br />

·0.22<br />

·0.38<br />

·0.21<br />

·0.68<br />

0.06<br />

·0.60<br />

·0.44<br />

·0.39<br />

·0.31<br />

0.02<br />

0.34<br />

·0.20<br />

0.72<br />

0.24<br />

0.52<br />

0.83<br />

0.89<br />

8.17<br />

Zimuto<br />

·0.61<br />

·3.11<br />

0.54<br />

0.44<br />

0.51<br />

0.65<br />

0.78<br />

·0.81<br />

·0.13<br />

0.88<br />

0.27<br />

0.51<br />

0.70<br />

1.04<br />

1.09<br />

6.98<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 85


EVALUATING MUCUNA GREEN MANURE TECHNOLOGIES IN SOUTHERN<br />

AFRICA THROUGH CROP SIMULATION MODELLING<br />

Abstract<br />

ZONDAI SHAMUDZARIRA<br />

CIMMYT-Zimbabwe, PO Box MP163, Mt Pleasant, Harare, Zimbabwe<br />

After an exam<strong>in</strong>ation of opportunities <strong>for</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>and</strong> improv<strong>in</strong>g soil fertility under smallholder systems, a case<br />

study us<strong>in</strong>g crop growth simulation <strong>in</strong> conjunction with historical weather data is presented. The potential <strong>for</strong> an improved<br />

resource management system that <strong>in</strong>corporates mucuna (Mucuna pruriens) to improve yields of the follow<strong>in</strong>g<br />

maize crop <strong>in</strong> the drier areas of Zimbabwe is assessed with a crop growth simulation model. In this paper, APSIM was<br />

configured to simulate maize yields from crops receiv<strong>in</strong>g various amounts of N, or from an unfertilised maize crop follow<strong>in</strong>g<br />

a mucuna crop. To take account of different levels of risk aversion, the technologies are exam<strong>in</strong>ed <strong>in</strong> probabilistic<br />

terms based on the cumulative distribution junctions of yield from 46 years of simulations.<br />

The analysis highlights large potential benefits from the use of mucuna as a green manure crop. The reason frequently<br />

proposed to expla<strong>in</strong> low uptake rates ofgreen manure technologies by smallholder farmers is the loss <strong>in</strong> maize yield dur<strong>in</strong>g<br />

the year when the green manure crop is <strong>in</strong> thefield. In environments where cont<strong>in</strong>uous maize cropp<strong>in</strong>g yields between<br />

150 <strong>and</strong> 500 kg gra<strong>in</strong>/ha, rotation with mucuna was predicted to give maize yield <strong>in</strong>crements of over 1000 kg/ha<br />

when the mucuna is harvested at maturity <strong>and</strong> between 3000-5000 kg/ha when <strong>in</strong>corporated at flower<strong>in</strong>g. Measured<br />

maize gra<strong>in</strong> yield <strong>in</strong>creases after mucuna <strong>in</strong> Malawi are of the order of 100-200%. These results are prov<strong>in</strong>g useful <strong>for</strong><br />

<strong>Soil</strong> Fert Net members who have carried out a lot of research on velvet bean <strong>and</strong> other green manures <strong>for</strong> the region <strong>in</strong><br />

recent years.<br />

Key words: APSIM model, green manure, mucuna, computer simulation, semi-arid zones<br />

Introduction<br />

Maize is the primary food crop <strong>in</strong> Zimbabwe <strong>and</strong><br />

occupies about one-half of the total agricultural<br />

cropl<strong>and</strong>. In the smallholder sector, maize yields<br />

are low <strong>and</strong> variable primarily due to low <strong>in</strong>herent<br />

<strong>and</strong> decl<strong>in</strong><strong>in</strong>g soil fertility (Grant, 1981) coupled<br />

with low <strong>and</strong> erratic ra<strong>in</strong>fall. About 70% of Zimbabwe<br />

is covered with coarse s<strong>and</strong>y soil derived<br />

mostly from granite. These soils are low <strong>in</strong> N, P <strong>and</strong><br />

S <strong>and</strong> low <strong>in</strong> nutrient reserves <strong>and</strong> exchange capacity<br />

due to low organic matter <strong>and</strong> clay content. The<br />

risks associated with arable crop production <strong>in</strong><br />

these areas limits the potential use of high <strong>in</strong>put<br />

strategies by smallholder farmers. Average maize<br />

yields of between 1.0 to 1.5 t/ha are common under<br />

smallholder conditions as opposed to yields of<br />

around 5.0 t/ha <strong>in</strong> the large-scale commercial farm<strong>in</strong>g<br />

sector. Mataruka <strong>and</strong> Wh<strong>in</strong>gwiri (1988) identified<br />

soil moisture stress, poor soil <strong>and</strong> fertiliser<br />

management, low plant populations, late plant<strong>in</strong>g,<br />

poor weed<strong>in</strong>g <strong>and</strong> labour bottlenecks as some of the<br />

major factors limit<strong>in</strong>g maize productivity under<br />

smallholder conditions.<br />

Researchers <strong>in</strong> Zimbabwe <strong>and</strong> Malawi under the<br />

Rockefeller-funded <strong>Soil</strong> <strong>Fertility</strong> Network have<br />

come up with a selection of soil fertility technologies<br />

that offer the 'best bets' <strong>for</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>and</strong><br />

improv<strong>in</strong>g the soil fertility of smallholder maize<br />

systems <strong>in</strong> a profitable <strong>and</strong> adoptable way. The<br />

range of technologies be<strong>in</strong>g tried out <strong>in</strong>clude:<br />

• Flexible m<strong>in</strong>eral N management based on ra:nfall<br />

<strong>for</strong> maize<br />

• Soybean <strong>for</strong> communal areas<br />

• Lim<strong>in</strong>g of granitic s<strong>and</strong>s<br />

• Ro~ations with gra<strong>in</strong> legumes <strong>and</strong> maize<br />

• Sole crop <strong>and</strong> <strong>in</strong>tercropped legume green manures.<br />

Background research papers on these technologies<br />

are presented <strong>in</strong> Wadd<strong>in</strong>gton, MlIrwira, KlImwenda,<br />

Hikwa <strong>and</strong> Tagwira (1998) .<br />

<strong>Green</strong> manure technologies are not new <strong>in</strong> Zimbabwe,<br />

as some work was reported as far back as<br />

the 1920s to 1940s (Metelerkamp, 1988), although<br />

use of green manures has been mostly on large-scale<br />

commercial farms with some <strong>in</strong><strong>for</strong>mal reports of use<br />

under smallholder conditions (Hikwa, et al. 1998).<br />

Rattray.<strong>and</strong> Ellis (1952) noted that maize yield responses<br />

were larger when maize followed mucuna<br />

than after any of the other green manures used extensively<br />

through the 1950s. Recently there has<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 87


een renewed <strong>in</strong>terest <strong>in</strong> green manure technologies<br />

cis the price of mmeralfertiliser has <strong>in</strong>creased.<br />

The Risk Management Project (RMPJ is a project under<br />

the CIMMYT Natural Resources Management<br />

Group with a broad objective of improv<strong>in</strong>g farm<br />

<strong>in</strong>comes <strong>and</strong> food self-reliance <strong>for</strong> poor smallholder<br />

farmers <strong>in</strong> Zimbabwe <strong>and</strong> Malawi l;>y address<strong>in</strong>g<br />

problems of low soil fertility, climatic variability,<br />

low <strong>and</strong> unstable agro ecosystem productivity<br />

through the use of simulation modell<strong>in</strong>g <strong>and</strong> farmer<br />

participatory research. Risk Management Project<br />

staff have been work<strong>in</strong>g <strong>in</strong> very close collaboration<br />

with a group of 14 farmers <strong>in</strong> the Zimuto smallholder<br />

area of Masv<strong>in</strong>go s<strong>in</strong>ce 1999. The work has<br />

focussed on farmer-led on-farm experimentation<br />

with several legume-based soil fertility technologies<br />

com<strong>in</strong>g out of the <strong>Soil</strong> <strong>Fertility</strong> Network trials. The<br />

approach used aims to enable farmers, together<br />

with researchers, to analyse <strong>and</strong> underst<strong>and</strong> farmer<br />

strategies <strong>and</strong> practices of soil fertility management<br />

<strong>and</strong> to identify technologies that both meet farmers'<br />

needs <strong>and</strong> are susta<strong>in</strong>able. Prelim<strong>in</strong>ary results from<br />

the fieldwork <strong>and</strong> from focussed group discussions<br />

with the farmers <strong>in</strong>dicate the robustness of mucuna<br />

under smallholder conditions <strong>and</strong> great <strong>in</strong>terest <strong>in</strong><br />

the mucuna technology amongst the farmers.<br />

However, selection of an appropriate technology<br />

<strong>and</strong> management options is complicated by climatic<br />

variability. This means that management options<br />

must be assessed on a probabilistic basis. Mo.reover,<br />

the development of appropriate technologies,<br />

<strong>and</strong> the test<strong>in</strong>g of the components, is complicated<br />

by season-to-season variability. Experiments to test<br />

different technologies must be run over many seasons<br />

to obta<strong>in</strong> reliable results. This is expensive<br />

<strong>and</strong>, <strong>in</strong> many cases, impracticaL Simulation models,<br />

which <strong>in</strong>tegrate the major physical <strong>and</strong> biological<br />

processes, provide a solution to this problem.<br />

Simulation Study<br />

Simulations were carried out us<strong>in</strong>g the APSIM<br />

(Agricultural Production Systems SIMuJator) model<br />

<strong>in</strong> conjunction with a 47-year long-term weather<br />

dataset <strong>for</strong> Masv<strong>in</strong>go, which is around 30 km south<br />

of the study area <strong>and</strong> about 50 mm/year drier. The<br />

APSIM software system allows a wide range of configurations<br />

of crops, sequences, mixtures <strong>and</strong> management<br />

practices to be simulated. It provides a<br />

flexible structure <strong>for</strong> the simulation of climatic <strong>and</strong><br />

soil management effects on growth of crops <strong>in</strong> farm<strong>in</strong>g<br />

systems <strong>and</strong> changes <strong>in</strong> the resource base. A<br />

detaileQ>~scription pf APSIM, <strong>in</strong>clud<strong>in</strong>g its capabilities,_d~~Jgn<br />

features, structure, user <strong>in</strong>terface <strong>and</strong><br />

the derivation of its ma<strong>in</strong> biological <strong>and</strong> environmental<br />

modules is provided by McCown, Hammer,<br />

Hargreaves, Holzworth <strong>and</strong> Freebaim (1995).<br />

The simulation set-up consisted of grow<strong>in</strong>g either:<br />

1. A maize crop, receiv<strong>in</strong>g various levels of N,<br />

year after year. The N levels ranged from 0 kg<br />

N /ha to 100 kg N /ha.<br />

2. A crop of mucuna from the open<strong>in</strong>g ra<strong>in</strong>s of the<br />

season. The crop of mucuna was managed <strong>in</strong><br />

two ways:<br />

a) either the crop was grown to maturity<br />

<strong>and</strong> harvested on the 1 st of July with<br />

60% of the residues <strong>in</strong>corporated on the<br />

1 st of November just be<strong>for</strong>e maize plant<strong>in</strong>g<br />

(Management 1).<br />

b) or, the mucuna is harvested at the beg<strong>in</strong>n<strong>in</strong>g<br />

of gra<strong>in</strong> fill with 90% of the<br />

mucuna material <strong>in</strong>corporated at that<br />

time (Management 2).<br />

3. The muct<strong>in</strong>a crop was grown <strong>in</strong> rotation with<br />

an unfertilised maize crop (cv. SC501). Two<br />

cropp<strong>in</strong>g systems were simulated <strong>for</strong> both residue<br />

management systems with either one maize<br />

crop after every mucuna crop (mucuna-maize<br />

rotation) or two maize crops after every mucuna<br />

crop (mucuna-maize-maize rotatioll).<br />

Results <strong>and</strong> Discussions<br />

Simuiation runs on maize response to different<br />

amounts of m<strong>in</strong>eral fertiliser <strong>and</strong> on maize follow<strong>in</strong>g<br />

a mucuna crop were done us<strong>in</strong>g the long-term<br />

climatic data from Masv<strong>in</strong>go. On moderate fertility<br />

soils typical of most of the topl<strong>and</strong> fields found <strong>in</strong><br />

Zimuto, maize gra<strong>in</strong> yields <strong>in</strong> the absence of m<strong>in</strong>eral<br />

fertilisers were simulated to be, on average, 494<br />

kg/ha. The yields from such unfertilised crops<br />

range from total crop failure to about 1600 kg/ha.­<br />

These values are similar to values quoted elsewhere<br />

from on-farm <strong>and</strong> on-station results (Shamudzarira<br />

<strong>and</strong> Robertson, 2002) <strong>and</strong> are similar to measured<br />

yields <strong>for</strong> unfertilised maize <strong>in</strong> the area. Figure 1<br />

shows the simulated responses to a range of different<br />

amounts of m<strong>in</strong>eral fertiliser additions over<br />

seven seasons on a typica'lly low fertility soil. There<br />

is enormous variation <strong>in</strong> maize response to any<br />

given rate of fertiliser applied, with -the range be<strong>in</strong>g<br />

greater at higher rates of N applied. Smallholder<br />

farmers <strong>in</strong> this area normally cite the "risk" associated<br />

with the wide variations <strong>in</strong> yield with N application<br />

(Figure 1) as one of the reasons they use<br />

small amounts of m<strong>in</strong>eral fertilisers. The simulations<br />

also show that <strong>in</strong> 20% of the seasons there is<br />

no benefit <strong>in</strong> use of m<strong>in</strong>eral fertilisers <strong>in</strong> these environments.<br />

88<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


4500<br />

4000 .<br />

3500<br />

to<br />

'" 3000 - , "-··1992<br />

. • . 1993<br />

0><br />

0<<br />

-0 2 500 - .... - . 1994<br />

1\j --1995<br />

2000<br />

--_·01(·····_·1996<br />

>=<br />

c<br />

'm<br />

i!l<br />

1500<br />

1000<br />

500<br />

0<br />

0 20 40 60 80 100<br />

N rate kg/h.<br />

- - 1997<br />

···--+-­ 1996<br />

Figure 1. Maize gra<strong>in</strong> yield responses on a low fertility soil to<br />

vary<strong>in</strong>g amounts of applied N(kg/hal simulated us<strong>in</strong>g tong-term<br />

weather data from Masv<strong>in</strong>go<br />

Agronomic nitrogen use efficiencies (NUEs) were<br />

calculated from the simulated maize yields as extra<br />

kg gra<strong>in</strong> produced divided by extra kg of N applied.<br />

Averaged over all years, agronomic NUEs<br />

decl<strong>in</strong>ed from around 45-56 kg gra<strong>in</strong> per kg of applied<br />

N at low application rates to about 33-38 at<br />

high N rates. In Figure 2, the agronomic NUE <strong>for</strong> a<br />

crop receiv<strong>in</strong>g 10 kg N/ha is plotted aga<strong>in</strong>st the<br />

yield <strong>for</strong> an unfertilised maize crop. The data suggests<br />

that responses to low rates of N (commonly<br />

used by smallholder farmers) are generally larger<br />

on low than with high fertility soils.<br />

Simulations were also conducted <strong>for</strong> the same climatic<br />

record <strong>for</strong> maize yields follow<strong>in</strong>g a mucuna<br />

crop on a moderate fertility s<strong>and</strong>y soil. The mucuna<br />

was managed <strong>in</strong> two ways: - either harvested at maturity<br />

(1 July) <strong>and</strong> then <strong>in</strong>corporated just be<strong>for</strong>e<br />

maize plant<strong>in</strong>g (Management 1), or harvested <strong>and</strong><br />

<strong>in</strong>corporated at flower<strong>in</strong>g (Management 2). For<br />

each management system, two cycles of simulations<br />

were done, one <strong>in</strong> which a s<strong>in</strong>gle crop of maize was<br />

grown follow<strong>in</strong>g mucuna <strong>and</strong> the other <strong>in</strong> which<br />

two maize crops were grown <strong>in</strong> succession after a<br />

mucuna crop.<br />

Despite hav<strong>in</strong>g fewer seasons <strong>in</strong> which maize is<br />

grown <strong>in</strong> the mucuna-maize <strong>and</strong> mucuna-maizemaize<br />

rotations when compared to cont<strong>in</strong>uous sole<br />

maize, maize gra<strong>in</strong> yields averaged over the 47-year<br />

record are predicted to be 3-5 times higher <strong>in</strong> rotations<br />

that <strong>in</strong>clude mucuna (Figure 3). With cont<strong>in</strong>uous<br />

sole maize cropp<strong>in</strong>g, just over 20 tonnes of<br />

maize gra<strong>in</strong> is realised over 47 years compared to<br />

totals of between 80 <strong>and</strong> 120 tonnes <strong>in</strong> rotations that<br />

<strong>in</strong>clude mucuna (Figure 4).<br />

At a 50% probability level, unfertilised maize gra<strong>in</strong><br />

yields are 3.5-4.0 t/ha <strong>for</strong> the mucuna-maize rotations<br />

<strong>and</strong> 3.5-4.5 t/ha <strong>for</strong> the mucuna-maize-maize<br />

rotations (Figure 5). These yields are far greater<br />

than the 200-300 kg/ha obta<strong>in</strong>ed <strong>for</strong> cont<strong>in</strong>uous sole<br />

maize cropp<strong>in</strong>g at the same probability level.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

. .<br />

~ ..e ".<br />

. .' / . '.<br />

YIeld response 10 10 kg Nnw<br />

Figure 2. Simulated maize yield response to a 10 kg N/ha <br />

application <strong>for</strong> a crop grown on soils of different fertility status <br />

300• . 0,-______________---,<br />

025 00.0+_-------------~~<br />

i 2(100 .0<br />

.<br />

>. I ~OO.O+_------~~<br />

.,<br />

•<br />

i 1 00 0 0 +_------~<br />

Figure 3. Mean maize gra<strong>in</strong> yields <strong>for</strong> the 47·year record <strong>for</strong><br />

different cropp<strong>in</strong>g systems<br />

OCOOOr-----------------------------------~<br />

~~------------------~----------~~.~<br />

70000+_----------------~----~~~=---~<br />

~~+-------------------~~~----~~--~<br />

.~<br />

~50000~--------------~~_,~~--------~<br />

jf~+_-----------~L-~~-------------~<br />

i~r-------~#7~------------------~<br />

u~+_---~~-------~--~~----------~<br />

l0000+_~~~~~------------------------_i<br />

SoIematze 'MxlJna-rreize1 - Mucuna-maize2<br />

- 'Muruna-maize-rT'9ize1 .... 'Muruna-rrnlze-malZ.e2<br />

Figure 4. Cumulative maize gra<strong>in</strong> production over 47 years <strong>for</strong> the<br />

different production systems<br />

The loss <strong>in</strong> maize production from the piece of l<strong>and</strong><br />

where mucuna is grown <strong>in</strong> the first season, coupled<br />

with labour constra<strong>in</strong>ts, has been given by many<br />

workers as one of the limitations <strong>in</strong> the uptake of<br />

green manure technologies by farmers (Kumwenda,<br />

Wadd<strong>in</strong>gton, Snapp, Jones <strong>and</strong> Blackie, 1997).<br />

However, <strong>in</strong> Northern Malawi on fairly good s<strong>and</strong>y<br />

soils, a one season sole crop green manure can <strong>in</strong>crease<br />

maize yields from 200-300 kg/ha to up to 4<br />

000 kg/ha. The data presented here also suggests at<br />

the 50% probability level, a yield surplus from an<br />

,~ .<br />

89


unfertilised maize crop of over 2000-3000 kg <strong>in</strong><br />

maize output <strong>in</strong> mucuna-maize rotations <strong>and</strong> 5000­<br />

8000 kg <strong>in</strong> mucuna-maize-maize rotations as opposed<br />

to cont<strong>in</strong>uous sole maize cropp<strong>in</strong>g <strong>in</strong> situations<br />

where no m<strong>in</strong>eral fertilisers are used (Figure<br />

6). Muza <strong>and</strong> Mapfumo (1998) reported a trebl<strong>in</strong>g<br />

of maize yields <strong>in</strong> Chihota after <strong>in</strong>corporation of<br />

mucuna compared to an unfertilised maize crop<br />

that yielded 466 kg/ha.<br />

Maize gra<strong>in</strong> yields from cont<strong>in</strong>uous sole cropp<strong>in</strong>g<br />

without fertilisers show a slight decl<strong>in</strong>e with <strong>in</strong>crease<br />

<strong>in</strong> amount of seasonal ra<strong>in</strong>fall (Figure 7). In<br />

the rotation systems <strong>in</strong>clud<strong>in</strong>g mucuna however,<br />

there is a strong positive relationship between gra<strong>in</strong><br />

yield <strong>and</strong> seasonal ra<strong>in</strong>fall. In environments where<br />

seasonal ra<strong>in</strong>fall is below 350 mm, average maize<br />

gra<strong>in</strong> yields are higher with the mucuna-maizemaize<br />

rotation than with the mucuna-maize rotation.<br />

Where seasonal ra<strong>in</strong>fall is greater than 350<br />

mm, mean yields are higher with mucuna-maize<br />

rotations than <strong>for</strong> two maize crops after every mucuna<br />

crop.<br />

1.00r-----------------A::::::o-i<br />

0.80 t--------------::,..=.+~'------1<br />

~<br />

'Zi<br />

!0.00 . ..• . •..• "_'_' __ ••• __ • _. ____/; _ ~ ,.. " __ __ ___________ ___ ___ _<br />

ro 0.40 - I / / <br />

-s <br />

E<br />


ers, particularly P, to the legume to have reasonable<br />

biomass production <strong>for</strong> <strong>in</strong>corporation (Hikwa et al.,<br />

1998).<br />

Conclusions<br />

Crop growth simulation coupled to long-term<br />

weather data can assist <strong>in</strong> technology selection by<br />

generat<strong>in</strong>g probabilistic estimates of crop yield. The<br />

potential benefit of green manure technologies<br />

through field experimentation has been underestimated<br />

due to the short-term perspective of most<br />

field trials.<br />

The <strong>for</strong>ego<strong>in</strong>g analysis has highlighted large potential<br />

benefits from use of mucuna as a green manure<br />

crop. In environments where cont<strong>in</strong>uous maize<br />

cropp<strong>in</strong>g yields between 150 <strong>and</strong> 500 kg/ha, rotation<br />

with mucuna gives maize yield <strong>in</strong>crements of<br />

over 1000 kg/ha when the mucuna is harvested at<br />

maturity <strong>and</strong> between 3000-5000 kg/ha when <strong>in</strong>corporated<br />

at flower<strong>in</strong>g. The reason frequently proposed<br />

to expla<strong>in</strong> low uptake rates of green manure<br />

technologies by smallholder farmers is the loss <strong>in</strong><br />

maize yield dur<strong>in</strong>gthe year when the green manure<br />

crop is <strong>in</strong> the field.<br />

Future studies need to confirm that the model has<br />

not overestimated the response to mucuna or that<br />

tills response is not limited by factors not considered<br />

<strong>in</strong> the model (e.g. weeds, pests <strong>and</strong> diseases,<br />

other nutrients). Several workers have reported difficulty<br />

<strong>in</strong> establish<strong>in</strong>g legumes under smallholder<br />

conditions cit<strong>in</strong>g soil <strong>in</strong>fertility as the ma<strong>in</strong> factor.<br />

The residual effects from m<strong>in</strong>eral fertiliser management<br />

on cereals on legume productivity have not<br />

received much attention <strong>and</strong> warrant <strong>in</strong>vestigation.<br />

Socio-economic research needs to· assess farmer attitudes<br />

toward risk <strong>and</strong> exam<strong>in</strong>e other constra<strong>in</strong>ts to<br />

mucuna use (e.g. access to capital, access to maize<br />

gra<strong>in</strong> storage facilities, farmers' underst<strong>and</strong><strong>in</strong>g of<br />

the full benefits of legumes <strong>in</strong> these systems, alternative<br />

uses of mucuna).<br />

References<br />

Chavunduka, O.M. 1978. African attitudes to conservation.<br />

Rhodesian Agriwltural Journal 75(3):61­<br />

63.<br />

Grant, P.M. 1967. The fertility of s<strong>and</strong>veld soil under<br />

cont<strong>in</strong>uous cultivation. Part II: The effect of<br />

manure <strong>and</strong> nitrogen fertiliser on the base status<br />

of the soil. Rhodesia/Zumbia/Malawi Journal ofAgricultural<br />

Research 5:117-128.<br />

Grant, P.M. 1981. The fertilisation of s<strong>and</strong>y soils <strong>in</strong><br />

peasant agriculture. Zimbabwe Agricultural JournaI78(5):169-175.<br />

Hikwa, 0, M. Murata, F. Tagwira, C. Chiduza, H.<br />

Murwira, L. Muza <strong>and</strong> S. Wadd<strong>in</strong>gton 1998. Per<strong>for</strong>mance<br />

of green manure legumes on exhausted<br />

soils <strong>in</strong> northern Zimbabwe: A soil fertility<br />

network trial. In: S.K Wadd<strong>in</strong>gton, H.K.<br />

Murwira, J.DT. Kumwenda, o. Hikwa <strong>and</strong> F.<br />

Tagwira (eds), <strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong> Maize<br />

Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe.<br />

<strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT-Zimbabwe, Harare,<br />

Zimbabwe. pp. 81-84.<br />

Kumwenda, J.DT., S.K Wadd<strong>in</strong>gton, S5. Snapp, R.<br />

B. Jones, <strong>and</strong> M.J. Blackie 1997. <strong>Soil</strong> fertility<br />

management <strong>in</strong> Southern Africa. In: o. Byerlee<br />

<strong>and</strong> C.K. Eicher, eds. Africa's Emerg<strong>in</strong>g Maize<br />

Revolution. Lynne Rienner, Boulder, Colorado,<br />

USA, pp. 157-172.<br />

Mataruka, O.F. <strong>and</strong> E.E. Wh<strong>in</strong>gwiri 1988. Maize<br />

production <strong>in</strong> communal areas of Zimbabwe <strong>and</strong><br />

the research options <strong>for</strong> improv<strong>in</strong>g productivity.<br />

In: B. Gelaw, ed. Towards Self Sufficiency. Proceed<strong>in</strong>gs<br />

of the Second Eastern, Central <strong>and</strong> Southern Africa<br />

Regional Maize Workshop. CIMMYT Zimbabwe<br />

<strong>and</strong> the College Press, Harare, Zimbabwe.<br />

pp. 332-346.<br />

McCown, KL., G.L. Hammer, J.N.G. Hargreaves, O.<br />

P. Holzworth, <strong>and</strong> O.M. Freebairn 1995. APSIM:<br />

a novel software system <strong>for</strong> model development,<br />

model test<strong>in</strong>g, <strong>and</strong> simulation <strong>in</strong> agricultural<br />

systems research. AgriclIltural Systems 50:255­<br />

271.<br />

Muza, L. <strong>and</strong> P. Mapfumo, 1998. Constra<strong>in</strong>ts <strong>and</strong><br />

opportunities <strong>for</strong> legumes <strong>in</strong> the fertility enhancement<br />

of s<strong>and</strong>y soils <strong>in</strong> Zimbabwe. In:<br />

Maize Production T!!clll1ology <strong>for</strong> til!! FlItllr!!: Clrallenges<br />

<strong>and</strong> Opportllllitil!S. Proceed<strong>in</strong>gs of the Sixth<br />

Eastern <strong>and</strong> Southern Africa Regional Maize<br />

Conference, 21-25 September 1998. CIMMYT <strong>and</strong><br />

EARO, Addis Ababa, Ethiopia pp. 214-217.<br />

Shamudzarira, Z. <strong>and</strong> M.J. Robertson, 2002. Simulat<strong>in</strong>g<br />

response of maize to nitrogen fertiliser <strong>in</strong><br />

semi-arid Zimbabwe. Experilllel1tal AgriclIltllre<br />

38:79-96.<br />

Wadd<strong>in</strong>gton, S.R., H.K. Murwira, J.DT. Kumwenda,<br />

o. Hikwa <strong>and</strong> F. Tagwira, (Editors) 1998.<br />

<strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong> Maize-Based S.If~tI'II1S ill<br />

Malawi <strong>and</strong> Zimbauw!!. Proceed<strong>in</strong>gs of the <strong>Soil</strong><br />

<strong>Fertility</strong> Network Results <strong>and</strong> Plann<strong>in</strong>g Workshop,<br />

7-11 July, Africa University, Mutare, Zimbabwe.<br />

<strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT-Zimbabwe,<br />

Harare, Zimbabwe. 312 pp.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

91


Questions <strong>and</strong> Answers<br />

Screen<strong>in</strong>g of Annual <strong>Legumes</strong> <strong>for</strong> Adaptation <strong>and</strong> Use<br />

To Paul Mapfumo, et al.<br />

Q:If the <strong>in</strong>digenous legumes dom<strong>in</strong>ate natural<br />

fallows, why is maize productivity so low after 1-2<br />

years of natural fallows? .<br />

A: The current weed management approach <strong>in</strong> most<br />

farm<strong>in</strong>g areas is aimed atldeplet<strong>in</strong>g the weed<br />

(<strong>in</strong>clud<strong>in</strong>g these legumes) seed bank through clean<br />

weed<strong>in</strong>g. There<strong>for</strong>e the current populations are<br />

probably too low to make an impact <strong>in</strong> the short<br />

term.<br />

Q: If these '<strong>in</strong>difallows' are left <strong>for</strong> two or more<br />

years, will they contribute more to productivity?<br />

A: The duration of the fallow does playa big role <strong>in</strong><br />

<strong>in</strong>digenous legume species diversity <strong>and</strong><br />

abundance. In Chikwaka, legume biomass from<br />

one-year fallows was far less than that from twoyear<br />

fallows <strong>for</strong> both species richness <strong>and</strong><br />

abundance.<br />

To Bongani Ncube, et al.<br />

Q: Would it be useful to separate the woody tissue<br />

from leaves <strong>and</strong> their separate response to soil<br />

fertility? Will the woody tissue immobilize N?<br />

A: Our research shows that it is beneficial to<br />

<strong>in</strong>co~porate both leaves <strong>and</strong> stems soon after<br />

harvest<strong>in</strong>g the gra<strong>in</strong>. Stems decompose<br />

substantially with<strong>in</strong> the year of <strong>in</strong>corporation<br />

(based on a five-year ra<strong>in</strong>fall period). There seems<br />

to be better synchrony <strong>for</strong> maize under this system.<br />

Q: Pigeon pea has been researched as long ago as<br />

the early 80's <strong>in</strong> Zimbabwe. Did you have an<br />

unsprayed crop <strong>and</strong> was spray<strong>in</strong>g economic?<br />

A: This was a nursery trial aimed at evaluat<strong>in</strong>g<br />

varieties, so we did not put up any control plots.<br />

Our aim was to assess what would grow <strong>in</strong> the<br />

semi-arid region of Matabelel<strong>and</strong>.<br />

C: There is a lot of <strong>in</strong><strong>for</strong>mation about pigeonpea<br />

adaptability <strong>in</strong> Zimbabwe from Matopos, Makaholi,<br />

Panmure <strong>and</strong> Mlezu. See Agronomy Institute<br />

Annual Reports from 1987, 1988 <strong>and</strong> 1989.<br />

A: It is very difficult to get access to this type of<br />

grey literature from the 1980's. None of the current<br />

literature we have reviewed makes reference to this<br />

early work.<br />

Q: Did the research look at "weed suppression" on<br />

the experiments? In Mozambique it was found that<br />

just two weed<strong>in</strong>gs were needed when pigeonpea<br />

was <strong>in</strong>tercropped with maize.<br />

A: Our aim was to keep the crop as clean ·as<br />

possible; so weed<strong>in</strong>g was done every time weed<br />

regeneration occurred.<br />

To Richard Foti, et al.<br />

Q:<br />

1. The 18 kg N ha- 1 <strong>for</strong> maize seems low <strong>for</strong> this<br />

heavy feeder crop. Is this practice not lead<strong>in</strong>g to<br />

nutrient m<strong>in</strong><strong>in</strong>g?<br />

2. Does the evaluation of the returns to a crop<br />

<strong>in</strong>clude the quantification of some of the more<br />

<strong>in</strong>direct crop values such as barter <strong>and</strong> exchange <strong>for</strong><br />

labour?<br />

A:<br />

1. Farmers are already m<strong>in</strong><strong>in</strong>g soils by not us<strong>in</strong>g any<br />

<strong>in</strong>organic fertilizers at all <strong>and</strong> are there<strong>for</strong>e<br />

<strong>for</strong>ego<strong>in</strong>g extra <strong>in</strong>come that they could generate<br />

from us<strong>in</strong>g low rates of fertilizers, earn more<br />

<strong>in</strong>come, buy more fertilizers <strong>and</strong> move upwards.<br />

Insist<strong>in</strong>g tha t farmers use rates of fertilizer that they<br />

cannot af<strong>for</strong>d <strong>and</strong> that fail to generate a competitive<br />

rate of return on their <strong>in</strong>vestment is retrogressive.<br />

2. Yes the analysis uses the opportunity cost of these<br />

resources <strong>and</strong> products. This will vary <strong>for</strong> <strong>and</strong> are<br />

different <strong>for</strong> different people <strong>and</strong> areas, but we<br />

cannot do the analysis <strong>for</strong> each <strong>and</strong> every farmer.<br />

So we need to compromise <strong>and</strong> do the analysis <strong>for</strong><br />

one set of prices. We then do sensitivity analysis to<br />

alternative prices.<br />

C: In response to the first question, low rates of N<br />

fertilizer is not the problem contribut<strong>in</strong>g to soil<br />

m<strong>in</strong><strong>in</strong>g. It is lack of <strong>in</strong>vestment <strong>in</strong> soil fertility <strong>in</strong><br />

general by smallholder farmers, be it <strong>in</strong>organics,<br />

legumes or manure. In dry regions, that is the cause<br />

of low productivity <strong>and</strong> low soil fertility. Low rates<br />

of N better suit the <strong>in</strong>vestment profile of semi arid<br />

farmers <strong>and</strong> there<strong>for</strong>e ,r~ "lore likely to be adopted<br />

than the higher "optimal" rates that arestill<br />

recommended.<br />

C: Work from southern Zimbabwe by ICRISAT +<br />

SDARMP have shown that 18 kg N ha- 1 gives the<br />

most economic response. Above 18 kg N ha- 1 often<br />

gives no more yield.<br />

Q : "Results from the @R.isk analysis appear very<br />

close to what farmers <strong>in</strong> semi arid areas are actually<br />

do<strong>in</strong>g anyway, except <strong>for</strong> cattle manure <strong>in</strong> the drier<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong>. <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

93


areas, which many cattle owners do not use. Please<br />

comment.<br />

A: Farmers believe that use of manure burns their<br />

crop <strong>in</strong> drier weather. This is because <strong>in</strong> the past<br />

AGRITEX has recommended high rates of<br />

application <strong>and</strong> farmers who have tried these have<br />

had bad experiences with the recommendations.<br />

Revis<strong>in</strong>g the recommendations downwards <strong>and</strong><br />

experiment<strong>in</strong>g with low quantities of manure is<br />

result<strong>in</strong>g <strong>in</strong> farmers revis<strong>in</strong>g their assessment of the<br />

risk associated with manure use <strong>and</strong> adopt<strong>in</strong>g<br />

manure. There is also the problem of a shortage of<br />

labour, especially because of high migration to<br />

South Africa <strong>and</strong> HIV-Aids which <strong>in</strong>creases the<br />

opportunity cost of labour (probably to a higher<br />

level than used <strong>in</strong> our analysis) <strong>and</strong> so is mak<strong>in</strong>g<br />

use of manure less profitable than the analysis<br />

suggests.<br />

General Discussion<br />

C: We do not have to keep do<strong>in</strong>g screen<strong>in</strong>g. How<br />

are we sure that we target the correct accessions<br />

with<strong>in</strong> the exist<strong>in</strong>g gene banks?<br />

Q: Is there any research done by scientists here that<br />

has got results on the contribution of the depth of<br />

pigeonpea roots <strong>for</strong> br<strong>in</strong>g<strong>in</strong>g up nutrients <strong>and</strong> to<br />

organic matter content?<br />

C: The screen<strong>in</strong>g of alternative legumes should be a<br />

conf<strong>in</strong>uous process aga<strong>in</strong>st the biodiversity of pests<br />

<strong>and</strong> chang<strong>in</strong>g environments.<br />

C: When to stop screen<strong>in</strong>g? The search <strong>for</strong> new<br />

materials amongst the available genetic resources<br />

should cont<strong>in</strong>ue <strong>in</strong> accordance with projected<br />

dem<strong>and</strong>s - <strong>for</strong> better traits, crop diversification, etc,<br />

so you do not stop(<br />

94<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Atrica


GREEN MANURE AND FOOD LEGUMES RESEARCH TO INCREASE SOIL<br />

FERTILITY AND MAIZE YIELDS IN MALAWI: A REVIEW<br />

Summary<br />

WEBSTER SAKALA1 <strong>and</strong> WEZI MHANG0 2<br />

1 Chitedze Agricultural Research Station, P. O. Box 158, Lilongwe,<br />

2 Bunda College of Agriculture, P. O. Box 219, Lilongwe, Malawi<br />

This review was conducted <strong>in</strong> 2002 to document research on the soil fertility effects of green manures <strong>and</strong> food legumes<br />

on the dom<strong>in</strong>ant maize-based farm<strong>in</strong>g systems <strong>in</strong> Malawi. The f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicated that green manures <strong>and</strong> gra<strong>in</strong> legume<br />

crops have great potential to <strong>in</strong>crease maize production <strong>and</strong> improve soil fertility. A great deal of work has been done.<br />

This can be grouped under the follow<strong>in</strong>g subhead<strong>in</strong>gs: the potential of green manures to improve soil fertility <strong>and</strong> the<br />

yield of maize; comb<strong>in</strong>ed <strong>in</strong>puts from organic <strong>and</strong> <strong>in</strong>organic (m<strong>in</strong>eral) sources; effect of time of residue <strong>in</strong>corporation on<br />

maize gra<strong>in</strong> yield; effect of cropp<strong>in</strong>g system (<strong>in</strong>tercropp<strong>in</strong>g or rotation) on maize yield; effect of method of residue application;<br />

<strong>and</strong> the role of apply<strong>in</strong>g <strong>in</strong>organic fertilizers on the per<strong>for</strong>mance ofgreen manures <strong>and</strong> gra<strong>in</strong> legumes <strong>in</strong> Malawi<br />

maize-based systems. Most of the work that we have found <strong>and</strong> reviewed lacks socio-economic studies <strong>and</strong> this needs far<br />

more attention <strong>in</strong> the future.<br />

Key words: <strong>Green</strong> manures, gra<strong>in</strong> legumes, maize, Malawi<br />

Introduction<br />

This paper reviews some of the soil fertility research<br />

activities conducted <strong>in</strong> Malawi on green manures<br />

<strong>and</strong> annual food legumes. The objective was to<br />

document what has been done <strong>in</strong> Malawi on these<br />

legumes <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g soil fertility <strong>in</strong> maize-based<br />

cropp<strong>in</strong>g systems. In<strong>for</strong>mation was collected from<br />

the libraries <strong>and</strong> annual reports of the Department<br />

of Agricultural Research on·work carried out by scientists<br />

at research stations,<strong>and</strong> on farm.<br />

General Characteristi


organic <strong>and</strong> <strong>in</strong>organic (m<strong>in</strong>eral) fertilizers, <strong>and</strong> crop<br />

removal without the return of nutrients.<br />

<strong>Soil</strong> <strong>Fertility</strong> Status of Malawi <strong>Soil</strong>s<br />

<strong>Soil</strong> fertility is def<strong>in</strong>ed as the ability of the soil to<br />

supply the nutrients needed by plants (Ahn, 1993).<br />

Accord<strong>in</strong>g to Young <strong>and</strong> Brown (1962; 1965), nitrogen<br />

is the most limit<strong>in</strong>g nutrient element <strong>in</strong> Malawian<br />

soils. Sulphur deficiencies are prevalent <strong>in</strong><br />

some areas. In most upl<strong>and</strong> areas, the soils are<br />

highly leached <strong>and</strong> as such, they are dom<strong>in</strong>ated by<br />

iron <strong>and</strong> alum<strong>in</strong>ium oxides that fix phosphorus <strong>in</strong>to<br />

<strong>for</strong>ms that-are unavailable <strong>for</strong> plant uptake. Phosphorus<br />

studies by Mughogho (1975) on some soils<br />

<strong>in</strong> Malawi <strong>in</strong>dicated that soils <strong>in</strong> Mulanje, <strong>in</strong> the<br />

southern region of Malawi, fix a lot of phosphorus.<br />

This is one of the high ra<strong>in</strong>fall areas that receives<br />

1200-1800 mm of ra<strong>in</strong> annually.<br />

<strong>Soil</strong> <strong>Fertility</strong> Research Reviews <strong>in</strong> Malawi<br />

Mughogho (1989) conducted a review of soil fertility<br />

research <strong>in</strong> Malawi. The overall objective of that<br />

work was to document exist<strong>in</strong>g <strong>in</strong><strong>for</strong>mation on soil<br />

fertility research from Malawi <strong>and</strong> other appropriate<br />

sources, to be used as a plann<strong>in</strong>g tool <strong>and</strong> database<br />

<strong>for</strong> proposed soil fertility ' studies. F<strong>in</strong>d<strong>in</strong>gs<br />

from that study <strong>in</strong>dicated tQat '<strong>in</strong>, addition to low<br />

soil nitrogen, most soils have large quantities of sesquioxides<br />

that fix phosphorus <strong>in</strong>to unavailable<br />

<strong>for</strong>ms, <strong>and</strong> sulphur is deficient <strong>in</strong> some areas. Mughogho<br />

(1989) further recommended the need <strong>for</strong> a<br />

detailed study on the characterization of soils <strong>in</strong><br />

Malawi to build upon the work by Brown <strong>and</strong><br />

Young (1962; 1965). The potential of sources of<br />

phosphate rock, to be used on acid soils needs to be<br />

explored.<br />

A review report by Gilbert <strong>and</strong> Kumwenda (2001)<br />

highlighted some of the best-bet legumes <strong>for</strong> smallholder<br />

maize-based systems. For Instance, Mucuna<br />

pruriens was described as a promis<strong>in</strong>g green manure.<br />

Successful gra<strong>in</strong> legume-maize rotations <strong>and</strong><br />

<strong>in</strong>tercrops of pigeonpea or Tephrosia with maize<br />

were observed.<br />

The follow<strong>in</strong>g sections look <strong>in</strong> more detail at green<br />

manures, crop rotations (especially with gra<strong>in</strong> legumes)<br />

<strong>and</strong> agro<strong>for</strong>estry <strong>in</strong>terventions to raise soil<br />

fertility <strong>and</strong> maize productivity <strong>in</strong> Malawi.<br />

<strong>Green</strong> <strong>Manures</strong><br />

Follet et al. (1981) def<strong>in</strong>ed a green manure crop as<br />

one that is grown <strong>and</strong> <strong>in</strong>corporated <strong>in</strong>to the soil to<br />

add organic matter <strong>and</strong> N <strong>and</strong> subsequently improve<br />

crop yields. In Malawi, most farmers have<br />

used weeds as green man~.ue materials. These are<br />

96<br />

<strong>in</strong>corporated at the time of ridg<strong>in</strong>g, weed<strong>in</strong>g or<br />

b<strong>and</strong><strong>in</strong>g. The benefits from green manures <strong>in</strong>clude<br />

reduction of nutrient.loss through leach<strong>in</strong>g, the accumulation<br />

<strong>and</strong> ma<strong>in</strong>tenance of soil N, <strong>and</strong> improvement<br />

of soil structure. Other species like Mucuna<br />

pruriens help to reduce weeds (CIMMYT,<br />

1998), thereby m<strong>in</strong>imiz<strong>in</strong>g competition <strong>for</strong> soil nutrients<br />

<strong>and</strong> water. The success of a green manure<br />

<strong>for</strong> soil fertility improvement depends on its quality<br />

(CN ratio), quantity of the material, <strong>and</strong> management<br />

(especially the tim<strong>in</strong>g <strong>and</strong> means of biomass<br />

<strong>in</strong>corporation). Proper tim<strong>in</strong>g allows nutrient release<br />

<strong>in</strong> synchrony with crop uptake. High biomass<br />

production can be atta<strong>in</strong>ed if all essential soil nutrient<br />

ekments are available. For <strong>in</strong>stance, Giller <strong>and</strong><br />

Wilson (1991) noted that phosphate fertilizer applications<br />

are necessary to support the luxurious<br />

growth of the green manure <strong>and</strong> hence its potential<br />

as an organic source of fertilizer. There are some<br />

legum<strong>in</strong>ous species with higher quality biomass,<br />

<strong>and</strong> good ability to fix nitrogen biologically <strong>in</strong> Malawi.<br />

Some of these species <strong>in</strong>clude Tephrosia vogelii,<br />

Sunnhemp (Crotalaria juncea), Tithonia diversifolia<br />

<strong>and</strong> velvet bean (Mucuna pruriens). Benefits from<br />

the use of Mucuna pruriens, Tephrosia vogelii, sunnhemp,<br />

<strong>and</strong> bulrush millet have been reported<br />

(Lungu, 1973; Sakal a et al., 2001; <strong>and</strong> Mwalw<strong>and</strong>a,<br />

2002). However, Lungu po<strong>in</strong>ted out that the one<br />

year lost to a sole crop green manure or improved<br />

fallow is a cost to a farmer <strong>and</strong> there<strong>for</strong>e this may<br />

reduce farmer <strong>in</strong>terest <strong>and</strong> adoption.<br />

The feasibility of improv<strong>in</strong>g soil fertility <strong>and</strong> maize<br />

yield through <strong>in</strong>tercropp<strong>in</strong>g or rotation of maize<br />

with legumes was <strong>in</strong>vestigated at Chitedze Research<br />

Station <strong>in</strong> central Malawi (Kumwenda et al.<br />

2001) from the 1995/96 to 1998/99 crop seasons.<br />

The treatments were as <strong>in</strong>dicated <strong>in</strong> Table 2.<br />

The results <strong>in</strong> Figure 1 illustrate that <strong>in</strong>tercrops of<br />

maize with pigeonpea <strong>and</strong> sunnhemp gave higher<br />

yields than the maize/Mucuna system. Maize/<br />

Table 2. Treatments from maize x green manure <strong>in</strong>tercrop <strong>and</strong><br />

rotation experiments <strong>in</strong> Malawi from the 1994/95 to 1998/99 crop<br />

seasons<br />

1994/95 1995/96 1996/97 1997/98 1998/99<br />

Intercrop Maize/PP Sarpe Same Same Same<br />

Maize/ Same Same Same Same<br />

Mucuna<br />

Maize/ Same Same Same Same<br />

sunnhemp<br />

Sale Pigeon pea Sale maize Sale maize Sale maize Sale maize<br />

Sunnhemp Sale maize Sale maize Sale maize Sale maize<br />

Mucuna Sole maize Sole maize Sole maize Sole maize<br />

Maize Sole maize Sole maize Sole maize Sale maize<br />

PP - Pigeon pea<br />

Same - same treatment as <strong>in</strong> 1994/95 crop season was grown <br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


7000<br />

6000<br />

';'<br />

€.. 5000 .~MzSole<br />

::!. 4000 o MlIPP<br />

~<br />

;;: 3000 mMlISunhemp<br />

.~<br />

~ 2000<br />

1000<br />

0<br />

I nte(crop<br />

Rotation<br />

Cropp<strong>in</strong>g s~tem<br />

III MlIMucuna<br />

Figure 1. Maize gra<strong>in</strong> yield (kg hal) from different cropp<strong>in</strong>g<br />

systems, across four crop seasons <strong>in</strong> Malawi, 1995/96·1998/99.<br />

Source: Kumwenda et aI., 2001<br />

Mucuna mtercroppmg yielded the least due to competition<br />

<strong>for</strong> growth resources. Rotation trials gave<br />

higher maize yields than the <strong>in</strong>tercroppmg system<br />

due to larger biomass production from the legumes.<br />

However, an economic analysis <strong>in</strong>dicated that cont<strong>in</strong>uous<br />

maize had higher net benefits than the legume-maize<br />

rotation. Similar studies on ~igeonpea<br />

by Sakala (1998) have <strong>in</strong>dicated that a farmer is better<br />

off opt<strong>in</strong>g <strong>for</strong> maize/ pigeon <strong>in</strong>tercroppmg than<br />

<strong>for</strong> a pigeonpea-maize rotation or the maize-maize<br />

cropp<strong>in</strong>g system.<br />

Other studies have looked at the time of <strong>in</strong>corporation<br />

of the green manures as a factor that <strong>in</strong>fluences<br />

their potential as soil fertility enhancers. Kumwenda<br />

et al. (2001) carried out experiments where<br />

biomass was mcorporated at either the time of<br />

maximum flower<strong>in</strong>g, at pod <strong>in</strong>itiation (early <strong>in</strong>corporation)<br />

or at harvest (late <strong>in</strong>corporation). Three<br />

species, M. pruriens, C. juncea <strong>and</strong> T. vogelii were<br />

used, along with maize. Higher maize gram yields<br />

were obta<strong>in</strong>ed from early-<strong>in</strong>corporated residues<br />

than with late. mcorpora.tion (Table 3) . This was attributed<br />

to high CN ratios <strong>and</strong> high lign<strong>in</strong> contents<br />

<strong>in</strong> the late <strong>in</strong>corporated residues. However, work<br />

by Sakala et al. (2001) revealed that with late <strong>in</strong>corporation,<br />

lower yields are obta<strong>in</strong>ed <strong>in</strong> the first year<br />

Table 3. Maize gra<strong>in</strong> yield (kg hal) as <strong>in</strong>fluenced by legume<br />

crop residues <strong>and</strong> time of <strong>in</strong>corporation at five sites <strong>in</strong><br />

Malawi, 1996/97 cro season<br />

legume crop/Maize<br />

Time of <strong>in</strong>corporation Mean yield (kg ha")<br />

M. pruriens Early 3392<br />

late 2223<br />

C. juncea Early 3218<br />

late 2692<br />

I T. vogelii Early 2845<br />

late 1483<br />

I Maize·maize 397<br />

Source: Kumwenda et ai., 2001<br />

only but m the subsequent years farmers realize<br />

higher yields, which was attributed to the build-up<br />

of nutrients. It was there<strong>for</strong>e recommended that<br />

farmers who are constra<strong>in</strong>ed <strong>for</strong> labour would still<br />

chose late <strong>in</strong>corporation <strong>and</strong> realize a longer stream<br />

of higher maize yields.<br />

A three-year study was carried out m Southern Malawi<br />

by Kamanga et al. (1999) to examme the feasibility<br />

of <strong>in</strong>ter-plantmg nitrogen fixmg perennial legumes<br />

<strong>in</strong>to maize fields as a way to periodically add<br />

green manures to maize. The treatments were Sesbania<br />

sesban, Tephrosia vogelii, Pigeonpea (Cajanus<br />

ca;an) <strong>and</strong> maize. The legumes were relay mtercropped<br />

with maize at first w eedmg. It was shown<br />

that the application of 48 kg N ha- 1 comb<strong>in</strong>ed with<br />

residue <strong>in</strong>corporation <strong>in</strong>creased maize yields by 62­<br />

71 %. Higher maize yields were obtamed from the<br />

<strong>in</strong>ter-plant<strong>in</strong>g of S. sesban (2.9 t ha- 1 ) <strong>and</strong> T. vogelii<br />

(2.6 t ha- 1 ) than from pigeonpea (2 .1 t ha- 1 ) <strong>and</strong><br />

maize stover (2.0 t ha- I ).<br />

Crop Rotation<br />

Crop rotation refers to the repetitive cultivation of<br />

an ordered succession of crops on the same l<strong>and</strong><br />

(Mloza-B<strong>and</strong>a, 1994). The aim is to ma<strong>in</strong>tam <strong>and</strong><br />

improve soil fertility, <strong>in</strong>cludmg both its physical<br />

<strong>and</strong> chemical characteristics. It also ensures that the<br />

carryover of pests <strong>and</strong> diseases from one season to<br />

another is m<strong>in</strong>imized.<br />

The benefits from crop rotations <strong>in</strong>volvmg gra<strong>in</strong><br />

legumes (groundnut, bambara nut <strong>and</strong> soya bean)<br />

over a cont<strong>in</strong>uous maize-maize cropp<strong>in</strong>g system<br />

have been reported <strong>in</strong> several studies <strong>in</strong> Malawi<br />

(Brown, 1958; Lungu, 1973 <strong>and</strong> MacColl, 1989;<br />

Kumwenda, 1996; <strong>and</strong> Mhango, 2002). This has<br />

been attributed to improved soil fertility through<br />

biological nitrogen fixation (BNF) <strong>and</strong> crop residue<br />

<strong>in</strong>corporation. However, gra<strong>in</strong> legume-maize rotations<br />

are not efficient because of the <strong>in</strong>adequate biomass<br />

they prod uce <strong>and</strong> the small amounts of N reta<strong>in</strong>ed<br />

<strong>in</strong> crop residues to meet the N requirements<br />

of the subsequent maize crop. Giller Jnd Wilson<br />

(199\) po<strong>in</strong>ted out that most of the N fixed by gra<strong>in</strong><br />

legumes is exported away from the field due to high<br />

nitrogen gra<strong>in</strong> harvest· <strong>in</strong>dices. Other studies have<br />

looked <strong>in</strong>to the <strong>in</strong>clusion of pastures <strong>in</strong> crop rotations<br />

to enhance maize prod uction. Maceoll ( 1990)<br />

reported on long term trials whose aim was to determ<strong>in</strong>e<br />

the contribution to maize yield from a previous<br />

pasture legume crop. The treatments were<br />

two rates of N (0 <strong>and</strong> 80 kg N ha- I ) from CAN fertilizer;<br />

maize, pure silver leaf, pure stylo, silver leaf/<br />

rhodes grass, <strong>and</strong> stylo/rhodes grass. Pastures<br />

were grown from 1981 to 1984, <strong>and</strong> then the plots<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

97


Table 4. Yield of maize (t ha I) follow<strong>in</strong>g different<br />

cropp<strong>in</strong>g sequences <strong>and</strong> grown at two levels of nitrogen<br />

fertilizer. across 4 years (1984/85··87/88 crop seasons)<br />

Cropp<strong>in</strong>g sequence<br />

N letel~ (kg 'N hal)<br />

Zero 80<br />

Maize 2.55 5~38<br />

Silver leaf 3.85 5.90<br />

Stylo 3.58 5.58<br />

Silverleaf + Rhodes grass 3.05 5.55<br />

Stylo + Rhodes grass 2.83 5.33<br />

Source: MacColI, 1990<br />

were planted to maize <strong>for</strong> three years (1985-88).<br />

Yields were higher when maize followed pasture<br />

legumes with successful establishment, with- ~ilver<br />

leaf out-yield<strong>in</strong>g the other species (Table 4). The<br />

application of <strong>in</strong>organic N <strong>in</strong>creased maize yield,<br />

stress<strong>in</strong>g the need <strong>for</strong> the comb<strong>in</strong>ed use of organic<br />

<strong>and</strong>· <strong>in</strong>organic (m<strong>in</strong>eral) fertilizers.<br />

Use of comb<strong>in</strong>ed <strong>in</strong>puts from organic <strong>and</strong> <strong>in</strong>organic<br />

(m<strong>in</strong>eral) sources appears to be the best approach to<br />

address soil fertility problems. Organic fertilizers<br />

improve the soil physical, chemical <strong>and</strong> biological<br />

properties. They also help to build up soil orgariic<br />

matter because nutrients are released slowly after<br />

m<strong>in</strong>eralization. However, the amount <strong>and</strong> quality<br />

of the organic fertilizers is <strong>in</strong>sufficient to provide<br />

adequate amounts of nutrients <strong>for</strong> crops, hence the<br />

need to supplement with <strong>in</strong>organic sources. Mwatoet<br />

al. (1999) conducted a 2-year study on comb<strong>in</strong>ed<br />

<strong>in</strong>puts of crop residues <strong>for</strong> smallholder maize production<br />

<strong>in</strong> Malawi. The overall objective was to·exam<strong>in</strong>e<br />

the effect of apply<strong>in</strong>g <strong>in</strong>organic fertilizers<br />

<strong>and</strong> crop residues to the soil on the subsequent<br />

maize yield. Crop residues from maize <strong>and</strong> different<br />

varieties of soya bean were <strong>in</strong>corporated <strong>in</strong>to the<br />

soil. Inorganic N was applied to maize at several<br />

rates. Maize gra<strong>in</strong> yields were <strong>in</strong>creased from 0.5 t<br />

to 1.3 t ha- I after the addition of soyabean residues.<br />

plus <strong>in</strong>organiC fertilizer. .<br />

Agro<strong>for</strong>estry<br />

Agro<strong>for</strong>estry refers to those l<strong>and</strong> use systems <strong>in</strong><br />

which woody perennials are grown <strong>in</strong> association<br />

with herbaceous plants (crops, pastures) <strong>and</strong>/or<br />

livestock <strong>in</strong> a spatial arrangement, a rotation, or<br />

both, <strong>and</strong> <strong>in</strong> which there are both ecological ·<strong>and</strong><br />

economic <strong>in</strong>teractions between the tree <strong>and</strong> non tree<br />

components of the system (Young, 1989). Alley<br />

cropp<strong>in</strong>g <strong>and</strong> improved fallows are among the<br />

agro<strong>for</strong>estry systems practiced by some farmers <strong>in</strong><br />

Malawi. Choice of a technology depends on the<br />

problem to be addre$sed, <strong>and</strong> the availability of resources<br />

such as l<strong>and</strong>, ra<strong>in</strong>fall <strong>and</strong> labour. Research<br />

work <strong>in</strong> Malawi has revealed the potential of rais<strong>in</strong>g<br />

soil nitrogen <strong>and</strong> maize yields with agro<strong>for</strong>estry<br />

technologies (Kwapata, 1994; Malawi Agro<strong>for</strong>estry<br />

Team, 1994; Makumba, 1998; <strong>and</strong> Phiri, 1999).<br />

Maize yields after L leucocephala, S.· spectabilis <strong>and</strong> S.<br />

sesban were 4.8, 45 <strong>and</strong> 4.4 t ha- I respectively, compared<br />

with 3.2 t ha- I produced from sole-crop maize<br />

plots (Chirwa <strong>and</strong> Maghembe, 1994). However,<br />

there are limitations with agro<strong>for</strong>estry systems.<br />

These <strong>in</strong>clude:<br />

• . The benefits from agro<strong>for</strong>estry technologies are<br />

long term<br />

• A high labour requirement with some technologies,<br />

e.g. alley cropp<strong>in</strong>g<br />

• High seed requirement, imply<strong>in</strong>g a cost to the<br />

farmers<br />

• Problems with seedl<strong>in</strong>g establishment<br />

• Insect pestattack on some tree species that have a<br />

high biomass potential, such as L. leucocephala,<br />

that is susceptible to psyllids (Heteropsylla cubana)<br />

• Some tree species per<strong>for</strong>m poorly on acid soils<br />

because of low available phosphorus.<br />

A lot of research has been conducted with agro<strong>for</strong>estry<br />

to identify suitable c<strong>and</strong>idate species <strong>for</strong> a particular<br />

technology, <strong>for</strong> biomass production, tim<strong>in</strong>g<br />

<strong>and</strong> application methods <strong>for</strong> biomass, <strong>and</strong> the effect<br />

of the technology on maize yield. Faidherbia albida is<br />

one of the tree species used <strong>in</strong> agro<strong>for</strong>estry. It is<br />

found grow<strong>in</strong>g naturally <strong>in</strong> farmers' fields <strong>in</strong> some<br />

parts of Malawi. The yield benefits to maize grown<br />

under F. albida trees has been reported by many <strong>in</strong>vestigators,<br />

<strong>in</strong>clud<strong>in</strong>g the Malawi Agro<strong>for</strong>estry<br />

Team (1994). Inorganic fertilizer supplements significantly<br />

further <strong>in</strong>crease maize gra<strong>in</strong> yield under<br />

the trees. Some of the c<strong>and</strong>idate tree species <strong>for</strong><br />

agro<strong>for</strong>etsry are Cassia siammea, Gliricidia sepium,<br />

Leucaena leucocephala, Senna spectabilis <strong>and</strong> Sesbania<br />

sesban. Chiyenda <strong>and</strong> Materechera (1987) conducted<br />

experiments from the 1983/84 to 1985/86<br />

crop seasons with L. leucocephala, C. siamea <strong>and</strong> C.<br />

cajan. The overall goal was to determ<strong>in</strong>e the effect<br />

of <strong>in</strong>corporat<strong>in</strong>g prun<strong>in</strong>gs from these species on soil<br />

fertility <strong>and</strong> to assess the response of maize grown<br />

<strong>in</strong> alleys. The treatments were three rates of N<br />

(ma<strong>in</strong> plot); the three tree species with maize, <strong>and</strong><br />

maize alone (sub plot); <strong>and</strong> three alley widths with<br />

three ridges of maize (as sub sub-plots). Phosphate,<br />

at 22 kg P ha- I , was applied to all plots at plant<strong>in</strong>g.<br />

Accord<strong>in</strong>g to the results, better yields of maize were<br />

obta<strong>in</strong>ed from plots <strong>in</strong>corporated with the tree<br />

prun<strong>in</strong>gs, although, they were significantly lower<br />

than treatments that received 100 kg N fertilizer ha- I<br />

(Table 5). The plant materials could not provide the<br />

amount of N that would be provided by moderate<br />

rates of <strong>in</strong>organic fertilizers.<br />

Kwapata (1994) worked on L. leucocephala <strong>in</strong> an alley<br />

98<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 5. Maize gra<strong>in</strong> yield (kg ha") as affected by <strong>in</strong>corporation<br />

of tree prun<strong>in</strong>gs <strong>and</strong> nitrogen fertilizer levels <strong>in</strong> Malawi<br />

Crop Crop System Mean yield<br />

Nrate (kg ha")<br />

Season<br />

(kg hal)<br />

0 50 100 <br />

1984/85 Zmais 704 1954 3564 2074 <br />

l. leucocephala 617 2454 2794 1957<br />

S. siamea 467 1856 ·3287 1870<br />

C. cajan 468 1523 3054 1682 <br />

1985/96 Zmais 151 2317 3233 1901 <br />

l. leucocepha/a 107 1665 2935 1411<br />

C. siamea 57 1049 1638 915<br />

C. cajan 255 1918 2870 1681<br />

Source: Chiyenda <strong>and</strong> Materechera, 1987<br />

system to determ<strong>in</strong>e the optimal rates <strong>and</strong> method<br />

of application of the leaf biomass. Residue <strong>in</strong>corporation<br />

gave larger maize yields than did surface<br />

mulch<strong>in</strong>g <strong>and</strong> this was attributed to a faster m<strong>in</strong>eralization<br />

rate. Ten t ha- I of fresh L. leucocephala was<br />

as effective as <strong>in</strong>organic fertilizer N applied at 100<br />

kg N ha- I .<br />

Conclusions<br />

• Organic soil amendments from green manures<br />

<strong>and</strong> annual legumes have potential to enhance<br />

.soil fertility <strong>and</strong> <strong>in</strong>crease maize yields <strong>for</strong> Malawi<br />

smallholder farmers. They improve the soil<br />

physical, chemical <strong>and</strong> biological characteristics.<br />

They are relatively cheaper than <strong>in</strong>organic<br />

(m<strong>in</strong>eral) fertilizers but the nutrients provided<br />

are not adequate to meet crop dem<strong>and</strong>s <strong>and</strong><br />

farmer needs. T.here<strong>for</strong>e, the use of comb<strong>in</strong>ed <strong>in</strong>- .<br />

puts from organic <strong>and</strong> <strong>in</strong>organic fertilizers appears<br />

to be the best approach to address soil fertility<br />

problems.<br />

• Crop residues have alternative compet<strong>in</strong>g uses<br />

such as to feed livestock, as <strong>in</strong> the case of legumes<br />

such as groundnut. This reduces their role <strong>in</strong> soil<br />

fertility.<br />

• Intercropp<strong>in</strong>g of maizelpigeonpea has proved<br />

successful.<br />

• For green manures as soil fertility enhancers <strong>in</strong><br />

maize-based systems, .Mucuna pruriens, pigeonpea,<br />

<strong>and</strong> Tephrosia vogelii are promis<strong>in</strong>g species. The<br />

key factors <strong>for</strong> success <strong>in</strong>clude the follow<strong>in</strong>g:<br />

o Quality of biomass<br />

o Quantity of biomass<br />

o Tim<strong>in</strong>g <strong>and</strong> means of <strong>in</strong>corporation of biomass.<br />

• Most of the biological studies lack the socioeconomic<br />

component of the technologies, <strong>and</strong><br />

these need to be developed.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

• Crop rotations <strong>in</strong>volv<strong>in</strong>g gra<strong>in</strong> legumes such as<br />

groundnut, <strong>and</strong> pasture legumes like stylo can<br />

boost maize yield. However, the opportunity<br />

cosUor the farmer to <strong>for</strong>go maize <strong>in</strong> the first year<br />

should be considered. Thisis a major restra<strong>in</strong>t to<br />

adoption.<br />

• Agro<strong>for</strong>estry technologies such as alley cropp<strong>in</strong>g<br />

<strong>and</strong> improved fallows have proved to be successful<br />

<strong>in</strong> maize based systems. Researchers should<br />

consider issues related to direct seed<strong>in</strong>g, resistance<br />

from pests <strong>and</strong> tolerance to low soil available<br />

phosphorus. Extension workers should<br />

carry out awareness campaigns on the long-term<br />

benefits from agrb<strong>for</strong>estry systems.<br />

References<br />

Ahn, P.M. 1993. Tropical <strong>Soil</strong>s <strong>and</strong> Fertiliser Use.<br />

Longman Group, United K<strong>in</strong>gdom. 263 pp.<br />

Benson, T.D. 1997. Develop<strong>in</strong>g fertilizer recommendations<br />

<strong>for</strong> small holder maize production <strong>in</strong><br />

Malawi. In: Wadd<strong>in</strong>gton et al., eds. <strong>Soil</strong> <strong>Fertility</strong><br />

Research <strong>for</strong> Maize-Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi<br />

<strong>and</strong> Zimbabwe. SFNETICIMMYT, Harare,<br />

Zimbabwe. pp. 275-285 .<br />

Brown, P <strong>and</strong> Young, A. 1965. The Physical Environment<br />

of Central Malawi. Government<br />

Pr<strong>in</strong>ter, Zomba. Malawi. 93 pp.<br />

Brown, P <strong>and</strong> Young, A. 1962. The Physical Environment<br />

of Northern Nyasal<strong>and</strong>. Government<br />

Pr<strong>in</strong>ter, Zomba, Malawi. 107 pp.<br />

Brown, P. 1958. Results of short-term experiments<br />

<strong>in</strong> Nyasal<strong>and</strong>. Rhodesia Agricultural Journal<br />

55:626-633.<br />

Chirwa P.W. <strong>and</strong> Maghembe, J.A. 1994. Evaluation<br />

of six multipurpose tree species <strong>for</strong> alley cropp<strong>in</strong>g<br />

with maize at Makoka, Malawi. Progress <strong>in</strong><br />

Agro<strong>for</strong>estry Research <strong>and</strong> Development·<strong>in</strong> Malawi.<br />

Proceed<strong>in</strong>gs of the second national agro<strong>for</strong>estry<br />

symposium held <strong>in</strong> Blantyre, Malawi. pp.56-60.<br />

Chiyenda, 5.s. <strong>and</strong> Materechera S.A. 1987. Effect of<br />

<strong>in</strong>corporat<strong>in</strong>g prunn<strong>in</strong>gs of Leucaena leucocephala,<br />

Cassia siamea <strong>and</strong> Cajanus cajan on yield of maize<br />

<strong>in</strong> alley cropp<strong>in</strong>g system. International symposium<br />

on nutrient management <strong>for</strong> food crop production<strong>in</strong><br />

tropical farm<strong>in</strong>g systems. Malang,<br />

Indonesia.<br />

qMMYT, 1998. Mother-Baby Trials <strong>for</strong> the 1997/98<br />

season. Farmer Participatory "Best-Bet" <strong>Soil</strong><br />

Technologies. Workshop Report. Natural Resources<br />

College. Lilongwe. Malawi. 29 1h -30 th<br />

September, 1998.<br />

99


Follet, R.H., Murphy, L.S. <strong>and</strong> Donahue, R.L. 1981.<br />

Fertilizers <strong>and</strong> <strong>Soil</strong> Amendments. Prentice-H,all,<br />

USA. 557 pp.<br />

'<br />

Gilbert, R.A. <strong>and</strong> Kumwenda, J.D.T. 2001. Best-bet<br />

legumes <strong>for</strong> smallholder maize-based cropp<strong>in</strong>g<br />

systems <strong>in</strong> Malawi. In: J.D.T. Kumwenda et al.,<br />

eds. Maize Commodity Team Annual Research<br />

Report <strong>for</strong> 1998/99 Crop Season. pp. 217-234.<br />

Giller K.E. <strong>and</strong> Wilson, K.F. 1991. Nitrogen Fixation<br />

<strong>in</strong> Tropical Cropp<strong>in</strong>g Systems. Redwood Press,<br />

United K<strong>in</strong>gdom. 313 pp.<br />

Kamanga, B.C.G., Kanyama:'Phiri G.Y. <strong>and</strong> M<strong>in</strong>ae,<br />

S. 1999. Intercropp<strong>in</strong>g perennial legumes <strong>for</strong><br />

green manure additions to maize <strong>in</strong> Southern<br />

Malawi. African Crop Science Journal 7:355-363.<br />

Kumwenda, J.D.T. 1996. Effects of previous cropp<strong>in</strong>g<br />

systems on maize yield. In: T.D. Benson ed.<br />

Maize Commodity Team Annual Report <strong>for</strong><br />

1992/93 Crop Season. Chitedze Agricultural Research<br />

Station, Lilongwe. Malawi. pp. 110-111 .<br />

Kumwenda, J.D.T., Saka, AR., Kabambe V.H. <strong>and</strong><br />

Ganunga R.P. 2001. Legume manure cropsmaize<br />

rotation trial <strong>for</strong> the 1997/98 <strong>and</strong> 1998/99<br />

crop seasons. In: J.D.T. Kumwenda et aL, eds.<br />

Maize Commodity Team Annual Research Report<br />

<strong>for</strong> 1998/99 Crop Season. pp 125-146.<br />

Kumwenda, J.D.T., Saka, AR., Sakala, W.o., Kabambe<br />

V.H. <strong>and</strong> Ganunga R.P. 2001. Effects of<br />

organic legume residues <strong>and</strong> <strong>in</strong>organic fertilizer<br />

nitrogen on maize yield at Chitedze Research<br />

Station. In: J.D.T. Kumwenda et aL, eds. Maize<br />

Commodity Team Annual Research Report <strong>for</strong><br />

1998/99 Crop Season. pp. 110-124.<br />

Kwapata M.B. 1994. Maize gra<strong>in</strong> yield response to<br />

Leucaena leucocephala foliage <strong>and</strong> <strong>in</strong>organic fertilizer<br />

nitrogen application. In: A.R. Saka et al.,<br />

(eds). Progress <strong>in</strong> Agro<strong>for</strong>estry Research <strong>and</strong> Development<br />

<strong>in</strong> Malawi. Proceed<strong>in</strong>gs of the second<br />

national Agro<strong>for</strong>estry Symposium held <strong>in</strong> Blantyre.<br />

Malawi. October 24-28.<br />

L<strong>and</strong> Resources Appraisal, 1991. L<strong>and</strong> Resource<br />

Evaluation Project/M<strong>in</strong>istry of Agriculture. Department<br />

of Surveys. Malawi.<br />

Lungu N.F. 1973. Rotations <strong>and</strong> <strong>Soil</strong> <strong>Fertility</strong>. Article<br />

based Research Bullet<strong>in</strong> No. 11/72 on Rotations,<br />

written by R.AJ Cox. pp. 139-150.<br />

MacColl, D. 1989. Studies on maize (Zea mays) at<br />

Bunda, Malawi. II. Yield <strong>in</strong> rotations with legumes.<br />

Experimental Agriculture 25:367-374.<br />

MacColl, D. 1990. Studies on maize (Zea mays) at<br />

Bunda, Malawi. III. Yield <strong>in</strong> rotations with pasture<br />

legumes. Experimental Agriculture 26:263­<br />

271.<br />

Makumba, W.1. 1998. Effect of contour planted legum<strong>in</strong>ous<br />

tree species on soil fertility <strong>and</strong> maize<br />

yield at Mkawa, Zomba, Malawi. Makoka Agricultural<br />

Research Station Annual Report <strong>for</strong><br />

1998/99 crop season.<br />

MalaWi Agro<strong>for</strong>estry Team. 1994. Annual Report<br />

<strong>for</strong> the 1993/94 crop season. Chitedze Agricultural<br />

Research Station, Lilongwe. Malawi.<br />

Malawi Government, Department of Surveys. 1983.<br />

National Atlas of Malawi.<br />

Malawi Government" 1999. National Research<br />

Council of Mala\Afi. Agricultural Sciences Committee<br />

. <strong>and</strong> Natural Resources Research<br />

.<br />

Master<br />

Plan. 15p.<br />

Mhango, W.G. 2002. Response of gra<strong>in</strong> legumes to<br />

phosphorus <strong>and</strong> sulphur application <strong>in</strong> maizelegume<br />

short term rotation system <strong>in</strong> Malawi.<br />

MSc Thesis. <strong>Soil</strong> Science. University of Malawi,<br />

Bunda College of Agriculture.<br />

Mloza-B<strong>and</strong>a, H.R. 1994. Pr<strong>in</strong>ciples <strong>and</strong> Practices of<br />

Crop Management. Field Study Guide. Crop<br />

Science Department. University of Mala'Yi,<br />

Bunda College ' of Agriculture. Lilongwe. Malawi.<br />

137 pp.<br />

Mughogho, S,K. 1975. Organic Phosphorus Studies<br />

<strong>in</strong> some soils of Malawi. MSc Thesis. Cornell<br />

University, Ithaca, USA<br />

Mughogho, S:K. 1989. <strong>Soil</strong> <strong>Fertility</strong> Research <strong>in</strong> Malawi:<br />

A Review. University of Malawi. Bunda<br />

College of Agriculture. Crop Science Department,<br />

Lilongwe. Malawi. 86 pp.<br />

Mwalw<strong>and</strong>a, AB. 2002. The role of phosphorus <strong>and</strong><br />

sulphur application on per<strong>for</strong>mance of legume<br />

green manure crops <strong>in</strong> maize-legume shortterm<br />

fallow <strong>in</strong> northern Malawi. MSc Thesis.<br />

<strong>Soil</strong> Science. University of Malawi, Bunda College<br />

of Agriculture, Malawi.<br />

Mwato, l.L., Mk<strong>and</strong>awire AB.C. <strong>and</strong> Mughogho, S.<br />

K. 1999. Comb<strong>in</strong>ed <strong>in</strong>puts of crop residues <strong>and</strong><br />

fertilizer <strong>for</strong> smallholder maize production <strong>in</strong><br />

Southern Malawi. African Crop Science Journal<br />

7:365-373.<br />

National Statistics Office, Malawi Government,<br />

1999. Population Hous<strong>in</strong>g Census. Zomba. Malawi.<br />

100<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Phiri, A.D.K. 1999. Effects of Sesbania sesban <strong>and</strong><br />

Tephrosia vogelii on maize yields at three l<strong>and</strong><br />

scape positions <strong>in</strong> Southern Malawi. MSc Thesis.<br />

Agronomy. University of Malawi, Bunda<br />

COllege of Agriculture.<br />

Sakala W.o. 1998. Nitrogen Dynamics <strong>in</strong> Maize<br />

(Zea mays) <strong>and</strong> Pigeonpea (Cajanus cajan) Intercropp<strong>in</strong>g<br />

<strong>in</strong> Malawi. PhD Thesis. University of<br />

London, Department of Biological Sciences,<br />

Wye College. 217 pp.<br />

Sakala, W.o., Kumwenda, J.D.T., Saka, A.R. <strong>and</strong> Kabambe,<br />

V.H. 2001. The potential of green manures<br />

to <strong>in</strong>crease soil fertility <strong>and</strong> maize yields<br />

<strong>in</strong> Malawi. <strong>Soil</strong> Fert Net Research Results Work<strong>in</strong>g<br />

Paper Number 7. ClMMYT, Harare, Zimbabwe.<br />

8 pp.<br />

Young, A .1989. Agro<strong>for</strong>estry <strong>for</strong> <strong>Soil</strong> Conservation.<br />

CAB International, Wall<strong>in</strong>g<strong>for</strong>d, UK.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Atrica 101


GREEN MANURING IN ZIMBABWE FROM 1900 TO' 2002<br />

LUCIA MUZA<br />

Agronomy Research Institute, AREX (<strong>for</strong>merly Departmentof Research <strong>and</strong> Specialist<br />

Services), M<strong>in</strong>istry of L<strong>and</strong>s qnd Rural Resettlement,<br />

CY550, Causeway, Harare, Zimbabwe<br />

Introduction<br />

The plough<strong>in</strong>g under of crops <strong>for</strong> green manur<strong>in</strong>g became popular with farmers <strong>in</strong> Zimbabwe, then Rhodesia,<br />

dur<strong>in</strong>g the 1900s. <strong>Green</strong> manur<strong>in</strong>g was ma<strong>in</strong>ly practiced be<strong>for</strong>e plant<strong>in</strong>g a maize crop or potatoes, to help<br />

supply N to that subsequent crop. M<strong>in</strong>eral fertilizers were not yet widely used <strong>and</strong> the ratio of maize to legume<br />

green manure area reached 4:1 (Tattersfield, 1982). Several research questions were raised about greeri<br />

manur<strong>in</strong>g <strong>and</strong> a series of 'trials were conducted, ma<strong>in</strong>ly at Harare Research Station, to address the questions<br />

that farmers had from their early experiences <strong>in</strong> the 1900s. This paper reviews some of those research areas<br />

<strong>and</strong> f<strong>in</strong>d<strong>in</strong>gs on green manur<strong>in</strong>g <strong>in</strong> the early 1900-1930s <strong>and</strong> traces the resurgence of recent work dur<strong>in</strong>g the<br />

1990s to 2000s <strong>in</strong> Zimbabwe.<br />

<strong>Green</strong> Manur<strong>in</strong>g from 1900 to the 19505<br />

Screen<strong>in</strong>g of suitable green manure crops<br />

A need to identify suitable green manure species<br />

was addressed through the screen<strong>in</strong>g of nonlegum<strong>in</strong>ous<br />

<strong>and</strong> legum<strong>in</strong>ous crops. A series of experiments<br />

was carried out <strong>for</strong> ten years, to screen<br />

crops such as niger oil, sunflower, geotani bean, kaffir,<br />

florida velvet bean, black velvet bean, sunnhemp<br />

<strong>and</strong> mixtures of these crops. Arnold (1909­<br />

1930) summarized the ten-vear results <strong>in</strong> the Annual<br />

Reports of Salisbury (Harare) Agricultural Experiment<br />

Station <strong>and</strong> <strong>in</strong> a series of journal articles.<br />

Pure veivet bean, dolichos, sunnhemp <strong>and</strong> nigers<br />

oil, resulted <strong>in</strong> 8; 8.5; 17 <strong>and</strong> 15 t of above-ground<br />

biomass respectively at Harare. Sunnhemp was<br />

found to have the highest N mobilization <strong>in</strong> the<br />

above-ground biomass, whilst niger bean mobilized<br />

the highest amounts of P <strong>and</strong> K. Arnold noted that<br />

although sunnhemp produced the most green manure<br />

biomass, the subsequent maize crop was less<br />

vigourous compared with that after velvet bean,<br />

which had lower above-ground biomass. This may<br />

have been due to a high % N <strong>in</strong> the sunnhemp<br />

which results <strong>in</strong> rapid m<strong>in</strong>eralization of N, not <strong>in</strong><br />

synchrony with the N requirements of a subsequent<br />

maize crop. The lower N % (slightly less than 2% N)<br />

with velvet bean, resulted <strong>in</strong> a slower rate of N re·<br />

lease, more likely <strong>in</strong> synchrony with the needs of<br />

the subsequent maize crop. It was concluded that<br />

no s<strong>in</strong>gle green manure species was suit",ble <strong>for</strong> all<br />

~oil types. Niger oil <strong>and</strong> sunflower generally gave<br />

lower subsequent maize gra<strong>in</strong> yields.<br />

<strong>Legumes</strong> were found to be the best crops <strong>for</strong> green<br />

manu:<strong>in</strong>g because of their ability to fix atmospheric<br />

N <strong>for</strong> their own requirement <strong>and</strong> that of a subsequent<br />

crop. Sunnhemp, velvet bean <strong>and</strong> dolichos<br />

bean were identified as the best among a range of<br />

potential green manure legumes <strong>and</strong> there was no<br />

significant difference between these crops. Sunnhemp<br />

became popular with equally beneficial results<br />

chiefly because of its hard<strong>in</strong>ess <strong>and</strong> suitability<br />

to a wide range of soils, its ability to smother weeds<br />

<strong>and</strong> ease of plough<strong>in</strong>g its residues under when used<br />

<strong>for</strong> green manur<strong>in</strong>g. Sunflower, a non-legum<strong>in</strong>ous<br />

crop, was found to be suitable <strong>for</strong> green manur<strong>in</strong>g<br />

purposes as well because of its ability to produce<br />

high above-ground biomass (above 4 t/ha <strong>in</strong> most<br />

cases), although its effect on the subsequent maize<br />

was often lower than with the legumes (Arnold<br />

1928).<br />

Plough<strong>in</strong>g under green manure crops vs. harvest<strong>in</strong>g<br />

green manure crops <strong>for</strong> hay<br />

Another research question of concern was whether<br />

it was more ' economical to plough under a green<br />

manure crop at flower<strong>in</strong>g or leave the crop to mature<br />

<strong>and</strong> harvest the haulms <strong>and</strong> seed <strong>for</strong> hay or silage.<br />

A series of trials . was set up to answer this<br />

question. Livestock owners found it more profitable<br />

to use their legum<strong>in</strong>ous crop <strong>for</strong> hay or silage. There<br />

was a need to apply farmyard manure to ma<strong>in</strong>ta<strong>in</strong><br />

soil fertility when legumes were harvested as hay.<br />

Plough<strong>in</strong>g under of the whole crop <strong>in</strong>creased maize<br />

gra<strong>in</strong> yield by 1370 kg/ha, compared to harvest<strong>in</strong>g<br />

the green manure legume as hay. Remov<strong>in</strong>g aboveground<br />

biomass <strong>for</strong> other purposes like hay reduced<br />

the subsequent maize gra<strong>in</strong> yield by 6% with<br />

sunnhemp, 16% with velvet bean, 11% with dolichos<br />

bean <strong>and</strong> 13 % with niger oil green manures.<br />

The difference between plough<strong>in</strong>g under <strong>and</strong> not<br />

plough<strong>in</strong>g under was smaller with sunnhemp than<br />

with the other crops. This was due to the great<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> Manure~ <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 103


amount of roots with sl:nnhemp. It was concluded<br />

that there was considerable merit <strong>in</strong> remov<strong>in</strong>g<br />

Zlbove-ground biomass <strong>and</strong> lIs<strong>in</strong>g it <strong>for</strong> an alternative<br />

purpose such as livestock feed s<strong>in</strong>ce the reduction<br />

<strong>in</strong> the subseq~lent maize crop yields when residues<br />

were removed was so small.<br />

Plough<strong>in</strong>g under green manure crops vs. burn<strong>in</strong>g<br />

Comparisons of plough<strong>in</strong>g-under mature sunnhemp<br />

or burn<strong>in</strong>g sunnhemp on the field or outside<br />

the field to avoid sterilization of the soil were reported<br />

by Arnold (1934, 1935, 1937 <strong>and</strong> 1939). Burn<strong>in</strong>g<br />

was to cater <strong>for</strong> farmers that had <strong>in</strong>sufficient<br />

mZlch<strong>in</strong>ery to plough <strong>in</strong>a green manure crop. There<br />

were no differences on the subsequent maize gra<strong>in</strong><br />

yield between burn<strong>in</strong>g <strong>and</strong> plough<strong>in</strong>g under of<br />

sunnhemp green manures, although the burnt plot<br />

hZld heZilthier crops dur<strong>in</strong>g the early stages of crop<br />

growth.<br />

Application of m<strong>in</strong>eral fertilizers to green manure<br />

crops vs. application of fertilizers directly to maize<br />

Another research question was raised by the Maize<br />

Association on whether it was more profitable to<br />

apply fertilizer to a green manure crop that is to be<br />

followed by maize or to apply the fertilizer directly<br />

to the maize crop after plough<strong>in</strong>g under an unfertilized<br />

green manure. The hypothesis was that a larger<br />

quantity of vegetative matter would be available <strong>for</strong><br />

plough<strong>in</strong>g under if the fertilizer is applied to the<br />

green manure crop. The humus <strong>and</strong> N available to<br />

the follow<strong>in</strong>g maize crop might be <strong>in</strong>creased more<br />

than if the fertilizer is withheld <strong>for</strong> direct application<br />

to the maize.<br />

These trials were conducted on l<strong>and</strong> of both moderate<br />

<strong>and</strong> low fertility status. Phosphorous (P) fertilizers<br />

were added to the green manure crop <strong>in</strong> the<br />

<strong>for</strong>m of raw phosphate, bone meal <strong>and</strong> super phosphate<br />

(Arnold 1931 <strong>and</strong> 1933). Application of P to a<br />

green manure crop <strong>in</strong>creased the above-ground biomass<br />

of green manures by an average of 3 t/ha. The<br />

response was larger on soils of low fertility.<br />

Twenty-three kg/ha of bone meal <strong>and</strong> super phosphate<br />

applied to sunnhemp or velvet bean <strong>in</strong>creased<br />

maize gra<strong>in</strong> yield from 1000 kg to 2500 kg/ha. It<br />

was found that maize on its own was unable to<br />

make the fullest use of the phosphate supplied. N­<br />

fix<strong>in</strong>g bacteria <strong>in</strong>creased with the application of P,<br />

hence sufficient N was fixed to almost double the<br />

subsequent maize gra<strong>in</strong> yields. The application of<br />

fertilizers, mostly P, to green manure crops was<br />

found to be economically justifiable <strong>in</strong> very exhausted<br />

l<strong>and</strong>s particularly if a slow act<strong>in</strong>g fertilizer<br />

such as rock phosphate was used.<br />

Residual effects of green manur<strong>in</strong>g<br />

Arnold ' (1927) reported that the beneficial effects<br />

conferred by the green manure crop are pronounced<br />

dur<strong>in</strong>g the first season after its application<br />

particularly if the season received heavy ra<strong>in</strong>fall. In<br />

the second season after green manur<strong>in</strong>g, the benefits<br />

were small.<br />

Effects of green manur<strong>in</strong>g on microbial population<br />

of the soil<br />

Shepherd (1952) reported that green manur<strong>in</strong>g<br />

stimulated the growth of antibiotic produc<strong>in</strong>g organisms<br />

<strong>and</strong> this was suspected to reduce pathogenic<br />

organisms, thus result<strong>in</strong>g <strong>in</strong> higher maize<br />

yields. Act<strong>in</strong>omycetes <strong>and</strong> moulds were shown to<br />

<strong>in</strong>crease whilst bacteria numbers decl<strong>in</strong>ed, possibly<br />

due to antagonistic mechanisms.<br />

Intercropp<strong>in</strong>g <strong>and</strong> relay cropp<strong>in</strong>g of green manure<br />

legumes with maize<br />

Loss of a cropp<strong>in</strong>g season to a green manure crop<br />

became


which did not thrive when shaded by maize. By<br />

June, the bean crop had covered the ground but further<br />

growth was retarded by frost. Plough<strong>in</strong>g under<br />

was <strong>in</strong> September with maize planted <strong>in</strong> December.<br />

The presence of a bean crop at the !11aize gra<strong>in</strong> fill<strong>in</strong>g<br />

stage slightly reduced maize gra<strong>in</strong> yield. Dolichos<br />

bean reduced the yield of the relayed maize<br />

crop <strong>and</strong> the subsequent maize crop, whilst white<br />

jack bean, khaki jack bean <strong>and</strong> dhal significantly <strong>in</strong>creased<br />

maize gra<strong>in</strong> yields (Arnold 1926-27).<br />

Incorporation of immature vs. mature green manure<br />

crops<br />

Arnold (1926, 1927 <strong>and</strong> 1929) reported results from<br />

a series of experiments that determ<strong>in</strong>ed the effects<br />

of leav<strong>in</strong>g green manure crops to mature be<strong>for</strong>e <strong>in</strong>corporation<br />

compared with plough<strong>in</strong>g under "the<br />

green manure crops at first flower<strong>in</strong>g. The other primary<br />

objective of the trials was to determ<strong>in</strong>e<br />

whether the plough<strong>in</strong>g <strong>in</strong> of two consecutive green<br />

manure crops <strong>in</strong> the same season would have toxic<br />

effects on the l<strong>and</strong> or whether the additional organic<br />

matter would be more beneficial than the plough<strong>in</strong>g<br />

under of one mature crop. Sunnhemp, velvet bean<br />

<strong>and</strong> dolichos bean were used <strong>in</strong> the experiment. Incorporation<br />

of mature crops was 5-6 weeks later<br />

than the <strong>in</strong>corporation of immature crops at flower<strong>in</strong>g.<br />

This work found out that the grow<strong>in</strong>g season was<br />

too short to permit two velvet bean crops to mature<br />

unless they were ploughed under be<strong>for</strong>e podd<strong>in</strong>g.<br />

The biomass of matUre crops was double <strong>for</strong> velvet<br />

bean <strong>and</strong> dolichos bean <strong>and</strong> four times <strong>for</strong> sunnhemp,<br />

compared with two immature crops. Subsequent<br />

maize yields obta<strong>in</strong>ed after immature green<br />

manures were less than those from mature crops,<br />

mostly rl.ue to a higher biomass <strong>in</strong> the mature crops.<br />

One fully matured green manure crop was better<br />

than two immature crops. These were also compareg<br />

with the effect of a reaped mature velvet bean<br />

on the subsequent maize.<br />

These experiments also determ<strong>in</strong>ed whether irrespective<br />

of mass of green manure per unit l<strong>and</strong> area,<br />

immature crops ploughed under will ben~fit the<br />

l<strong>and</strong> as mU(;h as if the crops are fully grown. Mature<br />

plants provide a higher percent of organic matter<br />

than immature plants. Fully developed crops had a<br />

more beneficial effect than a partially developed<br />

crop. Mature green .manure crops of velvet bean<br />

<strong>and</strong> sunnhemp more than trebled maize yield <strong>in</strong> the<br />

first season after green manur<strong>in</strong>g whilst immature<br />

crops doubled maize yields compared with cont<strong>in</strong>u­<br />

·ous unfertilized maize. The second season maize<br />

after both ma'ture <strong>and</strong> immature green manure<br />

crops did not benefit from green manur<strong>in</strong>g.<br />

Timson (1946) also conc1uded that plough<strong>in</strong>g under <br />

of a green manure crop be<strong>for</strong>e the end of the ra<strong>in</strong>y <br />

season led to excessive leach<strong>in</strong>g of the nitrogen. <br />

Plough<strong>in</strong>g under at the end of April compared to <br />

February <strong>and</strong> March resulted <strong>in</strong> higher gra<strong>in</strong> yields <br />

of the subsequent maize crop. <br />

<strong>Green</strong> manure crops <strong>in</strong> rotations <br />

Rotation experiments were carried out <strong>and</strong> green <br />

manure legumes were recommended <strong>in</strong> the differ­<br />

ent rotation systems; <strong>in</strong> pure crop production sys­<br />

tems as well as <strong>for</strong> crop <strong>and</strong> livestock farm<strong>in</strong>g sys­<br />

tems. An example of a recommended rotation, de­<br />

signed to meet the needs of a gra<strong>in</strong> farmer whose <br />

<strong>in</strong>come was solely dependent on maize <strong>and</strong> ground­<br />

nut, is given below. <br />

Year 1 = Maize + fertilizer<br />

Year 2 =<strong>Green</strong> manure legume<br />

Year 3 = Maize<br />

Year 4 =Groundnut<br />

A supply of humus <strong>in</strong> the soil' was ma<strong>in</strong>ta<strong>in</strong>ed by<br />

plough<strong>in</strong>g under the velvet bean <strong>and</strong> dolichos bean<br />

green manures. The green manure crops followed<br />

immediately after the maize crop that received m<strong>in</strong>eral<br />

fertilizer, hence the green manure benefited<br />

from the resid ue of the fertilizer left <strong>in</strong> the soil. In<br />

this way, an adequate supply of humus was reta<strong>in</strong>ed<br />

<strong>in</strong> the soil <strong>for</strong> the maize that followed the<br />

green manure crop.<br />

For dairy farmers, succulent legume crops were also<br />

<strong>in</strong>cluded <strong>in</strong> the rotation to provide ample feed <strong>for</strong><br />

livestock, <strong>for</strong> example.<br />

Year 1 =Maize plus farmyard manure<br />

Year 2 = Oats, velvet bean or dolichos bean mixtures<br />

<strong>for</strong> hay<br />

Year 3 = Maize plus m<strong>in</strong>eral fertilizers<br />

Year 4 = Sweet potatoes (succulent crop <strong>for</strong> w<strong>in</strong>ter<br />

food <strong>for</strong> stockfeed)<br />

The rotational experiments highlighted the drawbacks<br />

of cont<strong>in</strong>uous (year-after-year) maize cropp<strong>in</strong>g<br />

on the same l<strong>and</strong>. Over 13 years, maize yields<br />

were trebled <strong>in</strong> planned rotations compared with<br />

unplanried rotations similar to those found <strong>in</strong> smallholder<br />

communal areas, where cont<strong>in</strong>uous maize<br />

cropp<strong>in</strong>g is very common. Leav<strong>in</strong>g the fields fallow<br />

was also · found to be less productive when compared<br />

to <strong>in</strong>clusion ofgreen manures <strong>for</strong> fodder purposes<br />

or exclusively as green manures. It was concluded<br />

that when farm stocks <strong>and</strong> crops are judi­<br />

, ciously comb<strong>in</strong>ed, the permanent fertility of the soil<br />

is <strong>in</strong>creased <strong>and</strong> larger crops are secured. This was<br />

calculated to be profitable <strong>and</strong> a <strong>for</strong>m of <strong>in</strong>surance<br />

aga<strong>in</strong>st unfavorable seasons.<br />

!<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

105


It was proved that a mixed farm<strong>in</strong>g system, which<br />

<strong>in</strong>cludes the rais<strong>in</strong>g of livestock <strong>and</strong> the grow<strong>in</strong>g of<br />

different k<strong>in</strong>ds of crops, is more stable than one that<br />

relies on cont<strong>in</strong>uous production of the same crop.<br />

The practice of plough<strong>in</strong>g under of green manure<br />

crops to ma<strong>in</strong>ta<strong>in</strong> the humus content of the soil became<br />

rout<strong>in</strong>e <strong>for</strong> many farmers <strong>in</strong> Zimbabwe <strong>in</strong> the<br />

late 1920s but the opportunity cost of committ<strong>in</strong>g<br />

l<strong>and</strong> to a pure green manure crop limits adoption of<br />

the technology.<br />

. For the relay<strong>in</strong>g of green manure crops <strong>in</strong> January<br />

or February under a maize canopy, it was concluded<br />

that the practice could not be relied upon to<br />

give profitable results because success is largely dependent<br />

on the amount of ra<strong>in</strong>fall that falls dur<strong>in</strong>g<br />

February <strong>and</strong> March. In a below normal season,<br />

maize yields are significantly reduced through competition<br />

with the green manure crops, or the green<br />

manures fail to grow.<br />

Fertilization of green manure crop<br />

In the late 1920s with the <strong>in</strong>troduction of chemical<br />

fertilizers, the questions of whether it was more<br />

profitable to apply phosphate fertilizers to green<br />

manures or directly to a maize crop arose. A series<br />

of experiments were run compar<strong>in</strong>g application of<br />

rock phosphate, bone <strong>and</strong> super phosphates to<br />

green manures or to maize. It was concluded that if<br />

the fertility of the l<strong>and</strong> has been r,la<strong>in</strong>ta<strong>in</strong>ed at a<br />

moderately high level it was less economic to apply<br />

the fertilizer to a green manure crop <strong>and</strong> better to<br />

apply the fertilizer directly to the subsequent maize<br />

crop. On fields where previous cropp<strong>in</strong>g had reduced<br />

the soil fertility status to a very low level, the<br />

application of fertilizers to the green manure crop<br />

was found to be economically justifiable, particularly<br />

if a slow act<strong>in</strong>g fertilizer such as raw phosphate<br />

rock was used. On depleted soil, the application<br />

of rock phosphate to a green manure crop <strong>in</strong>creased<br />

the subsequent maize gra<strong>in</strong> yield more than<br />

four times (Arnold 1931 <strong>and</strong> 1933).<br />

Saunders (1959) critically reviewed the available<br />

evidence on the value of green manur<strong>in</strong>g <strong>in</strong> Zimbabwe<br />

up to the late 1950s. Work on cont<strong>in</strong>uous<br />

maize vs. maize <strong>in</strong> rotations with green manures <strong>in</strong><br />

alternate years or with other crops or green manure<br />

crops removed <strong>for</strong> hay was reviewed. When alternate<br />

green manure were used with maize, slightly<br />

higher C <strong>and</strong> N levels <strong>in</strong> the soil were ma<strong>in</strong>ta<strong>in</strong>ed<br />

compared with cont<strong>in</strong>uous maize cropp<strong>in</strong>g <strong>in</strong> the<br />

same fields. Use of green manure crops as hay was<br />

also better that cont<strong>in</strong>uous maize, althoush the soil<br />

CN ratio was not affected. The ma<strong>in</strong> benefit of legurne<br />

green manur<strong>in</strong>g <strong>in</strong> Zimbabwe at that time was<br />

to augment available soil N, but it had also beneficial<br />

effects on the uptake of N, P, K <strong>and</strong> Ca. Average<br />

green manure crops were shown to conta<strong>in</strong> 56-112<br />

kg N ha·1 while a very good crop could conta<strong>in</strong> as<br />

much as 170 kg N ha- 1 • It was difficult to raise maize<br />

yields <strong>in</strong> non-green manure rotations to the same<br />

levels as those achieved after green manur<strong>in</strong>g, but<br />

the loss of a season to a green manure crop resulted<br />

<strong>in</strong> a reduction <strong>in</strong> annual green manur<strong>in</strong>g <strong>in</strong> Zimbabwe<br />

<strong>in</strong> the 1950s.<br />

<strong>Green</strong> manur<strong>in</strong>g <strong>in</strong> the 19505 to 19805<br />

Under Zimbabwean conditions where the cooler<br />

w<strong>in</strong>ter months co<strong>in</strong>cide with the dry seasof., green<br />

manur<strong>in</strong>g <strong>in</strong>volves the elim<strong>in</strong>ation of a productive<br />

cropp<strong>in</strong>g season. W,hether the loss of a season is<br />

compensated <strong>for</strong> by <strong>in</strong>creased <strong>and</strong> susta<strong>in</strong>ed soil<br />

fertility benefits <strong>and</strong> cereal yields became a major<br />

issue <strong>for</strong> both farmers <strong>and</strong> researchers. With the<br />

widespread <strong>in</strong>troduction of chemical m<strong>in</strong>eral fertilizers<br />

<strong>in</strong> the 1950s <strong>and</strong> 1960s, use of green manur<strong>in</strong>g<br />

cont<strong>in</strong>ued to decl<strong>in</strong>e <strong>and</strong> it had almost disappeared<br />

from the 1960s to the 1980s.<br />

The major nutrient contributed by green manures<br />

was nitrogen but the <strong>in</strong>troduction of cheap N fertilizers<br />

towards the end of the 1950s made the high<br />

opportunity cost of committ<strong>in</strong>g l<strong>and</strong>, <strong>in</strong>puts <strong>and</strong> labour<br />

to green manur<strong>in</strong>g unattractive to commercial<br />

farmers (Saunder, 1959) <strong>and</strong> this replaced the legume<br />

green manure practice (Tattersfield, 1982).<br />

Most smallholder farmers had no experience of<br />

grow<strong>in</strong>g green manures, but they did readily adopt<br />

<strong>in</strong>organic fertilizers <strong>in</strong> the 1970s <strong>and</strong> 1980s when<br />

access was greatly improved through government<br />

schemes (Hikwa <strong>and</strong> Wadd<strong>in</strong>gton, 1998).<br />

.<strong>Green</strong> Manur<strong>in</strong>g <strong>in</strong> the 19905 to 2002<br />

Large rises <strong>in</strong> the prices of m<strong>in</strong>eral fertilizer <strong>for</strong><br />

smallholder farmers <strong>and</strong> renewed concern over the<br />

susta<strong>in</strong>ability of current cropp<strong>in</strong>g systems dom<strong>in</strong>ated<br />

by cont<strong>in</strong>uous maize, led to renewed <strong>in</strong>terest<br />

by Zimbabwean researchers <strong>in</strong> green manur<strong>in</strong>g dur<strong>in</strong>g<br />

the 1990s (Hikwa <strong>and</strong> Mukurumbira 1997). A<br />

feature of much of the new work was a focus on the<br />

needs of smallholder soil types <strong>and</strong> management<br />

systems. Most smallholders farm s<strong>and</strong>y · alfisols,<br />

characterized by coarse textured s<strong>and</strong>y surface horizons<br />

derived from granite. The soil structure is<br />

weak <strong>and</strong> highly susceptible to crust<strong>in</strong>g <strong>and</strong> compa(:tion.<br />

Cont<strong>in</strong>uous m<strong>in</strong><strong>in</strong>g of the soil through<br />

cropp<strong>in</strong>g with iittle fertilizer or organic matter <strong>in</strong>put<br />

has further depleted the soil nutrients (Hikwa <strong>and</strong><br />

Wadd<strong>in</strong>gton 1998). .<br />

106<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> iii Southern Africa


Jeranyama et al (1998 <strong>and</strong> 2000) reported on relay<strong>in</strong>tercropped<br />

cowpea (a food crop) <strong>and</strong> sunnhemp<br />

green manure legume with maize <strong>in</strong> experiments on<br />

a s<strong>and</strong>y loam soil at Domboshava, Natural Region<br />

2. <strong>Legumes</strong> were planted 4 weeks after plant<strong>in</strong>g the<br />

maize. Herbage biomass (averaged over two seasons)<br />

was 2.3 t/ha <strong>for</strong> cowpez: <strong>and</strong> 3.1 t/ha <strong>for</strong><br />

sunnhemp. Total N accumulation <strong>in</strong> the legume<br />

biomass was 111 kg N/ha <strong>for</strong> stumhemp <strong>and</strong> 59 kg<br />

N/ha <strong>for</strong> cowpea. Relay-<strong>in</strong>tercropped maize fertilized<br />

with 60 kg N/ha had a gra<strong>in</strong> yield equal to or<br />

better than those of a sole maize crop at the same<br />

fertilizer rate. However, at the other N rates, maize<br />

yields were reduced <strong>in</strong>dicat<strong>in</strong>g competition between<br />

the maize <strong>and</strong> the legume. In the subsequent<br />

year, maize follow<strong>in</strong>g relay <strong>in</strong>tercropped legume<br />

with maize produced 20% more gra<strong>in</strong> yield than the<br />

sole maize control. The gra<strong>in</strong> N content of a subsequent<br />

maize crop was improved by 82% relative to<br />

the sole maize control. The legume contributed up<br />

to 36 kg N/ha to the subsequent maize crop. Other<br />

work on relay<strong>in</strong>g maize <strong>and</strong> green manure legumes<br />

(Muza, 1998) reported that <strong>in</strong>trodoc<strong>in</strong>g the green<br />

manur<strong>in</strong>g legumes at 4 to 6 weeks after maize crop<br />

emergence ~as the best time, but that velvet bean<br />

tended to <strong>in</strong>tertw<strong>in</strong>e with maize.<br />

Chibudu (1998) reported on five years (1992-1996)<br />

of green manur<strong>in</strong>g work with s<strong>and</strong>y low soil fertility<br />

status soils <strong>in</strong> Mangwende <strong>in</strong> Natural Region 2.<br />

Farmers, researchers <strong>and</strong> extension officers <strong>for</strong>mulated<br />

<strong>and</strong> set up trials to screen legumes that could<br />

improve soil fertility, reduce Striga <strong>in</strong>festation <strong>and</strong><br />

improve maize yields. The legumes used were velvet<br />

bean, sunnhemp, cowpea <strong>and</strong> dolichos <strong>in</strong> either<br />

a rotation or an <strong>in</strong>tercrop with maize. The results<br />

showed that crops such as velvet bean, sunnhemp<br />

~nd cowpea could improve soil fertility, reduce<br />

striga <strong>in</strong>festation <strong>and</strong> subsequently <strong>in</strong>crease maize<br />

yields. Farmers preferred to use velvet bean <strong>for</strong> improv<strong>in</strong>g<br />

soils <strong>in</strong> rotation but not <strong>in</strong>tercropped with<br />

maize because it choked the maize plants mak<strong>in</strong>g it<br />

difficult to harvest the maize crop. Cowpea was pre-<br />

Table 1. Maize gra<strong>in</strong> yield (kg ha- 1 ) after green manur<strong>in</strong>g with<br />

different legumes at Makoholi <strong>and</strong> Mlezu <strong>in</strong> 1990/91 (Agronomy<br />

Institute Annual Report)<br />

Preced<strong>in</strong>g Makoholi Mlezu<br />

green<br />

manure<br />

(Inorganic N fertilizer (kg/ha))<br />

crop<br />

0 40·: 80 120 0 40 80 120<br />

Dolichos 0.24 0.80 0.75 0.72 2.40 2.85 2.98 3.09<br />

Cowpea 0.19 0.55 0.84 0.93 2.83 3.35 3.40 3.65<br />

Sunflower 0.31 0.53 0.51 0.49 1.95 2.44 3.04 3.12<br />

Sunnhemp 0.44 0.57 0.54 1.38 3.15 2.64 2.88 3.20<br />

Soyabean 0.23 0.57 -0.78 0.95 1.61 2.73 2.10 2.51<br />

Maize 0.26 0.34 0.74 0.46 2.35 2.51 3.00 2.99<br />

Adapted from Agronomy Institute Annual Report. 1990-91<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

ferred by farmers <strong>for</strong> striga control <strong>and</strong> provision of<br />

gra<strong>in</strong> <strong>for</strong> food.<br />

The Agronomy Institute of the Department of Research<br />

<strong>and</strong> Specialist Services (now part of AREX)<br />

evaluated five potential green manur<strong>in</strong>g species.<br />

Dolichos lablab, sunnhemp, soya bean, cowpea <strong>and</strong><br />

sunflower were tested <strong>for</strong> their green manur<strong>in</strong>g potential<br />

<strong>and</strong> their effect on a follow<strong>in</strong>g maize test<br />

crop, on tWo s<strong>and</strong>y soils at Makoholi Experiment<br />

Station <strong>in</strong> Natural Region 4 <strong>and</strong> at Mlezu Agricultural<br />

College <strong>in</strong> Natural Region 3 Cvable 1). At<br />

Mlezu, biomass production was highest with dolichos<br />

(7.7 t/ha) <strong>and</strong> 7.0 t/ha with sunflower. Soyabean,<br />

sunnhemp <strong>and</strong> cowpea had 4.8, 2.7 <strong>and</strong> 1.6 t/<br />

ha of above-ground dry biomass, respectively. At<br />

Makoholi, the biomass was 1.9, 3.3, 1.3, 1.5 <strong>and</strong> 1.7<br />

t/ha <strong>for</strong> dolichos, sunflower, soyabean, sunnhemp<br />

<strong>and</strong> cowpea, respectively .. Table 2 shows the biomass<br />

yield of v~lvet bean, stmnhemp <strong>and</strong> cowpea at<br />

three locations <strong>in</strong> Zimbabwe <strong>in</strong> 1995/96, reported<br />

by Muza, Gatsi, Pashapa <strong>and</strong> Bwakaya <strong>in</strong> 2000. The<br />

nitrogen, phosphorus <strong>and</strong> potassium contents of the<br />

green manures <strong>in</strong> those experiments are shown <strong>in</strong><br />

Tables 3-5.<br />

Table 6 shows biomass production by velvet bean,<br />

sunn..~emp <strong>and</strong> fish bean (Tephrosia vogelii) <strong>in</strong> relation<br />

to phosphorus application <strong>in</strong> <strong>Soil</strong> <strong>Fertility</strong> Network<br />

trials <strong>in</strong> 1996/97. In the 1996/97 season,<br />

twelve farmers fields were selected, ten <strong>in</strong> Natural<br />

Region 2, one <strong>in</strong> Natural Region 3 <strong>and</strong> one <strong>in</strong> Natural<br />

Region 4. Either the selected fields were ab<strong>and</strong>oned<br />

fields due to low soil fertility, or fields where<br />

Table 2. legume above-ground biomass (kg/ha) at different<br />

plant<strong>in</strong>g times (weeks after maize plant<strong>in</strong>g) <strong>and</strong> sites <strong>in</strong> 1995/96<br />

Site legume 4 weeks 6 weeks 8 weeks<br />

Chiwundura Velvet bean 10556 463 249<br />

Sunnhemp 2256 162 76<br />

Cowpea 1 081 307 ~01<br />

Dolichos 860 83 98<br />

Tephrosia 23 131 488<br />

Pigeon pea 359 153 79<br />

Chihota Velvet bean 4473 178 0<br />

Sunnhemp 2469 1 097 294<br />

Cowpea 1 039 336 0<br />

Dolichos 218 0 318<br />

Tephrosia 669 0 0<br />

Pigeon pea 395 0 0<br />

Mlezu Velvet bean 3148 1 788 445<br />

After MUla et al 2000<br />

Sunnhemp 9554 821 805<br />

Cowpea 4699 2223 1030<br />

Dolichos 2875 920 160<br />

Tephrosia 0 29 67<br />

Pigeon pea 538 301 159<br />

107


Table 3. Above·ground biomass (t/ha) <strong>and</strong> N, P<strong>and</strong> K <br />

contents (kg/ha) <strong>in</strong> biomass of green manures grown at <br />

- Makoholi <strong>in</strong> 1989/90 <br />

Dry biomass N f' K <br />

(t/ha) <br />

Dolichos 1.9 46.7 6.1 39.2 <br />

Cowpea 1.7 41.9 5.2 34.9 <br />

Sunflower 3.3 41.2 8.2 94.1 <br />

Sunnhemp 1.5 40.7 5.1 25.5 <br />

Soyabean 1.3 26.7 4.7 18.4 <br />

Table 4. Average %Nitrogen <strong>and</strong> %Phosphorus <strong>in</strong> velvet bean,<br />

sunnhemp <strong>and</strong> cowpea above·ground biomass <strong>and</strong> root!; at time of<br />

<strong>in</strong>corporat<strong>in</strong>g <strong>in</strong> April 1996 .<br />

Velvet bean Sunnhemp Cowpea<br />

Above ground Roots Above ground Roots Above ground Roots<br />

biomass biomass biomass<br />

Nitrogen 1.9 1.38 3.00 0.84 2.16 1.52<br />

Phosphorus 0.13 0.17 0.12 0.04 0.18 0.14<br />

MUla et al 2000<br />

maize gra<strong>in</strong> yields <strong>in</strong> recent years were less than 500 <br />

kg/ha. <strong>Soil</strong> pH ranged from 4.1 to 4.8 <strong>and</strong> there <br />

was no correction <strong>for</strong> pH. Velvet bean, surmhemp <br />

<strong>and</strong> fish bean were planted with 100 kg/ha P20S or <br />

without phosphorus. <br />

Biomass production by the three legumes is shown <br />

<strong>in</strong> Table 6 <strong>and</strong> the gra<strong>in</strong> yield of the maize test crop <br />

after green manur<strong>in</strong>g <strong>for</strong>Chihota <strong>and</strong> Zvimba <br />

(where a maize crop was harvested) are <strong>in</strong> Table 7. <br />

Velvet bean per<strong>for</strong>med the best, with six fields gen­<br />

erat<strong>in</strong>g an above-ground biomass of over 4 t/ha <br />

when phosphorus was applied whilst four plots <br />

wi~h no phosphorus also produced a biomass above <br />

4 t/ha. Surmhemp per<strong>for</strong>mance on the degraded <br />

soil was very variable. Dieback of the plants after <br />

crop emergence was common at most sites. <br />

Velvet .bean gave reasonable biomass on extremely <br />

nutrient depleted <strong>and</strong> somewhat acidic soils <strong>and</strong> <br />

has the potential to rehabilitate degraded fields <br />

when coupled with lime <strong>and</strong> phosphorus. Low pH <br />

<strong>and</strong> P levels <strong>in</strong> the soil <strong>in</strong>hibit legume growth; hence <br />

P <strong>and</strong> lime should be added. <br />

There is still a need to screen more potential green <br />

manures, to exp<strong>and</strong> the legume base. <br />

<strong>Green</strong> manur<strong>in</strong>g extension work <strong>in</strong> Chihota <br />

In the 1999/2000 season, four technologies were se­<br />

lected to help smallholder farmers <strong>in</strong> Chihota com­<br />

munal area to susta<strong>in</strong>ability improve the crop pro­<br />

ductivity of their farms through improverl soil fer­<br />

tility management practices. This pilot project was <br />

led by the extension sen-ice <strong>in</strong> Marondera District. <br />

<strong>Green</strong> manur<strong>in</strong>g was one of the technologies se­<br />

1able 5. Total nitrogen <strong>and</strong> phosphorus (kg ha· 1) <strong>in</strong> ab.ove·<br />

ground biomass dur<strong>in</strong>g the 1995/96 season<br />

Site Velvet bean Sunnhemp Cowpea<br />

N PzOs N PZOI N PZOI<br />

Chiwundura 207 14 68 3 23 2<br />

Chihota 87 6 74 3 22 2<br />

Mlezu 62 4 287 12 102 8<br />

MUla et al 2000<br />

Table 6. Dry biomass production (kg/ha) by three green manure<br />

legumes, on exhausted s<strong>and</strong>y soils <strong>in</strong> nor\hern Zimbabwe, 1996/97<br />

season<br />

Communal Area Velvet bean Sunnhemp Fish bean<br />

+ P . P + P . P + P . P<br />

Gokwe South (1) 2368 1916 1688 858 0 0<br />

Gokwe South (2) 1826 1964 809 1000 0 0<br />

Nyazura (1) 8020 7240 0 0 0 0<br />

Nyazura (2) 6490 6610 0 0 0 0<br />

Chiduku (1) 1257 1865 grazed grazed 70 34<br />

Chiduku (2) 4538 2703 116 13 64 66<br />

Mangwende (1 ) 318 317 311 290 145 145<br />

Mangwende (2) 5351 5250 5000 5040 3127 3125<br />

Zvimha (1) 2410 1260 0 0 0 0<br />

Zvimba (2) 85U 1620 0 0 0 0<br />

Chihota (1) 10665 5290 8460 2315 0 0<br />

Chihota (2) 4275 3405 505 550 0 0<br />

AIter Hikwa et al 1998<br />

lected <strong>and</strong> 411 farmers participated, <strong>in</strong> farmer<br />

groups, <strong>in</strong> demonstrations of green manur<strong>in</strong>g on<br />

their farms. Generally, it was found that green manur<strong>in</strong>g<br />

was a new technology to most of the farmers.<br />

Few had tried it or seen it. Forty percent of the<br />

experiment<strong>in</strong>g farmers tried green manur<strong>in</strong>g on<br />

their own fields whilst 83 farmers outside the<br />

groups also used it (Mwenye <strong>and</strong> Kuwaza, 2001).<br />

There is still a great need to expose far more farmers<br />

to green manur<strong>in</strong>g through work<strong>in</strong>g with other extension<br />

districts <strong>in</strong> Zimbabwe.<br />

Current Work <strong>and</strong> the Future<br />

<strong>Green</strong> manur<strong>in</strong>g work <strong>in</strong> Zimbabwe is still go<strong>in</strong>g<br />

on, with the Agronomy Research Institute look<strong>in</strong>g<br />

at the possibilities of · comb<strong>in</strong><strong>in</strong>g mulch<strong>in</strong>g us<strong>in</strong>g<br />

green manure legumes <strong>and</strong> m<strong>in</strong>imum tillage. The<br />

University of Zimbabwe <strong>and</strong> the Agronomy Institute<br />

are also experiment<strong>in</strong>g with different green manures<br />

to control Striga. Agronomy Institute, Crop<br />

Breed<strong>in</strong>g Institute <strong>and</strong> ICRAF are research<strong>in</strong>g the<br />

possibilities of <strong>in</strong>tercropp<strong>in</strong>g Sesbania sesban with<br />

velvet bean <strong>and</strong> bushy <strong>and</strong> trail<strong>in</strong>g cowpea. Researchers<br />

on livestock feeds at Research stations <strong>and</strong><br />

the University of Zimbabwe are also look<strong>in</strong>g at the<br />

suitability of velvet bean <strong>for</strong> use <strong>in</strong> stock feeds. The<br />

108<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 7. Maize gra<strong>in</strong> yield (kg ha 1 )<strong>in</strong> 1997/98 follow<strong>in</strong>g sunnhemp <strong>and</strong> velvet bean green<br />

manures grown dur<strong>in</strong>g 1996/97 <strong>in</strong> Chihota <strong>and</strong> Zvimba Communal Areas, Zimbabwe<br />

Treatment Chihota· Chihota·<br />

Chigora Chimhembeza<br />

Maize + OP + 60N 180 157<br />

Maize + OP + ON 357 308<br />

Maize + lOOP + 60N 1665 223<br />

Maize + lOOP + ON 325 165<br />

Velvet bean (<strong>in</strong>corporated) + lOOP + 45N 2863 556<br />

Velvet bean (<strong>in</strong>corporated) + lOOP + ON 4240 308<br />

Velvet bean (biomass removed) + lOOP + 45N 3982 1688<br />

Velvet bean (biomass removed) + lOOP + ON 2532 587<br />

Velvet bean (<strong>in</strong>corporated) + OP + 45N 1745 1266<br />

Velvet bean (<strong>in</strong>corporated) + OP + ON 2407 710<br />

Velvet bean (biomass removed) + OP + 45N 143 1010<br />

Velvet bean (biomass removed) + OP + ON 731 664<br />

Sunnhemp (<strong>in</strong>corporated) + lOOP + 45N 4726 1387<br />

Sunnhemp (<strong>in</strong>corporated) + lOOP + ON 3628 410<br />

Sunnhemp (biomass removed) + lOOP + 45N 4715 3104<br />

Sunnhemp (biomass removed) + lOOP + ON 5984 1989<br />

Sunnhemp (<strong>in</strong>corporated) + OP + 45N 2661 516<br />

Sunnhemp (<strong>in</strong>corporated) + OP + ON 2082 1120<br />

Sunnhemp (biomass removed) + OP + 45N 144 951<br />

Sunnhemp (biomass removed) + OP + ON 890 1063<br />

Adapted from Murata et al. 2000<br />

<strong>Soil</strong> Conservation <strong>and</strong> Tillage Network based at the<br />

University of Zimbabwe is also work<strong>in</strong>g with some<br />

of the green manur<strong>in</strong>g legumes <strong>in</strong> soil conservation<br />

<strong>and</strong> propos<strong>in</strong>g their us~ as cover crops.<br />

Arnold, H.C. 1927. Maize follow<strong>in</strong>g<br />

green ·manure crops sown under<br />

Zvimba· Mean maize the previous season. Rhodesia<br />

Chimedza Agricultural Journal 24:533-534.<br />

175 171<br />

699 455 Arnold, H.C. 1927. <strong>Green</strong> manur<strong>in</strong>g<br />

with immature versus mature crops.<br />

123 670<br />

Rhodesia Agricultural Journal 24:527­<br />

272 254<br />

529.<br />

1395 1605<br />

1794 2114 Arnold, H.C. 1928. <strong>Green</strong> manur<strong>in</strong>g<br />

273 1981 with iIl1mature versus mature crops,<br />

207 1109 Rhodesia Agricultural Journal 25:309­<br />

1639 1550 311.<br />

1084<br />

1355<br />

1030<br />

1400<br />

836<br />

808<br />

Arnold, H.C. 1928. Maize follow<strong>in</strong>g<br />

green manure .crops sown under<br />

maize the previous season. Rhodesia<br />

1503 2539<br />

Agricultural Journal 25:313-314.<br />

1285 1774<br />

564 2794 Arnold, H.C. 1929. Maize follow<strong>in</strong>g<br />

182 2718 green manure crops sown under<br />

1021 1399 maize the previous season. Rhodesia<br />

1214 1472<br />

1210 768<br />

Agricultural Journal 26:360-368.<br />

Arnold, H.C. 1929. <strong>Green</strong> manur<strong>in</strong>g<br />

1047 1000 with immature versus mature crops,<br />

Rhodesia Agricultural Journal 26:362­<br />

363.<br />

Arnold, H.C. 1931. The relative value of certa<strong>in</strong><br />

green manure crops. Rhodesia Agricultural Journal<br />

28:541-544.<br />

Seed availability is one of the major limit<strong>in</strong>g factors<br />

to green manur<strong>in</strong>g, hence there is a need to establish<br />

a susta<strong>in</strong>able source of green manure legume<br />

seed near the farm<strong>in</strong>g communities. In Chihota, a<br />

school has been asked to bulk velvet bean seed <strong>for</strong><br />

local farmers.<br />

Bibliography<br />

Agronomy Institute 1993. Effect of green manure<br />

crops on the per<strong>for</strong>mance of a second season<br />

maize test crop. Agronomy Institute Allnual Report<br />

<strong>for</strong> 1989/90, Departm~nt of Research <strong>and</strong><br />

Specialist Services, Harare, Zimbabwe. pp. 160­<br />

164.<br />

Arnold, H.C. 1925 -26. Annual Report of Salisbury<br />

Experiment Station.<br />

Arnold, H.C. 1926 -27. Annual Report of Salisbury<br />

.Experiment Station.<br />

Arnold, H.c. 1926. <strong>Green</strong> manur<strong>in</strong>g with immature<br />

versus mature crops. Rhodesia Agricultural Journal<br />

23:317-318.<br />

Arnold, H.C. 1931. Fertilizer <strong>and</strong> green manur<strong>in</strong>g<br />

trials. Rhodesia Agricultural Journal 28:544-548.<br />

Arnold, H.C. 1933. Fertilizer <strong>and</strong> green manur<strong>in</strong>g<br />

trials. Rhodesia Agricultural Journal 28:483-484.<br />

Arnold, H.C. 1934: Effects of burn<strong>in</strong>g mature sunnhemp<br />

or plough<strong>in</strong>g ·under were compared. Rhodesia<br />

Agricultural Journal 31 :648-650.<br />

Arnold, H.C. 1935. Effects of burn<strong>in</strong>g mature sunnhemp<br />

or plough<strong>in</strong>g under were compared. Rhodesia<br />

Agricultural Journal 32:616-618.<br />

Arnold, H.C. 1937. Effects of burn<strong>in</strong>g mature sunnhemp<br />

or plough<strong>in</strong>g under were compared. Rhodesia<br />

Agricultural Journal 34:557-560.<br />

Arnold, H.C. 1938. Effects of burn<strong>in</strong>g mature sunnhemp<br />

or plough<strong>in</strong>g under were compared. RhO.,<br />

desia Agricultural Journal 35:737-739.<br />

Backshaw, G.N. 1921. <strong>Green</strong> manur<strong>in</strong>g <strong>and</strong> soil<br />

management. Rhodesia Agricultural Journal<br />

18:455-460, 645-647.<br />

Bary, F. 1995. Socio economic !Study 0f agriculture<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 109


<strong>and</strong> horticulture <strong>in</strong> Zimbabwe: Case study of<br />

Wedza <strong>and</strong> Buhera. Background <strong>in</strong><strong>for</strong>mation <strong>for</strong><br />

biotechnology research <strong>and</strong> development projects.<br />

Commissioned by Zimbabwe Biotechnology<br />

Advisory Committee (ZIMBAC) <strong>and</strong> DGIS<br />

Special Programme oiotechnology, the Netherl<strong>and</strong>s.<br />

Bellon, M.R., P. Gambara, T. Gatsi, T.E. Machemedze,<br />

O. Mam<strong>in</strong>im<strong>in</strong>i, <strong>and</strong> S.R. Wadd<strong>in</strong>gton.<br />

1999. Farmers' Taxonomies as a Participatonj<br />

Diagnostic Tool: <strong>Soil</strong> <strong>Fertility</strong> Management <strong>in</strong> Chihota,<br />

Zimbabwe. CIMMYT Economics Work<strong>in</strong>g<br />

Paper No. 99-13. Mexico, D.F.: CIMMYT.<br />

Chibudu, C. 1998. <strong>Green</strong> manur<strong>in</strong>g crops <strong>in</strong> a maize<br />

based communal area, Mangwende: Experiences<br />

us<strong>in</strong>g participatory approaches. In: <strong>Soil</strong> <strong>Fertility</strong><br />

Research <strong>for</strong> Maize-Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi<br />

<strong>and</strong> Zimbabwe (S.R. Wadd<strong>in</strong>gton, H. Murwira, J.D.<br />

T. Kumwcnda, D. Hikwa <strong>and</strong> F. Tagwira, eds), <strong>Soil</strong><br />

Fert Net <strong>and</strong> CIMMYT-Zimbabwe, Harare, Zimbabwe.<br />

pp. 87-90.<br />

Grant, P.M. 1970. Restoration of production of depleted<br />

s<strong>and</strong>s. Rhodesia Agricultural Journal 67:134­<br />

137.<br />

Giller, K.E., Gilbert, R., Mugwira, L.M., Muza, L.,<br />

Patel, B.K. <strong>and</strong> Wadd<strong>in</strong>gton, S.R. 1998. Practical<br />

approaches to soil organic management <strong>for</strong> smallholder<br />

maize production <strong>in</strong> southern Ahica. In: <strong>Soil</strong><br />

<strong>Fertility</strong> Research <strong>for</strong> Maize-Based Farm<strong>in</strong>g Systems <strong>in</strong><br />

Malawi <strong>and</strong> Zimbabwe (S.R. Wadd<strong>in</strong>gton, H. Murwira,<br />

J.DT. Kurnwenda, D. Hikwa <strong>and</strong> F. Tagwira,<br />

eds), <strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT-Zimbabwe, Harare,<br />

Zimbabwe. pp. 139-154.<br />

Hikwa, D., Murata, M., Tagwira, F., Chiduza, c.,<br />

Murwira, H., Muza, L., <strong>and</strong> Wadd<strong>in</strong>gton, S.R<br />

1998. Per<strong>for</strong>mance of green manure legumes on<br />

exhausted soils <strong>in</strong> Northern Zimbabwe; A soil<br />

fertility network trial. In: <strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong><br />

Maize-Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe<br />

(S.R. Wadd<strong>in</strong>gton, H. Murwira, J.D.T. Kumwenda,<br />

D. Hikwa <strong>and</strong> F. Tagwira, eds), <strong>Soil</strong> Fert<br />

Net <strong>and</strong> CIMMYT-Zimbabwe, Harare, Zimbabwe.<br />

pp.81-84.<br />

Hikwa, D. <strong>and</strong> S.R. Wadd<strong>in</strong>gton. 1998. Annual legurnes<br />

<strong>for</strong> improv<strong>in</strong>g soil fertility <strong>in</strong> the smallholder<br />

maize based systems of Zimbabwe.<br />

Transactions of the Zimbabwe Scientific Association<br />

72(supplemenf):15-26.<br />

Hikwa, D. <strong>and</strong> L. Mukurumbira. 1997. Evolution of<br />

the Department of Research <strong>and</strong> Specialist Services<br />

(DR&SS) proje~t on <strong>in</strong>tegrated soil fertility<br />

management <strong>in</strong> the small holder sector of Zimbabwe.<br />

In: Target (The Newsletter of the <strong>Soil</strong> <strong>Fertility</strong><br />

Research Network <strong>for</strong> Maize-Based Cropp<strong>in</strong>g<br />

Systems <strong>in</strong> Countries of Southern Africa)<br />

9:6-7.<br />

Jeranyama P, Hesterman O.B. <strong>and</strong> Wadd<strong>in</strong>gton S.R.<br />

1998. The impact of legumes relay <strong>in</strong>tercropped<br />

<strong>in</strong>to maize at Domboshava, Zimbabwe. In: <strong>Soil</strong><br />

<strong>Fertility</strong> Research <strong>for</strong> Maize-Based Farm<strong>in</strong>g Systems <strong>in</strong><br />

Malawi <strong>and</strong> Zimbabwe (S.R. Wadd<strong>in</strong>gton, H. Murwira,<br />

J.D.T. Kurnwenda, D. Hikwa <strong>and</strong> F. Tagwira,<br />

eds), <strong>Soil</strong> Fert Net <strong>and</strong> CIMMYr-Zimbabwe, Harare,<br />

Zimbabwe. pp. 31-34.<br />

Jeranyama P., Hesterman O.B ~ , Wadd<strong>in</strong>gton S.R.<br />

<strong>and</strong> Harwood, R.R. 2000. Relay-<strong>in</strong>tercropp<strong>in</strong>g of<br />

sunnhemp <strong>and</strong> cowpea <strong>in</strong>to a smallholder maize<br />

system <strong>in</strong> Zimbabwe. Agronomy Journal 92:239­<br />

244.<br />

Murata, M., Wadd<strong>in</strong>gton, S. <strong>and</strong> Murwira, H. 2000.<br />

Rehabilitation of degraded s<strong>and</strong>y soils us<strong>in</strong>g annual<br />

green manures <strong>in</strong> Zimbabwe, In: Target<br />

(The Newsletter of the <strong>Soil</strong> <strong>Fertility</strong> Research<br />

Network <strong>for</strong> Maize-Based Cropp<strong>in</strong>g Systems <strong>in</strong><br />

Countries of Southern Africa) 21:4.<br />

Muza, L. 1996. <strong>Green</strong> manur<strong>in</strong>g <strong>in</strong> the communal<br />

areas of Zimbabwe. In: Research Results <strong>and</strong> Network<br />

Outputs <strong>in</strong> 1994 <strong>and</strong> 1995. Proceed<strong>in</strong>gs of the<br />

second meet<strong>in</strong>g of the <strong>Soil</strong> <strong>Fertility</strong> Network<br />

Work<strong>in</strong>g Group, .held at Kadoma Ranch Motel,<br />

Zimbabwe, 18-21 July 1995, CIMMYT, Harare,<br />

Zimbabwe. pp. 30-34.<br />

Muza, L. 1997. Integrated soil fertility management<br />

through legume green manur<strong>in</strong>g <strong>in</strong> comb<strong>in</strong>ation<br />

with <strong>in</strong>organic fertilizer <strong>in</strong> communal areas of<br />

Zimbabwe. Proposal <strong>for</strong> fund<strong>in</strong>g renewal to the<br />

Rockefeller Foundation, 1997.<br />

Muza, L. <strong>and</strong> Mapfumo, P. 1998. Constra<strong>in</strong>ts <strong>and</strong> opportunities<br />

<strong>for</strong> legumes <strong>in</strong> the fertility enhancement<br />

of s<strong>and</strong>y soils <strong>in</strong> Zimbabwe. In: Maize Production<br />

Technology <strong>for</strong> the Future: Challenges <strong>and</strong> Opportunities,<br />

Proceed<strong>in</strong>gs of the Sixth Eastern <strong>and</strong><br />

Southern Africa Regional Maize Conference held<br />

<strong>in</strong> Addis Ababa, Ethiopia, 21-25 September 1998.<br />

CIMMYT <strong>and</strong> EARO. pp. 214-217.<br />

Muza, L. 1998'. Select<strong>in</strong>g green manure legumes <strong>for</strong><br />

relay <strong>and</strong> <strong>in</strong>tercropp<strong>in</strong>g systems with maize on<br />

s<strong>and</strong>y soils <strong>in</strong> Zimbabwe, In: Cover Crops <strong>in</strong> West<br />

Africa, Contribut<strong>in</strong>g to Sustab1able Agriculture, (D.<br />

Buckles, A. Eteka, O. Os<strong>in</strong>ame, M. Galiba <strong>and</strong> Et<br />

G. Galiano, eds). IORC, Canada. pp. 251-257.<br />

Muza, L., L. Pashapa <strong>and</strong> S. Feresu. 1998. Need to revive<br />

green manur<strong>in</strong>g <strong>in</strong> soil fertility management<br />

110<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


<strong>in</strong> Zimbabwe. The Zimbabwe Science News 32:51-53.<br />

Muza, L., Gasti, T., Pashapa, L. <strong>and</strong> F. Bwakaya.<br />

2000. <strong>Soil</strong> fertility management through legume<br />

green manur<strong>in</strong>g <strong>in</strong> comb<strong>in</strong>ation with <strong>in</strong>organic<br />

fertilizers <strong>in</strong> communal areas of Zimbabwe.<br />

(Rockefeller Grant No. 1994-0020-0048, Report<br />

cover<strong>in</strong>g 1994/95 to 1999/2000 seasons,<br />

submitted to Rockefeller Foundation <strong>in</strong> August<br />

2000).<br />

Mwenye, D. <strong>and</strong> C. Kuwaza. 2001. Chihota soil fertility<br />

project, Agritex, Marondera distrkt, Mashonal<strong>and</strong><br />

East Prov<strong>in</strong>ce, Zimbabwe. End of Season<br />

Report <strong>for</strong> the Period 1999-2000.<br />

Rattray, A.G.H. <strong>and</strong> B.s. Ellis, 1952. Maize green<br />

manur<strong>in</strong>g <strong>in</strong> Southern Rhodesia. Rhodesia Agricultural<br />

Journal 49:188-197.<br />

Tattersfield. J.R, 1982. The role of research <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g<br />

food potential <strong>in</strong> Zimbabwe. Zimbabwe<br />

Science News 16:6-11.<br />

Timson, S. D. 1946. <strong>Green</strong> manur<strong>in</strong>g; when to<br />

plough down the crop. Rhodesia Agricultural JournaI43:11-15.<br />

.<br />

Saunder, D.H., 1959. What is the value of green manur<strong>in</strong>g<br />

<strong>in</strong> Rhodesia? Proceed<strong>in</strong>gs of the fourth annual<br />

conference of the professional officers of the<br />

Department of Research <strong>and</strong> Specialist Services,<br />

held at the University College of Rhodesia <strong>and</strong><br />

Nyasal<strong>and</strong>, 9-11 June, 1959.<br />

·Shepherd, c.J. 1952. Effects of green manur<strong>in</strong>g on<br />

microbial population of the soil. Rhodesia Agricultural<br />

Journal 49:198-202.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 111


GRAIN LEGUMES AND GREEN MANURES IN EAST AFRICAN MAIZE<br />

SYSTEMS - AN OVERVIEW OF ECAMAW NETWORK RESEARCH<br />

DENNIS K. FRIESEN 1 , R. ASSENGA 2 , TESFA BOGALE 3 , T.E. MMBAGA 4 ,<br />

J. KIKAFUNDA 5 , WAKENE NEGASSA 6 , J. OJIEM 7 <strong>and</strong> R. ONYANG0 8<br />

1CIMMYT/IFDC, Nairobi, Kenya; <br />

2Agricultural Research Institute-Ml<strong>in</strong>gano Tanzania; <br />

3Jimma Agricultural Research Center, Jimma, Ethiopia; <br />

4Selian Agricultural Research Institute, Arusha, Tanzania; <br />

5 Namulonge Agriculture <strong>and</strong> Animal Production Research Institute, Kampala, Ug<strong>and</strong>a <br />

6Bako Agricultural Research Center, Bako, Ethiop;a; <br />

7Kakamega Regional Research Center, KARl, Kakamega, Kenya, <strong>and</strong> <br />

8Kitale National Agricultural Research Center, KARl, Kitale, Kenya <br />

Abstract<br />

The Eastern <strong>and</strong> Central Africa Maize <strong>and</strong> Wheat (ECAMA W) Research Network, established <strong>in</strong> 1996, is one of 18 networks<br />

operat<strong>in</strong>g under the Association <strong>for</strong> Strengthen<strong>in</strong>g Agricultural Research <strong>in</strong> Easterna.nd Central Africa<br />

(ASARECA). ECAMA W addresses constra<strong>in</strong>:s to maize <strong>and</strong> wheat production <strong>in</strong> the ten ASARECA member countries<br />

where maize is the number one priority crop <strong>and</strong> soil fertility is ranked as one of the pr<strong>in</strong>cipal constra<strong>in</strong>ts to improved<br />

maize productivity <strong>and</strong> production. Nitrogen (N) is the most limit<strong>in</strong>g nutrient <strong>in</strong> the region yet smallholder<br />

farmers use very little fertilizer <strong>in</strong>puts due to high cost, poor <strong>in</strong>frastructure <strong>and</strong> risk due to climatic uncerta<strong>in</strong>ty. <strong>Legumes</strong><br />

<strong>in</strong> systems with maize are a potential alternative source of N <strong>for</strong> the maize crop. Dur<strong>in</strong>g the past 5 years, the<br />

ECAMA W Network has funded 12 small ~rant projects deal<strong>in</strong>g with green manure <strong>and</strong> gra<strong>in</strong> legumes <strong>in</strong> systems with<br />

maize. Network collaborators have implemented some 24 on-station experiments <strong>and</strong> 195 on-farm trials to evaluate <strong>and</strong><br />

identify suitable adapted gra<strong>in</strong> legume <strong>and</strong> green manure species, <strong>and</strong> to quantify their impact on maize production <strong>in</strong><br />

systems <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>tercrops, relay crops <strong>and</strong> rotations. Some 12 legume species were evaluated <strong>for</strong> nodulation, ground<br />

cover, resistance to pests <strong>and</strong> diseases, biomass production, seed production, etc. <strong>in</strong> the moist <strong>and</strong> dry mid-altitude, <strong>and</strong><br />

lowl<strong>and</strong> ecologies of Ethiopia, Kenya, Tanzania <strong>and</strong> Ug<strong>and</strong>a. Mucuna pruriens, Canavalia ensi<strong>for</strong>mis, Crotalaria<br />

ochroleuca <strong>and</strong> Dalicos lablab were the most widely adapted <strong>and</strong> most effective N providers, although other species<br />

were 10caUy more suited. <strong>Green</strong> manure legumes <strong>in</strong>tercropped with maize had no significant beneficial effects on maize<br />

gra<strong>in</strong> yields <strong>and</strong>, depend<strong>in</strong>g on their aggressiveness, sometimes significantly reduced maize yields. <strong>Green</strong> manure biomass<br />

praduction was reduced <strong>in</strong> <strong>in</strong>tercrops <strong>and</strong> more so when relayed <strong>in</strong>to maize. Depend<strong>in</strong>g on the degree of growth<br />

suppression <strong>and</strong> the duration offollow-on growth permitted after the maize harvest, green manures had either little or<br />

substantial effects on maize yields <strong>in</strong> the follow<strong>in</strong>g season. The effects of green manures rotated with maize. had more<br />

consistent <strong>and</strong> substantive effects on subsequent maize yields with <strong>in</strong>creases as much as 385%, or 2.5-3.0 t/ha, on farmers'<br />

fields. <strong>Gra<strong>in</strong></strong> legumes, <strong>in</strong>clud<strong>in</strong>g soybean, cowpea, green gram <strong>and</strong> pigeonpea, had little beneficial or negative effect<br />

on maize productivity whether grown as <strong>in</strong>tercrops or <strong>in</strong> rotations. Farmers' reactions to green manures was mixed,<br />

from reluctance to plant a crop which produced no food to appreciation of the weed suppress<strong>in</strong>g effects <strong>and</strong> soil fertility<br />

ga<strong>in</strong>s they provided. A frequent question regarded the palatability of mucuna <strong>and</strong> canavalia seed. Despite considerable<br />

exposure to green manure legumes, farmers have been slow to adopt them <strong>in</strong>to their farm<strong>in</strong>g systems. On the other<br />

h<strong>and</strong>, gra<strong>in</strong> legumes, which produced a consumable or marketable product, were highly valued by farmers.<br />

Key words: ECAMA W Network, legume adaptation, <strong>in</strong>tercropp<strong>in</strong>g, relay crops, rotations<br />

Introduction<br />

Maize is grown on more than 7.6 M hectares <strong>in</strong> East­<br />

ern <strong>and</strong> Central Africa with an average yield less<br />

than 1.3 t/ha (compared to a potential of 4.5-7 t/ha)<br />

(P<strong>in</strong>gali,2001). Average per capita consumption of<br />

maize gra<strong>in</strong> is 50 kg, but it ranges from 12-103 kg<br />

per person. Given the large area planted, <strong>and</strong> its<br />

importance as a food <strong>and</strong> cash crop, maize was<br />

id~ntified as the number one priority <strong>for</strong> regional<br />

research by the Association <strong>for</strong> Strengthen<strong>in</strong>g Agricultural<br />

Research <strong>in</strong> Eastern <strong>and</strong> Central Africa<br />

(ASARECA). Low soil fertility, especially nitrogen<br />

(N), is one of the pr<strong>in</strong>cipal constra<strong>in</strong>ts to <strong>in</strong>creased<br />

maize productivity <strong>in</strong> the region (ECAMA W, 1999).<br />

Fertilizer use is less than 10 kg/ha/yr (Bumb <strong>and</strong><br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 113


Baanante, 1996; Heisey <strong>and</strong> Mwangi, 1996) due to (i)<br />

high price <strong>and</strong> poor <strong>in</strong>frastructure, (ii) risk due to<br />

uncerta<strong>in</strong>ty <strong>in</strong> climate <strong>and</strong> the price of produce, <strong>and</strong><br />

(iii) lack of access to credit <strong>for</strong> smqll holders.<br />

The Eastern <strong>and</strong> Central Africa Maize <strong>and</strong> Wheat<br />

(ECAMAW) Research Network is a network of<br />

maize <strong>and</strong> wheat scientists from the National Agricultural<br />

Research Systems of the ten countries <strong>in</strong><br />

Eastern <strong>and</strong> Central Africa operat<strong>in</strong>g under the Sub­<br />

Regional Organization, ASARECA. ECAMAW scientists<br />

address priority constra<strong>in</strong>ts of regiunal importance<br />

to improved maize <strong>and</strong> wheat production<br />

<strong>and</strong> productivity <strong>and</strong> operate through a system of<br />

small project grants overseen by a Steer<strong>in</strong>g Committee,<br />

a Network Coord<strong>in</strong>ator <strong>and</strong> CIMMYT project<br />

scientists that fund the small grants program.<br />

Due to the poor access farmers have to fertilizers,<br />

ECAMA W scientists have focussed on green manures<br />

<strong>and</strong> gra<strong>in</strong> legumes as alternative sources of N<br />

<strong>for</strong> maize systems. The potential <strong>for</strong> legumes to supply<br />

N to cropp<strong>in</strong>g systems is well known, <strong>and</strong> the<br />

benefits <strong>and</strong> constra<strong>in</strong>ts were recently reviewed by<br />

Giller et al. (1997). <strong>Legumes</strong> <strong>in</strong> cropp<strong>in</strong>g systems<br />

can be broadly classified as those that produce a<br />

consumable seed (gra<strong>in</strong> legumes) <strong>and</strong> those that are<br />

grown solely <strong>for</strong> agronomic purposes, such as a<br />

source of biologically fixed N (green manures),<br />

weed control. <strong>and</strong> ground cover. While gra<strong>in</strong> legumes<br />

can fix substantial amount of N, with few exceptions<br />

(e.g., groundnut, cowpea, pigeonpea), most<br />

of the fixed N is harvested with the gra<strong>in</strong> <strong>and</strong> little<br />

is left to the soil <strong>and</strong> subsequent cereal crops. <strong>Green</strong><br />

manures provide considerable N to the soil when<br />

grown <strong>in</strong> rotations with crops but also remove l<strong>and</strong><br />

hom production to ga<strong>in</strong> that benefit. Both gra<strong>in</strong> legumes<br />

<strong>and</strong> green manures grown as <strong>in</strong>tercrops suffer<br />

from competition from the companion crop, reduc<strong>in</strong>g<br />

biomass accumulation, biological N fixation <strong>and</strong><br />

the potential benefits to the systems.<br />

Dur<strong>in</strong>g 1997-2002, the ECAMA W Network supported<br />

12 small grant projects, each spann<strong>in</strong>g periods<br />

of two or more years <strong>and</strong> often implemented<br />

across several sites, to evaluate gra<strong>in</strong> legumes <strong>and</strong><br />

green manures <strong>in</strong> maize systems. Most of these projects<br />

were executed on-farm with farmer participation<br />

at multiple sites. The objectives of this research<br />

were to:<br />

• Identify suitable adapted green manure <strong>and</strong> gra<strong>in</strong><br />

legume species <strong>for</strong> the major ecologies of ECA;<br />

• Evaluate appropriate management practices <strong>for</strong><br />

them <strong>in</strong> <strong>in</strong>tercrops, relay crops or rotations with<br />

maize;<br />

& Quantify the impact of green manures <strong>and</strong> gra<strong>in</strong><br />

legumes on maize pFOductivity;<br />

• Determ<strong>in</strong>e ihe fertilizer-N equivalence of green<br />

manures <strong>in</strong> rotations; <strong>and</strong><br />

• Evaluate green manures <strong>and</strong> gra<strong>in</strong> legumes <strong>in</strong> systems<br />

on-farm with farmers to ascerta<strong>in</strong> farmers'<br />

perceptions <strong>and</strong> acceptance.<br />

This paper summarizes the results of these regional<br />

network trials <strong>and</strong> describes on-go<strong>in</strong>g <strong>and</strong> future<br />

research <strong>and</strong> dissem<strong>in</strong>ation activities of ECAMA W<br />

network scientists with legumes <strong>in</strong> maize-based systems.<br />

Methods<br />

Evaluations of legumes <strong>for</strong> adaptation, biomass<br />

production <strong>and</strong> N-fixation<br />

Regional trials were established at Namulonge<br />

(Ug<strong>and</strong>a), Arusha (Tanzania), Tanga (Tanzania),<br />

Jimma (Ethiopia) <strong>and</strong> Kakamega (Kenya) to screen<br />

green manure <strong>and</strong> gra<strong>in</strong> legume species <strong>for</strong> adaptation<br />

to the local environment. A core set of 12 species<br />

(Table 1) were generally evaluated at all sites;<br />

an additional 10 species (Oolichos-Renga, Cajanus cajan,<br />

Pueraria phaseoloides, Vo<strong>and</strong>zeia subterranea, Crotalaria<br />

brevidens, Oesmodium <strong>in</strong>tortum, Lablab purpureus,<br />

Macroptilium atropurpureum, Phaseolus vulgaris<br />

(cv. Selian wonder) <strong>and</strong> green gram) were<br />

evaluated at s<strong>in</strong>gle selected sites. Species were<br />

sown <strong>in</strong>'small plots on station at the onset of the<br />

ra<strong>in</strong>s <strong>and</strong> were scored at appropriate periods <strong>for</strong><br />

establishment, nodulation, percent ground cover,<br />

resistance to pests <strong>and</strong> diseases, seed <strong>and</strong> biomass<br />

production among other criteria. N supply capacity<br />

was estimated from the total biomass production<br />

<strong>and</strong> N content of the biomass.<br />

Effects of green manures <strong>and</strong> gra<strong>in</strong> legumes <strong>in</strong> <br />

maize-legume systems <br />

Trials were conducted on station <strong>and</strong> on farm to <br />

evaluate promis<strong>in</strong>g legume species (based on re­<br />

gional screen<strong>in</strong>g trials) <strong>in</strong> systems with maize. Sys­<br />

tems <strong>in</strong>cluded the follow<strong>in</strong>g: <br />

• Rotations with<strong>in</strong> a year (bimodal ra<strong>in</strong>fall) or<strong>in</strong> alternate<br />

years (monomodal ra<strong>in</strong>fall distribution);<br />

• Relays, <strong>in</strong>clud<strong>in</strong>g the effect of relay date on green<br />

manure biomass production <strong>and</strong> sequenced maize<br />

production; <strong>and</strong><br />

• Intercrops of green manure or gra<strong>in</strong> legume species<br />

with maize.<br />

The effect of legume species <strong>and</strong> system on maize<br />

productivity (yield of maize gra<strong>in</strong> per hectare) was<br />

measured. In some cases, the effect of maize on legume<br />

biomass production was also determ<strong>in</strong>ed, <strong>in</strong>clud<strong>in</strong>g<br />

the N content of the aboveground biomass<br />

where possible. All results were subjected to analyses<br />

of variance <strong>and</strong> means were separated by the<br />

Duncan's Multiple Range Test where appropriate.<br />

114<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Results<br />

Table 1. Adaptation of green manure <strong>and</strong> gra<strong>in</strong> legume species to the moist <strong>and</strong> dry mid·altitude <strong>and</strong> tropical<br />

lowl<strong>and</strong> ecologies of Eastern Africa"<br />

Legume adaptation <strong>in</strong> Legume species Establish· Nodula· Ground Diseases Seed<strong>in</strong>g<br />

ment<br />

•<br />

tion cov·er <strong>and</strong> pests capacity<br />

.ECA ecologies<br />

Table 1 summarizes re­ Calopogonium mucunoides 2 2 1<br />

~<br />

sults of regional legume Canavafia ensi<strong>for</strong>mis 2<br />

species evaluation trials Crotalaria ochroleuca 2<br />

across five sites <strong>for</strong> 12 Dolichos lablab 7.6<br />

species accord<strong>in</strong>g to six Mucuna pruriens (black) 10.6<br />

criteria us<strong>in</strong>g a 5-po<strong>in</strong>t Mucuna pruriens (white) 8.3<br />

scale from very good Sesbania sesban<br />

through fair to very Glyc<strong>in</strong>e max (Soybean-Nyala)<br />

poor. Species consid- Glyc<strong>in</strong>e max (Soybean.SCs)<br />

ered <strong>in</strong>clude green ma-<br />

Vigna unguiculata (Cowpea)<br />

nures <strong>and</strong> gra<strong>in</strong> legumes.<br />

Visually, the Vicia dyascarpa (=lana vetch) <br />

most adapted green ma- Vicia vil/osa (=purple vetch) <br />

nure species appeared to <br />

be Mucuna pruriens, Ooli­<br />

2<br />

"Legend <strong>for</strong> evaluations<br />

v.good ' good<br />

••<br />

does not <strong>in</strong>clude potential further biomass accumu­<br />

cos lablab, Crotalaria<br />

ochroleuca <strong>and</strong> Canavalia ensi<strong>for</strong>mis although there<br />

were regiona1 variations <strong>in</strong> adaptation. <strong>Gra<strong>in</strong></strong> legume<br />

species tended to be less adapted than gre.en<br />

manure species but this may be a reflection of the<br />

evaluation criteria tha t favoured attribu tes <strong>for</strong> soil<br />

fertility enhancement <strong>and</strong> sequenced maize production.<br />

lation that may occur if they are allowed to cont<strong>in</strong>ue<br />

grow<strong>in</strong>g on residual moisture subsequent to the<br />

maize harvest, the possibility of which depends on<br />

the presence or absence of free-rang<strong>in</strong>g cattle that<br />

are often allowed to graze crop residues <strong>in</strong> these<br />

systems.<br />

­<br />

The potential contribution of green manure <strong>and</strong> Effects of legumes <strong>in</strong> rotations on maize producgra<strong>in</strong><br />

legume species to soil N status is shown <strong>in</strong> tion<br />

Table 2, based on the mean biomass production The effects of green manures grown <strong>in</strong> rotations<br />

across one or more sites <strong>in</strong> the region <strong>and</strong> thei;<br />

measured or estimated N contents.<br />

Table 2. Biomass production <strong>and</strong> estimated nitrogen content of green manure <strong>and</strong><br />

<strong>Green</strong> manures were grown as sole<br />

gra<strong>in</strong> legume residues at ECAMAW regional screen<strong>in</strong>g sites (1998-99)<br />

crops <strong>and</strong> sampled at the end of the sea­<br />

No. of<br />

Mean N<br />

son at a· growth stage considered appro­ Legume species Common name Biomass yield<br />

sites<br />

content§<br />

priate <strong>for</strong> <strong>in</strong>corporation <strong>in</strong>to the soil. m<strong>in</strong> max mean<br />

With few exceptions, the mean levels of -- _.. (I-OM/ha) · -- - - (kg-N/ha)<br />

N provided by green manures were well Calopogonium mucunoides Calopo 3 1.4 4.2 3.U 61<br />

<strong>in</strong> excess of a maize crop's requirements. Canavalia ensi<strong>for</strong>mis Jackbean 5 2_9 18.2 12.5 316<br />

<strong>Gra<strong>in</strong></strong> legumes such as cowpea <strong>and</strong> Crotalaria brevidens Sunhemp 3.4 3.4 3.4 85"<br />

groundnut left suboptimal amounts of Crotalaria ochroleuca 4 2.0 15.0 8.1 267<br />

N <strong>for</strong> a subsequent maize crop.<br />

lablab purpureus Oolicos lablab 5 2_1 16.6 7_6 131<br />

Macroptylium atropurpureum Siratro 2.0 2.0 2.0 50"<br />

Mucurla pruriens (black) Velvet bean 5 2.5 20.7 10.6 289<br />

Shad<strong>in</strong>g <strong>and</strong> competition <strong>for</strong> water <strong>and</strong><br />

Mucuna pruriens (white) Velvet bean 2 4.5 12.0 8.3 208"<br />

nutrients reduces the growth of green<br />

Pueraria phaseoloides Tropical kudzu 2.1 2.1 2.1 33"<br />

manures sown as <strong>in</strong>tercrops with maize,<br />

Sesbania sesban Sesban 12.3 12.3 12.3 308"<br />

<strong>and</strong> hence reduces the amount of N Vicia dasycarpa Lana vetch 2 0.5 3.0 1.8 45" <br />

available <strong>for</strong> subsequent maize crops. Vicia vil/osa Purple vetch 2 0.6 5.0 2.8 70"<br />

Figure 1 compares biomass production Cajanus cajan Pigeon pea 1 17.1 17.1 17.1 428"<br />

of mucuna, canavalia <strong>and</strong> crotalaria Glyc<strong>in</strong>e max (Nyala) Soybean 3 0.5 4.7 3_3 83"<br />

grown as sole crops, or <strong>in</strong>tercropped Glyc<strong>in</strong>e max (SCs-l) Soybean 3 0.3 3.7 1.5 117<br />

with maize 2-3 weeks after maize emer­ Phaseolus vulgaris Field bean 0.1 0.1 0.1 3"<br />

.gence, or relay planted <strong>in</strong>to maize at 2 Vigna radiata <strong>Green</strong> gram 1 2.0 2.0 2.0 50"<br />

weeks after tassel<strong>in</strong>g at Jimma, Ethiopia, Vigna unguiculata Cowpea 2 1.2 4.5 2.9 70<br />

<strong>and</strong> Namulonge, Ug<strong>and</strong>a. Legume bio­<br />

Bambara<br />

Vo<strong>and</strong>leia subterranea 1.1 1.1 1.1 28"<br />

groundnut<br />

mass was measured at the time of har­<br />

§ mean Ncontents calculated from measured N concentrations of biomass except those marked with<br />

vest<strong>in</strong>g the maize <strong>and</strong>, consequently,<br />

*<br />

·which are estimated Ncontents based on an average concentration of 2.5% N <strong>in</strong> the biomass.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 1/5


10 .-----------------------____________~ with maize <strong>in</strong> research station trials at Bako <strong>and</strong><br />

Jlmma (2000) Namulonge (1999)<br />

- Jirnrna (Ethiopia), Ml<strong>in</strong>gano (Tanzania), Kakamega<br />

(Kenya) <strong>and</strong> Namulonge (Ug<strong>and</strong>a) are summarized<br />

.Sole crop.<br />

<strong>in</strong> Table 3. These trials generally compared maize<br />

~ Inler-cro p<br />

response to the legume sown <strong>in</strong> the preced<strong>in</strong>g sea­<br />

'C 6 _Relay crop<br />

CD<br />

son with response to the recommended level of N<br />

>.<br />

fertilizer. Fertilizer N at locally recommended rates<br />

If!<br />

II> 4 <br />

IV <br />

(see Table 3 footnote) generally <strong>in</strong>creased yields by<br />

E<br />

o<br />

46-108% across sites. With the exception of Ml<strong>in</strong>­<br />

iii 2<br />

gano, legume rotations consistently produced significantly<br />

higher maize yields than unfertilized<br />

o<br />

maize <strong>in</strong> monocrop systems <strong>and</strong> usually as great or<br />

Mucuna Canavalia Crotolarla Mucuna Canavalia greater yields than fertilized maize <strong>in</strong> monoculture. <br />

Yield ga<strong>in</strong>s ranged from 1.5-3.5 t/ha or 27-134%. <br />

Figure 1. Effect of <strong>in</strong>tercropp<strong>in</strong>g <strong>and</strong> relay cropp<strong>in</strong>g on biomass The poor response to the legume rotation at Ml<strong>in</strong>­<br />

production of legumes <strong>in</strong> maize·legumes systems at Jimma, Ethiopia, gano may be due to soil hydraulic properties <strong>and</strong><br />

<strong>and</strong> Namulonge, Ug<strong>and</strong>a. (lnter·cropped legumes sown <strong>in</strong>to maize 2­ high ra<strong>in</strong>fall lead<strong>in</strong>g to leach<strong>in</strong>g of N m<strong>in</strong>eralized<br />

3 weeks after maize emergence; relayed legumes sown <strong>in</strong>to maize 2<br />

weeks after maize tassel<strong>in</strong>g.)<br />

from the resid~es <strong>in</strong> the <strong>in</strong>terven<strong>in</strong>g dry season.<br />

_Dur<strong>in</strong>g 1998-2001, on-farm trials to<br />

Table 3. Response of maize gra<strong>in</strong> yield· (t/ha) to green manures sown <strong>in</strong> the preced<strong>in</strong>g evaluate <strong>and</strong> promote green maseason<br />

(year) <strong>and</strong> <strong>in</strong>corporated prior to sow<strong>in</strong>g maize <strong>in</strong> the current season - on-station nures <strong>in</strong> rotation with maize were<br />

trials<br />

carried out <strong>in</strong> Ethiopia, Kenya, Tanzania<br />

<strong>and</strong> Ug<strong>and</strong>a on more than 70<br />

Maize·green<br />

Ethiopia Tanzania Kenya Ug<strong>and</strong>a<br />

maRure rotation§<br />

farms; 42 were successfuUy harvested<br />

(Table 4). <strong>Green</strong> manure spe­<br />

------------------<br />

Bako Jimma Ml<strong>in</strong>gano Kakamega Namulonge<br />

1998 2000 2001 2000 1998 2000 20.01 cies <strong>in</strong>cluded mucuna, crotalaria,<br />

Dolicos lablab <strong>and</strong> canavalia_ Re­<br />

Maize - Fert-N 3.12 a 5.00 a 1.95 a 2.05 a 5.43 a 3.11 a 3.93 a<br />

sponse of maize to the preced<strong>in</strong>g<br />

Maize + Fert-N# 5.12 b 8.67 b 3:15 be 4.27 b 4.54 be 6.94 e<br />

season's green manure crop was<br />

Mucuna 2.92 b 2.50 a 5.01 e 5.65 b<br />

compared to monocropped maize<br />

Canavalia 3.85 cd 2.70.a 6.87 b 4.00 b 6.47 be with <strong>and</strong> without the recommended<br />

Crota/aria 8.48 b 4.56 d 7.2~ b rate of fertilizer N <strong>for</strong> the area. Re­<br />

Sesbania 8.18 b - sponses to fertilizer N were gener­<br />

Dolieos lablab 5.20 ~ ally greater on farmers' fields than<br />

§ Gfeen manures sown <strong>in</strong> preced<strong>in</strong>g year <strong>and</strong> <strong>in</strong>corporated be<strong>for</strong>e sow<strong>in</strong>g maize the follow<strong>in</strong>g year, except on-station, rang<strong>in</strong>g from 1.4-3.3 t/<br />

Kak1imega <strong>and</strong> Namulonge where ra<strong>in</strong>fall is bimodal <strong>and</strong> green manures were sown <strong>in</strong> the previous short ra<strong>in</strong>y ha (21-133% <strong>in</strong>crease). Exceptat<br />

season <strong>and</strong> <strong>in</strong>corporated prior to long ra<strong>in</strong>y season_<br />

Shoboka, Ethiopia, green manure<br />

• <strong>Gra<strong>in</strong></strong> yields <strong>in</strong> a column fonowed by the same letter are not significantly different.<br />

rotations consistently produced as<br />

# Fertilizer Napplied - 110 (Bakol. 92 (Jimma, 2000), 69 (Jimma. 2001), 50 (Ml<strong>in</strong>gano). 70 (Namulonge, 2000)<br />

<strong>and</strong> 120 (Namulonge, 2001) kg-N/ha _<br />

much, <strong>and</strong> occasionally more,<br />

maize than the fertilized<br />

monocrops, <strong>in</strong>creas<strong>in</strong>g maize yields<br />

Table 4. Response of maize gra<strong>in</strong> yield· (t/ha) to green manures sown <strong>in</strong> the preced<strong>in</strong>g<br />

season (year) <strong>and</strong> <strong>in</strong>corporated prior to sow<strong>in</strong>g maize <strong>in</strong> the current season - on-farm trials<br />

by 1.75-4.5 t/ha (34-384% <strong>in</strong>crease).<br />

Maize-green<br />

Ethiopia Tanzania Kenya<br />

manure rotation§<br />

Although green manure species can<br />

potentially provide an excess of N<br />

Shoboka Walda Ml<strong>in</strong>gano Kakamega Kitale<br />

to a subsequent maize crop, not all<br />

1998 1998 2001 1998 1998 1999 2000<br />

of the N <strong>in</strong> the green manure resi­<br />

No. of farmers 14 4 10 7 6 dues may be available <strong>and</strong> consid­<br />

Maize - Fert-N 2.38 a 3.12 a 1.48 a 0.70 a 6.7 a 4.1 a 4.4 ab erable losses via various pathways<br />

Maize + Fert-N# 5.55 b 6.48 b 2.78 be 8.1 b 6.5 b 7.3 d (leach<strong>in</strong>g, volatilization) may occur<br />

Mucuna 3.22 e 9.0 be 6.0 b 3.7 a be<strong>for</strong>e the maize crop can access it.<br />

Crotalaria 3.39 b 6.2 a 6.1 b 5.6 be Thus, on-station experiments were<br />

Dolieos lablab 2.70 a 6.33 b 11 .1 e 6.9 b 6.5 cd conducted at Namulonge, Ug<strong>and</strong>a,<br />

Canavalia<br />

2.31 b<br />

<strong>and</strong> Jimma, Ethiopia, to estimate<br />

the N fertilizer equivalence of mu­<br />

§ <strong>Green</strong> manures managed as described <strong>in</strong> Table 3.<br />

• <strong>Gra<strong>in</strong></strong> yields <strong>in</strong> a column followed by' the same letter are not significantly differe~t. <br />

cuna, canavalia, sesbania <strong>and</strong> crota­<br />

# Fertilizer N applied - 50 (Ml<strong>in</strong>gano). 60 (Kitalel. <strong>and</strong> 110 (Bakol kg-N/ha. laria grown <strong>in</strong> the preced<strong>in</strong>g season. <br />

116 <strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Four rates of fertilizer N were applied to maize <strong>in</strong> 10<br />

plots previously under maize or the green manure. (a) Namulonge (b) Jlmma, Ethiopia<br />

10<br />

At Namulonge, mucuna <strong>and</strong> canavalia produced<br />

maize yields equivalent to about 120 kg-Nlha Ii 8<br />

J:<br />

while, at Jimma, sesbania <strong>and</strong> crotalaria green ma­ =- 8<br />

~<br />

nures were equivalent to >70 kg-N Iha of fertilizer "<br />

(Figure 2).<br />

;;<br />

>. ~<br />

c 6<br />

~ 0<br />

•<br />

'" • •<br />

6<br />

N<br />

Effects of <strong>in</strong>tercropped legumes on maize produc­ "i<br />

"<br />

:I<br />

4<br />

tion<br />

• Mliiu-m.lize<br />

Table 5 summarizes maize response to green ma­<br />

• Selbllnia maize<br />

... Crotolarla-malze<br />

nure <strong>in</strong>tercrops at three on-station sites over several<br />

years. Although maize responded significantly to N o 40 80 120 o 40 80<br />

fertilizer <strong>in</strong> 4 out of 6 site-years, the legume <strong>in</strong>ter- Fertilizer N rate (kg/ha) Fertilizer N rate (kg/ha)<br />

crop significantly <strong>in</strong>creased the subsequent season's<br />

maize yield <strong>in</strong> only one <strong>in</strong>stance (crotalaria at Figure 2. Maize response to fertilizer Nrates follow<strong>in</strong>g maize<br />

Jimma <strong>in</strong> 2000). Mucuna, canavalia <strong>and</strong> crotalaria monocrops or green manure rotations <strong>in</strong> the preced<strong>in</strong>g season, at (a)<br />

<strong>in</strong>tercropped or relayed with maize <strong>in</strong> regional on Namulonge, Ug<strong>and</strong>a, <strong>and</strong> (b) Jimma, Ethiopia<br />

station trials at Jimma, Ml<strong>in</strong>gano <strong>and</strong> Namulonge<br />

generally had no significant effect on<br />

maize yields <strong>in</strong> the subsequent season Table 5. Effect of green manure ilitercrops <strong>and</strong> relay crops on maize gra<strong>in</strong> yields§<br />

(Table 5). This was attributed to low legmanaged<br />

(t/ha) sown with the green manure or alone <strong>in</strong> the subsequent season - researcher<br />

ume biomass production (<strong>and</strong> hence N<br />

trials on station<br />

fixation) under the shady conditions of Maize·<strong>Green</strong> manure system Jimma Ml<strong>in</strong>gano Namulonge<br />

the maize canopy. 2000 2001 1999 2000 2001 2000lR<br />

Sole Maize - fertilizer N 4.89 a 1.95 ab 1.28 2.05 a 3.76 3.11 ab<br />

Mixed results of legume <strong>in</strong>tercrops <strong>and</strong> Sole Maize + fertilizer N§ 6.02 ab 3.15 c 1.77 4.27 b 3.89 4.54 c<br />

relays were obta<strong>in</strong>ed <strong>in</strong> some 56 on-farm Mucuna <strong>in</strong>tercrop' 5.22 ab 1.60 a 2.12 2.74 a 3.49 3.51 b<br />

trials conducted <strong>in</strong> Northern <strong>and</strong> East­<br />

Mucuna relay crop# 4.86 a 2.36 b 2.30 2.28 a 2.84 3.14 ab<br />

ern Tanzania dur<strong>in</strong>g 2000 <strong>and</strong> 2001<br />

Canavalia <strong>in</strong>tercrop' 5.96 ab 2.25 bc 1.77 2.40 a 2.53 3.94 bc<br />

(Table 6). In some cases, maize yields<br />

Canavalia relay crop# 5.62 ab 1.88 ab 2.26 1.71 a 2.28 2.57 a<br />

were <strong>in</strong>creased by 60-120% (1-2 t/ha)<br />

while' <strong>in</strong> others no significant effects Crotalaria <strong>in</strong>tercrop' 6.52 b 2.15 ab<br />

were obta<strong>in</strong>ed. On the positive side, nei­ Crotalaria relay crop# 5.34 ab 1.96 ab<br />

ther did <strong>in</strong>tercropped legumes have any Yields with<strong>in</strong> a column followed by the same letter (or no letter) are not<br />

negative impact on maize yields <strong>in</strong> these significantly different<br />

trials, although experience <strong>in</strong> other trials § N rate (kg/ha) - 69 (Jimmal. 50 (Ml<strong>in</strong>gano), 70 (Namulonge);<br />

• planted 2 weeks after maize<br />

has found considerable competition<br />

# planted 2 weeks after tassell<strong>in</strong>g<br />

from legumes such as mucuna if not<br />

properly managed.<br />

Discussion <strong>and</strong> Conclusions<br />

Table 6. Effect of green manure <strong>in</strong>tercrops or relay crops on yield of maize gra<strong>in</strong>§ (tl<br />

hal sown with the green manure or alone <strong>in</strong> the subsequent season - on farm trials<br />

Dur<strong>in</strong>g the past five years, the Maize·<strong>Green</strong> manure Tropicallowl<strong>and</strong> ecology<br />

Dry mid·altitude<br />

ECAMA W research network has identi­ system (<strong>in</strong>tercrop or relay) Ngomeni Tanganyika Ml<strong>in</strong>gano<br />

Hai#<br />

fied <strong>and</strong> characterized several green ma­ 2000 2000 2000 2001 2000 2001<br />

nure <strong>and</strong> gra<strong>in</strong> legume species that have No. of f~rms 4 4 18 14 8 8<br />

good biophysical adaptation to the Sole Maize - 0 kg·N/ha 1.82 a 3.30 2.22 1.48 a 0.8 2.2 a<br />

moist mid-altitude <strong>and</strong> tropical lowl<strong>and</strong> Sole Maize - 25 kg·N/ha 2.49 b 3.86<br />

ecologies of Eastern <strong>and</strong> Central Africa.<br />

Sole Maize - 50 kg·N/ha 3.28 c 3.19 2.49 2.78 b<br />

In monoculture situations, most of these<br />

Maize/mucuna 2.88 bc 3.57 2.32 2.40·b 1.1 4.1 b<br />

legumes were able to biologically fix N <br />

Maize/canavalia 2.92 bc 3.71 2.49 2.31 b 0.0 4.3<br />

much <strong>in</strong> excess of a maize crop's re­<br />

b<br />

q~irements. However, <strong>in</strong> <strong>in</strong>tercropp<strong>in</strong>g MaizelDolicos lablab 1.1 4.6 b<br />

situations, biomass production <strong>and</strong> biological<br />

Maize/calopogonium 2.52 b 3.84<br />

nitrogen fixation was severely # green manures relayed <strong>in</strong>to maize <strong>in</strong> 2000; maize sown alone <strong>in</strong> 2001<br />

limited by competition <strong>for</strong> light <strong>and</strong> § yields with<strong>in</strong> a column followed by the same letter (or no letter) are not significantly<br />

moisture with the maize crop. Further- different<br />

T<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 117


more, mtercroppmg was found to be highly management<br />

sensitive, especially with respect to the<br />

competition that aggressive legumes such as mucuna<br />

can exert on the maize crop., As a result of<br />

these effects, mtercropped green manures were<br />

found to have very mixed effects on a subsequent<br />

maize crop's yields. In contrast, green manures<br />

grown m rotation with maize had benefits that are<br />

more consistent. The results of these studies by the<br />

ECAMA W network are there<strong>for</strong>e m substantive<br />

agreement with similar results obtamed elsewhere<br />

<strong>in</strong> the region (Giiler et al., 1997).<br />

Farmers' perceptions <strong>and</strong> constra<strong>in</strong>ts to adoption of<br />

green manure/gra<strong>in</strong> legume systems were ass~ssed<br />

<strong>in</strong> m<strong>for</strong>mal questionriaires durmg field days organized<br />

around on-farm trials. While farmers had<br />

much <strong>in</strong>terest <strong>in</strong> new <strong>and</strong> alternative crops, they<br />

were concerned with the lack of a consumable or<br />

marketable product <strong>for</strong> many of the green manure<br />

species. For many, the spatial requirements <strong>for</strong><br />

green manures grown m rotations may not be acceptable.<br />

In <strong>in</strong>tercropp<strong>in</strong>g situations, competition<br />

effects, especially <strong>for</strong> creepers such as mucuna, were<br />

also very undesirable. Nevertheless, the benefits of<br />

both green manures <strong>and</strong> <strong>in</strong>tercropped legume:> <strong>in</strong><br />

weed control <strong>and</strong> reduced dependence on fertilizer<br />

<strong>in</strong>puts were recognized by farmers.<br />

Based on this experience, current <strong>and</strong> fu ture ­<br />

ECAMA W activities with green manures <strong>and</strong> gra<strong>in</strong><br />

legumes <strong>in</strong> maize-based systems are focuss<strong>in</strong>g on<br />

the follow<strong>in</strong>g:<br />

• Comb<strong>in</strong><strong>in</strong>g legumes with new low-N maize varieties<br />

that have been developed by breeders work­<br />

.<strong>in</strong>g with CIMMYT <strong>in</strong> the region - these varieties<br />

·will respond to lower levels of available soil N<strong>and</strong><br />

should <strong>in</strong>crease the potential benefits of legumes<br />

that, due to their nature or the system <strong>in</strong> which<br />

they are grown, provide less than the required N<br />

<strong>in</strong>to the system.<br />

• Introduc<strong>in</strong>g <strong>and</strong> evaluat<strong>in</strong>g multi-purpose legumes<br />

that fit <strong>in</strong>to exist<strong>in</strong>g maize systems - <strong>in</strong> response<br />

to farmers' concerns regard<strong>in</strong>g a marketable/consumable<br />

product <strong>and</strong> the lack of space m<br />

their systems <strong>for</strong> fallows.<br />

• Assess<strong>in</strong>g the economic viability of maize-legume<br />

systems <strong>in</strong> on-farm trials with farmers.<br />

References<br />

Bumb, B.L., <strong>and</strong> CA. Baanante. 1996. The role offertilizer<br />

<strong>in</strong> susta<strong>in</strong><strong>in</strong>g food security <strong>and</strong> protect<strong>in</strong>g the<br />

environment to 2020. Food, Agriculture <strong>and</strong> the<br />

Environment Discussion Paper 17. IFPRl, Wash<strong>in</strong>gton,<br />

D.C, USA.<br />

ECAMAW. 1999. The Eastern <strong>and</strong> Central Africa<br />

Maize <strong>and</strong> Wheat Research Network (ECAMA W)<br />

Five-year Plan (2000-2004). Entebbe, Ug<strong>and</strong>a:<br />

ASARECA/ECAMAW.<br />

Giller, K.E., G. Cadisch, C Ehaliotis, E. Adams, W.<br />

D. Sakala, <strong>and</strong> P.L. Mafongoya. 1997. Build<strong>in</strong>g<br />

soil nitrogen capital <strong>in</strong> Africa. In: R.J. Buresh, P.A.<br />

Sanchez <strong>and</strong>· F. Calhoun (eds.), Replenish<strong>in</strong>g <strong>Soil</strong><br />

Fertil~ty <strong>in</strong> Africa. SSSA Spec. Publ. No. 51, <strong>Soil</strong><br />

Sci. Soc. Am.!Am. Soc. Agron., Madison, Wisc.<br />

USA. pp. 151-192.<br />

Heisey, P.W., <strong>and</strong> W. Mwangi. 1996. Fertilizer use<br />

<strong>and</strong> maize production <strong>in</strong> sub-Saharan Africa. Economics<br />

Work<strong>in</strong>g Paper 96-01, CIMMYT, Mexico<br />

D.F.<br />

P<strong>in</strong>gali, P.L. (ed.). 2001. CIMMYT 1999-2000 World<br />

Maize Facts <strong>and</strong> Trends. Meet<strong>in</strong>g World Maize<br />

Needs: Technological Opportunities <strong>and</strong> Priorities <strong>for</strong><br />

the Public Sector. CIMMYT, Mexico D.F. 60 pp.<br />

118<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


THE ROLE OF COWPEA (VIGNA UNGUICULATA) AND OTHER GRAIN<br />

LEGUMES IN THE MANAGEMENT OF SOIL FERTILITY IN THE<br />

SMALLHOLDER FARMIN(J SECTOR OF ZIMBABWE<br />

NHAMO NHAMO, WALTER MUPANGWA<br />

<strong>Soil</strong> Productivity Research Laboratory, CSRI, p'Bag 3757, Marondera,<br />

SHEPHARD SIZIBA, CIMMYT-Zimbabwe, PO Box MP163, Mount Pleasant,<br />

TENDAI GATSI, Agronomy Research Institute, PO Box CY550, Causeway, <strong>and</strong><br />

DAVISON CHIKAZUNGA, Department of Agricultural Economics, University of<br />

Zimbabwe, PO Box MP167, Mount Pleasant, Harare, Zimbabwe<br />

Senior author present address: World Agro<strong>for</strong>estry Centre (ICRAF)-Zimbabwe, c/o Division of Agricultural<br />

Research <strong>and</strong> Extension, POBox CY594, Causeway, Harare, Zimbabwe, Tel/Fax: 263-4-728340,<br />

Email: nnhamo@mweb.co.zwornnsprl@mweb.co.zw<br />

Abstract<br />

Cowpea is a widely grown legume <strong>in</strong> both high <strong>and</strong> low ra<strong>in</strong>fall smallholder farm<strong>in</strong>g areas of Zimbabwe. Its popularity<br />

with farmers can be attributed to the multiple uses the crop can be put to <strong>and</strong> adaptability to different environments. It<br />

is often used <strong>for</strong> mak<strong>in</strong>g relish, it is an important source of prote<strong>in</strong> <strong>for</strong> human be<strong>in</strong>gs, as livestock feed <strong>and</strong> <strong>for</strong> enhanc<strong>in</strong>g<br />

soil fertility through biological nitrogen fixation (BNF). This paper reports results of a study on the current cowpea production<br />

practices by farmers <strong>in</strong> Chihota, Shurugwi <strong>and</strong> Zimuto. The aims of the study were to assess the constra<strong>in</strong>ts,<br />

opportunities <strong>and</strong> the justification <strong>for</strong> wider use of cowpea <strong>for</strong> improv<strong>in</strong>g soil fertility <strong>in</strong> maize based farm<strong>in</strong>g systems as<br />

well {IS household livelihoods on smallholder farms.<br />

The area put under legumes <strong>in</strong> Chiota, Shurugwi <strong>and</strong> Zimuto ranged from <strong>in</strong>significant to small portions of the farm<br />

(0.2-2.5 'ha <strong>in</strong> one season). Farmers were aware that there are sOli fertility benefits associated with the legumes they<br />

grow, with 97% plough<strong>in</strong>g under the residues <strong>and</strong> 80% us<strong>in</strong>g the residues to make composts. More farmers grew cowpea<br />

<strong>in</strong>tercropped (>94%) with cereals, ma<strong>in</strong>ly on the homestead fields, than <strong>in</strong> rotations «6%). Cowpea ranked second<br />

to groundnut <strong>in</strong> provid<strong>in</strong>g biomass on farms <strong>for</strong> use <strong>in</strong> soil fertility improvement. No planned fertilizatio!1 practices<br />

were applied on cowpea but <strong>in</strong> <strong>in</strong>tercrops it benefits from fertilizers targeted <strong>for</strong> maize. Seed availability was a problem.<br />

Most farmers (88.5%) reta<strong>in</strong>ed' seed or got it locally from fellow farmers . Only 11.5'% obta<strong>in</strong>ed seed from commercial<br />

seed outlets. Women were at the centre of cowpea production. Pests common under the current scale of production could<br />

be suppressed us<strong>in</strong>g simple methods like us<strong>in</strong>g ash or "Surf" wash<strong>in</strong>g powder <strong>in</strong> water. Utilization of cowpea products<br />

was as boiled beans, porridge <strong>and</strong> livestock feed.<br />

We concluded that cowpea was perceived to have high potential to <strong>in</strong>crease soil fertility on most farms <strong>in</strong> high <strong>and</strong> low<br />

ra<strong>in</strong>fall zones of the smallholder farm<strong>in</strong>g sector. Most farmers grew cowpea <strong>in</strong>tercropped with maize on small portions of<br />

their homestead fields, However, the biomass produced did not significantly improve the farm level nitrogen budgets.<br />

Cowpea had an important dietary role <strong>in</strong> the rural communities. Seed availability, limited product markets <strong>and</strong> lack of<br />

proper fertilization (especially P) were the major constra<strong>in</strong>ts to cowpea production. The utilization of more products<br />

(food <strong>and</strong> non-food) of the right varieties when properly targeted could greatly improve the role of cowpea <strong>in</strong> the farm<strong>in</strong>g<br />

systems. Pests were not a major co'nstra<strong>in</strong>t to the production of cowpea s<strong>in</strong>ce farmers used simple measures like spr<strong>in</strong>kl<strong>in</strong>g<br />

Surf <strong>and</strong> ash solutions to conta<strong>in</strong> the pests. The economic <strong>and</strong> f<strong>in</strong>ancial benefits of cowpea production could also be<br />

redized through <strong>in</strong>volv<strong>in</strong>g male farmers more <strong>in</strong> the production process <strong>and</strong> its promotion. Development of the product<br />

cha<strong>in</strong> is required.<br />

Key words: Cowpea, smallholder farm<strong>in</strong>g, stakeholder consultation, farmer survey<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 119


Introduction<br />

<strong>Legumes</strong> playa signifiCant role <strong>in</strong> the improvement<br />

of nitrogen budg~ts through biologiCal nitrogen<br />

fixation (BNF) <strong>and</strong> cycl<strong>in</strong>g of other nutrients on the<br />

farm (Giller <strong>and</strong> Wilson, 1991; Giller, 2001) . Cowpea<br />

(Vigna unguiculata (L). Waip.) can be considered a<br />

cheap legume to grow <strong>in</strong> that its fertility <strong>and</strong> ra<strong>in</strong>fall<br />

dem<strong>and</strong>s are low. Hegewald (1990) found cowpea<br />

to produce acceptable yields on acidic oxisols. However,<br />

the economiCs <strong>and</strong> yield benefits of BNF <strong>in</strong><br />

maize/cowpea rotation have not been fully explored<br />

(Shumba et al. 1990). Its role <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g<br />

<strong>and</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g soil fertility is not clearly def<strong>in</strong>ed.<br />

Often farmers do not have a planned P <strong>and</strong> N fe-rtilization<br />

strategy <strong>for</strong> these rotations. The fertilization<br />

of cowpea grown <strong>in</strong> rotation with maize has not<br />

been studied thoroughly, especially the economics<br />

of fulfill<strong>in</strong>g the P requirements of the legume. There<br />

is need to evaluate the different fertilization practices<br />

<strong>in</strong> relation to their agro-economic effectiveness<br />

<strong>for</strong> different farmer doma<strong>in</strong>s.<br />

<strong>Soil</strong>s <strong>in</strong> the smallholder farm<strong>in</strong>g sector of Zimbabwe<br />

are <strong>in</strong>herently poor <strong>in</strong> fertility. Deficiencies <strong>in</strong> both<br />

macro- <strong>and</strong> micronu trients have been reported <strong>in</strong><br />

these s<strong>and</strong>y soils (Grant, 1981; Mashir<strong>in</strong>gwani, 1983;<br />

Nyamapfene, 1991). Farmers use different strategies<br />

to either add <strong>and</strong>/or recycle nutrients on their<br />

farms. Use of cattle manure, composts, m<strong>in</strong>eral fertilizers,<br />

crop or grass residues, grass fallows, gra<strong>in</strong><br />

legumes <strong>and</strong> green manures <strong>in</strong> cereal/legume rotations<br />

are loosely practiCed · by farmers as ways of<br />

manag<strong>in</strong>g soil fertility (Nhamo et al. 2002). Such<br />

practices on s<strong>and</strong>y soils are important <strong>in</strong> the management<br />

of the most limit<strong>in</strong>g nutrients <strong>and</strong> soil organiC<br />

matter <strong>and</strong> there is potential to improve their<br />

efficiencies. In all, the practices have been to add<br />

whatever is available to the soil or noth<strong>in</strong>g at all.<br />

This results <strong>in</strong> addition of much less, just enough or<br />

more than required nutrients <strong>for</strong> the'field crops.<br />

With these practices, the use of both organic <strong>and</strong><br />

m<strong>in</strong>eral fertilizers has no scientific basis. This has<br />

rendered optimum crop production <strong>and</strong> profit levels<br />

difficult to atta<strong>in</strong> on s<strong>and</strong>y soils.<br />

Besides the soil fertility contribution, cowpea provides<br />

the needed prote<strong>in</strong>s <strong>in</strong> rural households<br />

through both the pea <strong>and</strong> the leaves that are used as<br />

relish. Traditionally, cowpea porridge was an important<br />

<strong>and</strong> nutritious dish mak<strong>in</strong>g part of the diet<br />

<strong>for</strong> the farm<strong>in</strong>g· communities. It is a multiplepurpose<br />

legume which can be used <strong>for</strong> human food<br />

<strong>and</strong> livestock feed (Johnson, 1970; Rao <strong>and</strong><br />

Mathuva,2000).<br />

In the smallholder farm<strong>in</strong>g systems of Zimbabwe<br />

the cultivation of tradition legumes, <strong>in</strong>clud<strong>in</strong>g cowpea,<br />

is not emphasized. Current uses of cowpea <strong>for</strong><br />

. improv<strong>in</strong>g household food security <strong>and</strong> soil fertility<br />

vary from area to area. The reasons <strong>for</strong> this variability<br />

are not clear. The aims of this study were to determ<strong>in</strong>e<br />

the current cultivation practices, perceptions<br />

of farmers on the benefits <strong>and</strong> constra<strong>in</strong>ts of<br />

effectively utiliz<strong>in</strong>g cowpea <strong>in</strong> their farm<strong>in</strong>g system,<br />

<strong>and</strong> to evaluate the role cowpea could play <strong>in</strong> improv<strong>in</strong>g<br />

soil fertility <strong>and</strong> hence household food security.<br />

Materials <strong>and</strong> Methods<br />

A survey was conducted <strong>in</strong> three communal areas,<br />

Chihota (Mashonal<strong>and</strong> East Prov<strong>in</strong>ce), Zimuto<br />

(Masv<strong>in</strong>go Prov<strong>in</strong>ce) <strong>and</strong> Shurugwi (Midl<strong>and</strong>s<br />

Prov<strong>in</strong>ce) represent<strong>in</strong>g natural regions II, III <strong>and</strong> IV<br />

of Zimbabwe respectively. Chihota receives annual<br />

ra<strong>in</strong>fall of between 800 <strong>and</strong> 1000 mm whereas Shurugwi<br />

<strong>and</strong> Zimuto receive 600-800 mm <strong>and</strong> 450-600<br />

rum respectively. The ra<strong>in</strong>fall distribution with<strong>in</strong><br />

<strong>and</strong> across season if variable, <strong>and</strong> <strong>in</strong> all the areas<br />

mid-season droughts are a common feature.<br />

Farmers <strong>in</strong> Chihota, Shurugwi <strong>and</strong> Zimuto rely on<br />

agriculture <strong>for</strong> food <strong>and</strong> to generate <strong>in</strong>come to susta<strong>in</strong><br />

their families. Most families have f<strong>in</strong>ancial constra<strong>in</strong>ts<br />

<strong>and</strong> limited agricultural <strong>in</strong>puts are purchased<br />

<strong>for</strong> use <strong>in</strong> the production of both legumes<br />

<strong>and</strong> cereals.<br />

With<strong>in</strong> each of the· areas, a <strong>for</strong>mal questionnaire was<br />

adm<strong>in</strong>istered to collect <strong>in</strong><strong>for</strong>mation on cowpea practices.<br />

The questionnaire captured <strong>in</strong><strong>for</strong>mation on<br />

household characteristics, crop production practiCes,<br />

<strong>and</strong> cowpea placement <strong>in</strong> the farm<strong>in</strong>g systems,<br />

'current constra<strong>in</strong>ts <strong>and</strong> opportunities <strong>for</strong> <strong>in</strong>-·<br />

creased productivity. The semi-structured questionnaire<br />

was adm<strong>in</strong>istered to a sample of sixty households<br />

<strong>in</strong> each of the three communal areas. Welltra<strong>in</strong>ed<br />

enumerators carried out data collection ~ The<br />

data collected was captured <strong>and</strong> analyzed us<strong>in</strong>g<br />

SPSS (Statistical Package <strong>for</strong> Social Sciences).<br />

Results<br />

Like most communal areas <strong>in</strong> Zimbabwe, maize<br />

dom<strong>in</strong>ates other crops <strong>and</strong> most of the l<strong>and</strong> was put<br />

under this staple food crop <strong>in</strong> Ch,ihota, Shurugwi<br />

<strong>and</strong> Zimuto. Tables 1 <strong>and</strong> 2 show the area under<br />

several non-legume <strong>and</strong> five legume crops grown <strong>in</strong><br />

the study areas. M<strong>in</strong>or traditional crops like millets<br />

(rapoko) were also commonly cultivated on small<br />

areas <strong>in</strong> the study areas. A few farmers grew cash<br />

crops <strong>in</strong>clud<strong>in</strong>g cotton, tobacco <strong>and</strong> paprika.<br />

120<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Atnca


Table 1. Non-legume cropp<strong>in</strong>g pattern of farmers from each of the sites<br />

Zimuto<br />

%growers Area (ha) Yield %growers<br />

(kg/ha)<br />

Maize 100 2.66 327 100<br />

Rice 67 1.35 382 21<br />

Rapoko 64 0.57 512 30<br />

Sunflower 10 4.69 133 8<br />

Sorghum 0 6<br />

Paprika ' 2 0.75 27 10<br />

Millet 0 0<br />

Tobacco 2 0.50 1000 2<br />

Cotton 2 0.04 1163 0<br />

Total cultivated 93 4.35 100<br />

Total fallow 62 2.13 48<br />

Chihota<br />

Shurugwi<br />

Area (ha) Yield %growers Area (ha) Yield <br />

(kg/ha)<br />

(kg/ha) <br />

2.32 442 100 3.55 323<br />

0.62 226 48 0.~3 479<br />

0.58 253 21 0.51 749<br />

0.81 632 5 0.85 210<br />

0.89 693 8 0.60 ~45<br />

0.75 293 2 0.75 80<br />

3 0.07 3077<br />

1.00 600 o<br />

o<br />

3.43 102 5.00<br />

2.63 72 2.24<br />

Table 2. Area iha) put under various legumes <strong>in</strong> the 2000/2001 sea·<br />

son <strong>in</strong> Chihota, Shurugwi <strong>and</strong> Zimuto<br />

Zimuto Chihota Shurugwi<br />

Sole Intercrop Sole Intercrop Sole Intercrop<br />

Cowpea 0.93 1.68 1.07 1.59 0.53 2.49<br />

Bambara 0.64 0.43 0.67 0.50 1.49 0.60<br />

Garden bean 1.37 0.90 0.85 0.49 0.27 0.38<br />

Groundnut 1.57 0.60 1.31 0.83 0.77 0.67<br />

Soyabean 0.20 1.37 O . i~<br />

In all three communal areas most of the cowpea was<br />

<strong>in</strong>tercropped, whereas groundnut <strong>and</strong> bambara are<br />

consistently grown as sole crops. A few farmers<br />

grew soyabean <strong>and</strong> garden beans <strong>for</strong> household<br />

consumption Cfable 2). Groundnut was the dom<strong>in</strong>ant<br />

legume grown by the farmers.<br />

Though most farmers grew cowpea as <strong>in</strong>tercrops,<br />

the yields reported <strong>for</strong> the sole cropped cowpea are<br />

higher than those grown <strong>in</strong> <strong>in</strong>tercrops. The national<br />

average gra<strong>in</strong> yield <strong>for</strong> cowpea of 300 kg ha- J was<br />

close to the reported yields <strong>for</strong> sole cropp<strong>in</strong>g (Table<br />

3). Higher yields were obta<strong>in</strong>ed from sole st<strong>and</strong>s<br />

than from <strong>in</strong>tercrops.<br />

Farmers acknowledged that legumes are important<br />

<strong>in</strong> soil fertility <strong>and</strong> <strong>for</strong> break<strong>in</strong>g disease/pest cycles<br />

on their fields. Groundnut was perceived by farmers<br />

to be better than cowpea <strong>for</strong> improv<strong>in</strong>g fertility.<br />

Farmers utilized cowpea residues <strong>for</strong> soil fertility<br />

through <strong>in</strong>corporation by plough<strong>in</strong>g under (97% of<br />

the farmers) <strong>and</strong> use <strong>in</strong> composts (80% of the farmers).<br />

Some ofthe residues were however fed to livestock.<br />

To farmers the soil fertility benefits derived from<br />

rotations <strong>and</strong> <strong>in</strong>tercrops are not significantly different<br />

(Table 6). Farmers perceive that both grow<strong>in</strong>g<br />

the cowpea <strong>in</strong> rotation with maize <strong>and</strong> as an <strong>in</strong>ter~<br />

crop with maize has positive soil fertility benefits.<br />

There were no deliberate fertilization practices followed<br />

by farmers when grow<strong>in</strong>g cowpea. A significant<br />

amount of fertility <strong>in</strong>puts are applied to plots<br />

Table 3. The mean gra<strong>in</strong> yields (kg/hal of different legumes obta<strong>in</strong>ed<br />

by farmers <strong>in</strong> the 2000/2001 season <strong>in</strong> the three areas<br />

Zimuto Chihota Shurugwi<br />

Sole Intercrop Sole Intercrop Sole Intercrop<br />

Cowpea 269.5 61.0 278.5 66.4 339.1 62.5<br />

Bambara 352.2 299.3 1021.0 40.0 330.3 26.0<br />

Cowpea, groundnut <strong>and</strong> bambara nut were the legumes<br />

commonly grown by most farmers <strong>in</strong> Chihota,<br />

Groundnut 551.2 147.9 437.6 90.0 262.0 97.8<br />

Shurgwi <strong>and</strong> Zimuto. Groundnut <strong>and</strong> b~mbara nut<br />

Garden bean 540.0 39.2 790.7 103.7 80.9 35.0<br />

were grown by the majority of farmers as sole crops, Soya bean 389.4<br />

while cowpea was <strong>in</strong>tercropped<br />

(Table 4) .<br />

Table 4. Numbers of farmers grow<strong>in</strong>g different legumes <strong>in</strong> Zimuto, Chihota <strong>and</strong> Shurugwi<br />

Zimuto Chihota Shurugwi<br />

Cowpea was mostly grown<br />

on the homestead fields<br />

with a reasonable proportion<br />

on the top l<strong>and</strong> fields,<br />

while less than 5% of the<br />

farmers grow it <strong>in</strong> the vleis<br />

<strong>and</strong> gardens (Table 5).<br />

Sole Intercrop Total Sole Intercrop Total Sole Intercrop Total<br />

n n n('!o) n n n ('Yo) n n n(%)<br />

Cowpea 10 51 61 (100) 19 43 62 (98)) 8 51 59 (94)<br />

Bambara nut 48 6 54 (89) 43 2 45 (71) 49 5 54 (86)<br />

Soya bean 1 0 1 (2) 4 0 4 (6) 1 0 1 (2)<br />

Garden bean 6 3 9 (15) 24 4 28 (44) 4 2 6 (10)<br />

Groundnut 47 7 54 (89) 51 3 54 (86) 53 3 56 (89)<br />

(% of farmers grow<strong>in</strong>g the legumes <strong>in</strong> brackets)<br />

I<br />

I<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 121


Table 5. Types of fields ('Yo) to which farmers <strong>in</strong> Ghihota,<br />

Shurugwi <strong>and</strong> Zimuto grow cowpea<br />

Zimuto Chihota Shur~gwi Total<br />

Homestead field 53 57 52 54<br />

Vlei marg<strong>in</strong> 10 3 4<br />

Garden 2<br />

Topl<strong>and</strong> 37 38 48 41<br />

Total 100 100 100 100<br />

Table 6. The perceptions of farmers on which cowpea grow<strong>in</strong>g<br />

pattern results <strong>in</strong> improved soil fertility<br />

Shu rug wi Zimuto Chihota<br />

n % n % n %<br />

Rotation Yes 55 97 52 91 47 86<br />

No 2 3 5 9 8 14<br />

Intercrop Yes 53 88 53 88 40 67<br />

No 7 12 7 12 20 33<br />

where cowpeas are grown. The common practice<br />

observed though was that of <strong>in</strong>tercropp<strong>in</strong>g maize<br />

<strong>and</strong> cowpea. In the <strong>in</strong>tercrop, manure <strong>and</strong> fertilizers<br />

applied were targeted to the maize crops <strong>and</strong> not to<br />

the cowpea (Table 7; Figure 1). A few farmers apply<br />

legume <strong>in</strong>oculant on the cowpea.<br />

The fertilizer types used on the maize-cowpea <strong>in</strong>tercrops<br />

are the recommended ones <strong>for</strong> sole crops of<br />

maize. Both the basal <strong>and</strong> the top-dress<strong>in</strong>g fertilizers<br />

were applied <strong>in</strong> limited amount, far bwer than<br />

the st<strong>and</strong>ard recommendations. The rates applied<br />

were low <strong>and</strong> similar to those reported by Nhamo<br />

et al. (2002) of less than 50 kg ha- 1 of compound 0<br />

<strong>and</strong> 25 kg ha- 1 of ammonium nitrate fertilizer. The<br />

use of lime was recorded only <strong>in</strong> Chiliota, where<br />

some trials on lime use had been conducted by researchers.<br />

Seed availability was a problem <strong>in</strong> all the three areas,<br />

with most families piant<strong>in</strong>g their own reta<strong>in</strong>ed<br />

part of their harvest <strong>for</strong> seed. About 88.5% of the<br />

households used reta<strong>in</strong>ed seed, were given seed by<br />

other farmers or bought it from other farmers <strong>in</strong> the<br />

area (Table 8). Farmers also reported the absence of<br />

an organized market with attractive prices, lack of<br />

market<strong>in</strong>g <strong>in</strong><strong>for</strong>mation <strong>and</strong> low sell<strong>in</strong>g prices <strong>in</strong> the<br />

local market.<br />

The majority of farmers grew the spread<strong>in</strong>g cowpea<br />

varieties (49%), only 5% used the bush type <strong>and</strong> the<br />

rema<strong>in</strong>der used both types. Most of the local varieties<br />

had their names derived ma<strong>in</strong>ly fro~ the appearance<br />

of the plant or the colour of the bean.<br />

Names such as rut<strong>and</strong>avare, chigogova, chitumbe, chitonono,<br />

dzemavara, chena, jerimeni, dahwa, <strong>and</strong><br />

chipichipi were common <strong>in</strong> the areas studied. Others<br />

had names l<strong>in</strong>ked t~ the source like zvimugabe <strong>and</strong><br />

mharapara. Names like ch<strong>in</strong>yabundi, kaboko, chizhara-<br />

Table 7. The soil fertilization practices followed on cowpea crops<br />

(% farmers)<br />

Shurugwi Zimuto Chihota Total<br />

Yes No Yes No Yes No Yes No<br />

Inorganic fertilizer 30 70 39 61 70 30 47 53<br />

Cattle manure 61 39 90 10 62 38 71 29<br />

Legume <strong>in</strong>noculant 100 8 92 5 95 4 96<br />

en<br />

~ 100 iii Urea<br />

Q) <br />

. ~ <br />

.AN <br />

~ <br />

~ 80 OCampO<br />

2<br />

Ol<br />

C 60<br />

'>'<br />

0.<br />

a.<br />

ro 40<br />

en<br />

~<br />

Q)<br />

E<br />

~<br />

.E<br />

:::R<br />

0<br />

20<br />

0<br />

2 3<br />

Figure 1. The percentage use of different fertilizers on the maize<br />

cowpea <strong>in</strong>tercrops where; 1 represents Zimuto, 2 represents Ghiota<br />

<strong>and</strong> 3 represents Shurugwi<br />

Table 8. Sources of cowpea seed <strong>for</strong> the 2000/2001 grow<strong>in</strong>g sea·<br />

son ('Yo farmers)<br />

Zimuto Chihota Shu rug wi Tot~'<br />

Own saved 72.9 68.3 66.1 69.1<br />

Bought from other 5.1 3.3 3.2 3.9<br />

farmers<br />

Given by other farmers 15.3 15.0 16.1 15.5<br />

Bought commercially 6.8 13.3 4.8 8.3<br />

Project 9.7 3.2<br />

Total 100 100 100 100<br />

wanya <strong>and</strong> ch<strong>in</strong>gwa were also recorded.<br />

The major pest reported by farmers was the aphid.<br />

A significant number of farmers did noth<strong>in</strong>g about<br />

the common aphid problems they encounter <strong>and</strong><br />

they observed that once they receiv.e some ra<strong>in</strong>s the<br />

aphids disappear from their crops (Tables 9 <strong>and</strong> 10).<br />

To solve this <strong>and</strong> other problems, some farmers<br />

used simple methods like spr<strong>in</strong>kl<strong>in</strong>g "Surf" wash<strong>in</strong>g<br />

powder or ash solutions.<br />

Cowpea grown on small portions of the farm is<br />

ma<strong>in</strong>ly meant <strong>for</strong> domestic consumption <strong>and</strong> very<br />

little is sold. About 65% of the cowpea bean produced<br />

<strong>in</strong> the three areas is eaten at home <strong>and</strong> the<br />

greater part of the rema<strong>in</strong>der is barter traded with<br />

other crops. The utilization of cowpea through<br />

boiled beans both as a side dish <strong>and</strong> · as relish was<br />

most common (Table 11). The use of fresh leaves as<br />

vegetables was also found to be common.<br />

122<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 9. Common pests on cowpeas as mentioned by <br />

farmers <br />

Zimuto Chihota Shurugwi <br />

Aphids 75.9 58.5 77.9 <br />

Beetles 17 10.2 <br />

Worms 8.6 9.4 8.5 <br />

None 3.4 1.7 1.7 <br />

Termites <strong>and</strong> ants 3.4 7.5 <br />

Stemborers 1.7 1.9 <br />

Weevils 3.4 1.9 <br />

Others 3.4 3.8 1.7 <br />

Table 10. Solutions to some of the pest problems <br />

suggested by farmers <br />

Zimuto Chihota Shu rug wi <br />

Chemicals 3.3 13.8 4.9 <br />

Traditional herbs 16.4 15.5 8.2 <br />

Cultural practices 11.5 6.9 6.6 <br />

00 noth<strong>in</strong>g 68.8 63.8 80.3 <br />

Women made important decisions on the production<br />

of legumes <strong>and</strong> m<strong>in</strong>or crops, <strong>in</strong>clud<strong>in</strong>g cowpea.<br />

Among the reasons why women farmers took this<br />

role were; traditionally it's a woman crop, women<br />

were responsible <strong>for</strong> ·provid<strong>in</strong>g food <strong>and</strong> relish <strong>in</strong><br />

the household, men perceived that cowpea was not<br />

an important crop, women realized the importance<br />

of the crop <strong>and</strong> that women sometimes made decisions<br />

on farm operations <strong>in</strong> the absence of men.<br />

Discussion<br />

Area under legumes <strong>and</strong> cowpea<br />

Compared to cereals, the area planted with legumes<br />

<strong>in</strong> the three communal areas ranges from <strong>in</strong>significant<br />

to small portions of the farm (Tables 1 <strong>and</strong> 2).<br />

Most of the cultivated l<strong>and</strong> is put under maize because<br />

itis the staple crop, followed by cash crops<br />

like tobacco, paprika <strong>and</strong> cotton. however, most<br />

farmers (99%) devote part of the farm to cultivation<br />

of at least one legume crop among which are<br />

groundnut, bambara or cowpea. The small area<br />

planteo determ<strong>in</strong>es the modest contribution made<br />

by legumes to the N budget on the farms. In most<br />

~ommunal areas, biomass production is key to the<br />

utilization of these high quality materials. The successful<br />

use of these legumes <strong>in</strong> improv<strong>in</strong>g soil fertility<br />

depends on the quantities of organic materials<br />

available <strong>for</strong> use on the farm. Work done by Nhamo<br />

et a1. (2002) has shown the importance of the<br />

~mounts of organic materials available on the farm<br />

<strong>in</strong> the adoption of some of these organic based soil<br />

fertility technologies. Biomass production follow<strong>in</strong>g<br />

the plant<strong>in</strong>g of cowpea on these small areas at low<br />

Table 11. Scor<strong>in</strong>g on the utilization of cowpea by farmers<br />

<strong>for</strong> domestic consumption<br />

Zimuto Chihota Shurugwi<br />

Porridge (Rupiza) . 3 3 4<br />

Relish (Leaves) 2 2 3<br />

Relish (<strong>Gra<strong>in</strong></strong>) 4 4 2<br />

Boiled beans (Mutakura)<br />

plant populations is <strong>in</strong>sufficient to make a big impact<br />

on the fertility status of soils.<br />

Farmers <strong>in</strong> the study areas grew several crops <strong>in</strong>clud<strong>in</strong>g<br />

small gra<strong>in</strong>s to spread the risk of crop failure.<br />

Under unpredictable climatic conditions, smallholder<br />

farmers use such strategies to ensure household<br />

food security. Millets however are also important<br />

<strong>in</strong> beer brew<strong>in</strong>g <strong>for</strong> the traditional rituals.<br />

<strong>Soil</strong> fertility benefits of cowpea<br />

Farmers perceived that there were soil fertility benefits<br />

<strong>and</strong> improved yields of maize grown after cowpea<br />

(Table 6). The soil attributes l<strong>in</strong>ked to these improvements<br />

varied from the observable soil colour<br />

to the soil water hold<strong>in</strong>g capacity. Cowpea ranked<br />

second after groundnut <strong>in</strong> residue production <strong>and</strong>,<br />

hence soil improvement potential (Table 4). Most<br />

farmers <strong>in</strong>tercropped cowpea <strong>and</strong> maize or other<br />

cereals. Intercropp<strong>in</strong>g maize <strong>and</strong> cowpea has been<br />

reported to <strong>in</strong>crease yields <strong>in</strong> some cases<br />

(Olasantan, 1988; Jeranyama et al. 2000) <strong>and</strong> even<br />

better yields have been reported <strong>in</strong> rotations where<br />

there are no moisture competition effects (Kouyate<br />

et al. 2000; Rao <strong>and</strong> Mathuva, 2000). However, few<br />

studies have been conducted compar<strong>in</strong>g the two<br />

farm<strong>in</strong>g systems directly. Work done by Hardter et<br />

a1. (1991) has shown that while mixed maizecowpea<br />

cropp<strong>in</strong>g had lower yields than rotations,<br />

cont<strong>in</strong>uous monocropp<strong>in</strong>g had the lowest productivity.<br />

The reasons why farmers iritercrop are varied.<br />

With regards to soil fertility, these can be expla<strong>in</strong>ed<br />

scientifically by the residual effects on cereals<br />

follow<strong>in</strong>g legumes <strong>in</strong> rotation <strong>and</strong> by the below<br />

ground nutrient transfers that occur <strong>in</strong> the<br />

rhizosphere <strong>in</strong> <strong>in</strong>tercrops (B<strong>and</strong>yopadhyay <strong>and</strong> De,<br />

1986).<br />

Incorporat<strong>in</strong>g legume residues to the soil improves<br />

its fertility. Work done on legumes has demonstrated<br />

the usefulness of legumes grown <strong>in</strong> rotation<br />

with cereals <strong>in</strong> general (Giller <strong>and</strong> Wilson, 1991,<br />

Giller 2001). For cereal/legume rotations to be successful,<br />

a reasonable amount of legume non-gra<strong>in</strong><br />

residue/biomass has to be produced <strong>and</strong> its management<br />

has to be effeLi;ve. Residues generated by<br />

legumes are <strong>in</strong> two <strong>for</strong>ms; the roots (below ground)<br />

<strong>and</strong> the stems <strong>and</strong> the leaves (aboveground) (Giller<br />

<strong>and</strong> Wilson, 1991). The agronomic contributions of<br />

the above <strong>and</strong> below ground portions of the cowpea<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

123


have not been studied. Because of the possible conflict<strong>in</strong>g<br />

uses that legume leaves have on the farm, it<br />

is important to quantify the economic b~nefits separately<strong>and</strong><br />

together. ­<br />

Similar to other field crops, gra<strong>in</strong> legumes require<br />

soil nutrients <strong>for</strong> them to grow as well as fix N from<br />

the atmosphere. The growth is a response to the soil<br />

type, fertilization <strong>and</strong> soil water availability. On<br />

s<strong>and</strong>y soils that are commonly found <strong>in</strong> the communal<br />

areas, the nutrition of N fixers that contribute to<br />

the successful symbiosis has not been . emphasized.<br />

Higher cowpea yields from homestead fields (Table<br />

3) are a result of better soil fertility management.<br />

Studies have sho~ that they respond well to P application<br />

(Giller, 2001). However, the P, K, micronutrients<br />

<strong>and</strong> lime requirements <strong>for</strong> cowpea <strong>in</strong> a<br />

maize/cowpea rotation have not been worked out.<br />

Fertilization of the legume <strong>in</strong> a legume/cereal rotation<br />

is important if productivity is to improve from<br />

the current low levels. At present, there is scant <strong>in</strong><strong>for</strong>mation<br />

on the effective <strong>and</strong> efficient way of us<strong>in</strong>g<br />

organic <strong>and</strong> <strong>in</strong>organic fertilizers on legume-cereal<br />

rotations (Giller, 2001). The current practice of add<strong>in</strong>g<br />

m<strong>in</strong>eral N reduces the N-fix<strong>in</strong>g capacity of the<br />

legumes <strong>in</strong> these farm<strong>in</strong>g systems (Table 7). For the<br />

different agro-ecological zones, rates of P application<br />

need to be worked out. The economics of the<br />

first application .as well as the residual P effects on<br />

both the cereal <strong>and</strong> the legume <strong>in</strong> rotations, as well<br />

as <strong>in</strong> <strong>in</strong>tercrops <strong>for</strong> the different soil types, are required.<br />

This <strong>in</strong><strong>for</strong>mation will be important <strong>and</strong> useful<br />

<strong>in</strong> target<strong>in</strong>g legumes properly on the farm. Work<br />

on row spac<strong>in</strong>g of maize <strong>and</strong> cowpea show improved<br />

yields with wider spac<strong>in</strong>g but the wider<br />

spac<strong>in</strong>g leads to low plant populations. This leads<br />

to low biomass production <strong>and</strong> hence less effective<br />

utilization of the BNF from legumes.<br />

<strong>Soil</strong> nutrients <strong>in</strong>teract with the available moisture ..<br />

As reported by Muza <strong>and</strong> Mapfumo (1999), soil nutrient<br />

<strong>and</strong> water <strong>in</strong>teractions have a large effect on<br />

the overall biomass production of legumes. Cowpea<br />

has the advantage of a deep root<strong>in</strong>g system that<br />

makes it adaptable to different agro-ecological<br />

zones. However different varieties have different<br />

attributes so proper target<strong>in</strong>g is important <strong>for</strong> effective<br />

use of cowpea <strong>in</strong> farm<strong>in</strong>g systems. Grown <strong>in</strong><br />

rotations with maize, cowpea has been reported to<br />

reduce weed pressure <strong>in</strong> the residual season<br />

(Kamau et al. 1999). Similar f<strong>in</strong>d<strong>in</strong>gs have been reported<br />

<strong>in</strong> <strong>in</strong>tercrops, except that the weed suppression<br />

<strong>in</strong> <strong>in</strong>tercrops is <strong>in</strong> the first season.<br />

Cowpea utilization<br />

Most cowpea grown. is utilized as boiled beans <strong>for</strong><br />

either direct consumption or as relish. It rema<strong>in</strong>s a<br />

cheap source of prote<strong>in</strong> especially dur<strong>in</strong>g the dry<br />

w<strong>in</strong>ter season. In Shurugwi a study done at a school<br />

positively correlated the consumption of cowpea to<br />

the high tum out <strong>and</strong> class per<strong>for</strong>mance of primary<br />

school pupils (SDARMP, 1997). Other less commonly<br />

used dishes <strong>in</strong>clude porridge, scones/bread,<br />

<strong>and</strong> there is potential <strong>for</strong> more. For the benefit of the<br />

communities these other benefits <strong>in</strong> addition to soil<br />

fertility technologies have proven to be important <strong>in</strong><br />

technology acceptability. In the case of cowpea, the<br />

health effects of the dishes have to be considered to<br />

see how these could be made part of the diet of<br />

HIV / AIDS affected persons. Cowpeas provide both<br />

calories <strong>and</strong> prote<strong>in</strong> (Venter et al. 1997). For food<br />

security, <strong>in</strong>digenous <strong>and</strong> traditional crops need to<br />

be improved s<strong>in</strong>ce their important contribution has<br />

largely been ignored <strong>in</strong> recent years.<br />

Constra<strong>in</strong>ts <strong>in</strong> cowpea production<br />

Fertilization. Constra<strong>in</strong>ts on us<strong>in</strong>g legumes effectively<br />

<strong>in</strong> soil. fertility management <strong>in</strong> the smallholder<br />

farms are varied. Low perception about m<strong>in</strong>or<br />

crops, little biomass from a small area planted,<br />

seed availability problems, lack of exposure to <strong>in</strong><strong>for</strong>mation<br />

on their production <strong>and</strong> little <strong>in</strong><strong>for</strong>mation on<br />

the potential benefits of us<strong>in</strong>g the legume crop <strong>in</strong><br />

maize-based farm<strong>in</strong>g systems are some of the reasons<br />

why legumes are little used <strong>in</strong> fertility management<br />

(Rusike et al. 2000). Cowpea grown <strong>in</strong> <strong>in</strong>tercrops<br />

benefits from the fertilizer applied on the<br />

maize. The nitrogen from basal <strong>and</strong> topdress<strong>in</strong>g<br />

maize fertilizer reduces the amount of N fixation by<br />

the legumes. This reduces the benefits from the<br />

cowpea <strong>and</strong> the potential N addition to the nutrient<br />

budget through BNF. Farmers sometimes also compla<strong>in</strong><br />

about the higher labour dem<strong>and</strong>s with legume<br />

crops compared to the cereals (Jeranyama et al.<br />

2000). <strong>Soil</strong> fertility management based on rotations<br />

can be used to come up with <strong>in</strong>tegrated soil fertility<br />

management strategies that have the potential to<br />

improve he livelihoods of people <strong>in</strong> the smallholder-farm<strong>in</strong>g<br />

sector of Zimbabwe. Use of comb<strong>in</strong>ations<br />

of organic <strong>and</strong> <strong>in</strong>organic nutrient sources<br />

can produce better crop yields <strong>and</strong> improve the soil<br />

organic matter levels <strong>in</strong> the long term (Murwira et<br />

al. 2002 ; Nhamo et al. 2001).<br />

Market<strong>in</strong>g. The cowpea market is underdeveloped.<br />

The whole product cha<strong>in</strong> has not .been developed<br />

<strong>and</strong> supported enough to benefit the farmers. Seed<br />

sources identified <strong>in</strong> the study are ma<strong>in</strong>ly local <strong>and</strong><br />

little commercial seed f<strong>in</strong>ds its way to the farmers.<br />

Interested farmers are there<strong>for</strong>e faced with the uncerta<strong>in</strong>ty<br />

of grow<strong>in</strong>g unproved seed. A large proportion<br />

of the farmers keep some of their harvest <strong>for</strong><br />

seed <strong>for</strong> the commonly grown legumes. Consider<strong>in</strong>g<br />

that some of the gra<strong>in</strong> is consumed by the family,<br />

seed availability could be one of the root causes<br />

of the low areas <strong>for</strong> cowpea (Rusike et al. 2000). A<br />

124<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong><strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


few of the farmers <strong>in</strong>terviewed acquire cowpea seed<br />

from approved seed dealers <strong>and</strong> the local market<br />

<strong>for</strong> reta<strong>in</strong>ed seed is not organized. This leads to reduced<br />

areas ,under cowpea <strong>and</strong> other legumes. The<br />

high percentage of farmers who rely on reta<strong>in</strong>ed<br />

seed posses a problem <strong>in</strong> seed availability <strong>and</strong> viability.<br />

The viability of seed depends on the storage<br />

conditions under which the bean is stored. These<br />

post harvest storage facilities have not been developed<br />

<strong>in</strong> the smallholder farm<strong>in</strong>g sector result<strong>in</strong>g <strong>in</strong><br />

limited storage, fast loss of quality seed <strong>and</strong> small<br />

quantities that can be stored at anyone time. The<br />

use of <strong>in</strong>ferior cowpea varieties could also have<br />

caused reduced areas under their cultivation. Most<br />

farmers grew the spread<strong>in</strong>g type of cowpea <strong>and</strong> had<br />

reta<strong>in</strong>ed seed used over long periods. Over time, the<br />

vigor of the seed could have decl<strong>in</strong>ed caus<strong>in</strong>g reduction<br />

<strong>in</strong> the potential yield. As observed by Franzel<br />

<strong>and</strong> Scherr (2002), some cropp<strong>in</strong>g systems function<br />

below their potential productivity because of<br />

us<strong>in</strong>g poorly adapted species, varieties <strong>and</strong> management<br />

practices.<br />

The current poor market structures <strong>for</strong> cowpea do<br />

not warrant <strong>in</strong>vestment <strong>in</strong> proper fertilization, use<br />

of pesticides <strong>and</strong> other planned agronomic practices<br />

on the crops. The economics of cowpea beyond barter<br />

trade need to be explored to <strong>in</strong>clude organized<br />

national markets as well as export markets. Such a<br />

development would enhance the direct <strong>and</strong> <strong>in</strong>direct<br />

f<strong>in</strong>ancial benefits of cowpea to farmers. Promot<strong>in</strong>g<br />

other products from cowpea of dietary, direct <strong>and</strong><br />

<strong>in</strong>direct monetary importance creates a market <strong>for</strong><br />

the legume.<br />

Pests <strong>and</strong> diseases. In this study, pest <strong>and</strong> diseases<br />

on cowpea were not regarded by farmers as a major<br />

constra<strong>in</strong>t to production. The suggested solutions to<br />

pests showed that those that have grown cowpea<br />

know about them <strong>in</strong> general <strong>and</strong> that the occurrences<br />

have not been large enough to reduce the<br />

yields by economic marg<strong>in</strong>s. Several options followed<br />

by farmers need to be ref<strong>in</strong>ed <strong>and</strong> avoid the<br />

wait-<strong>for</strong>-ra<strong>in</strong>s strategy which could reduce yiel:is to<br />

below economic levels. The use of Surf <strong>and</strong> ash solutions<br />

has been documented through the experiences<br />

shared by farmers <strong>in</strong> Shurugwi. Use of uncertified<br />

seed produced without <strong>in</strong>spection could be<br />

one way <strong>in</strong> which there has been a build up of diseases<br />

over the years (Madamba, 2002). The implications<br />

Of pest build up with <strong>in</strong>creased area under<br />

cowpea also need to be looked at. Practic<strong>in</strong>g rotation<br />

can always break the disease cycles.<br />

Gender <strong>in</strong> cowpea production. Whilst it is widely<br />

agreed that women are overall responsible <strong>for</strong><br />

grow<strong>in</strong>g cowpea <strong>and</strong> other legumes <strong>for</strong> the family,<br />

they are faced with serious knowledge limitations<br />

on 'susta<strong>in</strong>able agronomic practices with these<br />

crops. Women make decisions on the area to which<br />

the legumes are cultivated s<strong>in</strong>ce they are the ones<br />

who keep <strong>and</strong> know the quantities of seed available<br />

<strong>for</strong> these crops. Very few received tra<strong>in</strong><strong>in</strong>g or advice<br />

on cowpea production from extension agents. Most<br />

legumes are labeled as women crops <strong>in</strong> all the communal<br />

areas visited though labour to work on fields<br />

with legumes is provided by the whole family. The<br />

implications of this are that cowpea production becomes<br />

low priority, is perceived as a non-cash generat<strong>in</strong>g<br />

activity <strong>and</strong>' hence no fertilizers or fertility<br />

practices are targeted towards its production. However,<br />

the farmers who use legumes <strong>for</strong> consumption<br />

<strong>and</strong> local trade ranked them as highly important <strong>in</strong><br />

improv<strong>in</strong>g the livelihoods <strong>and</strong> food security of the<br />

household at particular times of the year. For the<br />

effective <strong>and</strong> wide production of these legumes, the<br />

myths <strong>and</strong> beliefs around their production present a<br />

challenge. S<strong>in</strong>ce gender is central to their production,<br />

there is need <strong>for</strong> a partieipatory 'degenderization'<br />

of the commonly grown legumes.<br />

Research <strong>and</strong> development of such crops have<br />

lagged beh<strong>in</strong>d too much compared to what are referred<br />

to as men crops or cash crops like maize, tobacco<br />

<strong>and</strong> cotton.<br />

Conclusion<br />

The potential of cowpea to improve soil fertility <strong>and</strong><br />

household food security <strong>and</strong> <strong>in</strong>come was high. Most<br />

farmers <strong>in</strong>tercropped cowpea with maize. The area<br />

put under legumes <strong>in</strong> the three areas ranged from<br />

<strong>in</strong>significant to small portions of the farm. Farmers<br />

acknowledged the role of cowpea <strong>in</strong> soil fertility<br />

used <strong>in</strong> both rotations <strong>and</strong> <strong>in</strong>tercrops. However, no<br />

planrted fertilization practices on cowpea were followed<br />

by farmers.<br />

The cowpea product cha<strong>in</strong> was undeveloped <strong>in</strong> Chihota,<br />

Shurugwi <strong>and</strong> Zimuto. The current utilization<br />

of cowpea was ma<strong>in</strong>ly through four simple dishes<br />

<strong>in</strong> the <strong>for</strong>m of porridge, relish (bean <strong>and</strong> leaves) <strong>and</strong><br />

boiled bean (mutakura). Farmers <strong>in</strong>corporated some<br />

of the residues while some were fed to livestock.<br />

There is there<strong>for</strong>e need <strong>for</strong> diversification through<br />

the utilization of more products. Traditional crops<br />

have been recommended as part of the diet <strong>for</strong> people<br />

suffer<strong>in</strong>g from HIV / AIDS, <strong>and</strong> cowpea could<br />

f<strong>in</strong>d a place <strong>in</strong> some of these diets. Seed availability<br />

was a major problem to farmers with the majority<br />

us<strong>in</strong>g reta<strong>in</strong>ed seed. Varieties suited <strong>for</strong> the different<br />

agro-ecological zones need to be studied to improve<br />

gra<strong>in</strong> <strong>and</strong> non-gra<strong>in</strong> biomass production of<br />

cowpea. The area under cultivation needs to be<br />

properly fertilized <strong>for</strong> both rotations <strong>and</strong> <strong>in</strong>tercrops.<br />

Seed availability <strong>and</strong> markets of the cowpea need to<br />

<strong>Gra<strong>in</strong></strong>legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

125


e orgaruzed, both the local <strong>and</strong> external channels.<br />

Women played an important role <strong>in</strong> the. production<br />

of cowpea <strong>and</strong> there is need <strong>for</strong> sensitization of all<br />

stakeholders to remove the gender bias of the crop<br />

so that its economic, f<strong>in</strong>ancial, nutritive <strong>and</strong> other<br />

benefits could be explored to the maximum. Farmers<br />

need to be empowered with knowledge to enable<br />

them to appreciate the real economic <strong>and</strong> f<strong>in</strong>ancial<br />

value of cowpea <strong>in</strong> the household, on agricultural<br />

markets <strong>and</strong> <strong>in</strong> the farm<strong>in</strong>g system.<br />

Pests are not a major constra<strong>in</strong>t under the current<br />

cowpea production <strong>and</strong> farm<strong>in</strong>g systems. Increas<strong>in</strong>g<br />

area under cowpea cultivation could lead to dem<strong>and</strong><br />

of a more systematic way of deal<strong>in</strong>g with<br />

pests <strong>and</strong> diseases.<br />

Acknowledgements <br />

The authors are thankful to the <strong>Soil</strong> <strong>Fertility</strong> Net­<br />

work <strong>for</strong> Southern Africa (especially Stephen Wad­<br />

d<strong>in</strong>gton, Mulugetta Mekuria <strong>and</strong> Johannes Karig­<br />

w<strong>in</strong>di) <strong>for</strong> tak<strong>in</strong>g a keen <strong>in</strong>terest <strong>in</strong> the subject <strong>and</strong> <br />

support<strong>in</strong>g those <strong>in</strong>volved <strong>in</strong> this study through the <br />

provision of f<strong>in</strong>ance (from the Rockefeller Founda­<br />

tion) <strong>and</strong> transport to visit the study sites. <br />

References<br />

B<strong>and</strong>yop<strong>and</strong>hyay, S.K. <strong>and</strong> R De. 1986. N relationship<br />

<strong>in</strong> a legume - non legume association grown<br />

<strong>in</strong> an <strong>in</strong>tercropp<strong>in</strong>g system. Fertilizer Research<br />

10:73-82.<br />

Brown, S.J.M. Anderson, P.L. Woomeri M.J. Swift<br />

<strong>and</strong> E. Barriois. 1994. <strong>Soil</strong> biological processes <strong>in</strong><br />

tropical ecosystems. In: P.L. Woomer <strong>and</strong> M.J.<br />

Swift (eds), The Biological Management of Tropical<br />

<strong>Soil</strong> <strong>Fertility</strong>. John Wiley, UK, pp 47-80.<br />

Gilbert, A.R. 1998. Undersow<strong>in</strong>g green manures <strong>for</strong><br />

soil fertility enhancement <strong>in</strong> the maize-based<br />

cropp<strong>in</strong>g systems of Malawi. In: S. Wadd<strong>in</strong>gton,<br />

H.K. Murwira, JD.T. Kumwenda, D. Hikwa <strong>and</strong><br />

F. Tagwira (Eds) <strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong> Maize­<br />

Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe.<br />

Proceed<strong>in</strong>gs of the <strong>Soil</strong> Fert Net Results <strong>and</strong><br />

Plann<strong>in</strong>g Workshop, Afri;::a University, Mutare,<br />

Zimbabwe, <strong>Soil</strong>FertNet <strong>and</strong> CIMMYT­<br />

Zimbabwe. pp 73-80.<br />

Giller, K.E. 2001. Targett<strong>in</strong>g management of organic<br />

resources <strong>and</strong> m<strong>in</strong>eral fertilizers: Can we match<br />

scientists' fantasies with farmers' realities? In: B.<br />

Vanlauwe, N. Sang<strong>in</strong>ga, sJ. Diels <strong>and</strong> R Merckx<br />

(Eds) Balanced Nutrient Management Systems <strong>for</strong><br />

Moist Savanna <strong>and</strong> Humid Forest Zones of Africa.<br />

CAB International, Wall<strong>in</strong>g<strong>for</strong>d, UK. In press.<br />

Giller, K.E. <strong>and</strong> K.J. Wilson. 1991. Nitrogen fixation<br />

<strong>in</strong> tropical cropp<strong>in</strong>g systems. CAB International,<br />

Wall<strong>in</strong>g<strong>for</strong>d, UK.<br />

Grant, P.M. 1981. Fertilization of s<strong>and</strong>y soils <strong>in</strong><br />

peasant agriculture. Zimbabwe Agricultural Jou r­<br />

naI78:169-175.<br />

Hardter, R, W.J. Horst, G. Schmidt <strong>and</strong> E. Frey.<br />

1991. Yields <strong>and</strong> l<strong>and</strong> use efficiency of maizecowpea<br />

crop rotations <strong>in</strong> comparison to mixed<br />

<strong>and</strong> monocropp<strong>in</strong>g on an alfisol <strong>in</strong> Northern<br />

Ghana. J. Agronomy <strong>and</strong> Crop Science 166:326-337.<br />

Jeranyama, P., O.B. Hesterman, S.R Wadd<strong>in</strong>gton<br />

<strong>and</strong> RR. Harwood. 2000. Relay-<strong>in</strong>tercropp<strong>in</strong>g of<br />

sunnhemp <strong>and</strong> cowpea <strong>in</strong>to a smallholder maize<br />

system <strong>in</strong> Zimbabwe. Agronomy Journal 92:239­<br />

244.<br />

Johnson, D.T. 1970. The cowpea <strong>in</strong> the African areas<br />

of Rhodesia. Rhodesia Agricultural Journal 67:61­<br />

64.<br />

Kamau, G.M., J.K. Ransom <strong>and</strong> H.M. Saha. 1999.<br />

Maize-cowpea rotation <strong>for</strong> weed management<br />

<strong>and</strong> improvement of soil fertility on s<strong>and</strong>y soil <strong>in</strong><br />

coastal Kenya. In:. Maize Production Technology<br />

<strong>for</strong> the Future: Challenges <strong>and</strong> Opportunities. Proceed<strong>in</strong>gs<br />

of the Sixth Eastern <strong>and</strong> Southern Africa<br />

Regional Maize Conference. CIMMYT <strong>and</strong><br />

EARO, Addis Ababa, Ethiopia, pp. 223-225.<br />

Kouyate, Z., K. Franzluebbers, A.s.R Juo <strong>and</strong> L.R.<br />

Hossner. 2000. Tillage, crop residue, legume rotation,<br />

<strong>and</strong> green manure effect on sorghum <strong>and</strong><br />

millet yields <strong>in</strong> the semiarid tropics of Mali.<br />

Plant <strong>and</strong> <strong>Soil</strong> 225: 141-151.<br />

Madamba, R. 2002. Produc<strong>in</strong>g cowpea seed/<br />

Kurima mbeu yenyemba/ Ukul<strong>in</strong>ywa kwehlanyelo<br />

yendumba. P.N. Nayk<strong>and</strong>a ~nd D. Hikwa<br />

(Eds). Department of Research <strong>and</strong> Extension,<br />

Harare, Zimbabwe.<br />

Mashir<strong>in</strong>gwani, A.A. 1983. The present nutrient<br />

status of the soils <strong>in</strong> the communal areas of Zimbabwe.<br />

Zimbabwe Agricultural Journal 80:73-75.<br />

Murwira, H.K., P. Mutuo, N. Nharr..o, R Rabeson<br />

<strong>and</strong> c.A. Palm. 2002. The fertilizer equivalency<br />

values of orgaruc materials of differ<strong>in</strong>g quality.<br />

In: B. Vanlauwe, J. Diels, N. Sang<strong>in</strong>ga <strong>and</strong> R<br />

Merckx (Eds.). Integrated Plant Nutrient Management<br />

<strong>in</strong> Sub-Saharan Africa: From Concept to Practice.<br />

CAB International, Wall<strong>in</strong>g<strong>for</strong>d, UK. pp 113­<br />

122.<br />

126<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Murwira, H.K., M.J. Swift <strong>and</strong> P.G.H. Frost. 1995.<br />

Manure as a key resource <strong>in</strong> susta<strong>in</strong>able agriculture.<br />

In: J.M. Powell, S. Fern<strong>and</strong>ez-Rivera, O.T.<br />

Williams <strong>and</strong> C Renard (Eds) Livestock <strong>and</strong> Susta<strong>in</strong>able<br />

Nutrient Cycl<strong>in</strong>g <strong>in</strong> Mixed Farm<strong>in</strong>g Systems<br />

of Sub-Saharan Africa, Volume II, Technical<br />

Papers, Addis Ababa, Ethiopia, pp. 131-148.<br />

Muza, L. <strong>and</strong> P. Mapfumo. 1999. Constra<strong>in</strong>ts ·<strong>and</strong><br />

opportunities <strong>for</strong> legumes <strong>in</strong> the fertility enhancement<br />

of s<strong>and</strong>y soils <strong>in</strong> Zimbabwe. In: Maize<br />

Production Technology <strong>for</strong> the Future: Challenges<br />

<strong>and</strong> Opportunities. Proceed<strong>in</strong>gs of the Sixth Eastern<br />

<strong>and</strong> Southern Africa Regionai Maize Conference,<br />

CIMMYT <strong>and</strong> EARO, Addis Ababa, Ethiopia,<br />

pp. 214-217.<br />

National Academy of Sciences. 1984. Tropical legumes:<br />

Resources <strong>for</strong> the future. A report of ad<br />

hoc advisory panel of the Advisory committee<br />

on Technology Innovation, Board on Science <strong>and</strong><br />

Technology <strong>for</strong> International Development,<br />

Commission on the International Relations - National<br />

Research Council. National Academy of<br />

Science, Wash<strong>in</strong>gton D.C, USA, 1979. pp 272­<br />

278.<br />

Nhamo, N., H.K. Murwira <strong>and</strong> K.E. Giller. 2001.<br />

The effects of comb<strong>in</strong><strong>in</strong>g cattle manure with <strong>in</strong>organic<br />

N fertilizers on maize yield on s<strong>and</strong>y<br />

soils <strong>in</strong> Zimbabwe. In press.<br />

Nhamo, N., T. Sithole, D.KC Dhliwayo, W. Mupangwa,<br />

T. Gatsi, D. Chikazunga <strong>and</strong> H. Nemasasi.<br />

2002. The prospects of smallholder farmers<br />

utiliz<strong>in</strong>g organic materials as soil fertility<br />

amendments <strong>in</strong> Murewa <strong>and</strong> Mvuma, Zimbabwe.<br />

<strong>Soil</strong> <strong>Fertility</strong> Network Research Results<br />

Work<strong>in</strong>g Paper No.9. 24 pp.<br />

Nzuma, J.K, H.K. Murwira <strong>and</strong> S. Mpepereki. 1998.<br />

Cattle manure management options <strong>for</strong> reduc<strong>in</strong>g<br />

nutrient losses: Farmer perceptions <strong>and</strong> solutions<br />

<strong>in</strong> Mangwende, Zimbabwe. In: S. Wadd<strong>in</strong>gton,<br />

H.K Murwira, JD.T. Kumwenda, D.<br />

Hikwa <strong>and</strong> F. Tagwira (Eds) <strong>Soil</strong> <strong>Fertility</strong> Research<br />

<strong>for</strong> Maize-Based Farm<strong>in</strong>g Systems <strong>in</strong> Malau.d <strong>and</strong><br />

Zimbabwe. Proceed<strong>in</strong>gs of the <strong>Soil</strong> Fert Net Results<br />

<strong>and</strong> Plann<strong>in</strong>g Workshop, Africa University,<br />

Mutare, Zimbabwe, <strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT­<br />

Zimbabwe. pp. 183-190.<br />

Nyamapfene, K. 1991. <strong>Soil</strong>s of Zimbabwe. Ne:..<br />

h<strong>and</strong>a Publishers, Harare, Zimbabwe.<br />

Olasantan, F.O. 1998. lntercropp<strong>in</strong>g of cassava<br />

(Manihot esculenta) with maize or cowpea t<strong>in</strong>der<br />

different row management. Field Crops Research<br />

19:41-50.<br />

Palm, CA., CN. Gachengo, R.J. Delve, G. Cadisch<br />

<strong>and</strong> KE. Giller 2001. Organic <strong>in</strong>puts <strong>for</strong> soil fertility<br />

management <strong>in</strong> tropical agroecosystems:<br />

application of an organic resource database. Agriculture,<br />

Ecosystems <strong>and</strong> Environment 83:27-42.<br />

Palm, CA., R.J.K. Myers <strong>and</strong> S.M. N<strong>and</strong>wa. 1997.<br />

Comb<strong>in</strong>ed use of organiC <strong>and</strong> <strong>in</strong>organic nutrient<br />

sources <strong>for</strong> soil fertility ma<strong>in</strong>tenance. In: R.J. Buresh,<br />

P.A. Sanchez <strong>and</strong> F. Calhoun (Eds) Replenish<strong>in</strong>g<br />

<strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Africa. SSSA Special Publication<br />

51. SSSA, Madison, WI, USA. pp 193-217.<br />

Rao, M.R. <strong>and</strong> M.N. Mathuva. 2000. <strong>Legumes</strong> <strong>for</strong><br />

improv<strong>in</strong>g maize yields <strong>and</strong> <strong>in</strong>come <strong>in</strong> semi arid<br />

Kenya. Agriculture, Ecosystems <strong>and</strong> Environment<br />

78:123-137.<br />

Rusike, J.C Sukume, A. Dorward, S. Mpepereki <strong>and</strong><br />

K.E. Giller. 2000. The economic potential <strong>for</strong><br />

smallholder soyabean production. A <strong>Soil</strong> Fert<br />

Net Special Publication, CIMMYT, Harare, Zimbabwe.<br />

64 pp.<br />

SDARMP Diagnostic Survey. 1997. Smallholder Dry<br />

Areas Resource Management Programme, Zimbabwe.<br />

Shumba, E.M., H.H. Dhliwayo, B. Kupfuma <strong>and</strong> G.<br />

Gumbie. 1990. Response of maize <strong>in</strong> rotation<br />

with cowpea to NPK fertilizers <strong>in</strong> low ra<strong>in</strong>fall<br />

area. Zimbabwe Journal Agricultural Research<br />

28:39-45.<br />

Van Kessel, C <strong>and</strong> J.P. Roskoski. 1988. Row spac<strong>in</strong>g<br />

effects on N2-fixation, N-yield <strong>and</strong> soil N uptake<br />

of <strong>in</strong>tercropped cowpea <strong>and</strong> maize. Plant <strong>and</strong> <strong>Soil</strong><br />

111:17-23.<br />

Venter, S., E. Van den Heever, R. Matlala, <strong>and</strong> H.<br />

Maphanga. 1997. Cowpeas as a vegetable. Farmers'<br />

weekly, June 6,1997, pp. 27-31.<br />

Wade, M.K. <strong>and</strong> P.A. Sanchez. 1984. Productive potential<br />

of an annual <strong>in</strong>tercropp<strong>in</strong>g scheme <strong>in</strong><br />

Amazon. Field Crops Research 9:253-263.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 127


BIOMASS PRODUCTION OF GREEN MANURES AND GRAIN LEGUMES iN<br />

SOILS OF DIFFERENT CHARACTERISTICS IN ZAMBIA AND ZIMBABWE<br />

PAULINE CHIVENGE', MOSES MWALE 2 <strong>and</strong> HERBERT MURWIRA'<br />

1TSBF-CIA T, Box MP 228, Mt. Pleasant, Harare, Zimbabwe<br />

E-ma;i: tsbfzim@zambezi.net<br />

2 Mt. Makufu Research Station, P. Bag 7, Chilanga, Zambia<br />

Abstract<br />

Several green manure <strong>and</strong> gra<strong>in</strong> legumes 'have been identified as hav<strong>in</strong>g potential <strong>for</strong> use <strong>in</strong> soil fertility improvement<br />

<strong>and</strong> <strong>for</strong> food <strong>in</strong> southern Africa, The ecological boundary conditions under which the different legumes per<strong>for</strong>m have,<br />

however, not been ascerta<strong>in</strong>ed, A study was carried out <strong>in</strong> the 2001/02 season to assess the <strong>in</strong>fluence of soil characteristics<br />

on legume establishment, growth <strong>and</strong> biomass production <strong>and</strong> gra<strong>in</strong> yield <strong>in</strong> Zambia <strong>and</strong>,Zimbabwe. On-farm experiments<br />

were established <strong>in</strong> different agro-ecological zones <strong>in</strong> Zambia <strong>and</strong> Zimbabwe to capture soils of different texture,<br />

pH, soil fertility status <strong>and</strong> CEC. Orought experienced dur<strong>in</strong>g the season resulted <strong>in</strong> low yields <strong>for</strong> all the legumes.<br />

Of the five legumes planted, the green manures, Crotalaria grahamiana <strong>and</strong> C. juncea, <strong>and</strong> Mucuna pruriens, gave<br />

higher biomass than the gra<strong>in</strong> legumes, Cowpea (Vigna unguiculata), <strong>and</strong> Soybean (Glyc<strong>in</strong>e max). Crotalaria<br />

juncea produced biomass yields around 2300 kg ha- 1 <strong>in</strong> Zimbabwe <strong>and</strong> Crotalaria ochraleuca accumulated up to<br />

10000 kg ha- 1 . Cowpea had biomass yields as low as 150 kg ha- 1 while soyabean had close to 2000 kg ha- 1 biomass yields<br />

<strong>in</strong> Zambia. There were no significant soil textural effects on legume biomass yields <strong>in</strong> the Zimbabwean sites. In Shurugwi,<br />

wetl<strong>and</strong> soils had higher biomass yields than dryl<strong>and</strong> soils ma<strong>in</strong>ly because of the drought that was experienced<br />

dur<strong>in</strong>g the season. In Zambia, Mucuna pruriens had high biomass yields on the loamy s<strong>and</strong>s while Crotalaria<br />

ochraleuca had the highest yields under the s<strong>and</strong>y clay loams. There were weak but positive correlations of legume biomass<br />

yield with clay content, organic C, soil pH <strong>and</strong> available P.<br />

Key words: green manure <strong>and</strong> gra<strong>in</strong> legumes, biomass yields, soil characteristics<br />

Introduction<br />

Herbaceous legumes have been shown to have potential<br />

<strong>in</strong> soil fertility improvement <strong>in</strong> many parts of<br />

Africa. <strong>Legumes</strong> play a significant role <strong>in</strong> the improvement<br />

of nitrogen budgets through biological<br />

nitrogen fixation <strong>and</strong> cycl<strong>in</strong>g of other nutrients, reduc<strong>in</strong>g<br />

the amount of m<strong>in</strong>eral nitrogen fertilizer required<br />

(Giller, 2002) . <strong>Legumes</strong> can be grown either<br />

as sole 'crops <strong>in</strong> rotation with cereal crops or <strong>in</strong>tercropped<br />

with cereal crops, depend<strong>in</strong>g on their compatibility.<br />

<strong>Green</strong> manure legumes like Mucuna pruriens, Crotalaria<br />

species <strong>and</strong> Tephrosia species have been identified<br />

to have potential to produce high biomass <strong>and</strong><br />

<strong>in</strong>crease soil fertility <strong>in</strong> tum (Muza, 1997; Gilbert,<br />

1997). Giller <strong>and</strong> Wilson (1991) reported that green<br />

manure legumes have potential to accumulate up to<br />

250 kg N ha- 1 year). <strong>Gra<strong>in</strong></strong> legumes that <strong>in</strong>clude Glyc<strong>in</strong>e<br />

max, Vigna unguiculata <strong>and</strong> Cajanus cajan have<br />

~een shown to have high potential to yield high<br />

amounts of gra<strong>in</strong> <strong>and</strong> some residual leaf litter <strong>and</strong><br />

root biomass that can contribute significantly to soil<br />

fertility improvement (Mapfumo et al. 2001; Nyak<strong>and</strong>a<br />

et al. 1997; Saka et al. 1998; Schulz et al. 2001).<br />

Growth per<strong>for</strong>mance of the different legumes varies<br />

from site to site, with some legumes be<strong>in</strong>g more tolerant<br />

of low soil fertility conditions than others. It is<br />

usually essential to add P fertilizer to enhance legume<br />

growth, especially <strong>in</strong> the communal area soils,<br />

which are <strong>in</strong>fertile. Hikwa et al (1998) showed that<br />

biomass yields of Mucuna pruriens doubled with P<br />

fertilization while there were no P responses with<br />

Crotalaria juncea. <strong>Soil</strong>' moisture affects legume per<strong>for</strong>mance<br />

with both waterlogg<strong>in</strong>g <strong>and</strong> drought conditions<br />

reduc<strong>in</strong>g crop growth of some legumes<br />

(Muza <strong>and</strong> Mapfumo, 1998). The biophysical<br />

boundary conditions under which different legumes<br />

per<strong>for</strong>m need to be ascerta<strong>in</strong>ed.<br />

The objectives of this study were to establish the <strong>in</strong>fluence<br />

of soil biophysical conditions on legume<br />

biomass <strong>and</strong> gra<strong>in</strong> yields <strong>in</strong> Malawi, Zambia <strong>and</strong><br />

Zimbabwe, <strong>and</strong> to evaluate legume per<strong>for</strong>mance <strong>in</strong><br />

different agro-ecological zones: Only data from<br />

Zambia <strong>and</strong> Zimbabwe are reported. It was hypothesized<br />

that legume biomass <strong>and</strong> gra<strong>in</strong> yields<br />

would <strong>in</strong>crease with <strong>in</strong>crease <strong>in</strong> clay content, CEC,<br />

C content <strong>and</strong> P content.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 129


Materials <strong>and</strong> Methods<br />

On farm experiments were carried .out on soils with<br />

different characteristics to cover soils of different<br />

texture, C content, P content, pH <strong>and</strong> CEC <strong>in</strong> Zambia<br />

<strong>and</strong> Zimbabwe. The legumes were planted <strong>in</strong> a<br />

r<strong>and</strong>omized block design, together with fertilized<br />

<strong>and</strong> unfertilized maize as treatments.<br />

Zambia<br />

Four legumes, Mucuna, Crotalaria juncea, Glyc<strong>in</strong>e max<br />

<strong>and</strong> Vigna unguiculata, were planted on six farms <strong>in</strong><br />

Zambia <strong>in</strong> Choma, Magoye, Kabwe, Muswishi, Kasarna<br />

<strong>and</strong> Mungwi. Choma <strong>and</strong> Magoye are <strong>in</strong> medium<br />

ra<strong>in</strong>fall areas with annual ra<strong>in</strong>fall of 600-800<br />

mm, while Kabwe <strong>and</strong> Muswishi were <strong>in</strong> high ra<strong>in</strong>fall<br />

areas (800-1000 mm annual ra<strong>in</strong>fall), <strong>and</strong> Kasarna<br />

<strong>and</strong> Mungwi receive 1000-1200 mm ra<strong>in</strong>fall<br />

annually. Kabwe <strong>and</strong> Misamfu were on s<strong>and</strong>y<br />

loamy soils, while Mungwi was on a loamy s<strong>and</strong><br />

<strong>and</strong> Muswishi on a s<strong>and</strong>y clay loam (Table 1). All<br />

the sites had ~ow .contents of available P oH~~ than<br />

7 ).lg P g-I SOlI WIth the exception of Kabwe which<br />

had .40 ).lg P g-I soil available P. CEC was less than<br />

10 cmol+kg-I except <strong>for</strong> Muswishi, which was on.a<br />

s<strong>and</strong>y clay loam <strong>and</strong> had a CEC of 39 cmol+kg-I<br />

(Table 1).<br />

ZImbabwe<br />

The experiment was carried out at 24 sites <strong>in</strong> two<br />

districts, Murewa <strong>and</strong> Shurugwi. Murewa was a<br />

high ra<strong>in</strong>fall area, receiv<strong>in</strong>g up to 1000 mm ra<strong>in</strong>f~ll<br />

Table 1. Initial soil characterization of Zambian sites<br />

Site pH (KCI) %s<strong>and</strong> %clay %silt Textural class<br />

Kabwe 6.3 77 9 14 S<strong>and</strong>y loam<br />

Misamfu 4.2 70 15 15 S<strong>and</strong>y loam<br />

Muswishi 5.5 58 22 21 S<strong>and</strong>y clay loam<br />

Mungwi 5.1 82.1 9.8 8.1 loamy s<strong>and</strong><br />

apnually while Shurugwi was <strong>in</strong> a low ra<strong>in</strong>fall area<br />

receiv<strong>in</strong>g around 650 mm annual ra<strong>in</strong>fall. Six legumes<br />

were planted; Mucuna, Crotalaria juncea, Crotalaria<br />

grahamiana, Glyc<strong>in</strong>e max, Cajanus cajan <strong>and</strong> Vigna<br />

unguiculata.<br />

The sites <strong>in</strong> Murewa covered red <strong>and</strong> black clays,<br />

loamy s<strong>and</strong>s <strong>and</strong> s<strong>and</strong>s (Table 2). The coarse textured<br />

soils had low C contents with most of the sites<br />

on coarse textures hav<strong>in</strong>g less than 0.8% C, while<br />

sites on heavier soils had C cQntents of up to 3% C<br />

(Table 2). All the sites <strong>in</strong> Murewa had low contents<br />

of available P <strong>and</strong> low. CEC with most of the sites<br />

hav<strong>in</strong>g less than 3 ).lg P g-I available P <strong>and</strong> less than<br />

6 cmol+kg-I CEC.<br />

All the sites <strong>in</strong> Shurugwi were on coarse textured<br />

soils, all with It;sS than 7% clay content (Table 3). pH<br />

at the sites <strong>in</strong> Murewa averaged around 5.5 (Table<br />

2) <strong>and</strong> were lower than those <strong>in</strong> Shurugwi which<br />

had a mean of 7 (Table 3). The sites <strong>in</strong> Shurugwi<br />

were of low soil fertility status than those <strong>in</strong><br />

Murewa <strong>and</strong> Zambia. Most of the sites <strong>in</strong> Shurugwi<br />

had less than 0.6% C, 3 ).lg P g-I available P <strong>and</strong> less<br />

than 3 cmol+kg-1 CEC (Table 3).<br />

Results <strong>and</strong> Discussion<br />

_Biomass yield of different legumes <strong>in</strong> Zambia <strong>and</strong><br />

Zimbabwe<br />

At all the sites, green manure legumes had larger<br />

biomass yields compared with the gra<strong>in</strong> legumes,<br />

%C %N iJg g"P Mgme% Ca me% Na me% Kme% CEC<br />

1.48 0.11 40 2.3 5 0.9 10.1<br />

0.86 0.06 7 0.8 0.08 0.36 5.8<br />

1.44 6.2 2.3 4.15 0.05 0.48 39.1<br />

0.7 0.03 5 0.7 2.1 0 0.1 5.8<br />

Table 2. Initial soil characteristics of sites <strong>in</strong> Murewa, Zimbabwe<br />

Farmer pH (H2O) %s<strong>and</strong> %silt %clay Textural class<br />

Nzvere 5.3 86 6 7 loamy s<strong>and</strong><br />

A.Oarare 5.4 32 15 52 Clay<br />

Kwari 5.6 30 20 49 Clay loam<br />

Mutsago 5.4 46 14 37 S<strong>and</strong>y clay<br />

Chokurongerwa 5.3 82 6 11 loamy s<strong>and</strong><br />

Matambanadzo 5.4 82 6 11 S<strong>and</strong><br />

M<strong>and</strong>ebvu 5.3 82 6 11 S<strong>and</strong><br />

Kaitano 5.2 84 6 9 loamy s<strong>and</strong><br />

Musegedi 5.4 86 6 7 loamy s<strong>and</strong><br />

Mugwagwa 5.3 86 6 7 loamy s<strong>and</strong><br />

Takarova 5.5 84 6 9 loamy s<strong>and</strong><br />

Ndoro 5.6 42 16 41 Clay<br />

B.Oarare 5.5 32 18 49 Clay<br />

Gwara 5.5 46 20 33 S<strong>and</strong>y clay loam<br />

%C %N iJg g'P Mg me% Ga me% Na me% Kme% CEC<br />

0.44 0.08 2.12 0 0.1 0.03 ·0 0.13<br />

1.98 0.17 2.27 0.89 1.35 0.05 0.04 2.33<br />

2.28 0.21 2.07 0.87 1.53 0.03 0.05 2.48<br />

1.26 0.11 2.02 0.87 1.35 0.05 0.05 2.32<br />

0.46 0.08 2.02 0.01 0.09 0.03 . 0 0.13<br />

0.77 0.11 2.96 0.11 0.37 0.08 0.03 0.59<br />

0.7 0.1 3.11 0.07 0.26 0.02 0.02 0.37<br />

0.45 0.07 2.57 0 0.05 0.02 0 0.07<br />

0.39 0.08 2.22 0.01 0.06 0.03 0 0.1<br />

0.64 0.14 1.63 0 0.06 0.02 0 0.08<br />

0.49 0.07 2.81 0.04 0.22 0.04 0 0.3<br />

3.06 0.27 1.63 2.45 2.92 0.04 0.03 5.44<br />

2.96 0.26 3.56 2.78 3.61 0.05 0.04 6.48<br />

2.81 0.38 1.78 1.59 2.29 0.06 0.02 3.96<br />

130<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 3. Initial soil characteristics of sites <strong>in</strong> Shurugwi. Zimbabwe<br />

Farmer pH (H2O) %s<strong>and</strong> %silt %clay Textural class<br />

Gweru 6.87 83 11 6 Loamy s<strong>and</strong><br />

Munyika 6.86 85 9 6 Loamy s<strong>and</strong><br />

Marime 7.13 87 7 6 S<strong>and</strong><br />

Manatsa 6.82 85 11 4 Loamy s<strong>and</strong><br />

Masendeke 7.33 87 9 4 S<strong>and</strong><br />

Chimviri 7.38 95 3 2 S<strong>and</strong><br />

Majoni 7.15 87 11 2 S<strong>and</strong><br />

Makovere 6.67 90 8 2 S<strong>and</strong><br />

Mugwagwa 7.45 89 7 4 S<strong>and</strong><br />

Ngwalati 7.38 85 11 4 Loamy s<strong>and</strong><br />

Gwatsvaira 6.78 91 7 2 S<strong>and</strong><br />

%C %N j.Jg g.lp Mgme% Ca me% Na me% K me% CEC<br />

0.28 0.03 0.9 0.1 0.61 0.08 0 0.79<br />

0.59 0.04 2.76 0.14 0.95 a.09 0 1.18<br />

0.4 . 0.02 1.01 0.14 0.93 0.09 0.03 1.19<br />

0.49 0.03 3.27 0.13 1.21 0.07 0.03 1.44<br />

0.35 0.02 1.07 0.07 0.52 0.07 . 0.01 0.67<br />

0.37 0.04 1.18 0.02 0.49 0.07 0 0.58<br />

0.32 0.03 0.51 0.06 0.71 0.07 0 0.84<br />

0.46 0.01 2.93 0.02 0.42 0.07 0.04 0.55<br />

0.24 0.01 2.54 0.07 1.11 0.09 0 1.27<br />

0.23 0.01 0.56 0.15 2.47 0.08 0 2.7<br />

0.18 0.02 0.73 0.04 0.41 0.07 0.02 0.54<br />

with Crotalaria juncea <strong>and</strong> Crotalaria ochraleuca giv<strong>in</strong>g<br />

the highest biomass yields <strong>in</strong> Zim!:>abwe <strong>and</strong> Zambia<br />

(Table 4). Mucuna had yields around ·2000 kg<br />

ha·J <strong>in</strong> Zimbabwe while it yielded more than 7000<br />

kg ha·J <strong>in</strong> Zambia (Table 4). The mean yields <strong>for</strong><br />

Crotalaria juncea were 2300 kg ha·J <strong>in</strong> Zimbabwe <strong>and</strong><br />

10000 kg ha·J <strong>for</strong> Crotalaria ochraleuca <strong>in</strong> Zambia<br />

(Table 4). In western Kenya, Ojiem et al (1998) observed<br />

higher dry matter accumulations of up to 9 t<br />

ha- J <strong>for</strong> the green manure legumes (C ochraleuca, C<br />

grahamiana, C <strong>in</strong>cana <strong>and</strong> Mucuna) while soyabean<br />

accumulated dry matter of about 2 t ha· 1• 1,\ Zambia,<br />

soyabean accumulated biomass yields close to 2000<br />

kg ha-] while less than 400 kg ha·J biomass yields<br />

were obta<strong>in</strong>ed <strong>in</strong> Zimbabwe. Cowpea had up to 800<br />

kg ha·J biomass yields <strong>in</strong> Zimbabwe while <strong>in</strong> Zambia<br />

it was as low as 150 kg ha·1.<br />

Schulz et al (2001) reported that biomass yield <strong>and</strong><br />

N contribution potential of the different legumes<br />

varies <strong>and</strong> may be ranked <strong>in</strong> terms of soil fertility<br />

improvement <strong>in</strong> the follow<strong>in</strong>g order: green manure<br />

crops> <strong>for</strong>age crops> low harvest <strong>in</strong>dex gra<strong>in</strong> legumes><br />

high harvest <strong>in</strong>dex gra<strong>in</strong> legumes. Higher<br />

biomass yields were observed <strong>in</strong> Zambia than <strong>in</strong><br />

Zimbabwe, probably because the sites that were<br />

sampled <strong>in</strong> Zambia were not under moisture stress<br />

while the Zimbabwe sites were affected by drought.<br />

Table 4. Biomass yield of legumes obta<strong>in</strong>ed <strong>in</strong> the 2001/02 season<br />

from different agro·ecological zones <strong>in</strong> Zambia <strong>and</strong> Zimbabwe<br />

(Murewa <strong>and</strong> Shurugwi)<br />

Treatment Biomass yield (kg ha· 1 )<br />

Zambia Zambia Zimbabwe Shurugwi<br />

(800·1000 (1000·1200 (800·1000 « 650 mm<br />

mm ra<strong>in</strong>fall) mm ra<strong>in</strong>fall) mm ra<strong>in</strong>fall) ra<strong>in</strong>fall)<br />

Cowpea 146 835 651<br />

Crotalaria gnihamiana 1715 2056<br />

Crotalaria juncea 2312 2316<br />

Crotalaria ochralueca 12841 10000<br />

Mucuna 4981 10250 2331 1562<br />

Soyabean 2482 1062 391<br />

LSO (0.05) 1083.6 974.3 276.2 457.5<br />

There were no differences <strong>in</strong> biomass oota<strong>in</strong>ed <strong>in</strong><br />

Murewa <strong>and</strong> Shurugwi; probably because both areas<br />

were affected by drought (with annual ra<strong>in</strong>fall<br />

of 542 mm <strong>and</strong> 595 mm respectively), reduc<strong>in</strong>g the<br />

potentials <strong>for</strong> legume growth (Table 4).<br />

Effect of soil characteristi


18000<br />

1600)<br />

14000 a) Zambia<br />

12000<br />

m<br />

-"<br />

l1cxxx)<br />

~ BOOO<br />

~<br />

iii<br />

600)<br />

4000<br />

2000<br />

"''''<br />

"""<br />

",m<br />

,A=.<br />

'fu21~·25."il<br />

R>=.Of11!'1'<br />

:: '1\'t"·TII\T\)<br />

·~nI5·~'j"/x~1~.,<br />

..".,.., <br />

'Y· .....ro:.c·JJ2.45<br />

rf"O.17ID<br />

""""<br />

Y"fil1(&.7'*ltD <br />

R'''O.OZIO <br />

.~ ;(,<br />

~ --<br />

.....<br />

<br />

- ........ <br />

-acltiII1I'I8<br />

C


pressed growth of most crops. The observations<br />

made <strong>in</strong> the 2001/02 season however <strong>in</strong>dicate that<br />

moisture is essential <strong>for</strong> legume growth. Legume<br />

biomass yields <strong>in</strong>crease with <strong>in</strong>crease <strong>in</strong> clay content,<br />

pH <strong>and</strong> soil fertility <strong>in</strong> gener,al. There are <strong>in</strong>teractions<br />

of the different soil characteristics such as<br />

soil moisture, clay content, soil pH, <strong>and</strong> soil fertility<br />

on legume biomass production. There is there<strong>for</strong>e, a<br />

need to explore the effects of the <strong>in</strong>teractions of tlie<br />

different soil characteristics on legume establishment,<br />

growth <strong>and</strong> biomass yield. <strong>Green</strong> manure legumes<br />

outyield gra<strong>in</strong> legumes <strong>and</strong> all legumes require<br />

some soil moisture to produce mean<strong>in</strong>gful<br />

biomass yields that can impact on soil fertility improvement.<br />

More data analysis is required to discrim<strong>in</strong>ate<br />

the importance of the various parameters<br />

measured. A spatial analysis of the data could help<br />

<strong>in</strong> draw<strong>in</strong>g up recommendation doma<strong>in</strong>s <strong>for</strong> the<br />

various legumes.<br />

Acknowledgements<br />

This work was supported by IFAO through a grant<br />

to TSBF-CIAT.<br />

References<br />

Gilbert, R.A. 1998. Undersow<strong>in</strong>g green manures <strong>for</strong><br />

soil fertility enhancement <strong>in</strong> the maize-based<br />

cropp<strong>in</strong>g systems of Malawi. In: S.R. Wadd<strong>in</strong>gton,<br />

H.K. Murwira, JD.T. Kumwenda, O. Hikwa<br />

ar:td F. Tagwira (eds), <strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong><br />

Maize Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe.<br />

<strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT-Zimbabwe,<br />

Harare, Zimbabwe. pp 73-80.<br />

Giller, KE. 2002. Target<strong>in</strong>g management of organic<br />

resources <strong>and</strong> m<strong>in</strong>eral fertilizers: Can we match<br />

scientists' fantasies with farmers' realities? In: B.<br />

Vanlauwe, N. Sang<strong>in</strong>ga, S. J. Oiels <strong>and</strong> R. Merckx<br />

(eds), Integrated Plant Nutrient Management <strong>in</strong><br />

Sub-Saharan Africa. CAB International, Wall<strong>in</strong>g<strong>for</strong>d,<br />

UK. pp 155-172.<br />

Giller, K.E. <strong>and</strong> K.J. Wilson. 1991. Nitrogen fixation <strong>in</strong><br />

tropical cropp<strong>in</strong>g systems. CAB International, Wall<strong>in</strong>g<strong>for</strong>d,<br />

UK. 313 pp.<br />

Hikwa, 0, M. Murata, F. Tagwira, C. Chiduza, H.<br />

Murwira, L. Muza <strong>and</strong> S. Wadd<strong>in</strong>gton. 1998.<br />

Per<strong>for</strong>mance of green manurE legumes on exhausted<br />

soils <strong>in</strong> northern Zimbabwe: A soil fertility<br />

network trial. In: S.R. Wadd<strong>in</strong>gton, H.K.<br />

Murwira, JD.T. Kumwenda, O. Hikwa <strong>and</strong> F.<br />

Tagwira (eds), <strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong> Maize<br />

Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe.<br />

<strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT-Zimbabwe,<br />

Harare, Zimbabwe. pp 81-84.<br />

Ojiem, J.O., J.K. Ransom, a.M. Odongo <strong>and</strong> 'E.A.<br />

Okwuosa. 1999. Agronomic <strong>and</strong> chemical characterization<br />

of potential green manure species <strong>in</strong><br />

Western Kenya. In: Maize Production Technology<br />

<strong>for</strong> the Future, Proceed<strong>in</strong>gs of the Sixth Eastern<br />

<strong>and</strong> Southern Africa Regional Maize Conference,<br />

21 -25 September 1~98, Addis Ababa, Ethiopia,<br />

CIMMYT Maize Program <strong>and</strong> Ethiopian Agricultural<br />

Research Organization. pp 210-213.<br />

Mapfumo, P., B.M. Campbell, S. Mpepereki <strong>and</strong> P.<br />

Mafongoya. 2001: <strong>Legumes</strong> <strong>in</strong> soil fertility management:<br />

The case of pigeonpea <strong>in</strong> the smallholder<br />

farm<strong>in</strong>g systems of Zimbabwe. African<br />

Crop Science Journal 9(4):629-644.<br />

Muza, L<strong>and</strong> P. Mapfumo. 1999. Constra<strong>in</strong>ts <strong>and</strong><br />

opportunities <strong>for</strong> legumes <strong>in</strong> the fertility enhancement<br />

of s<strong>and</strong>y soils <strong>in</strong> Zimbabwe. In: Maize<br />

Production Technology <strong>for</strong> the Future, Proceed<strong>in</strong>gs<br />

of the Sixth Eastern <strong>and</strong> Southern Africa Regional<br />

Maize Conference, 21 -25 September 1998,<br />

Addis Ababa, Ethiopia, CIMMYT Maize Program<br />

<strong>and</strong> Ethiopian Agricultural Research Organization.<br />

pp 214-217.<br />

Nyak<strong>and</strong>a, c., I.K Mariga, B.H. Ozowela <strong>and</strong> H.K.<br />

Murwira. 1997. Biomass production <strong>and</strong> maize<br />

yield under tree-based improved fallow of Sesbania<br />

<strong>and</strong> Pigeon pea. In: S.R. Wadd<strong>in</strong>gton, H.K<br />

Murwira, JD.T. Kumwenda, O. Hikwa <strong>and</strong> F.<br />

Tagwira (eds), <strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong> Maize<br />

Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe.<br />

<strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT-Zimbabwe, Harare,<br />

Zimbabwe. pp 115-119.<br />

Saka, A.R., JoO.T. Kumwenda, A.G. Allison, J.B. Kamangira<br />

<strong>and</strong> W.T. Bunderson. 1998. Integrat<strong>in</strong>g<br />

pigeon peas <strong>in</strong>to smallholder farm<strong>in</strong>g systems to<br />

improve soil fertility <strong>and</strong> crop yields <strong>in</strong> Malawi.<br />

In: Maize Product-ion Technology <strong>for</strong> the Future,<br />

Proceed<strong>in</strong>gs of the Sixth Eastern <strong>and</strong> Southern<br />

Africa Regional Maize Conference, 21 -25 September<br />

1998, Addis Ababa, Ethiopia, CIMMYT<br />

Maize Program <strong>and</strong>, Ethiopian Agricultural Research<br />

Organization. pp 218-222.<br />

Schulz, S., R.J. Carsky <strong>and</strong> S.A. Tarawali. 2001. Herbaceous<br />

legumes: The panacea <strong>for</strong> West African<br />

soil fertility problems? SSSA Special Publication<br />

No. 58, Madison, WI, USA. pp. 179-195.<br />

[ <br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

133


EFFECT OF DIFFERENT GREEN MANURE LEGUMES AND THEIR TIME 'OF<br />

PLANTING ON MAIZE GROWTH AND WITCHWEE.D '(STRIGA ASIATICA)<br />

CONTROL: A PRELIMINARY EVALUATION<br />

Abstract<br />

LAURENCE JASI, OSTIN A. CHIVINGE <strong>and</strong> IRVINE K. MARIGA<br />

Department of Crop Science, Faculty of Agriculture, University of Zimbabwe,<br />

P. O. Box MP 167, Mount Pleasant, Harare, Zimbabwe<br />

A pot experiment was established at Henderson Research Station (30 0 58', 17 0 35') <strong>and</strong> a field experiment was conducted<br />

at Mlezu (29 0 30', 19 0 8'), Zimbabwe dur<strong>in</strong>g the 2001/2002 cropp<strong>in</strong>g season to evaluate the effect of green manure<br />

legumes, <strong>and</strong> their time of plant<strong>in</strong>g when <strong>in</strong>tercropped with maize, on Striga asiatica emergence <strong>and</strong> maize<br />

growth <strong>and</strong> yield. The green manure legumes tested were velvetbean (Mucuna pruriens, fish bean (Tephrosia vogelii),<br />

sunnhemp (Crotalaria juncea), <strong>and</strong> dolichos (Lablab purpureus). There was less Striga asiatica <strong>in</strong>cidence<br />

when legumes were planted at the same time as maize, compared with stagger<strong>in</strong>g the plant<strong>in</strong>g dates. There were no significant<br />

differences among the green manure legumes <strong>in</strong> their ability to suppress Striga. Plant<strong>in</strong>g the maize <strong>and</strong> legumes<br />

at the same- time <strong>in</strong>creased <strong>in</strong>terspecies competition <strong>and</strong> reduced maize leaf area <strong>and</strong> plant height significantly.<br />

Velvet bean reduced maize leaf area more than the other legumes. Howe-ver, the competitive effect of the legumes did not<br />

reduce gra<strong>in</strong> yield <strong>in</strong> the pot experiment.<br />

Key words: Striga asiatica, Striga suppression, velvet bean, fish bean, sunnhemp, dolichos<br />

Introduction<br />

Striga asiatica is one of the biological constra<strong>in</strong>ts to<br />

maize production <strong>in</strong> the smallholder farm<strong>in</strong>g areas<br />

of Zimbabwe. Striga species are difficult to control<br />

because they cause damage be<strong>for</strong>e the Striga plants<br />

emerge from the soil after most weed<strong>in</strong>g operations<br />

have been. completed (Musambasi, 1997). Research<br />

<strong>in</strong> Zimbabwe <strong>and</strong> elsewhere hilS shown that S. asiatica<br />

can be controlled by several methods. These <strong>in</strong>clude<br />

h<strong>and</strong> pull<strong>in</strong>g be<strong>for</strong>e flower<strong>in</strong>g, hoe<strong>in</strong>g, ridg<strong>in</strong>g,<br />

trap <strong>and</strong> catch cropp<strong>in</strong>g, <strong>in</strong>tercropp<strong>in</strong>g with<br />

legumes such as cowpea (Vigna unguiculata (L.)<br />

Walp], bambara nut (Vigna subterranea) <strong>and</strong> soyabean<br />

(Glyc<strong>in</strong>e max), crop rotations with non hosts<br />

<strong>and</strong> false hosts, resistant varieties, herbicides (such<br />

as 2,4-D, dicamba <strong>and</strong> triflural<strong>in</strong>), use of multipurpose<br />

trees <strong>and</strong> timely plant<strong>in</strong>g (Chiv<strong>in</strong>ge et aI, 2001;<br />

Kasembe, 1999; Musambasi, 1997). However, all of<br />

these have shortcom<strong>in</strong>gs as shown by very little or<br />

no adoption. Nitrogen (N) has been shown by many<br />

workers to reduce Striga <strong>in</strong>festation <strong>and</strong> improve<br />

maize gra<strong>in</strong> yield. Smallholder farmers sometimes<br />

apply N on the soil around the maize plant at about<br />

four weeks after plant<strong>in</strong>g. However, sources of m<strong>in</strong>eral<br />

N are very expensive <strong>for</strong> smallholders. Alternative<br />

methods that can add N to the soil <strong>and</strong> at the<br />

same time control Striga are there<strong>for</strong>e urgently<br />

needed. <strong>Green</strong> manure legumes such as velvetbean<br />

(Mucuna prurie-ns), fish bean (Tephrosia vogelW, sunnhemp<br />

(Crotalaria juncea), <strong>and</strong> dolichos (Lablab purpureus)<br />

are an important source of nutrients<br />

(particularly biologically fixed N) <strong>in</strong> Zimbabwe<br />

(Chibudu, 1998): <strong>Green</strong> manure legumes have been<br />

used by Zimbabwe smallholders <strong>for</strong> soil N amelioration<br />

<strong>in</strong> areas such as Chihota, Mangwende <strong>and</strong><br />

Zvimba (Hikwa et al,1998;Chibudu, 1998). However,<br />

the effects of these green manure legumes on<br />

Striga asiatica dynamics have not been studied <strong>in</strong><br />

Zimbabwe. In Sudan, L. purpureus planted on the<br />

same day as sorghum (Sorghum vulgare) reduced the<br />

Striga plant population density by 48-93%, their dry<br />

weight by 83-97% <strong>and</strong> number of capsules by 52­<br />

100% (Babiker, 2000). This present study was conducted<br />

to <strong>in</strong>vestigate the effect of maize/green manure<br />

legume <strong>in</strong>tercrops <strong>and</strong> their time of plant<strong>in</strong>g<br />

on Striga asiatica emergence <strong>and</strong> maize yield components<br />

<strong>in</strong> Zimbabwe.<br />

Materials <strong>and</strong> Methods<br />

A pot trial was established <strong>in</strong> January 2002 at Henderson<br />

Research Station, just north of Harare. Blac:;:<br />

polythene bags measur<strong>in</strong>g 30 cm diameter <strong>and</strong> 40<br />

cm height were used. The experiment was arranged<br />

as a completely r<strong>and</strong>omized design <strong>and</strong> replicated<br />

four times. Three maize seeds of hybrid SC501 were<br />

planted <strong>in</strong> each pot <strong>and</strong> these were th<strong>in</strong>ned to one<br />

plant after two weeks. <strong>Legumes</strong> (Mucuna pruriens,<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 135


Lablab purpureus, Crotalaria juncea, Tephrosia vogelii)<br />

were planted at the same time as the maize <strong>in</strong> half<br />

the pots <strong>and</strong> then two weeks after plant<strong>in</strong>g maize <strong>in</strong><br />

the others. Sale crops were also irfcluded as a control<br />

treatment. The legumes were th<strong>in</strong>ned to one<br />

plant per pot at two weeks after plant<strong>in</strong>g. Compound<br />

D (8N: 14P20s: 7K20) was applied to supply<br />

0.6 g N/maize plant, 1.1 g P20s/maize plant <strong>and</strong> 0.6<br />

g K20/maize plant; an equivalent of 300 kg/ha of<br />

the fertilizer <strong>in</strong> the field. Ammonium nitrate (34.5%<br />

N) was applied at 4 <strong>and</strong> 8 weeks to make up to 0.8<br />

g/pot total N. Plants were given supplementary irrigation<br />

to field capacity as necessary. Maize plant<br />

heights were taken at 4 <strong>and</strong> 8 weeks, while leaf area,<br />

shoot dry weight <strong>and</strong> root dry weight were tak~n at<br />

4, 6 <strong>and</strong> 8 weeks after plant<strong>in</strong>g. Striga counts per pot<br />

were recorded at 40 days after plant<strong>in</strong>g <strong>and</strong> weekly<br />

thereafter.<br />

A similar trial was conducted at Mlezu Institute of<br />

Agriculture, also near to Haran~, <strong>in</strong> a field that had<br />

been artificially <strong>in</strong>fested with S. asiatica the previous<br />

year. Maize was planted to achieve a plant population<br />

density of 37 037 velvet bean <strong>and</strong> dolichos<br />

plants/ha, 74 064 sunnhemp plants/ha <strong>and</strong> 10 000<br />

fish bean plants/ha. Compound D was applied as<br />

<strong>in</strong>itial fertilizer at a rate of 300 kg/ha. No topdress<br />

N was applied because of prolonged dry spells. S.<br />

asiatica counts were taken from the four centre rows<br />

every two weeks after plant<strong>in</strong>g. Data analysis was<br />

done us<strong>in</strong>g GENST AT 5 Release 3.22. Treatment differences<br />

were compared us<strong>in</strong>g the least significant<br />

difference (LSD P


.. <br />

~<br />

Table 2. The effect of time of plant<strong>in</strong>g green manure<br />

legume <strong>and</strong> type of maize/legume <strong>in</strong>tercrop on maize<br />

leaf area (cm 2 ) 6 WAP.<br />

Maize leaf area<br />

Intercrop Planted at same Planted 2 weeks<br />

time<br />

after maize<br />

Maize/dolichos 2077a 2529<br />

Maize/velvet 1311 b 2790<br />

Maize/sunnhemp 2269a 2094<br />

Maize/fishbean 1891a 2925<br />

LSD (P < 0.05) 753<br />

SED 365<br />

Time of plant<strong>in</strong>g 1887 2584<br />

LSD (P < 0.05) 377<br />

SED 183<br />

CV% 23<br />

Means followed by the same letter <strong>in</strong> acolumn are not significantly<br />

different IP < 0.05).<br />

1.6<br />

1.4<br />

U<br />

eo 0.8<br />

0<br />

..J<br />

0.6<br />

c , 0.4<br />

e 0.2<br />

~<br />

. ~<br />

Vi<br />

20 40 60 80 100 120<br />

Time (Days)<br />

Figure 2. Effect of time of plant<strong>in</strong>g green manure legumes on Striga<br />

of December. This was followed by poor ra<strong>in</strong>fall<br />

distribution <strong>in</strong> February where 60 mm of ra<strong>in</strong>fall fell<br />

on one day dur<strong>in</strong>g the month. The subsequent<br />

months also had a very low ra<strong>in</strong>fall frequency. The<br />

experiment was severely affected.<br />

Striga asiatica counts. Although not significantly<br />

different, legumes planted two weeks after maize<br />

(PLTW) allowed slightly higher Striga asiatica counts<br />

of 0.25 compared to 0.06 <strong>for</strong> simultaneous plant<strong>in</strong>g<br />

<strong>in</strong> the field at Mlezu (80 days after plantirlg). Legume<br />

<strong>in</strong>tercropsshowed that they do not differ <strong>in</strong> the<br />

way they suppress S. asiatica emergence. Time of<br />

establishment of the legume is more important.<br />

Discussion<br />

Table 3. The effect of <strong>in</strong>tercrop type <strong>and</strong> time of plant<strong>in</strong>g<br />

of green manure legumes on Strig;: asiatica dry weight (gl<br />

pot)<br />

I)ntercrop<br />

S. asiatica dry weight (g/pot)<br />

Planted <strong>Legumes</strong> planted<br />

simultaneously 2 weeks later<br />

I Maize/dolichos 0.24 0.26<br />

Maize/velvet bean 0.05 0.13<br />

Maize/sunnhemp 0.26 0.49<br />

Maize/fish bean 0.17 0.50<br />

Significance (P < 0.05).<br />

(lntercrop·Time)<br />

NS<br />

SED 0.20<br />

Table 4. The effect of <strong>in</strong>tercropp<strong>in</strong>g <strong>and</strong> time of<br />

plant<strong>in</strong>g of green manure legumes on maize yield (g/pot)<br />

Intercrop<br />

Maize gra<strong>in</strong> yield (g/pot)<br />

PLST<br />

PLTW<br />

Maize/dolichos 2.1 2.7<br />

Maize/velvet bean 1.4 11.9<br />

Maize/sunnhemp 12.4 7.9<br />

Maize/fish bean 5.2 4.9<br />

Significance (P < 0.05).<br />

IIntercrop·Time)<br />

NS<br />

SED 7.0<br />

<strong>Gra<strong>in</strong></strong> yield. There were no <strong>in</strong>teraction effects of<br />

type of <strong>in</strong>tercrops <strong>and</strong> their time of plant<strong>in</strong>g on<br />

maize yield. Maize/dolichos <strong>and</strong> maize/velvet<br />

bean resulted <strong>in</strong> higher yields when legumes were<br />

planted two weeks later, although this was not significant.<br />

The opposite was true <strong>for</strong> maize/<br />

sunnhemp <strong>and</strong> maize/fish bean (Table 4).<br />

Field Experiment at Mlezu<br />

The ra<strong>in</strong>fall distribution at Mlezu is <strong>in</strong> Figure 3. The<br />

experiment was established dur<strong>in</strong>g the second week<br />

250<br />

208.6<br />

The study demonstrated that differences <strong>in</strong> plant<strong>in</strong>g<br />

date <strong>for</strong> the component crops <strong>in</strong>fluenced competition<br />

between component crops <strong>in</strong> the green manure<br />

legume/maize <strong>in</strong>tercrops (measured as leaf area<br />

<strong>and</strong> plant height). Plant<strong>in</strong>g legumes <strong>and</strong> maize at<br />

the same time <strong>in</strong>creased <strong>in</strong>ter species competition<br />

<strong>for</strong> growth limit<strong>in</strong>g factors, result<strong>in</strong>g <strong>in</strong> reduced<br />

maize leaf area <strong>and</strong> maize plant heights. Where the<br />

plant<strong>in</strong>g of maize <strong>and</strong> legumes was staggered, <strong>in</strong>terspecies<br />

competition was reduced <strong>and</strong> maize atta<strong>in</strong>ed<br />

higher leaf areas <strong>and</strong> height than with simultaneous<br />

plant<strong>in</strong>g. Velvet bean reduced maize leaf<br />

area. This could be attributed to velvpt bean's ro-<br />

200<br />

"§<br />

/ill Frequency<br />

~ '" ~Ra<strong>in</strong>fall<br />

§ fi 150<br />

108.5<br />

=5­<br />


ust growth habit that enhances its competitive<br />

ability <strong>for</strong> growth limit<strong>in</strong>g factors. Gilbert (1998) reported<br />

that Mucuna can be excessively competitive<br />

with maize because it has an aggressive climb<strong>in</strong>g<br />

growth habit. When maize is <strong>in</strong>tercropped with velvet<br />

bean <strong>and</strong> established at the same time, <strong>in</strong>terspedes<br />

competition <strong>in</strong>creases, particularly at later<br />

stages of growth. For <strong>in</strong>stance, there was no difference<br />

<strong>in</strong> maize leaf area between the sole maize <strong>and</strong><br />

the <strong>in</strong>tercropped maize at two <strong>and</strong> four weeks after<br />

plant<strong>in</strong>g. Dur<strong>in</strong>g this period, <strong>in</strong>terspecies competition<br />

of the <strong>in</strong>tercrop appears not affect maize leaf<br />

area. Probably plants were too young to <strong>in</strong>terfere<br />

with each other but as they grow, competition beg<strong>in</strong>s<br />

that reduces leaf area at later stages of growth.<br />

When legumes were planted two weeks later, S. asiatica<br />

counts were generally higher than when legumes<br />

were planted at the same time as maize. This<br />

trend was also observed <strong>in</strong> the field experiment.<br />

<strong>Legumes</strong> caused suicidal germ<strong>in</strong>ation of S. asiatica<br />

when planted at the same time <strong>and</strong> this could have<br />

reduced the S. asiatica numbers. When maize <strong>and</strong><br />

legumes were planted two weeks apart, more S. asiatica<br />

plants emerged as the parasite that germ<strong>in</strong>ated<br />

from the maize stimulant successfully attached to<br />

the maize roots. Carsky et al (1994) postulated three<br />

reasons <strong>for</strong> reduction of Striga when <strong>in</strong>tercropped<br />

with cowpea. These <strong>in</strong>clude suicidal germ<strong>in</strong>ation of<br />

Striga, release of nitrogen <strong>in</strong>to the soil <strong>and</strong> shad<strong>in</strong>g<br />

which consequently lowers soil temperature. These<br />

reasons were also supported by Musambasi et al<br />

(2002) wh0 suggested that legumes could provide<br />

shade which smother <strong>and</strong> kill S. asiatica. These reasons<br />

can there<strong>for</strong>e be used to extrapolate the results<br />

obta<strong>in</strong>ed. Plant<strong>in</strong>g legumes <strong>and</strong> maize at the same<br />

time, allowed legumes to quickly develop a crop<br />

canopy that produced a shad<strong>in</strong>g effect, lower<strong>in</strong>g the<br />

soil temperatures that could have affected the emergence<br />

of S. asiatica. Babiker et al (1993) found thaI,<br />

the density of Striga hermontheca was reduced <strong>in</strong> a<br />

sorghum-dolichos <strong>in</strong>tercrop. Probably maize is a<br />

better germ<strong>in</strong>ation stimulant than the legumes<br />

tested. The S. asiatica that germ<strong>in</strong>ates due to the legumes<br />

is of no significance as compared to S. asiatica<br />

that maize stimulates <strong>and</strong> supports. However, the<br />

time of plant<strong>in</strong>g the green manure makes the difference<br />

<strong>in</strong> terms of S. asiatica numbers. Similar trends<br />

were observed with S. asiatica dry weights.<br />

There was no gra<strong>in</strong> yield from the field experiment<br />

ow<strong>in</strong>g to the poor ra<strong>in</strong>fall distribution. Yield from<br />

the pot experiment was not ,<strong>in</strong>fluenced by the green<br />

manure legumes or their time of plant<strong>in</strong>g. It would<br />

be <strong>in</strong>terest<strong>in</strong>g to f<strong>in</strong>d out how these factors <strong>in</strong>fluence<br />

yield <strong>in</strong> a normal season under field conditions.<br />

The competitiv~ effects of the green manure<br />

legumes experienced dur<strong>in</strong>g the fourth to the sixth<br />

week after plant<strong>in</strong>g were not enough to significantly<br />

reduce yield <strong>in</strong> the pot experiment.<br />

Recommendations<br />

<strong>Green</strong> manure legumes <strong>in</strong>tercropped with maize<br />

should be planted two weeks later to reduce competition<br />

among component crops. For S. asiatica, the<br />

green manure legumes should be established at the<br />

same time with maize <strong>in</strong> a field heavily <strong>in</strong>fested<br />

with S. asiatica. A legume that does not compete<br />

with maize <strong>for</strong> resources should be planted at the<br />

same time as maize. The experiment needs to be<br />

conducted aga<strong>in</strong> <strong>in</strong> another season to get conclusive<br />

results <strong>in</strong> the field.<br />

Acknowledge,ments <br />

We extend our gratitude to the Rockefeller Founda­<br />

tion Forum on Agricultural Resource Husb<strong>and</strong>ry <br />

<strong>for</strong> fund<strong>in</strong>g this work. <br />

References<br />

Babiker, A.G.T., N.E. Ahmed, A.H. Mohammed, M.<br />

E. EI Mana, <strong>and</strong> S.M. EI Tayeb, 1993. Striga hermontheca<br />

on sorghum: Chemical <strong>and</strong> cultural<br />

control. In: British Crop Protection Conference­<br />

Weeds, Brighton, UK. pp. 103-108.<br />

Babiker, A.G.T. 2000. Striga research <strong>in</strong> the Sudan:<br />

Towards an <strong>in</strong>tegrated control strategy. In:<br />

Mgonja, M.A., Chiv<strong>in</strong>ge, O.A. <strong>and</strong> Monyo, E.s.<br />

(eds). Striga Research <strong>in</strong> Southern Africa <strong>and</strong> Strategies<br />

<strong>for</strong> Regionalized Control Options: Proceed<strong>in</strong>gs<br />

of the SADC Striga Work<strong>in</strong>g Group Workshop<br />

22-23 May 2000, Dar-es Salaam, Tanzania.<br />

SADC/ICRISAT Sorghum <strong>and</strong> Millet Improvement<br />

Program, ICRISAT-Bulawayo. pp. 55-67.<br />

Carsky, RJ., L. S<strong>in</strong>gh, <strong>and</strong> R Ndikawa, 1994. Suppression<br />

of Striga hermontheca on sorghum us<strong>in</strong>g<br />

a cowpea <strong>in</strong>tercrop. Experimental Agriculture<br />

30:349-358.<br />

Chibudu, C. 1998. <strong>Green</strong> manur<strong>in</strong>g crops <strong>in</strong> a<br />

maize-based communal area, Mangwende: Experiences<br />

us<strong>in</strong>g participatory approaches. In:<br />

Wadd<strong>in</strong>gton S.R, H.K. Murwira; J.D.T. Kumwenda;<br />

D. Hikwa <strong>and</strong> F. Tagwira (eds). <strong>Soil</strong> <strong>Fertility</strong><br />

Research <strong>for</strong> Maize Based Farm<strong>in</strong>g Systems <strong>in</strong><br />

Malawi <strong>and</strong> Zimbabwe. Proceed<strong>in</strong>gs of the <strong>Soil</strong><br />

Fert Net Results <strong>and</strong> Plann<strong>in</strong>g Workshop held<br />

from 7 to 11 July 1997 at Africa University, Mutare,<br />

Zimbabwe. <strong>Soil</strong> Fert Net <strong>and</strong> CIMMYf­<br />

Zimbabwe, Harare. pp. 97-90.<br />

138<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Chiv<strong>in</strong>ge, O.A., E. Kasembe, <strong>and</strong> I.K. Mariga, 200l.<br />

The effect of cowpea cultivars on witchweed <strong>and</strong><br />

maize yield. Proceed<strong>in</strong>gs of the British Crop Protection<br />

Council Conference-Weeds. Brighton, UK. pp.<br />

163-168.<br />

Gilbert, RA., 1998. Undersow<strong>in</strong>g green manures <strong>for</strong><br />

soil fertility enhancement <strong>in</strong> the maize-based<br />

cropp<strong>in</strong>g systems of Malawi. In: Wadd<strong>in</strong>gton S.<br />

R, H.K. Murwira; J.D.T. Kumwenda; D. Hikwa<br />

<strong>and</strong> F. Tagwira (eds). <strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong><br />

Maize Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe.<br />

Proceed<strong>in</strong>gs of the <strong>Soil</strong> Fert Net Results<br />

<strong>and</strong> Plann<strong>in</strong>g Workshop held from 7 to 11 July<br />

1997 at Africa University, Mutare, Zimbabwe.<br />

<strong>Soil</strong> Fert Net <strong>and</strong> ClMMYT-Zimbabwe, Harare.<br />

pp.73-79.<br />

Hikwa, D., M. Murata, F. Tagwira, C. Chiduza, H.<br />

Murwira, L. Muza, <strong>and</strong> S.R. Wadd<strong>in</strong>gton, 1998.<br />

Per<strong>for</strong>mance of green manure legumes on exhausted<br />

soils <strong>in</strong> northern Zimbabwe: A <strong>Soil</strong> <strong>Fertility</strong><br />

Network Trial. In: Wadd<strong>in</strong>gton S.R., H.K.<br />

Murwira; J.D.T. Kumwenda; D. Hikwa <strong>and</strong> F.<br />

Tagwira (eds). <strong>Soil</strong> <strong>Fertility</strong> Research <strong>for</strong> Maize<br />

Based Farm<strong>in</strong>g · Systems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe.<br />

Proceed<strong>in</strong>gs of the <strong>Soil</strong> Fert Net Results <strong>and</strong><br />

Plann<strong>in</strong>g Workshop held from 7 to 11 July 1997<br />

at Africa 'University, Mutare, Zimbabwe. <strong>Soil</strong><br />

Fert Net <strong>and</strong> ClMMYT -Zimbabwe, Harare. pp.<br />

81-84.<br />

Kasembe, E. 1999. The effect of different cowpea<br />

[Vigna unguiculata (L.) Walp] cultivars <strong>and</strong> time<br />

of ridg<strong>in</strong>g on witchweed [Striga asiatica (L.)<br />

Kuntze] management <strong>in</strong> the smallholder 'farm<strong>in</strong>g<br />

sector. MPhil thesis. University of Zimbabwe,<br />

Zimbabwe.<br />

Musambasi, D. 1997. Maize witchweed (Striga asiatica<br />

(L.) Kuntze management technologies <strong>in</strong> the<br />

smallholder farm<strong>in</strong>g sectors of Zimbabwe. MPhil<br />

thesis, University of Zimbabwe.<br />

Musambasi, D., O.A. Chiv<strong>in</strong>ge <strong>and</strong> I.K. Mariga.<br />

2002. Intercropp<strong>in</strong>g maize with gra<strong>in</strong> legumes<br />

<strong>for</strong> Striga control <strong>in</strong> Zimbabwe, African Crop Science<br />

Journal 10(2):161-171.<br />

<strong>Gra<strong>in</strong></strong><strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 139


LEGUMINOUS AGROFORESTRY OPTIONS FOR REPLENISHING<br />

SOIL FERTILITY IN SOUTHERN AFRICA<br />

PARAMU L. MAFONGOYA 1·, E. KUNTASHULAl, F. KWESIGA 2 , T. CHIRWAl,<br />

R. CHINTU 1 , G. SILESHl 1 , <strong>and</strong> J. MATIBINll<br />

'Zambia ICRAF/Agro<strong>for</strong>estry Project, P.O. Box 510046, Chipata, Zambia;<br />

2SADC-ICRAF A gro<strong>for</strong>es try Research Project, P. O. Box MP 163,<br />

Mount Pleasant, Harare, Zimbabwe<br />

(* Correspond<strong>in</strong>g author, E-mail: mfongoya@zamnet.zm)<br />

Abstract<br />

Nitrogen is the major nutrient limit<strong>in</strong>g maize production <strong>in</strong> Zambia <strong>and</strong> Southern Africa. Removal of subsidies on <strong>in</strong>organic<br />

fertilizers made them very expensive <strong>and</strong> most farmers cannot af<strong>for</strong>d them. Short duration planted fallows us<strong>in</strong>g<br />

a wide range of legum<strong>in</strong>ous trees have been found to replenish soil fertility <strong>and</strong> <strong>in</strong>crease subsequent maize yields.<br />

Species such as Sesbania sesban, Tephrosia vogelii <strong>and</strong> Cajanus cajan have been found excellently suited <strong>for</strong> planted<br />

fallow technology. These improved fallow crop rotations are be<strong>in</strong>g adopted by small-scale farmers <strong>in</strong> Eastern Zambia.<br />

S<strong>in</strong>ce the sem<strong>in</strong>al paper of Kwesiga <strong>and</strong> Coe (1994), research has been done to underst<strong>and</strong> how the planted tree fallows<br />

replenish soil fertility <strong>and</strong> improve maize yields.<br />

A wide range of species has been screened as alternatives to sesbania fallows to overcome some of the limitations of sesbania.<br />

Species such as Gliricidia sepium, Leucaena leucocephaJa have ma<strong>in</strong>ta<strong>in</strong>ed maize yields of 3 t/ha over 8 years<br />

of cropp<strong>in</strong>g when sesbania fallows yields decl<strong>in</strong>ed to 1.1 t/ha after 3 years of cropp<strong>in</strong>g. The selection criteria <strong>for</strong> good<br />

fallow species are high biomass production <strong>and</strong> litterfall. Maize yields after fallows were highly correlated to biomass<br />

<strong>and</strong> litterfall yields. High quality biomass, which is low <strong>in</strong> lign<strong>in</strong>, polyphenol <strong>and</strong> high <strong>in</strong> N, is needed <strong>for</strong> higher maize<br />

yields. Mix<strong>in</strong>g of gliricidia <strong>and</strong> sesbania fallows resulted <strong>in</strong> higher maize yields compared to s<strong>in</strong>gle species fallows (3.0<br />

vs. 1.8 t/ha). Mechanisms on how mixed fallows work need further <strong>in</strong>vestigation.<br />

Preseason <strong>in</strong>organic N (N0 3 +NH4) was highly correlated with maize yield (r 2 = 0.62) <strong>and</strong> this could be used to select<br />

fallow species <strong>and</strong> management practices. Nutrient budgets of N, P <strong>and</strong> K showed over 8 years that a positive balance of<br />

N<strong>and</strong> P was ma<strong>in</strong>ta<strong>in</strong>ed <strong>for</strong> coppic<strong>in</strong>g fallows while a negative balance of K started show<strong>in</strong>g from the fourth year onwards<br />

on fertilized maize, gliricidia, ieucaena <strong>and</strong> sesbania fallows. This po<strong>in</strong>ts to the need to .use <strong>in</strong>organic fertilizers<br />

such P <strong>and</strong> K to supplement N supply from legum<strong>in</strong>ous fallows. Improved fallows <strong>in</strong>creased <strong>in</strong>filtration, reduced runoff,<br />

<strong>in</strong>creased water storage, <strong>and</strong> reduced soil loss. The order was sesbania = tephrosia > natural fallow =maize + fertilizer.<br />

The biophysical limits of most fallow species <strong>and</strong> other emerg<strong>in</strong>g issues such as pests <strong>and</strong> diseases, the need to <strong>in</strong>oculate<br />

with rhizobium, amount of N fixed by different species <strong>and</strong> provenances <strong>and</strong> soil acidification under improved<br />

fallows are under further research.<br />

Biomass transfer technology us<strong>in</strong>g biomass from legum<strong>in</strong>ous trees was evaluated on maize <strong>and</strong> vegetable production <strong>in</strong><br />

the dambos (wetl<strong>and</strong>s). Maize <strong>and</strong> vegetable yields were significantly <strong>in</strong>creased by application of high quality biomass<br />

from gliricidia <strong>and</strong> leuceana. However, f<strong>in</strong>ancial analysis showed that it is not viable to apply biomass on a low value<br />

crop like maize. Biomass transfer was economically viable on high value crops such a vegetables.<br />

Key words: Eastern Zambia, improved fallows, soil fertility, nutrient budgets, nitrogen fixation <strong>and</strong> susta<strong>in</strong>ability<br />

Introduction<br />

<strong>Soil</strong> <strong>in</strong>fertility is now <strong>in</strong>creas<strong>in</strong>gly recognized as the<br />

fundamental biophysical root cause <strong>for</strong> decl<strong>in</strong><strong>in</strong>g<br />

food security is smallholder farmers of sub-Saharan<br />

Africa (Sanchez et al. 1997). Maize is a staple food<br />

crop <strong>in</strong> Southern Africa. Nitrogen is the major nutri-<br />

ent that limits maize productivity, with phosphorus<br />

<strong>and</strong> potassium <strong>in</strong> limited cases. Although <strong>in</strong>organic<br />

fertilizers are used <strong>in</strong> the region, the amounts applied<br />

are normally <strong>in</strong>sufficient to meet .crop de­<br />

m<strong>and</strong>s due to high costs <strong>and</strong> uncerta<strong>in</strong> availability.<br />

Mostcciuntries <strong>in</strong> southern Africa have developed<br />

fertilizer recommendations <strong>for</strong> major crops, some-<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 141


times with regionally specific adaptations. However,<br />

the amount of fertilizer used <strong>in</strong> southern Africa<br />

is very small <strong>in</strong> comparison to other parts of the<br />

world, with the highest rates found <strong>in</strong> a country like<br />

Zimbabwe <strong>in</strong> the commercial sector. For most<br />

smallholders, fertilizer use is as low as 5 kg/hal<br />

year (Gerner <strong>and</strong> Harris, 1993). While the need <strong>for</strong><br />

<strong>in</strong>creased use of <strong>in</strong>organic fertilizers <strong>in</strong> southern Africa<br />

is clear, there are problems with an approach<br />

based exclusively on <strong>in</strong>organic fertilizers where water<br />

supply is limited <strong>and</strong> variable. In many areas<br />

outside the higher ra<strong>in</strong>fall zones or away from irrigated<br />

areas, any sensible farmer will use expensive<br />

m<strong>in</strong>eral fertilizer with caution <strong>and</strong> supplement with<br />

organic sources. In most areas, fertilizer is there<strong>for</strong>e<br />

used ma<strong>in</strong>ly on home fields, gardens or high value<br />

crops such as cotton <strong>and</strong> vegetables.<br />

While the need <strong>for</strong> <strong>in</strong>creased fertilizer use <strong>in</strong> Southern<br />

Africa is apparent to all, the challenge of achiev<strong>in</strong>g<br />

this is very great. A high external <strong>in</strong>put strategy<br />

cannot rely on fertilizer-seeds-credit packages, without<br />

address<strong>in</strong>g other requirements <strong>for</strong> successful<br />

uptake of green revolution technologies, <strong>in</strong>clud<strong>in</strong>g<br />

water management, credit systems, <strong>in</strong>frastructure,<br />

fertilizer manufacture <strong>and</strong> supply <strong>and</strong> access to<br />

markets. Most African conditions are unlike the<br />

pla<strong>in</strong>s of Asia so that the approaches which produced<br />

such successes there are not easily transferable<br />

to the African cont<strong>in</strong>ent. Given the acute poverty<br />

<strong>and</strong> limited access to m<strong>in</strong>eral fertilizers an ecologically<br />

robust approach of improved fallows is discussed<br />

<strong>in</strong> this synthesis. This approach is a prodllct<br />

of many years of agro<strong>for</strong>estry research <strong>and</strong> development<br />

by ICRAF <strong>and</strong> its partners <strong>in</strong> southern Africa.<br />

Improved Fallows<br />

Improved fallows <strong>and</strong> their topology<br />

Improved fallows are the deliberate plant<strong>in</strong>g of fastgrow<strong>in</strong>g<br />

species, usually wood tree legumes, <strong>for</strong><br />

rapid replenishment of soil fertility. Fallows are as<br />

old as agriculture <strong>in</strong> southern Africa. Grass fallows<br />

are a common feature of the farm<strong>in</strong>g systems <strong>in</strong> the<br />

sub humid <strong>and</strong> semiarid zones of the region. Improve<br />

fallows were not a major area of research dur<strong>in</strong>g<br />

the green revolution due to the focus to elim<strong>in</strong>ate<br />

soil constra<strong>in</strong>ts by use of m<strong>in</strong>eral fertilizers.<br />

With the development of the second soil fertility<br />

paradigm based on susta<strong>in</strong>ability considerations<br />

(Sanchez, 1994), the biological dimensions of soil<br />

fertility began to receive <strong>in</strong>creas<strong>in</strong>g attention <strong>and</strong><br />

research on improved fallows has <strong>in</strong>creased s<strong>in</strong>ce<br />

the mid 1980s. Reported work <strong>in</strong>cludes Kwesiga<br />

<strong>and</strong> Coe (1994), Drechsel et al. (1996), Rao et al.<br />

(1998) <strong>and</strong> Snapp et al. (1998).<br />

Large-scale adoption of short-term improved fallows<br />

by farmers is now tak<strong>in</strong>g place <strong>in</strong> southern Africa<br />

<strong>and</strong> east Africa. The ma<strong>in</strong> species used are legumes<br />

of the genus Sesbania, Tephrosia, Leucaena,<br />

Gliricidia, Crotalaria <strong>and</strong> Cajanus.<br />

Non-coppic<strong>in</strong>g fallows<br />

S<strong>in</strong>ce the sem<strong>in</strong>al work of Kwesiga <strong>and</strong> Coe (1994)<br />

on Sesbania fallows, a lot has been learnt about the<br />

per<strong>for</strong>mance of improved fallows. There has been<br />

extensive test<strong>in</strong>g ·of fallows on farm to determ<strong>in</strong>e<br />

the maize productivity <strong>and</strong> processes that <strong>in</strong>fluence<br />

fallow per<strong>for</strong>mance. The per<strong>for</strong>mance of Sesbania<br />

<strong>and</strong> Tephrosia <strong>in</strong> a wide range of biophysical conditions<br />

is shown on Table 1. Improved fallows of twoyear<br />

duration with both species significantly <strong>in</strong>creased<br />

maize yields well above unfertilized maize<br />

(which is a cpmmon farmer's practice). Fertilized<br />

maize per<strong>for</strong>med better than improved fallows <strong>in</strong><br />

most cases. It is very clear from these results that<br />

the residual effects of fallows on maize yield decl<strong>in</strong>ed<br />

after the second year of cropp<strong>in</strong>g. In a third<br />

year of cropp<strong>in</strong>g, maize yields were similar to unfertilized<br />

maize. Farmers have asked researchers<br />

how can they extend the residual effects of fallows<br />

beyond two years of cropp<strong>in</strong>g. Suggestions have<br />

<strong>in</strong>cluded apply<strong>in</strong>g low rates of <strong>in</strong>organic fertilizer <strong>in</strong><br />

the second or third year of cropp<strong>in</strong>g to <strong>in</strong>crease residual<br />

effects. Alternatively, farmers can use species<br />

of trees which coppice after cutt<strong>in</strong>g <strong>and</strong> use<br />

coppice regrowth to <strong>in</strong>crease residual effects.<br />

Coppic<strong>in</strong>g fallows <br />

Most of the work on improved fallows has concen­<br />

trated on Sesbania sesban, but this species has draw­<br />

backs. When cut at fallow term<strong>in</strong>ation, which is 2­<br />

years of growth, it will not resprout or coppice. <br />

Hence Sesbania fallows are called non-coppic<strong>in</strong>g fal­<br />

lows. Non-coppic<strong>in</strong>g species <strong>in</strong>clude Tephrosia vogeUi,<br />

Tephrosia c<strong>and</strong>ida, Cajanus cajan <strong>and</strong> Crotalaria <br />

spp. In the case of Sesbania farmers must rely on a <br />

Table 1. Maize gra<strong>in</strong> yield after Sesbania sesban <strong>and</strong> Tephrosia<br />

vogeli; fallows on farmers' fields <strong>in</strong> eastern Zambia dur<strong>in</strong>g 1998·<br />

2000<br />

Fallow species<br />

Maize gra<strong>in</strong> yield t ha'\<br />

L<strong>and</strong> use system (LUS) Year 1 Year 2 Year 3<br />

Farmers test<strong>in</strong>g Sesbania fallow 3.6 2.0 1.6<br />

Sesbania sesban Fertilized maize 4.0 4.0 2.2<br />

fallows<br />

Unfertilized maize 0.8 1.2 0.4<br />

LSD (0.05) 0.7 0.6 1.1<br />

Number of farmers 8 6 4<br />

Farmers test<strong>in</strong>g Tephrosia fallow. 3.1 2.4 1.3<br />

Tephrosia vogelii Fertilized maize 4.2 3.0 2.8<br />

fallows<br />

Unfertilized maize 0.8 0.1 0.5<br />

LSD (0.05) 0.5 0.6 0.9<br />

Number of farmers 17 9 5<br />

142<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


fresh supply of seedl<strong>in</strong>gs or seed reserves to generate<br />

their fallows. Trials at Msekera Research Station,<br />

Zambia have shown that natural regeneration<br />

of Sesbania fallows through seed reserves is possible,<br />

but highly erratic. Farmers there<strong>for</strong>e prefer to reestablish<br />

fallows from bare-rooted seedl<strong>in</strong>gs.<br />

The residual effects of sesbania fallows on subsequent<br />

maize yields have been shown to be high <strong>for</strong><br />

two or three seasons, but they will start to decl<strong>in</strong>e<br />

rapidly <strong>in</strong> the third season (Table 1). This may be<br />

related to depletion of soil nutrients <strong>and</strong> deterioration<br />

<strong>in</strong> soil chemical <strong>and</strong> physical properties. It can<br />

be hypothesized that fallows with coppic<strong>in</strong>g species<br />

will <strong>in</strong>crease residual effects beyond 2 to 3 years,<br />

because of the additional organic <strong>in</strong>puts derived<br />

each year from coppice regrowth. Coppic<strong>in</strong>g species<br />

<strong>in</strong>clude Gliricidia sepium, Leucaena leucocephala,<br />

Calli<strong>and</strong>ra calothyrsus, Senna siamea <strong>and</strong> Flem<strong>in</strong>gia<br />

macrophylla. An experiment was established <strong>in</strong> the<br />

early 1990's at Msekera Research Station to test this<br />

hypothesis. The species tested were Senna siamea,<br />

Gliricidia sepium, Leucaena leucocephla <strong>and</strong> Flem<strong>in</strong>gia<br />

macrophylla, which were compared with grass fallows,<br />

<strong>and</strong> cont<strong>in</strong>uous maize with or without recommended<br />

fertilizer as additional controls. The experiment<br />

has been cropped <strong>for</strong> 8 seasons dur<strong>in</strong>g<br />

which maize <strong>and</strong> coppice growth were monitored<br />

(Figure 1).<br />

The species showed significant differences <strong>in</strong> coppic<strong>in</strong>g<br />

ability <strong>and</strong> biomass production (Table 2).<br />

Leucaena, gliricidia <strong>and</strong> Senna siamea had the highest<br />

coppic<strong>in</strong>g ability <strong>and</strong> biomass production while calli<strong>and</strong>ra<br />

<strong>and</strong> flem<strong>in</strong>gia per<strong>for</strong>med less. Sesbania, as<br />

expected, did not coppice. The trends <strong>in</strong> maize<br />

yields over the 8 seasons are shown <strong>in</strong> Figure 1.<br />

Maize yields were high <strong>for</strong> the first 3 seasons <strong>and</strong><br />

decl<strong>in</strong>ed to the same level as control plots <strong>for</strong> sesbania.<br />

Flem<strong>in</strong>gia <strong>and</strong> calli<strong>and</strong>ra showed low maize<br />

8.0<br />

7.0<br />

~ 5.0<br />

~ 4.0<br />

.'"<br />

.lij 3.0<br />

i3<br />

2.0<br />

""""-Gliricidia ~L eucaena ~M+F<br />

-+- M·F ....- Sesbania --lIE- Nalural fallow<br />

6.0<br />

I I I I I I I I<br />

I = SED<br />

1.0<br />

0.0<br />

1995 1996 1997 1998 1999 2000 2001 2002<br />

Years/seasons<br />

Figure 1. <strong>Gra<strong>in</strong></strong> yield (t ha l) of maize obta<strong>in</strong>ed from various<br />

fallow species <strong>for</strong> eight seasons at Msekera, eastern Zambia<br />

yields over years. There were no significant differences<br />

<strong>in</strong> maize gra<strong>in</strong> between gliricidia <strong>and</strong> leucaena<br />

fallows over the seasons.<br />

The effects of different fallow species on maize yield<br />

can be expla<strong>in</strong>ed partly by the different amounts of<br />

biomass added <strong>and</strong> the quality of the biomass <strong>and</strong><br />

coppice regrowth dur<strong>in</strong>g the dry season. Species<br />

such as leucaena <strong>and</strong> gliricidia have good coppic<strong>in</strong>g<br />

ability <strong>and</strong> produce large amounts of high quality<br />

biomass, with high nitrogen content <strong>and</strong> low contents<br />

of lign<strong>in</strong> <strong>and</strong> polyphenols. Biomass with low<br />

lign<strong>in</strong> <strong>and</strong> polyphenols <strong>and</strong> high N release N rapidly,<br />

result<strong>in</strong>g <strong>in</strong> higher maize yields. Although sesbania<br />

produces high quality biomass, it's <strong>in</strong>ability to<br />

coppice renders it unable to supply biomass dur<strong>in</strong>g<br />

the cropp<strong>in</strong>g period lead<strong>in</strong>g to less prolonged residual<br />

effects. Species such as flem<strong>in</strong>gia, calli<strong>and</strong>ra <strong>and</strong><br />

Senna siamea produce low-quality biomass, which is<br />

high <strong>in</strong> lign<strong>in</strong>, polyphenols <strong>and</strong> low <strong>in</strong> nitrogen.<br />

This will lead to N immobilization <strong>and</strong> reduced<br />

maize yields.<br />

We hypothesized that the coppic<strong>in</strong>g of gliricidia can<br />

utilize the residual soil water after maize harvest<br />

<strong>and</strong> recover soil nitrogen below the maize root<strong>in</strong>g<br />

depth dur<strong>in</strong>g the long dry season from April to October.<br />

We monitored the soil water <strong>and</strong> nitrogen<br />

dynamics <strong>in</strong>. all treatments <strong>for</strong> two seasons, 1997 to<br />

1998, to test this hypothesis. This <strong>in</strong><strong>for</strong>mation will<br />

be used to simulate the long-term trend of maize<br />

yield, water <strong>and</strong> nitrogen dynamics us<strong>in</strong>g the<br />

WaNuLCAS model. Theoretical simulations <strong>in</strong>dicated<br />

that gliricidia coppic<strong>in</strong>g could utilize enough<br />

residual soil water <strong>in</strong> an average ra<strong>in</strong>fall year of 980<br />

mm/year to produce 2-4 t/ha of tree biomass <strong>and</strong><br />

<strong>in</strong>creased maize yield.<br />

At the end of the dry season, soil moisture profiles<br />

confirmed that the coppic<strong>in</strong>g gliricidia treatment<br />

utilized about 40 mm more water, primarily from<br />

below 75 cm soil depth, than <strong>in</strong> either the sesbania or<br />

cont<strong>in</strong>uous cropp<strong>in</strong>g treatments. This is probably<br />

an under estimation of the total deep uptake of residual<br />

water by the coppic<strong>in</strong>g gliricidia s<strong>in</strong>ce soil wa-<br />

Table 2. Total seasonal coppice biomass (t ha I) recorded from<br />

various fallow species at Msekera, eastern Zambia dur<strong>in</strong>g 1995·<br />

2002<br />

1996 1997 1998 1999 2000" 2001 2002<br />

C. calothyrsus 0.3 0.4 0.2 0.4 0.6 0.4 0.6<br />

S.siamea 2.8 2.1 1.6 1.7 1.8 1.2 2.2<br />

F. mycrophylla 0.6 0.6 0.3 0.6 0.7 0.4 0.5<br />

G. sepium" 1.7 1.5 1.3 1.1 3.1 1.4 1.2<br />

L. leucocephalla" 3.5 2.6 1.7 2.8 3.4 2.2 1.9<br />

"Ieucaena has more twig biomass added to the system than Gliricidia which also <br />

has low survival <br />

"" Biomass cut <strong>in</strong> 2 months <strong>in</strong>terval INov. Jan & Mar) normal- Nov. Dec & Jan) <br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

143


ter content at 180 cm was still well below that of the<br />

other treatments. Deeper access tubes are required<br />

to determ<strong>in</strong>e the actual depth of water extraction by<br />

gliricidia roots. Based on the amo_unt of biomass<br />

produced by gliricidia, we would expect the uptake<br />

of an additional 40 mm of water, i.e. root<strong>in</strong>g depth<br />

would have to go beyond another metre deeper.<br />

This trend <strong>in</strong> the soil water profile between the<br />

three treatments was ma<strong>in</strong>ta<strong>in</strong>ed even after five<br />

months with a total of 767 mm of ra<strong>in</strong>, <strong>in</strong>dicat<strong>in</strong>g<br />

the maize crop <strong>in</strong> the gliricidia treatment used more<br />

water than <strong>in</strong> the other two treatments. In addition,<br />

the high soil water content <strong>in</strong> both the sesbania <strong>and</strong><br />

no fallow treatments <strong>in</strong>dicate that nitrogen leach<strong>in</strong>g<br />

can be a serious problem dur<strong>in</strong>g this ra<strong>in</strong>y period <strong>in</strong><br />

both the sesbania <strong>and</strong> no fallow treatments. Indeed,<br />

measurements of <strong>in</strong>organic nitrogen profiles <strong>for</strong> all<br />

three treatments confirmed substantial differences<br />

<strong>in</strong> N levels below 75 cm depth, with maximum concentratiof'.s<br />

<strong>in</strong> the no fallow treatment, followed by<br />

the sesbania <strong>and</strong> gliricidia treatment (Figure 2).<br />

These f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate that coppic<strong>in</strong>g gliricidia provides<br />

a much more susta<strong>in</strong>able system than the sesbania<br />

fallow systems because of its ability to utilize<br />

residual soil water <strong>and</strong> to prevent N leach<strong>in</strong>g <strong>in</strong><br />

such environments.<br />

We have concluded that gliricidia <strong>and</strong> leucaena have<br />

potential as coppic<strong>in</strong>g fallows. Cumulative maize<br />

yield of these fallows is greater than from sesbania<br />

after 4 years of cropp<strong>in</strong>g. This is because of the constant<br />

nutrient replenishment obta<strong>in</strong>ed from harvest<strong>in</strong>g<br />

coppice regrowth. We will cont<strong>in</strong>ue the trial <strong>for</strong><br />

another 5 seasons to test the susta<strong>in</strong>ability of coppic<strong>in</strong>g<br />

fallows <strong>in</strong> terms of nutrient budgets such as<br />

NPK. In addition, we have established on farm trials<br />

to evaluate responses widely <strong>and</strong> screen more<br />

coppic<strong>in</strong>g species.<br />

Mixed fallows<br />

Improved fallow systems with shrub legume species<br />

like sesbania have become a key agro<strong>for</strong>estry<br />

technology <strong>for</strong> soil fertility management <strong>in</strong> southern<br />

Africa <strong>and</strong> western Kenya. Large <strong>in</strong>creases <strong>in</strong> maize<br />

yields have been reported follow<strong>in</strong>g short duration<br />

(9-24 months) fallows with s<strong>in</strong>gle species. Sesbania<br />

has been the ma<strong>in</strong> focus <strong>for</strong> improved fallows <strong>for</strong> its<br />

ability to add huge amounts of high quality biomass<br />

<strong>and</strong> fuelwood provision. The dependence on a few<br />

successful fallow species has revealed some drawbacks.<br />

Sesbania is susceptible to root-nematode <strong>and</strong><br />

Mesoplatys beetle. Introduction of new species has<br />

led to the outbreak of new pests <strong>and</strong> diseases as observed<br />

with Crota/aria grahamiana <strong>in</strong> western Kenya<br />

(Cadisch et al. 2001). Thus there is an urgent need<br />

to diversity the specie5 <strong>and</strong> fallow types to farmers.<br />

Mix<strong>in</strong>g species with compatible <strong>and</strong> complementary<br />

root<strong>in</strong>g or shoot growth patterns <strong>in</strong> fallows may<br />

lead to a more diverse system <strong>and</strong> maximize above<br />

<strong>and</strong> below ground growth resource utilization. Undersow<strong>in</strong>g<br />

herbaceous legumes under open canopy<br />

species may use more photosynthesis radiation by<br />

the whole canopy <strong>and</strong> <strong>in</strong>crease primary production.<br />

Mix<strong>in</strong>g shallow-rooted species with deep-rooted<br />

species can enhance the soil water <strong>and</strong> nutrient uptake<br />

zone with<strong>in</strong> the soil profile. More importantly,<br />

it will enhance utilization of subsoil nutrients, e.g.<br />

nitrate lost through leach<strong>in</strong>g . . Mix<strong>in</strong>g species <strong>in</strong> fallows<br />

may also reduce the risk of failure with fallow<br />

establishment, <strong>in</strong> case one species is susceptible to<br />

water stress, diseases <strong>and</strong> pests. Multiple products<br />

. obta<strong>in</strong>ed from mixed fallows <strong>and</strong> <strong>in</strong>creased biodiversity<br />

of the system are other positive characteristics<br />

that make the whole system more attractive.<br />

We tested a variety of mixed fallows of tree legumes<br />

or tree legumes with herbaceous legumes to test the<br />

above stated hypotheses.<br />

Mix<strong>in</strong>g coppic<strong>in</strong>g fallow species such as Gliricidia<br />

sepium <strong>and</strong> a non-coppic<strong>in</strong>g species (Sesbania sesban)<br />

significantly <strong>in</strong>creased maize yields compared to<br />

s<strong>in</strong>gle species fallows (':;-igure 3) . However mixtures<br />

of noncoppic<strong>in</strong>g species did not <strong>in</strong>crease maize<br />

yield compared to sole species. The mixture of cop­<br />

20<br />

40<br />

(.)<br />

ToUillnorgenlc N (mWkoJ<br />

0.00 2.00 4.00 6.00 8.00 10.00 12.00<br />

60<br />

......... Cajanus cajan<br />

60 ___ Natural (allow<br />

_____ Maize with fetilizer<br />

100<br />

~ Maize without fetilizer<br />

120 __ Sesbanla sesban<br />

140<br />

160<br />

160<br />

200<br />

200<br />

(bl<br />

Inorganic nitrate (rng N kg ,l,<br />

6 8 10 12 16<br />

Figure 2. Total <strong>in</strong>organic nitrogen (a) <strong>and</strong> <strong>in</strong>organic nitrate (b) (mg I<br />

kg soil) as affected by two year fallow species <strong>and</strong> soil depth at<br />

Msekera, eastern Zambia <strong>in</strong> February 1998 <strong>and</strong> February 2001<br />

144<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


pic<strong>in</strong>g <strong>and</strong> noncoppic<strong>in</strong>g species reduces the level<br />

of subsoil nitrate <strong>and</strong> controlled mesoplatys beetles.<br />

However mix<strong>in</strong>g gliricidia or tephrosia or sesbania<br />

with herbaceous legumes such as mucuna or archer<br />

dolichos reduced tree growth <strong>and</strong> hence maize yield.<br />

These mixtures also lead to the build up of mesop:atys<br />

beetle, which may have led to a larger attack<br />

of sesbania by the beetles (Sileshi <strong>and</strong> Mafongoya,<br />

2002).<br />

Prediction of improved fallows per<strong>for</strong>mance<br />

Many studies have shown a 3 to 4-fold <strong>in</strong>crease <strong>in</strong><br />

maize gra<strong>in</strong> yields after two year improved fallows.<br />

Most of these studies were conducted under research<br />

station conditions. However, when improved<br />

fallows are tested <strong>in</strong> a wide range of environmental<br />

conditions there is variability <strong>in</strong> maize<br />

gra<strong>in</strong> yields. The explanations advanced <strong>for</strong> this<br />

variability is based on trial <strong>and</strong> error. There is need<br />

<strong>for</strong> a predictive underst<strong>and</strong><strong>in</strong>g of how fallows per<strong>for</strong>m<br />

<strong>in</strong> different agroecological conditions.<br />

The work done <strong>for</strong> many years has shown how organic<br />

decomposition <strong>and</strong> nutrient release is affected<br />

by the levels of polyphenols, lign<strong>in</strong> <strong>and</strong> nitrogen<br />

contents of the organic <strong>in</strong>puts (Mafongoya et al.<br />

1998). Recently we have found also that maize<br />

yields after fallows with various tree legumes were<br />

negatively related to the L+P: N ratio (Figure 4).<br />

Fallow species with high N, low lign<strong>in</strong> <strong>and</strong> low<br />

polyphenols such as gliricidia <strong>and</strong> sesbania gave<br />

higher maize yields compared to species such as<br />

flem<strong>in</strong>gia, calli<strong>and</strong>ra <strong>and</strong> senna. This work has clearly<br />

shown that it is not the quantity of polyphenols<br />

which is critically important but also the quality of<br />

the polyphenols as measured by their prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g<br />

capacity (Mafongoya et al. 2000). Legume species<br />

<strong>for</strong> improved fallows can be screened <strong>for</strong> their<br />

suitability based on the above characteristics.<br />

<strong>Soil</strong> <strong>in</strong>organic N be<strong>for</strong>e a cropp<strong>in</strong>g season is an accepted<br />

test <strong>for</strong> soil N <strong>for</strong> soil productivity. Results<br />

of our studies <strong>in</strong> Southern Africa show that preseason<br />

<strong>in</strong>organic N can also be an effective <strong>in</strong>dicator<br />

of plant available N after different improved fal­<br />

48<br />

lows. Our results <strong>in</strong>dicate that preseason <strong>in</strong>organic<br />

N (N03 + NH4) can be more related to maize yield<br />

than preseason N03 alone <strong>in</strong> a tropical soil with a<br />

pronounced dry season (Figure 4). Large amounts<br />

of NH4 can accumulate dur<strong>in</strong>g a dry season, <strong>and</strong> it<br />

may not be nitrified when the soil is sampled at the<br />

beg<strong>in</strong>n<strong>in</strong>g of the ra<strong>in</strong>y. season. We concluded that<br />

preseason <strong>in</strong>organic N is a relatively rapid <strong>and</strong> simple<br />

<strong>in</strong>dex that is related well to maize yield on N­<br />

deficient soils <strong>and</strong> hence it can be used to screen fallow<br />

species <strong>and</strong> management practices.<br />

Improved fallows of S. sesban tested under a wide<br />

range of conditions showed a strong l<strong>in</strong>ear relationship<br />

between maize yield <strong>and</strong> st<strong>and</strong><strong>in</strong>g biomass at<br />

fallow clearance (r2=0.50). Preseason <strong>in</strong>organic was<br />

also related to st<strong>and</strong><strong>in</strong>g biomass (r2= 0.60) <strong>and</strong><br />

st<strong>and</strong><strong>in</strong>g biomass was related to clay content of the<br />

sites (r2=0.SO). From these studies the impact of improved<br />

fallows on maize yield were clearly related<br />

(a)<br />

35 y = -0_19x+ 3.24<br />

1 R2 = 0_83<br />

30,<br />

.,-;;; 2_5<br />

r.<br />


to amount of biomass, quality of biomass <strong>in</strong> terms<br />

of L+P: N ratio, litter fall, <strong>and</strong> preseason <strong>in</strong>organic<br />

N. These results were <strong>in</strong> agreement with those reported<br />

by Mafongoya et al. 1999).<br />

Based on these results we can safely conclude that<br />

the ma<strong>in</strong> predictors of fallow per<strong>for</strong>mance are quantity<br />

of biomass, quality of the biomass, preseason<br />

<strong>in</strong>organic N <strong>and</strong> texture on the soil. The relevance of<br />

these predictors needs to be tested over a wide<br />

range of conditions <strong>and</strong> with different fallov: species.<br />

<strong>Soil</strong> Chemical Properties<br />

The major soil chemical changes that take place under<br />

tree fallows are <strong>in</strong>creases <strong>in</strong> labile pools of SaM,<br />

N stocks, exchangeable cations <strong>and</strong> extractable P<br />

(Rao et al. 1998). Details of the mechanisms of soil<br />

improvement by tree fallows were reviewed by<br />

(Buresh <strong>and</strong> Tian, 1998). In theory, planted tree fallows<br />

are expected to improve soils faster than natural<br />

fallows s<strong>in</strong>ce the l<strong>and</strong> is completely covered by<br />

fast grow<strong>in</strong>g legum<strong>in</strong>ous trees <strong>for</strong> 2 to 3 years.<br />

However the magnitude of these soil improvements<br />

depends on tree species, length of fallow, soil <strong>and</strong><br />

climatic conditions. In this section, we will concentra<br />

te on these changes as measured from experiments<br />

<strong>in</strong> southern Africa.<br />

Biological nitrogen fixation <strong>and</strong> N cycles<br />

The contribution of legum<strong>in</strong>ous trees through N2<br />

fixation is well recognized, although not all legumes<br />

fix N2. Nitrogen fixation <strong>in</strong> the humid <strong>and</strong> subhumid<br />

zones of Africa has been reviewed by Sang<strong>in</strong>ga<br />

(1995). There has been little work on quantification<br />

of N2 fixation by trees <strong>in</strong> southern Africa. This work<br />

has proved to be difficult due to constra<strong>in</strong>ts <strong>in</strong> the<br />

methodologies <strong>for</strong> measur<strong>in</strong>s N2 fixed. A series of<br />

multi-location trials have been set to measure the<br />

amount of N2 fixed by different tree genera <strong>and</strong><br />

provenances (Table 3) us<strong>in</strong>g the 15N natural abundance<br />

method. The data on percent Ndfa shows<br />

high variability among provenances of the same<br />

species <strong>for</strong> N derived from atmospheric N2 fixation.<br />

Sang<strong>in</strong>ga et al. (1990) found that percent Ndfa<br />

ranged from 37 to 74% <strong>for</strong> provenances of Leucaena<br />

leucocephala. The data shown <strong>in</strong> Table 3 falls with<strong>in</strong><br />

the range reported by Sang<strong>in</strong>ga et al. (1990). These<br />

prelim<strong>in</strong>ary data show the huge potential of trees to<br />

fix N2 <strong>and</strong> <strong>in</strong>crease N <strong>in</strong>puts <strong>in</strong> N deficient soils.<br />

Our future analysis will focus on factors responsible<br />

<strong>for</strong> this variability <strong>in</strong> N2 fixation across s~tes <strong>and</strong><br />

how to optimize N2 fixation under field conditions.<br />

Barrios et al (1997) m~asured availability of soil N<br />

follow<strong>in</strong>g 2- <strong>and</strong> 3-year fallows a N- deficient soils<br />

<strong>in</strong> eastern Zambia. His results confirmed that tree<br />

fallows <strong>in</strong>crease N availability compared to cont<strong>in</strong>uous<br />

cropp<strong>in</strong>g without fertilization. Subsequent N<br />

measurements down to 200 cm <strong>in</strong> the soil profile<br />

showed significant N <strong>in</strong>organic accumulation at<br />

depth dur<strong>in</strong>g the cropp<strong>in</strong>g phase (Figure 2).<br />

These results show that improved fallows can create<br />

a very "leaky" N cycle after fallow clearance. Most<br />

of the N is leached beyond the root<strong>in</strong>g depth of<br />

maize <strong>and</strong> this N is released from organic <strong>in</strong>puts<br />

be<strong>for</strong>e peak N dem<strong>and</strong> by maize. Hence there will<br />

be asynchrony between N release <strong>and</strong> N dem<strong>and</strong> by<br />

maize. Consequently there is need to design systems<br />

which try to m<strong>in</strong>imize N losses <strong>and</strong> <strong>in</strong>crease N<br />

use efficiency, <strong>and</strong> cycl<strong>in</strong>g.<br />

Based on those results we designed mixed fallows<br />

of coppic<strong>in</strong>g species <strong>and</strong> noncoppic<strong>in</strong>g species. The<br />

hypothesis is that the coppic<strong>in</strong>g species will act as a<br />

permanent "safety net" <strong>for</strong> N when the noncoppic<strong>in</strong>g<br />

fallows are cut due to resprout growth <strong>and</strong> deep<br />

root system <strong>in</strong> the soil. Results of gliricidia <strong>and</strong> sesbania<br />

mixed fallows have shown higher maize prcr<br />

ductivity <strong>and</strong> efficient N cycl<strong>in</strong>g compared to s<strong>in</strong>gle<br />

species fallows (Figure 3).<br />

<strong>Soil</strong> acidification <strong>and</strong> cations<br />

There are several reports on soil pH <strong>and</strong> improved<br />

fallows. Topsoil pH decreased under fallows of<br />

Acacia auriculi<strong>for</strong>mis (Drechsel et al. 1996). However<br />

Oonsson et al. 1996) found no changes <strong>in</strong> soil pH<br />

after fallows. Our results over a 10-year period<br />

showed significant decrease <strong>in</strong> topsoil soil pH, 0-60<br />

cm <strong>and</strong> an <strong>in</strong>crease <strong>in</strong> soil pH with depth (Figure 5).<br />

This decrease <strong>in</strong> topsoil pH <strong>and</strong> <strong>in</strong>crease <strong>in</strong> soil pH<br />

is attributed to leach<strong>in</strong>g of N03 <strong>and</strong> cations such as<br />

magnesium as shown <strong>in</strong> Figure 6. The movements<br />

of cations from the topsoil were also confirmed by<br />

low CEC <strong>in</strong> 0-20 cm (6.25 compared with 9.50) <strong>in</strong><br />

the 20-100 cm soil profile. These pH changes, which<br />

will take place after fallows, may have little effect<br />

Table 3. Biological nitrogen fixation (%BNF) of coppic<strong>in</strong>g species/<br />

provenances across three sites <strong>in</strong> eastern Zambia after 1 year of<br />

growth<br />

Kalichero Kalunga Masumba<br />

Treatment %BNF Nkg/ha %BNF Nkg/ha %BNF N kg/ha<br />

A. angustisma 52.1 210.4 61.8 201.4 54.8 260.8<br />

C. calothyrsus 48.4 81.4 44.1 214.4 48.7 193.<br />

G. sepium 79.2 212.4 71.4 408.4 70.8 297.5<br />

l. coll<strong>in</strong>sii 74.7 303.2 57.2 236.7 102.1 475.9<br />

l. diversif(Jlia 35/88 77.5 196.8 33.8 88.6 50.0 161.1<br />

l. diversifolia 53/88 58.4 121.5 14.0 40.5 46.9 112.6<br />

l. esculenta 52/87 70.9 99.3 . 46.6 110.1 46.7 274.5<br />

l. esculenta·Machakos 84.7 223.6 35.2 120.2 69.0 538.0<br />

l. pallida 58.6 87.8 33.7 125.2 44.7 168.1<br />

146<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


pH<br />

-0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00<br />

20 <br />

40 <br />

60<br />

K80<br />

;; 100<br />

c<br />

~ 120 <br />

140 <br />

160 <br />

180 <br />

200 <br />

__ dena feb02-Noll97<br />

-e-dena Noll9B-NoII97<br />

Figure 5. Changes <strong>in</strong> soil pH as affected by two-year fallow species<br />

<strong>and</strong> soil depth at Msekera, eastern Zambia<br />

on maize productivity <strong>in</strong> base rich soils. However<br />

their long term effects on acidic, low-activity clay<br />

soils may have a major effect on crop yields <strong>and</strong><br />

threaten the long-term susta<strong>in</strong>ability of improved<br />

fallows. Management practices such as zero tillage<br />

after fallows <strong>and</strong> regular application of lime may<br />

have to be adopted to deal with such problems of<br />

decrease <strong>in</strong> pH <strong>and</strong> cation leach<strong>in</strong>g.<br />

<strong>Soil</strong> carbon <strong>and</strong> improved fallows<br />

The debate on carbon <strong>and</strong> global warn<strong>in</strong>g has<br />

ga<strong>in</strong>ed momentum. Of late, there has been <strong>in</strong>creased<br />

scientific <strong>in</strong>terest <strong>in</strong> measur<strong>in</strong>g carbon sequestration<br />

<strong>in</strong> different l<strong>and</strong> use systems to mitigate<br />

climate change issues. Agro<strong>for</strong>estry l<strong>and</strong> use systems<br />

have been cited to sequester the most soil C<br />

without a lot of scientific evidence. We monitored<br />

soil C <strong>in</strong> long-term trials with improved fallows.<br />

There were significant <strong>in</strong>creases <strong>in</strong> soil carbon <strong>in</strong> the<br />

topsoil as compared to deep horizons (Table 4).<br />

These results are <strong>in</strong> agreement with those of Onim<br />

et al.; (1990) <strong>in</strong> western Kenya us<strong>in</strong>g improved fallows.<br />

Of scientific <strong>and</strong> practical importance is how<br />

is the carbon protected aga<strong>in</strong>st loss after fallow<br />

clearance. Our research program is look<strong>in</strong>g how<br />

different soil aggregates store C <strong>and</strong> how soil aggregation<br />

is affected by soil texture <strong>and</strong> fallow management<br />

over the long term. This will enable us to<br />

model carbon dynamics <strong>and</strong> climate change.<br />

Table 4. Amount of organic carbon (%) measured <strong>in</strong> different <br />

soil depths under a two·year non·coppic<strong>in</strong>g fallow species at <br />

Msekera, eastern Zambia <br />

Year <br />

<strong>Soil</strong> depth (em) 1997 2002 Percent <br />

<strong>in</strong>crease <br />

0·20 0.95 1.i 2 17.89 <br />

20-40 0.78 0.94 20.51 <br />

40·S0 O.Sl 0.77 2S.23 <br />

SO·100 0.51 0.55 7.84 <br />

100·150 0.3S 0.49 3S.11 <br />

150·200 0.28 0.37 32.14 <br />

SED 0.05 O.OS 20.00 <br />

c mol kg"<br />

0.3 0.5 0.7 0.9 1.1 1.3 1.5<br />

o+---~--~--~--~--~~~<br />

20<br />

40<br />

E 60<br />

.!!. 80<br />

'-e-Cc<br />

ị. 100 -+-M+f<br />

~ 120 -->


with the natural fallow, which did not lose its aggregate<br />

stability. The decrease <strong>in</strong> aggregate stability<br />

was more pronounced under sesbania <strong>and</strong> maize<br />

without fertilizer as compared ~ith cajanus <strong>and</strong><br />

maize with fertilizer. Under a sesbania fallow system,<br />

the improvement <strong>in</strong> soil structure is more evident<br />

<strong>and</strong> this is reflected by results from our time to<br />

runoff studies. Time to runoff after fallow clear<strong>in</strong>g<br />

was <strong>in</strong> the order of: natural fallow> S. sesban > fertilized<br />

maize. After one season of cropp<strong>in</strong>g, time to<br />

runoff decreased <strong>in</strong> all treatments except that the<br />

natural fallow ma<strong>in</strong>ta<strong>in</strong>ed the longer time to runoff,<br />

reflect<strong>in</strong>g good ma<strong>in</strong>tenance of aggregate stability.<br />

Through ra<strong>in</strong>fall simulation studies we evaluated<br />

effects of improved fallows on runoff <strong>in</strong>filtration<br />

soil <strong>and</strong> nutrient losses under improved fallows.<br />

Tree fallows of sesbania, gliricidia mixed with archer<br />

dolichos <strong>in</strong>creased <strong>in</strong>filtration rates significantly<br />

compared with cont<strong>in</strong>uously fertilized maize plots<br />

(Figure 7). Fallows compared to no tree plots also<br />

significantly reduced soil loss (Table 5).<br />

Improved fallows improve soil physical properties<br />

as evidenced by <strong>in</strong>crease <strong>in</strong> <strong>in</strong>filtration rates, <strong>in</strong>creased<br />

<strong>in</strong>filtration decay coefficients, reduced runoff<br />

<strong>and</strong> soil losses. However these benefits are short<br />

lived <strong>and</strong> they decl<strong>in</strong>e rapidly dur<strong>in</strong>g the first year<br />

of cropp<strong>in</strong>g. This was supported by <strong>in</strong>crease <strong>in</strong> soil<br />

loss <strong>in</strong> the second year (TableS) <strong>and</strong> decrease <strong>in</strong> <strong>in</strong>­<br />

40<br />

35<br />

i )0<br />

! 2S<br />

~ 20 <br />

c <br />

.g 15<br />

g<br />

~ 10<br />

S. sesban T. vogelii N. rallow fl:t1ilizal. maize G. sepium+ A.<br />

dolichos<br />

Treatmenls<br />

I-October 2000 [JOclober2001 I<br />

Figure 7. Infiltration rate under different fallows measured at<br />

Msekera (source; Nyamadzowo et a/2002)<br />

Table 5. <strong>Soil</strong> loss (g/m2) measured under various fallow species<br />

<strong>and</strong> maize at Kalunga Farmers Tra<strong>in</strong><strong>in</strong>g Center <strong>in</strong> eastern Zambia<br />

Treatment October 2000 October 2001<br />

Sesbania sesban 0.0 5.0<br />

Tephrosia voge/ii 4.5 15.8<br />

Natural fallow 0.0 19.5<br />

Fully fertilized maize 63.8 ..0.5<br />

~iratro (Macroptilium atropurpureum) 0.0 0.7<br />

ILSO 15.3 .<br />

Source: Nyamadzowo et al2002<br />

filtration rates as well (Figure 7). However, mix<strong>in</strong>g<br />

a coppic<strong>in</strong>g species like gliricidia <strong>and</strong> a herbaceous<br />

legume like archer dolichos ma<strong>in</strong>ta<strong>in</strong>ed high <strong>in</strong>filtration<br />

rates <strong>and</strong> reduced soil loss over two years of<br />

cropp<strong>in</strong>g.<br />

Susta<strong>in</strong>ability of Improved Fallows<br />

Improved fallows with sesbania or tephrosia have<br />

been shown to give maize gra<strong>in</strong> yields of 3 to 4 t/ha<br />

without any <strong>in</strong>organic fertilizer addition. Palm<br />

(1995) showed that organic <strong>in</strong>puts of various tree<br />

legumes applied at 4 t/ha can supply enough nitrogen<br />

<strong>for</strong> maize gra<strong>in</strong> yields of 4 t/ha. However,<br />

most of these organic <strong>in</strong>puts could not supply<br />

enough phosphorus <strong>and</strong> potassium to support such<br />

maize yields.<br />

The question ferr susta<strong>in</strong>ability is: Can improved fallows<br />

potentially m<strong>in</strong>e P <strong>and</strong> K over time while<br />

ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a positive N balance? To answer that<br />

question we conducted nutrient balances on improved<br />

fallow trials at Msekera Research Station.<br />

These plots were under fallow-crop rotations <strong>for</strong> 8<br />

years. The objectives of these studies on nutrient<br />

balances addressed the follow<strong>in</strong>g questions:<br />

• Can nutrient balances be used as l<strong>and</strong> quality <strong>in</strong>dicators?<br />

• Can they be used to assess soil fertility status,<br />

productivity <strong>and</strong> susta<strong>in</strong>ability?<br />

• Can they be used as a policy <strong>in</strong>strument <strong>for</strong> the<br />

types of fertilizers to be imported or distributed<br />

to farmers?<br />

The nutrient balances considered nutrients added<br />

through leaves <strong>and</strong> litter fall, which were <strong>in</strong>corporated<br />

after fallows as <strong>in</strong>puts. The nutrients <strong>in</strong> maize<br />

gra<strong>in</strong> harvested, maize stover removed <strong>and</strong> fuelwood<br />

taken away at end of the fallow were considered<br />

as nutrient exports.<br />

For all the l<strong>and</strong> use systems, there was a positive N<br />

balance two years of cropp<strong>in</strong>g after the fallows<br />

(Table 6). Fertilized maize had the highest N balance<br />

due to the annual application of 112 kg N/ha<br />

<strong>for</strong> the past 10 years. However, unfertilized maize<br />

had lower balances due to low maize gra<strong>in</strong> <strong>and</strong><br />

stover yields over time. The tree-based fallows had<br />

a positive N balance due to BNF <strong>and</strong> deep capture<br />

of N from depth. These results are consistent with<br />

those of Palm (1995) that showed that organic <strong>in</strong>puts<br />

could supply enough N to support maize gra<strong>in</strong><br />

yields of 3 to 4 t/ha.<br />

However <strong>in</strong> the second year of cropp<strong>in</strong>g (1999) the<br />

N balance was very small. This is consistent with<br />

our earlier results, which showed a decl<strong>in</strong>e of maize<br />

148<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 6. Nutrient balance (kglha) under two year non·coppic<strong>in</strong>g<br />

fallow species at Msekera, eastern Zambia<br />

Nitrogen Phosphorus· Potassium<br />

limd use systems 1998 1999 1998 1999 1998 1999<br />

Cajanus cajan 27 5 21 8 13 ·9<br />

Sesbania sesban 22 5 39 24 -42 ·32<br />

Natural fallow 8 11 19 15 ·10 ·4<br />

Fully fertilized maize 150 103 57 43 ·19 ·17<br />

Unfertilized maize 31 11 29 20 19 ·1<br />

yields <strong>in</strong> the second year of cropp<strong>in</strong>g after two-year<br />

fallows. The huge amount of N supplied by fallows<br />

could be lost through leach<strong>in</strong>g beyond the root<strong>in</strong>g<br />

depth of maize. Our leach<strong>in</strong>g studies have clearly<br />

shown substantial <strong>in</strong>organic N at depth under<br />

maize after improved fallows. These results imply<br />

that if cropp<strong>in</strong>g goes beyond three years after fallows<br />

there will be a negative N balance. Thus the<br />

recommendation of two years of fallows followed<br />

by two years of cropp<strong>in</strong>g is well supported by N<br />

balances <strong>and</strong> maize gra<strong>in</strong> yield trends. Most of the<br />

l<strong>and</strong> use systems showed a positive P balance. This<br />

can be attributed to low offtake of P <strong>in</strong> maize gra<strong>in</strong><br />

yield <strong>and</strong> stover. In addition, this site had a high<br />

phosphorus status. The trees could also have <strong>in</strong>creased<br />

P availability through secretion of organic<br />

acids <strong>and</strong> the <strong>in</strong>creased mycorrhizal population <strong>in</strong><br />

the soil. These issues are under <strong>in</strong>vestigation at our<br />

site. In general, we have observed positive P balances<br />

over eight years. However this result needs<br />

to be tested on farm where the soils are <strong>in</strong>herently<br />

10w<strong>in</strong>P.<br />

Most l<strong>and</strong> use systems showed a negative balance<br />

<strong>for</strong> K. For tree based systems, sesbania showed a<br />

higher negative K balance compared to pigeonpea.<br />

This is attributed to the higher fuelwood yield of<br />

sesbania with subsequent higher export of K compared<br />

to pigeonpea. The higher negative K balance<br />

<strong>for</strong> fully fertilized maize is due to higher maize <strong>and</strong><br />

stover yield which exports a lot of potassium. This<br />

implies that the K stocks <strong>in</strong> the soil are very high<br />

<strong>and</strong> that K m<strong>in</strong><strong>in</strong>g has not reached a po<strong>in</strong>t where it<br />

negatively affects maize productivity. However <strong>in</strong><br />

sites with low stocks of K <strong>in</strong> the soil, maize productivity<br />

may be adversely affected.<br />

Nutrient balances were conducted <strong>for</strong> coppic<strong>in</strong>g fallows<br />

us<strong>in</strong>g gliricidia compared to non-coppic<strong>in</strong>g fallows<br />

us<strong>in</strong>g sesbania <strong>for</strong> four cropp<strong>in</strong>g seasons after<br />

fallow clearance. Gliricidia fallows ma<strong>in</strong>ta<strong>in</strong>ed a<br />

positive N balance. This was attributed to resprout<br />

growth, which was applied to maize as a source of<br />

nutrients <strong>and</strong> deep capture of N from depth by the<br />

well-established gliricidia root<strong>in</strong>g system. All l<strong>and</strong><br />

use systems showed a positive P balance. However<br />

from the third season of cropp<strong>in</strong>g onwards sesbania<br />

fallows, fertilized maize <strong>and</strong> gliricidia fallows had a<br />

large negative balance. This was attributed to removal<br />

of nutrients <strong>in</strong> ·stover maize or leach<strong>in</strong>g of K<br />

from surface soils ..<br />

Overall, the tree based fallows ma<strong>in</strong>ta<strong>in</strong>ed a positive<br />

N<strong>and</strong> P balance. However on low· P status, a<br />

negative P balance would be expected. There was a<br />

negative K balance with most l<strong>and</strong> use systems. It<br />

can be hypothesized that as we scale up improved<br />

fallows on depleted soils on farmer's fields, 1


<strong>and</strong> K to maize as an equivalent amount of commercial<br />

NPK fertilizer, <strong>and</strong> <strong>in</strong> some caGes maize yields<br />

were higher with tithonia biomass than commercial<br />

<strong>in</strong>organic fertilizer. Recent work <strong>in</strong> Malawi<br />

(Ganunga et al. 1998) <strong>and</strong> Zimbabwe (Jirl <strong>and</strong> Wadd<strong>in</strong>gton,<br />

1998) have similarly reported tithonia biomass<br />

to be an effective nutrient source <strong>for</strong> maize.<br />

Biomass transfer us<strong>in</strong>g legum<strong>in</strong>ous species is a far<br />

much susta<strong>in</strong>able means of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g nutrient<br />

balances <strong>in</strong> maize:based systems as these trees are<br />

able to fix atmospheric N2. Tithonia is not a legume,<br />

<strong>and</strong> it does not biologically fix atmospheric N2. The<br />

transfer of tithonia biomass to fields, there<strong>for</strong>e, constitutes<br />

the cycl<strong>in</strong>g of nutrients with<strong>in</strong> the farm <strong>and</strong><br />

l<strong>and</strong>scape rather than a net <strong>in</strong>put of nutrients to the<br />

system. The cont<strong>in</strong>ual transfer of nutrients from<br />

tithonia hedges to crop fields constitutes nutrient<br />

m<strong>in</strong><strong>in</strong>g <strong>and</strong> might not be susta<strong>in</strong>able <strong>for</strong> long periods.<br />

Whereas the application of fertilizers to tithonia<br />

could ensure susta<strong>in</strong>ed production of tithonia,<br />

this is unlikely to be an option <strong>for</strong> resource-poor<br />

farmers. The <strong>in</strong>tegration of tithonia with N2-fix<strong>in</strong>g<br />

legumes may merit <strong>in</strong>vestigation.<br />

Synchrony between nutrient release from tree litter<br />

<strong>and</strong> crop uptake can potentially be achieved <strong>in</strong> a<br />

biomass transfer system. The management factors<br />

that can be manipulated to achieve this are litter<br />

quality, rate of litter application, method <strong>and</strong> time<br />

of litter application (Mafongoya et al. 1998; 1999).<br />

However variability <strong>in</strong> climatic factors such ra<strong>in</strong>fall<br />

<strong>and</strong> temperature makes the concept of synchrony ·an<br />

elusive goal to achieve <strong>in</strong> practical terms (Myers et<br />

al. 1994).<br />

Although prun<strong>in</strong>gs from MPTs <strong>in</strong>creased maize<br />

yield, cutt<strong>in</strong>g transport<strong>in</strong>g <strong>and</strong> manag<strong>in</strong>g prun<strong>in</strong>gs<br />

on crop fields require high labour <strong>in</strong>puts Oama et al.<br />

1997; Jama et al. 1998; Mutuo et al. 2000). Where<br />

family labour is available at no additional cost, the<br />

technology can be profitable even where l<strong>and</strong> is<br />

SC(lrce Oama et al. 1997; Mutuo et al. 2000). However,<br />

consider<strong>in</strong>g that farm labour is one of the most<br />

constra<strong>in</strong><strong>in</strong>g <strong>in</strong>puts <strong>in</strong> smallholder agriculture, the<br />

associated cost makes this technology unattractive<br />

<strong>and</strong> may serve as a dis<strong>in</strong>centive <strong>for</strong> its adoption by<br />

farmers. In monetary terms, the higher maize yield<br />

does not compensate <strong>for</strong> the high labour cost. In<br />

promot<strong>in</strong>g this technology, farmers may require to<br />

be provided with additional resources to <strong>in</strong>vest <strong>in</strong><br />

labour <strong>and</strong> l<strong>and</strong>. Most economic analyses have<br />

shown that it is unprofitable to <strong>in</strong>vest <strong>in</strong> a biomass<br />

transfer system when labour <strong>and</strong> l<strong>and</strong> are scarce.<br />

However, <strong>in</strong> areas where l<strong>and</strong> is abundant <strong>and</strong> the<br />

prun<strong>in</strong>gs are applied to high value crops like vegetables,<br />

the technology·is profitable (ICRAF, 1997).<br />

Biomass transfer could f<strong>in</strong>d a niche <strong>for</strong> vegetable<br />

production <strong>in</strong> dambo areas of southern Africa. A<br />

dambo is a shallow, seasonally or permanently waterlogged<br />

depression at or near the head of a natural<br />

dra<strong>in</strong>age network, or alternatively occurs <strong>in</strong>dependently<br />

of a dra<strong>in</strong>age system (Chenje <strong>and</strong> Johnson,<br />

1996; Breen et al. 1997). Dambos cover about 240 million<br />

hectares <strong>in</strong> sub-saharan Africa (Andriesse,<br />

1986). They are some of the most productive natural<br />

ecosystems <strong>in</strong> the Southern African region. They<br />

provide water <strong>for</strong> domestic use, good soils <strong>for</strong> agricultural<br />

production, graz<strong>in</strong>g grounds <strong>for</strong> livestock,<br />

fish <strong>and</strong> support a wide range of wildlife <strong>and</strong> birds<br />

(Raussen et al. 1995). Dambos are considered extremely<br />

vulnerable to poor agricultural practices,<br />

<strong>and</strong> hence dambo cultivation was illegal <strong>for</strong> <strong>in</strong>stance<br />

<strong>in</strong> Zimbabwe. However, ris<strong>in</strong>g population pressure<br />

has caused the agricultural use of dambos to become<br />

<strong>in</strong>creas<strong>in</strong>gly important (Kundhl<strong>and</strong>e et al. 1994). For<br />

example, vegetable gardens cover 15000-20000 ha<br />

(Bell et al. 1987) of the estimated 1.28 million ha of<br />

dambos <strong>in</strong> Zimbabwe.<br />

However, without apply<strong>in</strong>g fertilizers or cattle manure<br />

smallholder farmers cannot produce vegetables<br />

successfully <strong>in</strong> some vf the dambos (<strong>for</strong> example<br />

<strong>in</strong> eastern Zambia) that are degraded due to cont<strong>in</strong>uous<br />

cultivation <strong>for</strong> over 25 years (Raussen et al.<br />

1995). The removal of subsidies <strong>and</strong> <strong>in</strong>crease <strong>in</strong> <strong>in</strong>terest<br />

rates <strong>in</strong> most of sub Saharan Africa has<br />

caused decl<strong>in</strong>e <strong>in</strong> <strong>in</strong>organic fertilizer use, <strong>and</strong> this<br />

decl<strong>in</strong>e <strong>in</strong> the smallholder sector is even greater,<br />

suggest<strong>in</strong>g that <strong>for</strong> many farmers the use of fertilizer<br />

is not a viable option any more. Cattle manure<br />

use could also become limited s<strong>in</strong>ce not all farmers<br />

have animals to produce adequate quantities of manure.<br />

In addition, transport problems <strong>for</strong> the large<br />

quantities of manure needed <strong>and</strong> the spread of<br />

weeds due to the manure use may limit its utilization.<br />

There<strong>for</strong>e, the use of biomass transfer <strong>in</strong> susta<strong>in</strong><strong>in</strong>g<br />

vegetable production <strong>in</strong> the dambos of southern<br />

Africa could be a viable option.<br />

An experiment conducted with 43 farmers by Kuntashula<br />

et al (2003) showed that Gliricidia biomass<br />

transfer technologies produced cabbage, onion <strong>and</strong><br />

subsequent maize yields comparable with the full<br />

fertilizer application (Tables 7 <strong>and</strong> 8). The biomass<br />

transfer technologies also recorded higher cabbage,<br />

onion <strong>and</strong> maize net <strong>in</strong>comes than the control, <strong>and</strong><br />

required lower cash <strong>in</strong>puts than the fully fertilized<br />

crop (Figures 8 <strong>and</strong> 9). Like <strong>in</strong> maize based systeMS,<br />

net <strong>in</strong>comes of the biomass treatments <strong>in</strong> vegetable<br />

production were substantially reduced by the labour<br />

costs <strong>for</strong> prun<strong>in</strong>g <strong>and</strong> <strong>in</strong>corporation of the biomass.<br />

However, <strong>in</strong> vegetables the high price of<br />

products more than compensated these costs. The<br />

study concluded that the use of gliricidia biomass<br />

150<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 7. Mean cabbage <strong>and</strong> onion yields (fresh weight) <strong>in</strong> dambos<br />

us<strong>in</strong>g <strong>in</strong>organic fertilizers or organic <strong>in</strong>puts from manure, gliricidia<br />

<strong>and</strong> leucaena biomass <strong>in</strong> Chipata South district, 2001<br />

Treatments Cabbage yield Onion yield<br />

(t ha·l ) n ­ 31 (t hal) n - 12<br />

Manure 10 t ha· l + half fertilizer 66.8 96.0<br />

Fully fertilised 57.6 57.1<br />

Gliricidia 12 thaI t 53.6 79.8<br />

Gliricidia 8t hal 43.1 68.3<br />

leucaena 12 t ha I 32.6<br />

Control 17.0 28.1<br />

S.e.d (p - 0.05) 5.41 11.48<br />

.. leucaena 12t ha·' was not used <strong>in</strong> onion trials<br />

I Biomass treatments are reported on dry weight basis<br />

N - Number of farmers participat<strong>in</strong>g <strong>in</strong> the experiment<br />

transfer could be a viable alternative to <strong>in</strong>organic<br />

fertilizer although farmers tak<strong>in</strong>g up the technology<br />

will however need adequate supply of labour.<br />

The effectiveness of biomass transfer of nutrient<br />

sources us<strong>in</strong>g organic <strong>in</strong>puts from MPT species depends<br />

on their chemical composition (Mafongoya<br />

<strong>and</strong> Nair, 1997). These systems can meet the N requirement<br />

of most crops <strong>in</strong> smallholder farm<strong>in</strong>g<br />

systems. However, they cannot meet the requirement<br />

of P. There is need to apply <strong>in</strong>organic sources<br />

of P <strong>in</strong> addition to organic sources. When biomass<br />

is also valued as fodder there is need to assess the<br />

trade off of apply<strong>in</strong>g it directly to the soil or feed<strong>in</strong>g<br />

it to livestock <strong>and</strong> then apply<strong>in</strong>g the resultant manure..<br />

There is evidence to <strong>in</strong>dicate that depend<strong>in</strong>g<br />

on the quality of the biomass there may be no adliiICabbage<br />

• Maize + Cabbage<br />

16000,---------------------------­<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

o<br />

Table 8. Maize gra<strong>in</strong> yields (t ha· t at 13% moisture content) on<br />

residual plots <strong>in</strong> dambos after cabbage <strong>and</strong> onion production us<strong>in</strong>g<br />

<strong>in</strong>organic fertilizers or organic <strong>in</strong>puts from manure, gliricidia <strong>and</strong><br />

leucaena biomass'<strong>in</strong> Chipata South district, 2001<br />

Treatments After cabbage After onion<br />

(n - 21) (n - 10)<br />

Manure lOt ha·1 + Y2 fertilizer 4.2 3,1<br />

Fully fertilized 3.9 2.5<br />

Gliricidia 12 t ha It 4.9 3.9<br />

Gliricidia 8 thai 4.3 3.3<br />

leucaena 12 t ha I 3.2<br />

Control 2.9 1.7<br />

S.e.d (p - 0.05) 0.48 0.49<br />

.. leucaena 12t ha I was not used <strong>in</strong> onion trials<br />

I Biomass treatments are reported on dry weight basis<br />

N - Number of farmers participat<strong>in</strong>g <strong>in</strong> the experiment<br />

vantage <strong>in</strong> feed<strong>in</strong>g it to livestock <strong>and</strong> then apply<strong>in</strong>g<br />

the manure as a source of N to crops (Mafongoya et<br />

al. 1999). However, <strong>in</strong> other Instances, it has been<br />

shown that it is more advantageous to first feed the<br />

biomass to livestock <strong>and</strong> then apply the result<strong>in</strong>g<br />

manure to crops Gama et al. 1997).<br />

In summary, the biomass transfer system hasgreatest<br />

potential when biomass is of high quality <strong>and</strong><br />

rapidly releases nutrients, the opportunity cost of<br />

labour is low, the value of the crop is high <strong>and</strong> if the<br />

biomass does not have other valued uses other than<br />

as source of nutrients.<br />

Future Research Needs<br />

This synthesis has described the progress that has<br />

been made dur<strong>in</strong>g the past 10 years <strong>in</strong> research efmlOnion<br />

• Onion + maize<br />

6000 ;------------------~<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

• Above nel <strong>in</strong>comes are reported per hectare basis. Average actual area put to cabbage by a<br />

• Above net <strong>in</strong>comes are reported per hectare basis . Average actual area put to onion by a farmer<br />

Figure 8. Net <strong>in</strong>come US$ hal)" from cabbage <strong>and</strong> subsequent<br />

Figure 9. Net <strong>in</strong>come US$ hal)" from onion <strong>and</strong> subsequent maize<br />

maize on 31 vegetable gardens <strong>in</strong> Chipata South District <strong>in</strong> 2001 on 12 vegetable gardens <strong>in</strong> Chipata South District <strong>in</strong> 2001<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 151


<strong>for</strong>ts to underst<strong>and</strong> the mechanisms <strong>in</strong>volved <strong>in</strong><br />

how improved fallows work. A lot of knowledge<br />

has been generated. However other aspects of improved<br />

fallows have received littie research. These<br />

will be highlighted <strong>in</strong> future research directions.<br />

Accumulation of litter on the soil surface <strong>and</strong> micro<br />

climate changes may lead to <strong>in</strong>creased activity of<br />

soil macro fauna under tree fallows, particularly <strong>in</strong><br />

subhumid zones of southern Africa. No reports<br />

have been published on the role of soil fauna, the<br />

functions of specific groups <strong>and</strong> the scope of their<br />

manipulation through quality of biomass produced<br />

by different species. The <strong>in</strong>creased soil fauna will<br />

playa significant positive role <strong>in</strong> litter decomposition,<br />

nutrient m<strong>in</strong>eralization <strong>and</strong> improvement of<br />

soil physical properties. This area deserves further<br />

research.<br />

The work on improved fallows has focused on few<br />

species - such as Sesbania, Tephrosia, Crotalaria <strong>and</strong><br />

Gl~ricidia . With regard to extrapolation, further<br />

work is needed to identify more species <strong>for</strong> improved<br />

fallows. Given a large number of potential<br />

species, the selection process could be accelerated<br />

by creation of a database conta<strong>in</strong><strong>in</strong>g fallow per<strong>for</strong>mance<br />

<strong>in</strong> relation to environmental factors such as<br />

ra<strong>in</strong>fall, soil type <strong>and</strong> chemistry <strong>and</strong> <strong>in</strong>cidence of<br />

pests <strong>and</strong> diseases. Our recent trials across sites<br />

have shown a great potential <strong>for</strong> Tephrosia c<strong>and</strong>ida as<br />

alternative species to Sesbania <strong>and</strong> T. vogelli <strong>and</strong><br />

equally Leucaena coll<strong>in</strong>sii <strong>and</strong> Acacia angustissima as<br />

alternative coppic<strong>in</strong>g fallow species to G. sepium . .<br />

The biophysical limits of improved fallows need be<br />

developed to facilitate scal<strong>in</strong>g up with m<strong>in</strong>imum<br />

research ef<strong>for</strong>ts. Simulation model<strong>in</strong>g, both as a research<br />

<strong>and</strong> extrapolation tool, has a potential <strong>for</strong> <strong>in</strong>tegrat<strong>in</strong>g<br />

research results, identify<strong>in</strong>g key components<br />

or process that merit greater research attention,<br />

identify<strong>in</strong>g ecozones where appropriate fallow'<br />

species <strong>and</strong> management techniques have a good<br />

chance of success.<br />

The debate on global warm<strong>in</strong>g <strong>and</strong> carbon sequestration<br />

has ga<strong>in</strong>ed momentum recently. Agro<strong>for</strong>estry<br />

l<strong>and</strong> use systems have been reported to have<br />

huge potential to sequester soil carbon. However<br />

there are few studies if any <strong>in</strong> Southern Africa,<br />

which have measured C sequestration <strong>in</strong> improved<br />

fallows. The relationship between soil aggregates<br />

<strong>and</strong> carbon storage needs further research.<br />

As noted earlier, the <strong>in</strong>teraction of pests with soil<br />

fertility is ga<strong>in</strong><strong>in</strong>g widespread attention due to<br />

wider <strong>in</strong>terest <strong>in</strong> scal<strong>in</strong>g up of improved fallows. So<br />

far most of the resear.ch ef<strong>for</strong>ts have concentrated on<br />

<strong>in</strong>sects pests <strong>and</strong> nematodes. Equally important are<br />

plant diseases <strong>and</strong> weeds. Little ef<strong>for</strong>t has been <strong>in</strong>vested<br />

<strong>in</strong> these issues. With scal<strong>in</strong>g up across many<br />

ecozones, the <strong>in</strong>cidence of new pests <strong>and</strong> diseases<br />

will <strong>in</strong>crease. Hence, there will be need to monitor<br />

pests <strong>and</strong> diseases with farmers to determ<strong>in</strong>e the<br />

few economic pests to deal with <strong>in</strong> a concerted research<br />

programme. Such work is now underway <strong>in</strong><br />

southern Africa.<br />

Many of the species currently used <strong>in</strong> improved fallows<br />

are prolific seed producers. If not managed<br />

well these species can become <strong>in</strong>vasive weeds <strong>and</strong><br />

become a menace to other ecosystems. To date<br />

there has been no concerted research ef<strong>for</strong>t to determ<strong>in</strong>e<br />

the weed<strong>in</strong>ess of <strong>in</strong>troduced fallow species.<br />

There is urgent need to use current models to predict<br />

the potential of new species to become <strong>in</strong>vasive<br />

weeds, study the reproductive biology <strong>and</strong> design<br />

management ,practices that will reduce the weed<strong>in</strong>ess<br />

of improved fallow species.<br />

On nutrient depleted soils, two-year fallows with<br />

fast grow<strong>in</strong>g legum<strong>in</strong>ous trees such as sesbania <strong>and</strong><br />

tephrosia can replenish soil N stocks <strong>for</strong> the production<br />

of 3 to 4 tlha of maize gra<strong>in</strong> yield , The residual<br />

effects of such fallows extend to 2 to 3 years after<br />

fallow term<strong>in</strong>ation. Ho;vever coppic<strong>in</strong>g fallows like<br />

gliricidia can ma<strong>in</strong>ta<strong>in</strong> maize gra<strong>in</strong> yields of 3 tlha<br />

over an 8-year period after fallow clearance. However,<br />

where soils are deficient <strong>in</strong> P, <strong>in</strong>organic P<br />

sources are needed to <strong>in</strong>crease productivity of the<br />

soil.<br />

Research dur<strong>in</strong>g the last decade has established the<br />

ma<strong>in</strong> mechanisms on how improved fallows work.<br />

Despite significant progress <strong>in</strong> biophysical research<br />

<strong>in</strong> improved fallows <strong>in</strong> southern Africa, the application<br />

of that science by small-scale farmers is still<br />

m<strong>in</strong>imum. The ma<strong>in</strong> challenge now is to <strong>in</strong>crease<br />

the generation of viable <strong>and</strong> acceptable fallow options<br />

that can make improved fallows more productive<br />

to <strong>in</strong>crease the <strong>in</strong>come <strong>and</strong> food security of<br />

small-scale farmers.<br />

Future research issues on biomass transfer will <strong>in</strong>volve<br />

the residual effect of low <strong>and</strong> high quality biomass,<br />

comb<strong>in</strong>ation of organic <strong>and</strong> <strong>in</strong>organic sources<br />

of nutrients, effect of biomass banks on nutrient<br />

m<strong>in</strong><strong>in</strong>g, agronomic research of biomass transfer of<br />

different legum<strong>in</strong>ous species, <strong>and</strong> economic analysis<br />

of the systems.<br />

Acknowledgements<br />

The authors are very grateful to SIDA <strong>and</strong> CIDA <strong>for</strong><br />

fund<strong>in</strong>g this research <strong>for</strong> more than 10 years.<br />

152<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


References<br />

Andriesse, 1986. Area <strong>and</strong> Distribution. The Wetl<strong>and</strong>s<br />

<strong>and</strong> Rice <strong>in</strong> sub-Saharan Africa. Proceed<strong>in</strong>gs<br />

of a Workshop, 4-8 November, 1985,<br />

Ibadan, Nigeria, pp. 15 - 30.<br />

Adejuwan, J.O. <strong>and</strong> Ades<strong>in</strong>a, F.A. 1990. Organic<br />

matter <strong>and</strong> nutrient status under cultivated fallows:<br />

an example of Gliricidia sepium fallows<br />

from South Western Nigeria. Agro<strong>for</strong>estry Systems<br />

10:23-32.<br />

Barrios, E., Kwesiga, F., Buresh, R.J. <strong>and</strong> Sprent, J.I.<br />

1997. Light fraction soil organic matter <strong>and</strong><br />

available nitrogen follow<strong>in</strong>g trees <strong>and</strong> maize.<br />

<strong>Soil</strong> Science Society of America Journal 61:826-831.<br />

Bell, M.R, Faulkner, P., Hotchkiss, R, Lambert, R,<br />

Robert, N. <strong>and</strong> W<strong>in</strong>d ram, A. 1987. The use of<br />

dambos <strong>in</strong> rural development, with reference to<br />

Zimbabwe. F<strong>in</strong>al Report aDA Project R 3869.<br />

Breen, CM., QUllu1, N.W. <strong>and</strong> M<strong>and</strong>er, J.J. (eds)<br />

1997. Wetl<strong>and</strong>s conseroation <strong>and</strong> management <strong>in</strong><br />

southern Africa: Challenges <strong>and</strong> opportunities.<br />

xxviii. IUeN The World Conservation Union.<br />

164 pp.<br />

Buresh, RJ. <strong>and</strong> Tian, G. 1997. <strong>Soil</strong> improvement by<br />

trees <strong>in</strong> sub-Saharan Africa. Agro<strong>for</strong>estry Systems<br />

38:51-76.<br />

Cadisch, G., Gathumbi, S.M., Ndufa, KJ. <strong>and</strong> Giller,<br />

K.E. 2001. Resource acquisition of mixed species<br />

f~lIows - competition or complementarity? In:<br />

Balanced Nutrient Management Systems <strong>for</strong> the<br />

Moist Savanna <strong>and</strong> Hum:d Forest Zones ofAfrica (B.<br />

Vanlauwe, N. Sang<strong>in</strong>ga <strong>and</strong> R Merckx, eds.).,<br />

Kluwer Academic Publishers, Dordrecht, The<br />

Netherl<strong>and</strong>s. Volume In press.<br />

Chenje, M. <strong>and</strong> Johnson, P. (eds) (1996). Water <strong>in</strong><br />

southern Africa. Maseru/Harare: SADC/IUCN/<br />

SARDC<br />

DrechseL P., Ste<strong>in</strong>er, K.G. <strong>and</strong> Hagedorn, F. 1996. A<br />

review on the potential of improved fallows <strong>and</strong><br />

green manure <strong>in</strong> Rw<strong>and</strong>a. Agro<strong>for</strong>estry Systems<br />

33:109-136.<br />

Gachengo, CN. 1996. Phosphorus release <strong>and</strong> availability<br />

on addition of organic materials to phosphorus<br />

fix<strong>in</strong>g. soils. MPhil Thesis, Moi University,<br />

Kenya.<br />

Ganunga R, Yerokun O. <strong>and</strong> Kumwenda JD.T.<br />

1998. Tithonia diversifolia: An organic source of<br />

nitrogen <strong>and</strong> phosphorus <strong>for</strong> maize <strong>in</strong> Malawi.<br />

In: Wadd<strong>in</strong>gton, S.R et al. (Eds), <strong>Soil</strong> <strong>Fertility</strong> Research<br />

<strong>for</strong> Maize-based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi<br />

<strong>and</strong> Zimbabwe., <strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT­<br />

Zimbabwe, Harare, Zimbabwe. pp. 191-194.<br />

Gerner, H. <strong>and</strong> Harris, G. 1993. The use <strong>and</strong> supply<br />

of fertilizers <strong>in</strong> sub-Saharan Africa. In: Reuler,<br />

H.V. <strong>and</strong>Pr~, W. (Eds). The Role of Plant Nutrients<br />

<strong>for</strong> Susta<strong>in</strong>able Food Crop Production <strong>in</strong> sub­<br />

Saharan Africa. Verenig<strong>in</strong>g van Kunstrnest Producenten,<br />

Leidschendam, The Netherl<strong>and</strong>s.<br />

Hullugalle, N.R. <strong>and</strong> ,Kang, B.T. 1990. Effect of<br />

hedgerow species <strong>in</strong> alley cropp<strong>in</strong>g systems on<br />

surface soil physical properties of an Oxic<br />

paleustaJf <strong>in</strong>: southwestern Nigeria. Journal of Agricultural<br />

Science, Cambridge 114:301-307.<br />

ICRAF 1997. Annual Report 1996. International<br />

Centre <strong>for</strong> Research <strong>in</strong> Agro<strong>for</strong>estry, Nairobi,<br />

Kenya.<br />

Jama B.A., Sw<strong>in</strong>kels RA., Buresh RJ. 1997. Agronomic<br />

<strong>and</strong> economic evaluation of organic <strong>and</strong><br />

<strong>in</strong>organic sources of phosphorus <strong>in</strong> western<br />

Kenya. Agronomy Journal 89:597-604.<br />

Jama B, Buresh RJ., Ndufa J.K. <strong>and</strong> ShepherdK.D.<br />

1998. Vertical distribution of roots <strong>and</strong> soil nitrate:<br />

Tree species <strong>and</strong> phosphorus effects. <strong>Soil</strong><br />

Science Society ofAmerica Journal 62:280-286.<br />

Jama B., Buresh RJ. <strong>and</strong> Place F.M. 1998. Sesbania<br />

tree fallow on phosphorus-deficient sites: maize<br />

yield <strong>and</strong> f<strong>in</strong>ancial benefits. Agronomy Journal<br />

90:717-726.<br />

Jiri, O. <strong>and</strong> s. Wadd<strong>in</strong>gton 1998. Leaf pruh<strong>in</strong>gs from<br />

two species of Tithonia raise maize yield <strong>in</strong> Zimbabwe,<br />

but take a lot of labour! Target (<strong>Soil</strong> Fert<br />

Net Newsletter) 16:4-5.<br />

Jonsson, K, Stahl, L. <strong>and</strong> Hagberg, P. 1996. Tree fallows:<br />

a comparison between five tropical tree<br />

species. Biology <strong>and</strong> <strong>Fertility</strong> of <strong>Soil</strong>s 23:50-56.<br />

Kundhl<strong>and</strong>e, G., Govereh, J., Muchena, O. 1995. Socioeconomic<br />

constra<strong>in</strong>ts to <strong>in</strong>creased utilisation<br />

of dambos <strong>in</strong> selected communal areas. In:<br />

Dambo Farm<strong>in</strong>g <strong>in</strong> Zimbabwe: Water Management,<br />

Cropp<strong>in</strong>g <strong>and</strong> <strong>Soil</strong> Potentials <strong>for</strong> Smallholder Farm<strong>in</strong>g<br />

<strong>in</strong> the Wetl<strong>and</strong>s, (Eds ROwen., K Verbeek., J.<br />

Jackson., <strong>and</strong> T. Steenhuis). Harare: CIFAD <strong>and</strong><br />

University of Zimbabwe. pp. 87-96.<br />

Kuntashuia, E., Mafongoya, P.L., Sileshi, G. <strong>and</strong><br />

Lungu, S. 2003. Potential of biomass transfer<br />

technologies <strong>in</strong> susta<strong>in</strong><strong>in</strong>g vegetable production<br />

<strong>in</strong> the wetl<strong>and</strong>s (dambos) of eastern Zambia. Experimental<br />

Agriculture In Press.<br />

Kwesiga, F. <strong>and</strong> Coe, R 1994 Potential of short rotation<br />

sesbania fallows <strong>in</strong> eastern Zambia. Forest<br />

Ecology <strong>and</strong> Management 64:161-170.<br />

Mafongoya P.L. <strong>and</strong> Nair P.K.R 1997. Multipurpose<br />

tree prun<strong>in</strong>gs as a source of nitrogen to maize<br />

under semiarid conditions <strong>in</strong> Zimbabwe. Nitro­<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

153


gen recovery rates <strong>in</strong> relation to prun<strong>in</strong>g quality<br />

<strong>and</strong> method of application. Agro<strong>for</strong>estry Systems<br />

35:47.<br />

Mafongoya P.L., Giller K.E. <strong>and</strong> ~alrn CA. 1998. Decomposition<br />

<strong>and</strong> nitrogen release patterns of tree<br />

prun<strong>in</strong>gs <strong>and</strong> litter. Agro<strong>for</strong>estry Systems 38:77­<br />

97.<br />

Mafongoya P.L., Barak P. <strong>and</strong> Reed J.D. 1999. Carbon,<br />

nitrogen <strong>and</strong> phosphorus m<strong>in</strong>eralization<br />

from multipurpose tree leaves <strong>and</strong> manure from<br />

goats fed these leaves. Biology <strong>and</strong> <strong>Fertility</strong> of<br />

<strong>Soil</strong>s. In press.<br />

Mafongoya, P.L., Barak, P. <strong>and</strong> Reed J.D. 2000. Car­<br />

" bon, nitrogen <strong>and</strong> phosphorus m<strong>in</strong>eralization of<br />

tree leaves <strong>and</strong> manure. Biology <strong>and</strong> <strong>Fertility</strong> of<br />

<strong>Soil</strong>s 30:298-305.<br />

Mapa, RB. <strong>and</strong> Gunasena, H.P.M. 1995. Effect of<br />

alley cropp<strong>in</strong>g on soil aggregate stability of a<br />

tropical Alfiso1. Agro<strong>for</strong>estry Systems 32:237-245.<br />

Maroko J.B., Buresh R.J. <strong>and</strong> Smithson P.C 1998.<br />

<strong>Soil</strong> nitrogen availability as affected by fallowmaize<br />

systems <strong>in</strong> two soils <strong>in</strong> Kenya. Biology <strong>and</strong><br />

<strong>Fertility</strong> of <strong>Soil</strong>s 26:229-234.<br />

Myers RJ.K., Palm CA, Cuevas E., Gunatilleke I.U.<br />

N. <strong>and</strong> Brossard M. 1994. The synchronization of<br />

nutrient m<strong>in</strong>eralization <strong>and</strong> plant nutrient dem<strong>and</strong>.<br />

In: Woomer PL '<strong>and</strong> Swift MJ (eds.) The<br />

Biological Management of <strong>Soil</strong> <strong>Fertility</strong>, John Willey<br />

<strong>and</strong> Sons, Chichester, UK. pp. 81-116.<br />

Mutuo P.K., Mukalama J.P., Agunda J., Kobare S.,<br />

Palm CA., Jama B., K<strong>in</strong>yangi J., Amadola S. <strong>and</strong><br />

Niang A. 2000. 00- farm test<strong>in</strong>g of organic <strong>and</strong><br />

<strong>in</strong>organic phosphorous source on maize <strong>in</strong> Western<br />

Kenya. In: The Biology <strong>and</strong> <strong>Fertility</strong> of Tropical<br />

<strong>Soil</strong>s:TSBF Report, 22 pp.<br />

Nyathi P. <strong>and</strong> Campbell B.M. 1993. The acquisition<br />

<strong>and</strong> use of miombo litter by small-scale farmers<br />

<strong>in</strong> Masv<strong>in</strong>go, Zimbabwe. ,Agro<strong>for</strong>estry . Systems<br />

22:43-48.<br />

Nziguheba G., Palm CA., Buresh RJ. <strong>and</strong> Smithson<br />

P.C 1998. <strong>Soil</strong> phosphorus fractions <strong>and</strong> adsorption<br />

as affected by organic <strong>and</strong> <strong>in</strong>organic<br />

sources. Plant <strong>and</strong> <strong>Soil</strong> 198:159-168.<br />

Nziguheba, G., Merckx, R <strong>and</strong> Palm, CA. 2002.<br />

<strong>Soil</strong> phosphorus dynamics <strong>and</strong> maize response<br />

to different rates of phosphorus fertilizer applied<br />

to an acrisol <strong>in</strong> western Kenya. Plant <strong>and</strong> <strong>Soil</strong><br />

243:1-10.<br />

Onim, J.F.M., Mathuva, M., Otieno, K. <strong>and</strong> Fitzhugh,<br />

H .A. 1990. <strong>Soil</strong> fertility chat.ges <strong>and</strong> response<br />

of maize <strong>and</strong> beans to green manures of<br />

leucaena, sesbania <strong>and</strong> pigeonpea. Agro<strong>for</strong>estry<br />

Systems 12:197-215.<br />

Palm, CA. 1995. Contribution of agro<strong>for</strong>estry trees<br />

to nutrient requirements of <strong>in</strong>tercropped plants.<br />

Agro<strong>for</strong>estry Systems 30:105-124.<br />

Palm CA., Gachengo CN., Delve RJ., Cadisch G.<br />

<strong>and</strong> Giller K.E. 2001. Organic <strong>in</strong>puts <strong>for</strong> soil fertility<br />

management: some rules <strong>and</strong> tools. Agriculture,<br />

Ecosystems <strong>and</strong> Environment 83:27-42.<br />

Rao, M.R, Nair, P.K.R <strong>and</strong> Ong, K. 1998. Biophysical<br />

<strong>in</strong>teractions <strong>in</strong> tropical agro<strong>for</strong>estry systems.<br />

Agro<strong>for</strong>estry Systems 38:3-49.<br />

Raussen, T., Daka, AE., <strong>and</strong> Bangwe, L. 1995. Dambas<br />

<strong>in</strong> Eastern Prov<strong>in</strong>ce: Their agroecology <strong>and</strong> use.<br />

Chipata: MAFF, DepaTtrnent of Agriculture.<br />

Sanchez, P.A 1994. Tropical soil fertility research,<br />

towards the second paradigm. Transactions 15 th<br />

World Congress of <strong>Soil</strong> Science (Acapulco, Mexico)<br />

1: 65-88.<br />

Sanchez, P.A., Shepherd, J.D., Soule, M.J., Place, F.<br />

M., Buresh, RJ., Izac, AM.N., Mokwunye, AU.,<br />

Kwesiga, F.R., Ndiritu, CG. <strong>and</strong> Woomer; P.L.<br />

1997. <strong>Soil</strong>s fertility replenishment <strong>in</strong> Africa: An<br />

<strong>in</strong>vestment <strong>in</strong> natural resource capital In: Buresh<br />

RJ, Sanchez PA <strong>and</strong> Calhoun F (eds) Replenish<strong>in</strong>g<br />

<strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Africa, <strong>Soil</strong> Science Society<br />

of America Special Publication 51. SSSA <strong>and</strong><br />

ASA, Madison, WI, USA. pp 1-46.<br />

Sanchez, P.A et a1. 1997. <strong>Soil</strong> fertility replenishment<br />

<strong>in</strong> Africa: an <strong>in</strong>vestment <strong>in</strong> natural resource capital.<br />

In: Buresh, R.J., Sanchez, P.A. <strong>and</strong> Calhoun,<br />

F. (Eds). Replenish<strong>in</strong>g <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Africa. SSSA,<br />

Wiscons<strong>in</strong>, USA<br />

Sang<strong>in</strong>ga, N., Vanlauwe, B. <strong>and</strong> Danso, S.K.A. 1995.<br />

Management of biological N2-fixation <strong>in</strong> alley<br />

cropp<strong>in</strong>g systems: Estimation <strong>and</strong> contribution<br />

to N balance. Plant <strong>and</strong> <strong>Soil</strong> 174:119-141.<br />

Sang<strong>in</strong>ga, N., Zapata, F., Danso, S.K.A. <strong>and</strong> Bowen,<br />

G.D. 1990. Effect of successive cutt<strong>in</strong>gs on up~<br />

take <strong>and</strong> partition<strong>in</strong>g of nitrogen 15 among plant<br />

parts of Leucaena leucocephala. Biology <strong>and</strong> <strong>Fertility</strong><br />

of <strong>Soil</strong>s 9:37-42.<br />

Sileshi, G. <strong>and</strong> Mafongoya, P.L. 2002. Incidence of<br />

Mesoplatys ochroptera stal (Coleoptera: Chrysomelidae)<br />

on Sesbania sesban <strong>in</strong> pure <strong>and</strong> mixed<br />

species fallows <strong>in</strong> eastern Zambia. Agro<strong>for</strong>estry<br />

Systems I In press.<br />

Snapp, S.$., Mafongoya, P.L. <strong>and</strong> Wadd<strong>in</strong>gton, S.<br />

1998. Organic matter technologies <strong>for</strong> <strong>in</strong>tegrated<br />

nutrient management <strong>in</strong> smallholder cropp<strong>in</strong>g<br />

systems of southern Africa. Agriculture, Ecosystems<br />

<strong>and</strong> Environment 71:185-200.<br />

154<br />

<strong>Gra<strong>in</strong></strong> legull'K!s <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


PIGEON PEA/COWPEA INTERCROP + MAIZE + CASSAVA ROTATIONS<br />

ON SMALLHOLDER FARMS IN THE SOUTHERN<br />

COASTAL AREA OF MOZAMBIQUE<br />

Abstract<br />

CANDIDA CUEMBELO<br />

INIA, Caixa Postal 3658, A v. Das FPLM, 2698,<br />

Mavalane, Maputo 8, Mozambique<br />

Low soil fertility is a limit<strong>in</strong>g factor <strong>for</strong> agriculture production <strong>in</strong> Mozambique that is aggravated by unsusta<strong>in</strong>able<br />

cropp<strong>in</strong>g systems used bysmallhold<strong>in</strong>g farmers. They practice ra<strong>in</strong>fed low <strong>in</strong>put agriculture on l<strong>and</strong> areas that range<br />

from 0.5 to 4 hectares.<br />

This paper gives the background <strong>and</strong> brief <strong>in</strong><strong>for</strong>mation on results from a very <strong>in</strong>itial set of on go<strong>in</strong>g on-farm rotation<br />

experiments on nutrient management carried out <strong>in</strong> Inharrime district with<strong>in</strong> Inhambane prov<strong>in</strong>ce <strong>in</strong> southern Mozambique.<br />

The experiments are conducted on farmers' fields located <strong>in</strong> smallholder farm<strong>in</strong>g areas surround<strong>in</strong>g Nhacoongo<br />

Research Station <strong>and</strong> are based on legumes <strong>in</strong> rotation <strong>and</strong> <strong>in</strong>tercropped with maize <strong>and</strong> cassava. Crop residue <strong>in</strong>corporation<br />

was considered part of the technology. Of the five sites (one farmer=one site), harvest<strong>in</strong>g of cowpea took place <strong>in</strong><br />

three sites only because of environmental stresses <strong>and</strong> yields were low..<br />

Key words: Legume, maize, cassava, <strong>in</strong>tercrop, rotation, l<strong>in</strong> farm experiment<br />

Introduction<br />

Low soil fertility is one of the most limit<strong>in</strong>g factors<br />

<strong>for</strong> agricultural production <strong>in</strong> Mozambique, plus<br />

climatic irregularity <strong>and</strong> adversity <strong>and</strong> soil erosion,<br />

aggravated by unsusta<strong>in</strong>able cropp<strong>in</strong>g systems used<br />

by small-hold<strong>in</strong>g· farmers. In general, the soils of'<br />

Mozambique are low to moderate fertility. <br />

Inadequate soil fertility is one of the major biophy,?ical<br />

constra<strong>in</strong>ts <strong>for</strong> crop production. <strong>Soil</strong> fertility de­<br />

pletion is cont<strong>in</strong>uous due to nutrient losses caused<br />

by poor soil husb<strong>and</strong>ry <strong>and</strong> extractive traditional<br />

methods of cultivation with no replacement of nu­<br />

trients by smallholder farrriers. They practice ra<strong>in</strong><br />

fed agriculture <strong>in</strong> l<strong>and</strong> areas that range from 0.5 to 4<br />

hectares. On average, smallholder farmer maize<br />

yields are very low (about 200-400 kg/ha) <strong>and</strong> <strong>in</strong>organic<br />

fertilizers are unaf<strong>for</strong>dable, aggravated by<br />

constra<strong>in</strong>ed access to credit systems.<br />

In addition, Mozambique's agriculture production<br />

has been greatly affected by the civil war that ended<br />

<strong>in</strong> 1992 followed by adverse conditions such as<br />

droughts <strong>and</strong> floods result<strong>in</strong>g <strong>in</strong> a large food deficit.<br />

Thus, there is a need to <strong>in</strong>crease crop production,<br />

particularly at the level of small farmers. Susta<strong>in</strong>­<br />

able soil fertility management practices have to be<br />

developed, recommended <strong>and</strong> adopted if the objectives<br />

of food security <strong>and</strong> susta<strong>in</strong>able natural re­<br />

source management are to be achieved.<br />

Inharrime district is located on soils that are representative<br />

of soils <strong>in</strong> the coastal belt where low fertility<br />

is the major constra<strong>in</strong>t to crop yields. S<strong>and</strong>y soilS<br />

are predom<strong>in</strong>ant that are characterized by low nu­<br />

trient reserves, low organic matter content <strong>and</strong> low<br />

cation exchange capacity. Nhacoongo research sta­<br />

tion is located with<strong>in</strong> this district <strong>and</strong> it was the<br />

ideal place with<strong>in</strong> Inhambane prov<strong>in</strong>ce <strong>for</strong> the experiment<br />

on rotations. <br />

In Mozambique, about 90 percent of food production<br />

is from Ta<strong>in</strong>fed systems. The major food crops<br />

are maize, sorghum, millet, rice, cassava, bean <strong>and</strong><br />

groundnut <strong>and</strong> other additional crops <strong>and</strong> fruit<br />

trees mostly <strong>in</strong>tercropped. The major part of crop<br />

production is subsistence <strong>and</strong> low <strong>in</strong>put/low out­<br />

put <strong>in</strong> nature. Commercial farm<strong>in</strong>g contributes only<br />

about four percent of total production. The highest<br />

human population density of the agricultural re­<br />

gions is <strong>in</strong> the coastal belt south of the river Save.<br />

There is no correlation, <strong>in</strong> the south, between population<br />

density <strong>and</strong> envirorunental conditions, particularly.<br />

climate <strong>and</strong> soils. However, there is a<br />

strong correlation between climate <strong>and</strong> crop distri­<br />

bution. Cassava <strong>and</strong> maize are the basic staples of<br />

this area, <strong>and</strong> they are known to deplete soil nutrients.<br />

Ma<strong>in</strong>ly because of the environmental conditions,<br />

maize production has decl<strong>in</strong>ed <strong>in</strong> some areas<br />

<strong>and</strong> cassava has exp<strong>and</strong>ed. For many areas, the <strong>in</strong>troduction<br />

of new technologies <strong>for</strong> soil fertility im­<br />

provement may reverse the situation. <br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 155


The first steps to improve soil fertility management<br />

based on legumes has taken place through crop rotation<br />

studies with green manure cover crops <strong>in</strong>clud<strong>in</strong>g<br />

improved fallow (pigeon'p~a, lab-lab <strong>and</strong><br />

cowpea) <strong>in</strong> Nhacoongo Research Station <strong>in</strong> lnhambane<br />

Prov<strong>in</strong>ce. The rotation system consists of three<br />

ma<strong>in</strong> components, namely pigeon pealcowpea<br />

<strong>in</strong>tercrop (hot season), sole maize (cool season) <strong>and</strong><br />

groundnutlcassava <strong>in</strong>tercrop (<strong>in</strong> the follow<strong>in</strong>g hot<br />

season.<br />

Methodology<br />

Site Description <br />

Inharrime district, located <strong>in</strong> the south of Inham­<br />

bane Prov<strong>in</strong>ce, lies from latitude 24°10'30" <strong>and</strong> <br />

24°37'30" South <strong>and</strong> longitude 34°30'00" - 35°25'00" <br />

East. It has 76,518 <strong>in</strong>habitants relay<strong>in</strong>g on subsis­<br />

tence agriculture. <br />

Accord<strong>in</strong>g to the Thornthwaite-modified classifica­<br />

tion (Reddy, 1986), the climate is wet semi-arid <br />

(Table 1). The ra<strong>in</strong>fall is irregular <strong>and</strong> erratic due to <br />

occurrence of low-pressure centers. There are two <br />

grow<strong>in</strong>g seasons (Table 1). <br />

Inharrime is located along the coastal zone. Most of <br />

the soils are s<strong>and</strong>y loams except the low plateau, <br />

then the middle <strong>and</strong> the high plateau. The dom<strong>in</strong>ant <br />

soils are arenosols (Table I), used <strong>for</strong> most of the <br />

crop production. Locally there are fluvisols <strong>and</strong> <br />

soils with hydromorphic properties. <br />

Material <strong>and</strong> Methods <br />

The experiments were planted <strong>in</strong> lnharrime district <br />

(after hav<strong>in</strong>g carried out previous studies at the re­<br />

search station of Nhacoongo) on five smallhold <br />

farmers <strong>in</strong> the areas surround<strong>in</strong>g the research sta­<br />

tion. In consultation with local farmers, the criteria <br />

were based on farmer's availability <strong>and</strong> <strong>in</strong>t~rest, <br />

particularly the ones cultivat<strong>in</strong>g the legumes. At the <br />

trial s,ites, soil samples taken <strong>for</strong> chemical character­<br />

istics <strong>and</strong> texture determ<strong>in</strong>ation showed nutrient <br />

deficiencies (Table 2).<br />

Table 1. Experimental site details<br />

location<br />

Inharrime district<br />

Altitude<br />

43 mabove sea<br />

level<br />

Average 'annual ra<strong>in</strong>fall 800·1000 mm<br />

Annual mean temperature 23·26°C<br />

Potential evapotranspiration 1275mm<br />

Growth period<br />

130·139 days<br />

Ma<strong>in</strong> crop season<br />

September·March<br />

~ Crop season April to September<br />

Dom<strong>in</strong>ant soils<br />

S<strong>and</strong>y soils<br />

Research station soils<br />

S<strong>and</strong>y soils<br />

Farmers fields soils<br />

S<strong>and</strong>y soils<br />

Table 2. <strong>Soil</strong> analysis results of s<strong>and</strong>y soils from a representative<br />

sample of the smallholders farmer'S field areas<br />

Farm Ca Mg K Na Bas8$ pH <strong>in</strong> P % %<br />

H2O Olsen Organic Total<br />

Matter ' N<br />

0.40 0.18 0.08 0.00 0.70 6.1 1.49 0.6 0.06<br />

2 1.11 0.25 0.08 0.06 1.50 5.8 1.08 0.5 0.09<br />

3 0.79 0.30 0.16 0.04 1.30 5.9 1.76 0.6 0.07<br />

4 0.69 0.22 0.12 0.04 1.10 6.0 1.35 0.5 0.07<br />

5 0.10 0.34 0.02 0.02 0.50 ' 5,5 1.22 0.5 0.07<br />

The experiment was arranged <strong>in</strong> a r<strong>and</strong>omized<br />

complete block design with each site be<strong>in</strong>g one replicate<br />

(equivalent to 1 farmer) with three treatments<br />

<strong>in</strong>volv<strong>in</strong>g maize \Z~'.;' mays), cassava (Man<strong>in</strong>hot esculenta)<br />

<strong>and</strong> legumes such as cowpea (Vigna unguiculata),<br />

pigeonpea (Cajanus cajan) <strong>and</strong> groundnut<br />

(Arachis hypogaea). Maize <strong>and</strong> cassava spac<strong>in</strong>g was<br />

0.80"0.40 mana 1"1 m respectively, 0.40"0.40m <strong>for</strong><br />

pigeonpea , 0.80"0.80m <strong>for</strong> cowpea <strong>and</strong> 0,30"0.25 <strong>for</strong><br />

groundnut. The plot area covered 25 m 2 <strong>and</strong> the ~otal<br />

area was 100m 2 , Other <strong>in</strong>puts i..cluded nitrogen<br />

from the legumes <strong>and</strong> the crop residues.<br />

The experimental treatments were <strong>in</strong>tercrop legumes,<br />

cassava <strong>and</strong> maize <strong>in</strong> rotation as follows:<br />

Tl. Maize+Cowpea +Groundnut <strong>in</strong> the wet season<br />

followed by maize <strong>in</strong> the dry season (this <strong>in</strong><br />

one year).<br />

T2. Cowpea + Pigeonpea <strong>in</strong> the wet season <strong>and</strong><br />

sole maize <strong>in</strong> the dry season.<br />

T3; Cassava+Cowpea <strong>and</strong> Groundnut, last<strong>in</strong>g <strong>in</strong><br />

the field with cassava until the end of the dry<br />

season. This represents the normal farmer cropp<strong>in</strong>g<br />

system.<br />

40 kglha of P 20s was applied <strong>in</strong> all treatments s<strong>in</strong>ce<br />

the s<strong>and</strong>y soils are highly phosphorus deficient, expect<strong>in</strong>g<br />

that the Nitrogen <strong>in</strong>put would corne from<br />

the legumes . .<br />

Results <strong>and</strong> Discussion<br />

Ants destroyed groundnut because of late sow<strong>in</strong>g<br />

<strong>and</strong> the dry season maize was not sown because of<br />

drought (long dry spell <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g of the season).<br />

With little ra<strong>in</strong>, cowpea did produce some but<br />

very low yields. As it has been postulated by Parsons<br />

<strong>and</strong> Howe, 1984 <strong>in</strong> Giller <strong>and</strong> Wilson (1991),<br />

this gra<strong>in</strong> legume has the ability to ma<strong>in</strong>ta<strong>in</strong> lower<br />

osmotic potential <strong>in</strong> it's leaves under water stress<br />

conditions. The best per<strong>for</strong>mer among legumes was<br />

pigeonpea that resisted the environmental stress<br />

(ra<strong>in</strong>, temperatures, low fertility).<br />

156<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


TlIJil 3. Means ilf legume gra<strong>in</strong> Results were not consisyields<br />

(kg/hal<br />

tent because of the adr---~--------------~<br />

TreatlThlllt Cowpea Pigeon pea verse environmental.<br />

l' 390 conditions. Very low<br />

2 495 720 yields of all <strong>in</strong>volved<br />

3 250<br />

crops were obta<strong>in</strong>ed<br />

(Table 3). <strong>Legumes</strong> are<br />

affected <strong>in</strong> several ways under such water deficiency<br />

conditions. Survival or rate of growth of microorganisms<br />

or other processes such as plant <strong>in</strong>fection<br />

or nodule development may be affected, as<br />

may the fixation of N2 (Giller <strong>and</strong> Wilson 1991). Furthermore,<br />

their survival is improved by the presence<br />

of clay particles <strong>and</strong> organic matter <strong>in</strong> soils at<br />

high temperatures, as happens <strong>in</strong> s<strong>and</strong>y soils.<br />

However despite all this, farmers did want to cont<strong>in</strong>ue<br />

with the experiment <strong>in</strong> the follow<strong>in</strong>g season<br />

ask<strong>in</strong>g <strong>for</strong> a re<strong>for</strong>mulation, that is, focus<strong>in</strong>g the rotation<br />

on maize <strong>and</strong> legumes exclud<strong>in</strong>g cassava.<br />

<strong>Soil</strong> chemical analyses (Table 2) showed severe nutrient<br />

deficiencies, <strong>in</strong>clud<strong>in</strong>g nitrogen deficiency.<br />

This showed a need to <strong>in</strong>clude a basal fertilization<br />

with this element <strong>in</strong> the follow<strong>in</strong>g seasons <strong>and</strong> not<br />

only phosphorus, aim<strong>in</strong>g to guarantee the <strong>in</strong>itial<br />

plant growth. Measures on soil nutrient status <strong>and</strong><br />

organic matter shall be done dur<strong>in</strong>g the experiment<br />

implementation, to verify effects of the new technologies<br />

on management of s<strong>and</strong>y soil.<br />

References<br />

Wester<strong>in</strong>g, R.M. 1997. Evaluation of length of grow<strong>in</strong>g<br />

period <strong>and</strong> crop grow<strong>in</strong>g possibilities <strong>in</strong> Mozambique.<br />

Nota tecnica no 76-INIA/DTA.<br />

Reddy, S.J. 1986. Agro-climate of Mozambique as<br />

relevant to dry l<strong>and</strong> agriculture. Comunica~ao no<br />

47 INIA/DTA.<br />

Carta Nacional de Solos (escala 1: 1.000.000), 1995.<br />

INIA-DTA-Comunica~ao N° 73.<br />

INIA- DTA 1996. Resultados da avalia~ao<br />

generalizada para as para as culturas de milho,<br />

mapira e mexoeira.<br />

Pililao, F. 1974-1987. Evolu~ao da toponomia e da<br />

divisao territorial.<br />

Giller; K.E. <strong>and</strong> K.J. Wilson, 1991. Nitrogen Fixation<br />

<strong>in</strong> Tropical Cropp<strong>in</strong>g Systems, CABI International,<br />

Wall<strong>in</strong>g<strong>for</strong>d, UK.<br />

Grl<strong>in</strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> SOil <strong>Fertility</strong> <strong>in</strong> Southern Africa 157


Questions <strong>and</strong> Answers <br />

.Identification of Best Bet <strong>Legumes</strong> <strong>for</strong> On-farm Per<strong>for</strong>mance as <strong>Gra<strong>in</strong></strong> <strong>Legumes</strong>, <br />

Intercrops, Rotations, <strong>and</strong> <strong>Green</strong> <strong>Manures</strong><br />

.<br />

To Webster Sakala <strong>and</strong> Wezi Mhango<br />

Q: In the <strong>in</strong>tercrop <strong>and</strong> rotation practices on maize<br />

cultivation, what levels of additional fertilizers were<br />

added apart from the green manures?<br />

A: On average, it was half the requirement of the<br />

maize crop, which was around 40 kg N ha- 1 , but it is<br />

difficult to give a specific figure because we looked<br />

at several studies.<br />

Q: Results of green manures <strong>and</strong> gra<strong>in</strong> legumes<br />

appear to be promis<strong>in</strong>g <strong>in</strong> Malawi. What is the<br />

uptake rate of these technologies among<br />

smallholder farmers? What were the yields of<br />

soyabean <strong>in</strong>tercropped with maize? I thought that<br />

soyabean is very sensitive to shad<strong>in</strong>g.<br />

A: The gra<strong>in</strong> legumes/green manures are currently<br />

be<strong>in</strong>g promoted amongst the smallholder farmers.<br />

The farmers make choices depend<strong>in</strong>g on the<br />

resources that they have, e.g. l<strong>and</strong>, so that if they<br />

have less l<strong>and</strong> they go <strong>for</strong> <strong>in</strong>tercropp<strong>in</strong>g, <strong>and</strong> <strong>for</strong><br />

improved fallows or rotation if l<strong>and</strong> is more<br />

plentiful. Soya bean is usually grown <strong>in</strong> pure<br />

st<strong>and</strong>s.<br />

Q: As early <strong>in</strong>corporation of green manures may<br />

cause an N loss due to early showers (leach<strong>in</strong>g), the<br />

nutrient supply could have been better if the<br />

legumes were <strong>in</strong>corporated late, to synchronize the<br />

peak N dem<strong>and</strong> of maize with nutrient release.<br />

What is your comment o,n that?<br />

A: This is not a problem <strong>in</strong> Malawi because of the<br />

nature of our ra<strong>in</strong>fall where after <strong>in</strong>corporation we<br />

experience a 6-8 month dry season be<strong>for</strong>e the next<br />

grow<strong>in</strong>g season. This may be a problem <strong>in</strong> countries<br />

where they receive some heavy showers be<strong>for</strong>e the<br />

next crop season.<br />

To Dennis Friesen, et al.<br />

Q: It looks like you do not have a soil fertility <br />

problem <strong>in</strong> East Africa because you get up to 6 t/ha <br />

maize gra<strong>in</strong> yield. At one site you get almost 5 t/ha <br />

without fertilizer <strong>and</strong> 6 t/ha with fertilizer, <br />

display<strong>in</strong>g a low response to fertilizer. <br />

A: Generally those high maize yields without <br />

fertilizer were obta<strong>in</strong>ed <strong>in</strong> trials conducted on <br />

station where the soils are better <strong>and</strong> where there <br />

has been a history of fertilizer use. Yields on farm <br />

were generally closer to the mean yields reported <br />

<strong>for</strong> the region (1-2 t/ha) L with some exceptions <strong>in</strong><br />

high potential areas.<br />

Q: Did you apply any fertilizer when you<br />

<strong>in</strong>tercropped <strong>and</strong> how much?<br />

A: In general, DAP is applied to the maize adjacent<br />

to the plant<strong>in</strong>g hole at the recommended rate, which<br />

varies <strong>in</strong> the region (generally around 46 kg P20S /<br />

ha).<br />

Q: Intercrops are notoriously difficult to manage,<br />

<strong>and</strong> where they work can depend on various site<br />

effects. Yet some have been very successful. How<br />

can we move towards mak<strong>in</strong>g predictions of where<br />

they will succeed, <strong>and</strong> recommendations <strong>for</strong> their<br />

management?<br />

A: Factors that affect the growth of the <strong>in</strong>tercrop<br />

such as moisture, soil fertility, light penetration of<br />

the maize canopy, can probably be used to predict<br />

<strong>in</strong>tercrop growth us<strong>in</strong>g a modell<strong>in</strong>g approach.<br />

However, farmers need rules of thumb to predict<br />

when to 'plant the <strong>in</strong>tercrop, what maize varieties to<br />

<strong>in</strong>tercrop <strong>in</strong>to, etc. Perhaps modell<strong>in</strong>g can help to<br />

develop these guidel<strong>in</strong>es.<br />

To Nhamo Nhamo, et al.<br />

Q: Did you check the specific names <strong>for</strong> the cowpea<br />

varieties that the farmers received from donors?<br />

A: Yes but we asked <strong>for</strong> the local names <strong>for</strong> these<br />

varieties, so if it was <strong>in</strong>troduced by the donor <strong>and</strong><br />

the farmers did not remember then we could have<br />

missed them.<br />

To Paul<strong>in</strong>e Chivenge, et al.<br />

Q: It would be useful to establish how the various<br />

legumes per<strong>for</strong>m under amount of ra<strong>in</strong>fall. Did you<br />

conduct correlation analysis <strong>for</strong> ra<strong>in</strong>fall?<br />

A: No, the drought did not allow that.<br />

Q: The low available P <strong>in</strong> your soil is not consistent<br />

with the high biomass yield. Could this observation<br />

suggest that the plants are obta<strong>in</strong><strong>in</strong>g P from<br />

<strong>in</strong>soluble P soil sources?<br />

A: Quite right, but also the northern part of Zambia<br />

where these yields were obta<strong>in</strong>ed received very<br />

good ra<strong>in</strong>fall.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

159


To Laurence Jasi, et al.<br />

C: One should not expect to see a significant effect<br />

of legumes on Striga <strong>in</strong>festation after one crop. Our<br />

experience <strong>in</strong> Western Kenya is that-the effects<br />

require long term implementation of rotations s<strong>in</strong>ce<br />

the purpose of the legumes are to 1) stimulate<br />

suicidal Striga germ<strong>in</strong>ation, <strong>and</strong> 2) improve soil<br />

fertility <strong>and</strong> biological activity to reduce the Striga<br />

seed bank <strong>in</strong> soil. This requires several seasons of<br />

rotation.<br />

Q: Can crop models be used to predict the result of<br />

this experiment?<br />

A: There is some capacity <strong>in</strong> APSIM to look at crop<br />

x weed <strong>in</strong>teractions <strong>and</strong> weed management issues.<br />

For parasitic weeds however, the model is not<br />

parameterized (due to limited underst<strong>and</strong><strong>in</strong>g of th'e<br />

science) to h<strong>and</strong>le parasitic weeds like Striga.<br />

Q: Your treatments did not reduce Striga emergence<br />

below that <strong>in</strong> the control, but your conclusion is not<br />

that your hypothesis should be rejected, but that<br />

more work is needed. Why not simply conclude<br />

that green manures do not (<strong>in</strong> this case) usefully<br />

reduce Striga emergence?<br />

A: It is too early to make a conclusion. <strong>Green</strong><br />

manures can <strong>in</strong>duce the suicidal germ<strong>in</strong>ation of<br />

Striga. With time the Striga seed bank is reduced. In<br />

the long term, probably positive results may be<br />

obta<strong>in</strong>ed.<br />

To Paramu Mafongoya, et al.<br />

Q: When is manure supposed to be called manure?<br />

At times you have 10 t of material, of which 2 t is<br />

organic manure <strong>and</strong> 8 t of s<strong>and</strong>!<br />

A: Analyze the manure <strong>for</strong> s<strong>and</strong> <strong>and</strong> other materials<br />

<strong>and</strong> then you can correct <strong>for</strong> s<strong>and</strong>.<br />

Q: You have shown that <strong>in</strong>corporation of<br />

legum<strong>in</strong>ous tree biomass (e.g. Gliricidia) <strong>in</strong>creased<br />

pH significantly. There is some work from<br />

Australia <strong>in</strong>dicat<strong>in</strong>g that grow<strong>in</strong>g legumes acidifies<br />

the soil significantly. Do you feel the cation/base<br />

concentration <strong>in</strong> the tree biomass justifies the<br />

<strong>in</strong>crease <strong>in</strong> pH?<br />

A: This is expla<strong>in</strong>ed by leach<strong>in</strong>g of N03 <strong>and</strong><br />

accompany<strong>in</strong>g Mg2+ dur<strong>in</strong>g the cropp<strong>in</strong>g phase<br />

when there is no tree to recover N. In coppic<strong>in</strong>g<br />

fallows this expla<strong>in</strong>ed the addition of cations <strong>in</strong> tree<br />

biomass.<br />

Q: How successful are agro<strong>for</strong>estry technologie's<br />

such as improved fallows <strong>in</strong> improv<strong>in</strong>g soil fertility<br />

<strong>in</strong> degraded soils like those <strong>in</strong> Kagoro <strong>in</strong> eastern ­<br />

Zambia where ICRAF is located?<br />

A: In Kagoro soils, mixtures of Glricidia <strong>and</strong> Sesbania<br />

gave maize yields of 3 t/ha compared to 4 t/ha <strong>for</strong><br />

fully fertilized maize.<br />

Q:<br />

(1) It is good that now we are beg<strong>in</strong>n<strong>in</strong>g to put<br />

science to the observations of the benefits of<br />

agro<strong>for</strong>estry trees that have been demonstrated<br />

over the years.<br />

(2) How could soil loss from runoff have been<br />

measured <strong>in</strong> October as <strong>in</strong>dicated by the data?<br />

A: The data were collected by ra<strong>in</strong>fall simulation <br />

techniques. <br />

160<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


MUCUNA - MAIZE ROTATIONS AND SHORT FALLOWS TO<br />

REHABILITATE SMALLHOLDER FARMS IN MALAWI<br />

WEBSTER D. SAKALA, IVY LlGOWE <strong>and</strong> D. KAYIRA<br />

Chitedze Agricultural Research Station, P. O. Box 158, Lilongwe, Malawi<br />

Abstract<br />

An experiment was <strong>in</strong>itiated <strong>in</strong> the 1999/2000 season to evaluate four different ways of improv<strong>in</strong>g maize yields on degraded<br />

<strong>and</strong> ab<strong>and</strong>oned parts of smallholder farms <strong>in</strong> Lilongwe, Kasungu <strong>and</strong> Mzuzu Agricultural Development Divisions<br />

(ADD) <strong>in</strong> Malawi. Selected sites were farm fields ab<strong>and</strong>oned by farmers due to very low maize yields. In the first<br />

season (2000/2001), two treatments were planted with maize, which was either fertilized with an area specific fertilizer<br />

recommendation or not fertilized. The other two treatments were planted either to a one-year improved fallow of mucuna<br />

or left to a natural fallow. In the second season (2001/2002) maize was planted to all the four plots without fertilizer except<br />

a control where fertilized maize followed fertilized maize. Average maize yields from the four sites ranged from 0.8 t<br />

(at Vibangalala) to 2.0 t ha·1 (at Zombwe). Maize gra<strong>in</strong> <strong>and</strong> stover yields (3.6 t ha- I <strong>and</strong> 6.8 t ha- I ) were highest <strong>and</strong> differed<br />

significantly where maize was fertilized with the hybrid maize. area specific fertilizer recommendation compared<br />

with other treatments. For the non-fertilized plots, maize follow<strong>in</strong>g mucuna had the highest gra<strong>in</strong> <strong>and</strong> stover yields of<br />

1.5 <strong>and</strong> 3.5 t ha- I respectively. Total N yield <strong>for</strong> both gra<strong>in</strong> <strong>and</strong> stover followed the trend of maize yield. Nitrogen concentration<br />

<strong>in</strong> the gra<strong>in</strong> was not significantly different between treatments. These results <strong>in</strong>dicate that resource poor<br />

farmers with ab<strong>and</strong>oned fields who cannot af<strong>for</strong>d fertilizers would benefit by us<strong>in</strong>g green manure improved fallows compared<br />

to cont<strong>in</strong>uous cropp<strong>in</strong>g with maize or leav<strong>in</strong>g the field to a natural fallow.<br />

Key words: Mucuna, maize rotation, short fallow, area specific fertilizer recommendation, smallholder farm, rehabilitation<br />

Introduction<br />

Results from <strong>in</strong>itial assessments of the mucuna-maize<br />

rotation system conducted on-farm <strong>and</strong> on station <strong>in</strong><br />

Malawi from 1997/98 to 1999/2000 showed that<br />

maize yields follow<strong>in</strong>g unfertilized MUClma<br />

(Kalongonda) were significantly higher than maize<br />

yields after cont<strong>in</strong>uous unfertilized maize (up to 3.5 t<br />

ha- 1 vs. 1 t ha- 1 ) (Sakala et al. 2000; Gilbert <strong>and</strong> Kumwenda,<br />

2001; Sakala et al. 2001; Sakala <strong>and</strong> Mhango,<br />

2003). Tlle results showed that Mucuna could be a<br />

good alternative source of fertilizer <strong>for</strong> maize production<br />

<strong>in</strong> Malawi <strong>for</strong> farmers who cannot af<strong>for</strong>d fertilizer.<br />

In the same work, it was clear that the best way to<br />

manage mucuna <strong>in</strong> a maize based cropp<strong>in</strong>g system is<br />

through rotation rather than <strong>in</strong>tercropp<strong>in</strong>g or relay<br />

cropp<strong>in</strong>g of mucuna with maize. The objectives of the<br />

new work descr:ibed here were to i) demonstrate to<br />

more farmers that mucuna can be used <strong>for</strong> rehabilitat<strong>in</strong>g<br />

smallholder farms, ii) collaborate with Non Governmental<br />

Organizations (NGO) on scal<strong>in</strong>g up this<br />

promis<strong>in</strong>g technology <strong>and</strong> iii) measure the yield <strong>and</strong><br />

nutrient benefits of the technology on farms.<br />

Materials <strong>and</strong> methods<br />

The experiment was <strong>in</strong>itiated <strong>in</strong> the 1999/2000 season<br />

<strong>in</strong> Ntheu, Kasungu, <strong>and</strong> Vibangalala Extension<br />

Plarm<strong>in</strong>g Areas (EPA) <strong>in</strong> Lilongwe, Kasungu <strong>and</strong><br />

Mzuzu ADDs. The soil characteristics at the sites are<br />

<strong>in</strong> Table 1. In the first season (~000/2001), two treatments<br />

were planted with maize, which was either<br />

fertilized or not fertilized, <strong>and</strong> the other two treatments<br />

were either planted to a one year improved<br />

fallow of mucuna or left to a natural fallow. In the<br />

second season (2001/2002), maize without fertilizer<br />

was planted to all the four plots, except the first<br />

treatment where fertilized maize followed fertilized<br />

maize. Crop residues were <strong>in</strong>corporated at the end<br />

of the first season.<br />

The four treatments were arranged <strong>in</strong> a r<strong>and</strong>omized<br />

complete block, with farmers as replicates. Each plot<br />

comprised of 10 rows spaced at 90 cm <strong>and</strong> 10 m<br />

long. Maize seed was planted at 37000 plants per ha<br />

(0.9 m x 0.9 m x 3 plants). The sale crop of maize<br />

received 35:10:0+2S (N:P20s+S) per hectare from<br />

23:21:4S as a basal fertilizer, <strong>and</strong> from urea as atop<br />

dress<strong>in</strong>g. Maize yield was determ<strong>in</strong>ed by harvest<strong>in</strong>g<br />

four middle rows (each 9.1 m long) of each plot, <strong>and</strong><br />

the yield was adjusted to 12.5% moisture content.<br />

Mucuna was planted at 74407 seeds per hectare (90<br />

m x 15 m x 1 plant) <strong>in</strong> 2000/2001. Maize yields were<br />

analyzed us<strong>in</strong>g GENST AT (Payne, 1978). Analysis<br />

of variance was the ma<strong>in</strong> procedure used <strong>for</strong> test<strong>in</strong>g<br />

significances of differences between means.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 161


Table 1. <strong>Soil</strong> characteristics of some selected parameters across<br />

four sites at the end of the second season <strong>in</strong> 2002<br />

Treatment pH OM (%) NOl (ppm) NH4 (ppm)<br />

Fertilised maize 5.5 3.0 1.3.8 99.7<br />

Unfertilised maize 5.5 3.5 14.1 84.2<br />

Maize after 5.5 3.8 13.3 65.1<br />

mucuna<br />

Maize after 5.5 4.1 12.1 66.3<br />

natural fallow<br />

SED Prob SED Prob SED Prob SED Proo<br />

Site 0.13 < 0.001 0.49 < 0.001 2.39 < 0.037 15.4 < 0.001<br />

Treatment 0.13 NS 0.494 NS 2.39 NS 15.4 NS<br />

Site xTrt. 0.264 NS 0.988 NS 4.78 NS 30.2 NS<br />

Results<br />

<strong>Soil</strong> chemical characteristics of the treatments<br />

There were no significant differences at the end of<br />

the second season on soil chemical characteristics,<br />

although organic matter tended to be higher follow<strong>in</strong>g<br />

the natural fallow <strong>and</strong> mucuna compared to unfertilized<br />

<strong>and</strong> fertilized maize monocultures (Table<br />

1).<br />

Effects of mucuna on soil cover compared to natural<br />

fallow<br />

No measurements were taken on soil cover <strong>in</strong> plots<br />

with the short term fallow of mucuna <strong>and</strong> the plots left<br />

to natural fallow. However, farmers <strong>in</strong> the study sites<br />

observed that where mucuna was planted there was a<br />

good soil cover compared with the plots left to natural<br />

fallows.<br />

Effect of treatments on maize gra<strong>in</strong> <strong>and</strong> stover<br />

yield<br />

Average maize gra<strong>in</strong> yield was highest where maize<br />

was fertilized with the area specific fertilizer recommendation.<br />

For the non-fertilized plots, maize follow<strong>in</strong>g<br />

mucuna had the highest gra<strong>in</strong> yield (1.5 t<br />

ha·1) <strong>and</strong> highest stover yield (with 3.5 t ha- 1 )<br />

(Tables 2a <strong>and</strong> b). The lowest <strong>in</strong>aize gra<strong>in</strong> yield (0.4<br />

t ha- 1 ) was from plots where unfertilized maize followed<br />

unfertilized maize (Tables 2a <strong>and</strong> b). Among<br />

the -twenty-six sites, V<strong>in</strong>galala site had the lowest<br />

average maize yield of 0.8 t ha- 1 but had similar<br />

maize yield trends to the other sites.<br />

Figure 1. <strong>Gra<strong>in</strong></strong> <strong>and</strong> stover nitrogen across sites <strong>for</strong> four maize­<br />

mucuna systems <strong>in</strong> Malawi<br />

Effect of treatments on gra<strong>in</strong> <strong>and</strong> stover N yield<br />

Nitrogen yield <strong>for</strong> both gra<strong>in</strong> <strong>and</strong> stover (Figure 1)<br />

was highest <strong>for</strong> the fertilized treatments followed by<br />

the maize follow<strong>in</strong>g mucuna treatment, with the<br />

least gra<strong>in</strong> <strong>and</strong> stover yield obta<strong>in</strong>ed from maize<br />

that followed the natural fallow. There were significant<br />

differences <strong>in</strong> nitrogen concentration <strong>in</strong> the<br />

gra<strong>in</strong> due to sites; the lowest nitrogen concentration<br />

was obta<strong>in</strong>ed from Vibangalala <strong>and</strong> the highest<br />

from Kasungu. The N.<strong>in</strong> the maize crop after mucuna<br />

was almost double that from unfertilized<br />

maize.<br />

162<br />

Effect of sites <strong>and</strong> treatments on N concentration<br />

There were significant differences <strong>in</strong> nitrogen concentration<br />

<strong>in</strong> the gra<strong>in</strong> due to sites_ The lowest nitrogen<br />

concentration was obta<strong>in</strong>ed from Vibangala site<br />

<strong>and</strong> the highest concentration was from Kasungu<br />

(Table 3). The N <strong>in</strong> the maize crop after mucuna was<br />

almost double that from unfertilized maize.<br />

Conclusion<br />

Similar yield trends were obs~rved at all four sites<br />

<strong>and</strong> strongly <strong>in</strong>dicate that resource poor farmers<br />

who cannot af<strong>for</strong>d fertilizers would benefit a lot by<br />

Table 2a. Maize gra<strong>in</strong> yield (t hal) from 26 farms located at four<br />

sites <strong>in</strong> 2001/2002<br />

Site No. of Fert- Unfert· Maize Maize Mean<br />

farms ilized ilized after after (t hal)<br />

Maize Maize Mucuna Fallow<br />

Ntcheu 6 3.6 1.1 1.6 1.4 1.9<br />

Kasungu 5 1.7 0.8 1.2 0.9 1.1<br />

Vangalala 6 1.4 0.4 0.7 0.6 0.8<br />

Zombwe 5 3.6 0.9 2.4 1.3 2.0 .<br />

Mean 2.6 0.8 1.5 1.0 1.5<br />

SED Prob.<br />

Site 0.248


Table 3. Percent nitrogen (% N) concentration <strong>in</strong> the gra<strong>in</strong> at<br />

maize harvest<br />

No of Fertilised Unfertilised Maize Maize Mean<br />

farms Maize Maize after Mu· .after<br />

cuna Fallow<br />

Ntcheu 6 1.4 1.3 1.6 1.1 1.4<br />

Kasungu 5 1.7 1.4 1.9 1.5 1.6<br />

Vangalala 6 1.1 0.95 0.9 0.78 0.9<br />

Zombwe 5 1.8 1.55 1.5 1.5 1.6<br />

Mean 1.5 1.3 1.5 1.2 1.4<br />

SED Prob. <br />

Site 0.15


RESIDUAL EFFECTS OF FORAGE LEGUMES ON SUBSEQUENT MAIZE<br />

YIELDS AND SOIL FERTILITY IN THE SMALLHOLDER<br />

FARMING SECTOR OF ZIMBABWE<br />

WALTER MUPANGWA 1, HAPPYMORE NEMASASI 2 , R. MUCHADEYI 3 ,<br />

<strong>and</strong> G.J. MANYAWU 3<br />

12 <strong>Soil</strong> Productivity Research Laboratories, P. Bag 3757, Marondera <br />

(' Present address, International Crops Research Institute <strong>for</strong> the Semi-Arid Tropics, <br />

POBox 776, Bulawayo) <br />

3 Grassl<strong>and</strong>s Research Station, P. Bag 3701, Marondera, Zimbabwe <br />

Abstract<br />

The use of<strong>for</strong>age legumes as an alternative to m<strong>in</strong>eral N sources has shown potential <strong>in</strong> many <strong>in</strong>tegrated livestock/crop<br />

production systems. The objective of our research was to demonstrate the effect of <strong>for</strong>age legume residues (litter <strong>and</strong><br />

roots) on maize yield <strong>and</strong>, soil N, P <strong>and</strong> organic carbon levels. On-farm trials were established <strong>in</strong> Wedza (Natural Region<br />

II <strong>and</strong> III) <strong>and</strong> Buhera (Natural Region IV) districts of Zimbabwe. The treatments were: maize only, maize/cowpea<br />

<strong>in</strong>tercrop, maizelvelvetbean <strong>in</strong>tercrop, maizellablab <strong>in</strong>tercrop, sole lablab, sole cowpea, sole velvetbean <strong>and</strong> ley <strong>in</strong> the<br />

1998/99 <strong>and</strong> 1999/2000 seasons. In the 2000/2001 season, all plots were planted to a maize crop.<br />

In Natural Region II the order <strong>in</strong> which maize gra<strong>in</strong> yield <strong>in</strong>creased <strong>in</strong> response to the treatments was maize/cowpea ><br />

maizellablab > velvetbean > maizelvelvetbean > maize> cowpea> ley. In Natural Region III the order of highest subsequent<br />

maize Ylelds was: cowpea> maizellablab > ley > maize/cowpea z lablab > maizelvelvetbean > maize z lablab. In<br />

Natural Region IV, maize/cowpea <strong>in</strong>tercropp<strong>in</strong>g recorded the highest gra<strong>in</strong> yield (1.75 t/ha). Residual soil m<strong>in</strong>eral N<br />

content was lowest under cont<strong>in</strong>uous maize cropp<strong>in</strong>g <strong>in</strong> all three Natural Regions. In the drier regions, soil N content<br />

<strong>in</strong> the ley treatment was comparable to legume treatments, but it was low <strong>in</strong> NR II. In NR II, maize/cowpea <strong>in</strong>tercropp<strong>in</strong>g<br />

<strong>and</strong> velvetbean sole cropp<strong>in</strong>g had the highest available soil P concentration. The same trend was observed <strong>in</strong> NR III<br />

<strong>and</strong> IV, but the residual P levels were lower <strong>in</strong> drier regions compared with that of NR II. Rotation of maize with sole<br />

velvetbean <strong>and</strong> maize/cowpea <strong>in</strong>tercrop gives the highest maize yield ga<strong>in</strong>s. Residual N ga<strong>in</strong>s were higher <strong>in</strong> sole<br />

cropped legumes than <strong>in</strong>tercrops <strong>in</strong> high ra<strong>in</strong>fall areas whereas <strong>in</strong> drier areas ley gave the highest resi~ual N benefit.<br />

Key words: <strong>for</strong>age legumes, <strong>in</strong>tercropp<strong>in</strong>g, maize yield, m<strong>in</strong>eral nitrogen, organic carbon, residual effect, soil P.<br />

Introduction<br />

The farm<strong>in</strong>g system <strong>in</strong> the smallholder-farm<strong>in</strong>g<br />

sector of Zimbabwe is characterized by a close <strong>in</strong>tegration<br />

<strong>and</strong> complementarity of crop <strong>and</strong> livestock<br />

production. Cont<strong>in</strong>uous cultivation with no <strong>and</strong><br />

sometimes m<strong>in</strong>imum organic <strong>and</strong> <strong>in</strong>organir: fertilizer<br />

<strong>in</strong>puts has led to soil impoverishment which<br />

has been named as one. of t!:te major causes of decl<strong>in</strong><strong>in</strong>g<br />

crop yields. Ef<strong>for</strong>ts to improve the quality<br />

<strong>and</strong> quantity of graz<strong>in</strong>g <strong>in</strong> the communal rangel<strong>and</strong><br />

through methods such as veld re<strong>in</strong><strong>for</strong>cement <strong>and</strong><br />

good graz<strong>in</strong>g range management practices have<br />

been defeated by the 'tragedy of · the commons'<br />

(Scoones, 1994). The widespread use of <strong>in</strong>organic<br />

fertilizers has been stopped by the high costs<br />

of the fertilizers while the manure is largely of poor<br />

quality <strong>and</strong> is often not available <strong>in</strong> sufficient quantities.<br />

Integration of legumes <strong>in</strong>to predom<strong>in</strong>antly cereal<br />

cropp<strong>in</strong>g systems is one way of improv<strong>in</strong>g soil nitrogen<br />

(N) status of the soil through biological nitrogen<br />

fixation. The <strong>for</strong>age legumes will <strong>in</strong> turn provide<br />

additional high quality feed <strong>for</strong> livestock. In<br />

addition, through <strong>in</strong>tensive cultivation, arabl~ l<strong>and</strong>s<br />

can assist <strong>in</strong> provid<strong>in</strong>g supplementary <strong>for</strong>age <strong>and</strong><br />

other products <strong>for</strong> livestock feed . This will ease the<br />

pressure on already degraded less productive<br />

rangel<strong>and</strong>s.<br />

Forage legumes are known to improve soil physical<br />

<strong>and</strong> chemical properties. Data from Chalk (1996)<br />

have shown that cereals <strong>in</strong>tercropped with gra<strong>in</strong><br />

legumes benefit <strong>in</strong> terms of <strong>in</strong>creased gra<strong>in</strong> <strong>and</strong> N<br />

yields. Literature reports that N is a key factor <strong>in</strong> the<br />

response qf cereals follow<strong>in</strong>g legumes compared<br />

with cereals follow<strong>in</strong>g non-legumes. The legume<br />

may potentially add N to the soil . N pool through<br />

symbiotic N2 fixation, <strong>and</strong> it may also remove less<br />

<strong>in</strong>organic N from the soil compared with the cereal.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 165


~e decomposition of legume residues dur<strong>in</strong>g the<br />

post harvest fallow period preced<strong>in</strong>g the sowir,g of<br />

a cereal may expla<strong>in</strong> differences <strong>in</strong> !he relative contribution<br />

of fixed-N to the N economies of <strong>in</strong>tercropped<br />

<strong>and</strong> rotation systems (Peoples <strong>and</strong> Herridge,<br />

1990). Thus cereals cropped <strong>in</strong> sequence with<br />

legumes derive N benefits compared with cereal<br />

monocul ture.<br />

Hybrid maize (Zea mays L.) is a crop that requires<br />

<strong>and</strong> extracts high amounts of nutrients, which produces<br />

optimal <strong>and</strong>/or economic yields <strong>in</strong> highly fertilized<br />

soils' or soils of high <strong>in</strong>herent fertility status,<br />

provided ra<strong>in</strong>fall is not limit<strong>in</strong>g. Most of Africa is<br />

struggl<strong>in</strong>g with structural adjustment programs that<br />

have left resource poor farmers <strong>in</strong> serious economic<br />

problems. The prices of most agricultural <strong>in</strong>puts<br />

have been escalat<strong>in</strong>g while the f<strong>in</strong>ancial resources of<br />

peasant farmers are dw<strong>in</strong>dl<strong>in</strong>g. Resource poor farmers<br />

can hardly af<strong>for</strong>d to buy m<strong>in</strong>eral fertilizers. The<br />

effect of <strong>in</strong>tercropp<strong>in</strong>g legumes with tropical cereals<br />

has been reported. Gryseels <strong>and</strong> Anderson (1983),<br />

Dzowela (1987), Natarajan <strong>and</strong> Shumba (1989) <strong>and</strong><br />

Manyawu (1994) have reported the effects of the<br />

legume component on the cereal crop (maize) <strong>in</strong><br />

<strong>in</strong>tercropp<strong>in</strong>g. In Zimbabwe, a nitrogen equivalent<br />

of 40 to 7S kg N/ha has been realized <strong>in</strong> legume/<br />

maize crop rotations (Mukurumbira, 1985). Biological<br />

nitrogen fixation (BNF) is an enormous potential<br />

<strong>for</strong> the ma<strong>in</strong>tenance <strong>and</strong> improvement of soil fertility<br />

<strong>in</strong> the tropics.<br />

The ma<strong>in</strong> objective of this study was to evaluate th~<br />

effect of <strong>in</strong>tercropp<strong>in</strong>g <strong>and</strong> rotat<strong>in</strong>g <strong>for</strong>age legumes<br />

with maize on maize yield <strong>and</strong> soil fertility. Specific<br />

objectives were to determ<strong>in</strong>e the residual effect of<br />

<strong>for</strong>age legumes on (a) maize gra<strong>in</strong> yield (b) aboveground<br />

biomass <strong>and</strong> litter yields of the tegumes (c)<br />

soil m<strong>in</strong>eral N levels (d) soil organic carbon content,<br />

<strong>and</strong> (e) soil P content.<br />

Materials <strong>and</strong> Methods<br />

Experimental sites <br />

On farm trials were established <strong>in</strong> Natural Regions <br />

(NR) II, 1II <strong>and</strong> IV of Wedza (Mashonal<strong>and</strong> East <br />

prov<strong>in</strong>ce) <strong>and</strong> Buhera (Manical<strong>and</strong> prov<strong>in</strong>ce) dis­<br />

tricts. Two wards, Chamatendere (NR II) <strong>and</strong> Ma­<br />

dzimbabwe (NR III), were selected <strong>in</strong> Wedza dis­<br />

trict. Another ward (Gaza Munyanyi) was selected <br />

from Buhera district. Three farmers were identified <br />

<strong>in</strong> each ward through consultatIon with extension <br />

officers <strong>and</strong> farmers. <br />

Trial establishment <br />

The treatments were as follows: sole maize, maize/ <br />

cowpea <strong>in</strong>tercropp<strong>in</strong>g, maize/velvet bean <strong>in</strong>ter­<br />

crQPp<strong>in</strong>g, maize/lablab <strong>in</strong>tercropp<strong>in</strong>g, sole lablab, <br />

sole cowpea, sole velvet bean <strong>and</strong> ley. Each farmer <br />

hosted all the eight treatments. The trials were laid<br />

out so that each farmer <strong>for</strong>med the sampl<strong>in</strong>g unit.<br />

There was no block<strong>in</strong>g at each farmer's field. Each<br />

farmer <strong>in</strong> a ward <strong>for</strong>med the replicate. In the<br />

1998/99 <strong>and</strong> 1999/2000 seasons, study sites were<br />

planted to sole crops <strong>and</strong> <strong>in</strong>tercrops listed above. In<br />

the <strong>in</strong>tercrops, the maize <strong>and</strong> legume were planted<br />

<strong>in</strong> alternate rows. Plant<strong>in</strong>g of the maize <strong>and</strong> the legumes<br />

was done at same time <strong>in</strong> November 1998. In<br />

2000/2001, all plots were planted to a maize crop.<br />

,<br />

Plots measur<strong>in</strong>g 10m x 10m were used at all sites.<br />

Maize <strong>in</strong> monocrops was planted at the recommended<br />

0.9m x 0.4Sm while legumes <strong>in</strong> monocrops<br />

were planted at O.4Sm x O.lSm. Compound D (8%<br />

N:14% P20S: 7% K20) <strong>and</strong> calcitic lime (96% neutraliz<strong>in</strong>g<br />

value, 4.5% Mg) were broadcast at 2S0 <strong>and</strong><br />

SOO kg ha- 1 respectively be<strong>for</strong>e plant<strong>in</strong>g. Maize variety<br />

SCS01 (medium season variety) was planted <strong>in</strong><br />

Wedza <strong>and</strong> SC401 (short season variety) was<br />

planted <strong>in</strong> Buhera. All the legumes were <strong>in</strong>oculated<br />

with the appropriate Rhizobia stra<strong>in</strong>s at plant<strong>in</strong>g. In<br />

the 1998/99 <strong>and</strong> 1999/2000 seasons, the maize was<br />

topdressed at knee height <strong>and</strong> tassel<strong>in</strong>g with 60 kg<br />

N ha- 1 each time. At harvest the legume aboveground<br />

biomass was taken <strong>for</strong> livestock feed<strong>in</strong>g,<br />

leav<strong>in</strong>g litter <strong>and</strong> belowground biomass contribut<strong>in</strong>g<br />

towards soil fertility. Harvest<strong>in</strong>g was "done <strong>in</strong><br />

Apri12001.<br />

Measurements<br />

<strong>Soil</strong> samples were collected from a depth of up to 30<br />

cm. Organic carbon was determ<strong>in</strong>ed by the Walkley-Black<br />

procedure while P was extracted by the<br />

bicarbonate method (Wanatabe <strong>and</strong> Olsen, 1965).<br />

M<strong>in</strong>eral N (N0 3--N + N~+-N) was extracted from<br />

soil by the 1M KCl/0.1M HCl solution <strong>and</strong> determ<strong>in</strong>ed<br />

by the calorimetric procedure. Aboveground<br />

biomass <strong>and</strong> litterfall were measured <strong>for</strong> each legume.<br />

Data collected were subjected to analysis of<br />

variance us<strong>in</strong>g statistical analysis system (SAS) program<br />

[SAS, 1990] to evaluate treatment effects.<br />

Results <strong>and</strong> Discussion<br />

The results presented <strong>for</strong>.2000/01 season are used to<br />

show the rotation effect of <strong>for</strong>age legumes to subsequent<br />

maize gra<strong>in</strong> yield <strong>and</strong> soil fertility parameters.<br />

In Natural Region II, Wedza (Chematendere ward),<br />

maize/cowpea <strong>in</strong>tercropp<strong>in</strong>g had a significantly (P<br />

maize/lablab > velvet bean > maize/<br />

166<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 1. Effect of <strong>for</strong>age legumes on subsequent maize gra<strong>in</strong> yields<br />

(t ha- 1 ) at Wedza <strong>and</strong> Buhera sites (2000/2001 season)<br />

Treatment Natural Regionll Natural Region III Natural Region IV ­<br />

Maize 2.27 1.50 0.67<br />

Maize\cowpea 4.64 1.65 1.75<br />

Maize\lablab 4.42 2.40 0.88<br />

-Maizelvelvetbean 3.93 1.89 0.83<br />

Cowpea 2.93 2.60 0.81<br />

Velvetbean 4.30 1.49 1.03<br />

Lablab 3.09 1.94 0.80<br />

Ley 2.39 2.18 0.98<br />

LSD (P < 0.05)<br />

Ward xtreatment <strong>in</strong>teraction was significant at P< 0.05<br />

Isd 0_05 - 2.02<br />

velvet bean > lablab > cowpea > ley > maize. In<br />

Natural Region III, Wedza (Madzimbabwe ward),<br />

neither <strong>in</strong>tercropped nor sole Gopped legumes had<br />

any significant effect on maize yields <strong>in</strong> the<br />

2000/2001 season. In Natural Region IV, Buhera district,<br />

maize / cowpea <strong>in</strong>tercropp<strong>in</strong>g recorded the<br />

highest gra<strong>in</strong> yield (1.75 t/ha), which was about<br />

four-fold higher compared with that obta<strong>in</strong>ed <strong>in</strong><br />

other treatment comb<strong>in</strong>ations (Table 1). The <strong>in</strong>creased<br />

maize gra<strong>in</strong> yields follow<strong>in</strong>g <strong>for</strong>age legumes<br />

could be due to the N-spar<strong>in</strong>g effects of the<br />

legumes planted <strong>in</strong> the previous season. The residual<br />

effect of the legumes on maize stover yields was<br />

not significant dur<strong>in</strong>g the 2000/2001 season.<br />

All the three legumes have a potential of produc<strong>in</strong>g<br />

high herbage yields not<strong>in</strong>g that they produced more<br />

than i 500 kg ha- 1 across all regions <strong>and</strong> when they<br />

are <strong>in</strong>tercropped (Figure 1). The three legumes chosen<br />

<strong>for</strong> the study (cowpea, lab lab <strong>and</strong> velvet bean)<br />

have a wide range of attributes <strong>and</strong> adaptation<br />

(Skerman et al., 1988). They are widely used <strong>for</strong><br />

<strong>in</strong>tercropp<strong>in</strong>g with maize (Almseged et al., 1991).<br />

Be<strong>in</strong>g short-lived perennials, they are easy to manage<br />

<strong>in</strong> any of the cropp<strong>in</strong>g systems.<br />

.. 000<br />

3500<br />

3000<br />

2500<br />

ns<br />

Table 2. Effect of <strong>for</strong>age legumes on soil m<strong>in</strong>eral Nat Wedza <strong>and</strong><br />

Buhera sites<br />

Treatments<br />

M<strong>in</strong>eral nitrogen (ppm)<br />

Natural Region II Natural Region III Natural Region IV<br />

Maize 2.45 9.67 5.56<br />

Maize/cowpea 6~85 10.1 4.91<br />

Maize/velvetbean 4.84 12.2 10.1<br />

Maize/lablab 3.96 6.84 5.13<br />

Cowpea 8.05 8.44 2.33 <br />

Velvet bean 6.59 8.58 6.20 <br />

Lablab 6.64 8.48 2.33 <br />

Ley 5.29 8.81 11.6 <br />

Mean 5.58 9.14 6.02<br />

LSD (P < 0.05) n.s n.s<br />

n.s. - no significant difference among treatments<br />

The <strong>in</strong>creases <strong>in</strong> m<strong>in</strong>eral N were probably due to<br />

adjusted carbon/nitrogen ratios <strong>in</strong> legume-cereal<br />

<strong>in</strong>tercropp<strong>in</strong>g systems. From Table 2, it is evident<br />

that residual soil N content was lowest under cont<strong>in</strong>uous<br />

maize cropp<strong>in</strong>g <strong>in</strong> all three Natural Regions.<br />

There<strong>for</strong>e, <strong>in</strong>corporation of legumes <strong>in</strong> cereal<br />

cropp<strong>in</strong>g systems is important. In the drier Regions<br />

(III <strong>and</strong> IV), soil N content <strong>in</strong> the ley treatment was<br />

comparable to legume treatments, but it was low <strong>in</strong><br />

NR II. This is probably due to more leach<strong>in</strong>g associated<br />

with high ra<strong>in</strong>fall.<br />

Forage legumes had no significant effect on soil organic<br />

C (Table 3). A lack of significant changes <strong>in</strong><br />

percent organic carbon would be expected given the<br />

short duration of this study. OrganiC carbon is reported<br />

to take over 10 years to <strong>in</strong>crease by just 2.7%<br />

(Piha, 1995). Treatment effects also showed no differences<br />

across the regions.<br />

Results <strong>in</strong> Table 4 show that the cropp<strong>in</strong>g system of<br />

a <strong>for</strong>age legume, such as sole cropp<strong>in</strong>g <strong>and</strong> legumecereal<br />

<strong>in</strong>tercropp<strong>in</strong>g, significantly affected available<br />

soil phosphorus concentration only <strong>in</strong> NR II,<br />

(Chematendere ward, Wedza) where maize/<br />

cowpea <strong>in</strong>tercropp<strong>in</strong>g <strong>and</strong> velvetbean<br />

sole cropp<strong>in</strong>g left higher<br />

available P concentrations than<br />

the other treatments. Lablab sole<br />

cropp<strong>in</strong>g <strong>and</strong> maize/velvet bean<br />

<strong>in</strong>tercropp<strong>in</strong>g generally resulted<br />

<strong>in</strong> significantly lower available<br />

soil P concentration.<br />

1500<br />

1000<br />

soo<br />

c 0 ..... p. II lablllh Mz\ Cowp Mz\lablab M zlvelvel L.y<br />

legum. '),p.<br />

Figure 1. Forage <strong>and</strong> litter production of dual purpose legumes when <strong>in</strong>tercropped with maize <strong>in</strong><br />

Wedza <strong>and</strong> Buhera, Zimbabwe<br />

Conclusion<br />

Forage legumes had a positive<br />

effect on maize yields <strong>and</strong> the<br />

soil fertility parameters measured.<br />

The residual effects of sole<br />

velvetbean <strong>and</strong> maize/cowpea<br />

<strong>in</strong>tercrop gave the highest maize<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> Manure~ <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 167


Table 3. Effect of <strong>for</strong>age legumes on soil organic carbon content (%)<br />

at Wedza <strong>and</strong> Buhera<br />

Treatments <strong>Soil</strong> organic carbon content (%)<br />

Natural Region II Natural Region IH<br />

Natural Region IV<br />

Maize 0.47 0.38 0.24 <br />

Maize/Cowpea 0.50 0.36 0.38 <br />

Maize/velvet bean 0.52 0.28 0.40 <br />

Maize/Lablab 0.41 0.37 0.25 <br />

Cowpea 0.43 0.28 0.67 <br />

Velvet bean 0.39 0.30 0.29 <br />

Lablab 0.56 0.31 0.42 <br />

Ley 0.48 0.51 0.28 <br />

Mean 0.47 0.35 0.35<br />

LSD (P < 0.05) n.s n.s ns<br />

n.s. - no significant differences among treatments.<br />

yield benefits. Monocropp<strong>in</strong>g of maize promotes<br />

unsusta<strong>in</strong>able crop yields as revealed by lower<br />

maize yields. Ley gave significant residual N benefits<br />

especially <strong>in</strong> lower ra<strong>in</strong>fall zones. Sole cropp<strong>in</strong>g<br />

<strong>and</strong> <strong>in</strong>tercropp<strong>in</strong>g had similar effects on soil organic<br />

C build up. Residual soil P differed significantly between<br />

treatments <strong>in</strong> the higher ra<strong>in</strong>fall region <strong>and</strong><br />

seemed to depend on the dem<strong>and</strong> of the crop comb<strong>in</strong>ations<br />

previously grown.<br />

Acknowledgements<br />

The authors are very grateful to the Biotechnology<br />

Trust of Zimbabwe (BTZ) <strong>for</strong> fund<strong>in</strong>g the research<br />

work upon which this paper is based on. There is<br />

also need to mention the co-operation of SPRL technical<br />

<strong>and</strong> field staff <strong>for</strong> the fieldwork a!1d soil analysis.<br />

We also acknowledge the ef<strong>for</strong>ts of extension<br />

officers <strong>and</strong> farmers <strong>in</strong> the participat<strong>in</strong>g wards.<br />

References<br />

Alemseged, Y.B., K<strong>in</strong>g, G.W., Coppock, V.L. <strong>and</strong><br />

Tothill, J.e. 1991. Maize-legume <strong>in</strong>tercropp<strong>in</strong>g<br />

<strong>in</strong> a Semi-Arid area of Sidamo Region, Ethiopia:<br />

Maize Response. pp. 77-84.<br />

Chalk, P. M. 1996. Nitrogen transfer from legumes<br />

to cereals <strong>in</strong> <strong>in</strong>tercropp<strong>in</strong>g. In: Ito, 0:, Johansen,<br />

e., Adu-Gyamfi, J. J., Katayama, K., Kumar Rao,<br />

J. V. D. K. <strong>and</strong> Tego, T. J. (eds.). Dynamics ofRoots<br />

<strong>and</strong> Nitrogen <strong>in</strong> Cropp<strong>in</strong>g Systems of the Semi-arid<br />

Tropics. ICRISATIJIRCAS, Hyderabad, India. pp.<br />

351-374.<br />

Dzowela, B.H. 1987. Maize stover improvement<br />

with legume <strong>for</strong>ages. In: Kategile, J.A., Said, A.<br />

N. <strong>and</strong> Dzowela B.H. (eds.), Animal Feed Resources<br />

<strong>for</strong> Small-scale Livestock Producers. Proceed<strong>in</strong>gs<br />

of the second P ANESA workshop held<br />

at ILARD, Kabete, Nairobi, Kenya. 11-15 November<br />

1985. IDRC Manuscript Report. pp. 174­<br />

181.<br />

Table 4. Effect of <strong>for</strong>age legumes on available soil P205 content at<br />

Wedza <strong>and</strong> Buhera sites<br />

Treatments<br />

Available soil Pcontent (ppm)<br />

Natural Region II Natural Region III Natural Region IV<br />

Maize 7.13 9.14 8.30 <br />

Maize/cowpea 23.9 19.6 10.9 <br />

Maize/velvet bean 6.21 12.2 9.38 <br />

Maize/lablab 7.20 13.3 9.38 <br />

Cowpea 12.8 9.14 8.29 <br />

Velvetbean 20.3 21.2 11.1 <br />

Lablab 8.51 13.6 8.94 <br />

Ley 9.16 , 16.0 14.0 <br />

Mean 11.9 14.3 10.0 <br />

LSD (P < 0.05) ns ns<br />

n.s. - no sigmficant difference among treatments.<br />

Gryseels, G. <strong>and</strong> Anderson, F.M. 1983. Research on<br />

farm <strong>and</strong> livestock productivity <strong>in</strong> the central<br />

Ethiopia highl<strong>and</strong>s: Initial results, ILCA Research<br />

Report No.4.<br />

Manyawu, G.J. 1994. Agronomic evaluation of Lablab<br />

purpureus accessions <strong>in</strong>tercropped with maize<br />

(Zea mays) <strong>for</strong> gra<strong>in</strong> <strong>and</strong> <strong>for</strong>age production. Department<br />

of Research <strong>and</strong> Specialist Services, Division<br />

of Livestock <strong>and</strong> Pasture, Zimbabwe. Annual<br />

Report.<br />

Mukurumbira, L. M. 1985. Effects of rate of fertilizer<br />

nitrogen <strong>and</strong> previous gra<strong>in</strong> legume on maize<br />

yields. Zimbabwe Agricultural Journal 82: 177-179.<br />

Natarajan, M <strong>and</strong> Shumba, E.M ., 1989. Intercropp<strong>in</strong>g<br />

Research <strong>in</strong> Zimbabwe: Current status <strong>and</strong><br />

outlook <strong>for</strong> the future. In: Proceed<strong>in</strong>gs of a Workshop<br />

on Research Methods <strong>for</strong> Cereal- Legume <strong>in</strong>tercropp<strong>in</strong>g<br />

<strong>in</strong> Eastern <strong>and</strong> Southern Africa, Lilongwe,<br />

23-27 January 1989. CIMMYT <strong>and</strong> Southern Africa<br />

on-farm Research Network. Report No. 17:<br />

190-193.<br />

Peoples, M. B. <strong>and</strong> Herridge, D. F. 1990. Nitrogen<br />

fixation by legumes <strong>in</strong> tropical <strong>and</strong> sub- tropical<br />

agriculture. Advances <strong>in</strong> Agronomy 44: 155-223.<br />

Piha, M. 1995. <strong>Soil</strong> <strong>Fertility</strong> H<strong>and</strong>book. Department of<br />

<strong>Soil</strong> <strong>and</strong> Agricultural Eng<strong>in</strong>eer<strong>in</strong>g, University of<br />

Zimbabwe. 93 pp.<br />

Scoones, I. 1994. Liv<strong>in</strong>g with uncerta<strong>in</strong>ty. New directions<br />

<strong>in</strong> Pastoral development <strong>in</strong> Africa. pp.<br />

116-121.<br />

Skerman, P.I.; Cameron, D.G. <strong>and</strong> Riveros, F. 1988.<br />

Tropical Forage <strong>Legumes</strong>, F.A.o. Plant Production<br />

<strong>and</strong> Protection Series, No.2, F.A.O. of<br />

United Nations, Rome, Italy.<br />

Wanatabe, F. S. <strong>and</strong> Olsen, S. R. 1965. <strong>Soil</strong> Science<br />

Society ofAmerica Proc. 29: 677-678.<br />

168<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africe


TIME OF INCORPORATION OF DIFFERENT LEGUMES AFFECTS SOIL<br />

MOISTURE AND YIELDS OF THE FOLLOWING CROP<br />

IN MAIZE BASED SYSTEMS OF ZIMBABWE<br />

BONAVENTURE KAYII\JAMURA, HERBERT K. MURWIRA <strong>and</strong> PAULINE P. CHIVENGE<br />

Abstract<br />

TSBF-CIA T, University of Zimbabwe, PO Box MP 228,<br />

Mount Pleasant, Harare, Zim.babwe<br />

This study reports on an evaluation of the per<strong>for</strong>mance of different legumes <strong>and</strong> their time of <strong>in</strong>c0T]2oration <strong>in</strong>to soil on<br />

maize yields <strong>in</strong> Murewa <strong>and</strong> Shurugwi communal areas of Zimbabwe. Five legumes, Crotalaria grahamian a, Crotalaria<br />

juncea (sunnhemp), Mucuna pruriens, Vigna unguiculata (Cowpea IT18) <strong>and</strong> Glyc<strong>in</strong>e max (Magoye) were<br />

planted <strong>in</strong> the 2000/01 season followed by maize <strong>in</strong> the 200l/02 season. The plots were subdivided <strong>in</strong>to two, with legume<br />

<strong>in</strong>corporation at flower<strong>in</strong>g <strong>in</strong> one sub-plot while legumes <strong>in</strong> the other plot were <strong>in</strong>corporated at the onset of the follow<strong>in</strong>g<br />

season. Mucuna gave the highest biomass yields (4800 kg ha- l ) <strong>in</strong> Murewa while Crotalaria grahamiana had the highest<br />

yields (7500 kg ha- l ) <strong>in</strong> Shurugwi. Higher maize yields were obta<strong>in</strong>ed follow<strong>in</strong>g <strong>in</strong>corporation of Crotalaria grahamiana<br />

(2900 kg ha- l ) than Mucuna (2300 kg ha- l ) <strong>in</strong> Murewa. However Mucuna pruriens had produced higher biomass<br />

<strong>in</strong> the previous season. Similar results were obta<strong>in</strong>ed <strong>in</strong> Shurugwi where Crotalaria grahamiana gave higher<br />

maize yields (1800 kg ha- l ) than Mucuna pruriens (1400 kg ha- l ) . Generally, the early-<strong>in</strong>corporated legume plots gave<br />

higher maize yields <strong>in</strong> the second season than the late <strong>in</strong>corporated crop, although they were not statistically different.<br />

At the onset of the second season, soil was sampled from the different plots to analyze <strong>for</strong> moisture content. Mucuna<br />

pruriens was shown to conserve higher amounts of mJisture than the other legumes, while late <strong>in</strong>corporated legumes<br />

had higher soil moisture content than early-<strong>in</strong>corporated legumes. It was concluded that Mucuna pruriens <strong>and</strong> Crotalaria<br />

grahamiana are potential best-bet legumes <strong>in</strong> the communal areas of Zimbabwe <strong>and</strong> <strong>in</strong> cases where labour is a<br />

constra<strong>in</strong>t, farmers could <strong>in</strong>corporate their legumes late.<br />

Key words: Crotalaria grahamiana, Crotalaria juncea, Mucuna pruriens, Vigna unguic.ulata, Glyc<strong>in</strong>e max, <strong>in</strong>corporation<br />

time<br />

Introduction<br />

Decl<strong>in</strong><strong>in</strong>g soil fertility has underm<strong>in</strong>ed crop production<br />

<strong>in</strong> Zimbabwe smallholder farm<strong>in</strong>g systems.<br />

With the scarcity <strong>and</strong> ever-<strong>in</strong>creas<strong>in</strong>g prices of <strong>in</strong>organic<br />

fertilizers, there has been a need to depend<br />

more on natural processes such as biological nitrogen<br />

fixation (BNF) <strong>in</strong> crop production systems. <strong>Soil</strong><br />

improv<strong>in</strong>g herbaceous legumes have potential to<br />

improve soil fertility <strong>in</strong> various parts of the world<br />

(Fujita et al., 1992), <strong>and</strong> can be used as green manure<br />

<strong>and</strong> cover crops <strong>in</strong> areas of different agroecological<br />

cha~acteristics.<br />

<strong>Green</strong> manures have the potential to accumulate up<br />

to 250 kg N ha- 1 per year (Giller <strong>and</strong> 'Nilson, 1991),<br />

<strong>and</strong> result <strong>in</strong> subsequent cereal yield <strong>in</strong>creases of<br />

600 to 4100 kg ha- J (Peoples <strong>and</strong> Herridge, 1990).<br />

Evaluation of plants <strong>for</strong> soil fertility improvement<br />

rema<strong>in</strong>s a priority <strong>in</strong> this scenario to get the best<br />

plant species that are suitable <strong>for</strong> a particular area.<br />

Some plants have already been identified as best<br />

bets <strong>for</strong> green manur<strong>in</strong>g <strong>in</strong> different situations<br />

(Buresh et al., 1993).<br />

Proper management of plant residues <strong>for</strong> nutrient<br />

supply requires quantitative knowledge on its nutrient<br />

release characteristics. The use efficiency of the<br />

nutrients released by' green manure rema<strong>in</strong>s a critical<br />

po<strong>in</strong>t <strong>in</strong> soil fertility management. <strong>Soil</strong> water dynamics<br />

<strong>and</strong> nutrient management are the ma<strong>in</strong> factors<br />

to consider to achieve susta<strong>in</strong>able <strong>in</strong>tegrated<br />

cropp<strong>in</strong>g systems <strong>in</strong> a semi-arid environment<br />

(Biederbeck <strong>and</strong> Bouman, 1994).<br />

Incorporated organic materials have several functions<br />

<strong>in</strong> the soil other than supply<strong>in</strong>g nutrients.<br />

They improve soil aggregation (Elliot <strong>and</strong> Papendick,<br />

1986), reduce erosion (Young, 1989) <strong>and</strong> conserve<br />

moisture. The organic residues from green<br />

manure help to stabilize the soil structure, <strong>in</strong>crease<br />

water-hold<strong>in</strong>g capacity of the soil, <strong>and</strong> <strong>in</strong>crease the<br />

<strong>in</strong>filtration of moisture <strong>in</strong>to the soil <strong>and</strong> percolation<br />

through the soil. Apply<strong>in</strong>g crop residues also leads<br />

to significant N <strong>and</strong> water <strong>in</strong>teractions (Bolton,<br />

1981).<br />

Improvement <strong>in</strong> scarce available water usually triggers<br />

an improvement <strong>in</strong> the use efficiency of scarce<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 169


available nutrients <strong>and</strong> vice versa, <strong>and</strong> this leads to<br />

improved crop production <strong>and</strong> less movement of<br />

nutrients <strong>in</strong>to the environment. The OM reduces<br />

evaporation losses <strong>and</strong> hence improves N use efficiency,<br />

<strong>and</strong> provides nutrients other than N.<br />

]Jnder field conditions the fluctuations <strong>in</strong> sDil water<br />

content affect the release of N from green manure.<br />

A quantification of this effect is essential <strong>for</strong> predict<strong>in</strong>g<br />

the supply of m<strong>in</strong>eral N at a particular time<br />

(Brar <strong>and</strong> Sidhu, 1995). There is a progressive decl<strong>in</strong>e<br />

<strong>in</strong> m<strong>in</strong>eral N· produc tion with<strong>in</strong> the soil wi th<br />

decrease <strong>in</strong> soil water level (Brar <strong>and</strong> Sidhu, 1995).<br />

In a crop rotation (<strong>in</strong>tercropp<strong>in</strong>g or relay) that <strong>in</strong>cludes<br />

grow<strong>in</strong>g green manure plants, ~he cereal<br />

crop <strong>and</strong> the green manure plants are likely to com­<br />

'pete <strong>for</strong> nutrients <strong>and</strong> moisture dur<strong>in</strong>g the alternate<br />

season (McGuire et aL, 1998). <strong>Green</strong> manure crops<br />

planted dur<strong>in</strong>g the fallow period may use the moisture<br />

needed <strong>for</strong> seed germ<strong>in</strong>ation at plant<strong>in</strong>g, however<br />

this disadvantage is counter-balanced by other<br />

benefits of grow<strong>in</strong>g green manure dur<strong>in</strong>g the fallow<br />

period.<br />

This study sought to evaluate the per<strong>for</strong>mance of est biomass followed by C. juncea (Table 2). The <br />

Crotalaria grahamiana, Crotalaria juncea, Mucuna pru­biomasriens, Vigna unguiculata (Cowpea IT18) <strong>and</strong> Glyc<strong>in</strong>e affected by dry spells that came after crop establish­<br />

production of Mucuna pruriens was more <br />

max (Magoye) legumes, <strong>and</strong> the effects of time of ment, while C. grahamiana produced higher biomass <br />

<strong>in</strong>corporation of residues on maize yields <strong>in</strong> <strong>in</strong> similar conditions. <br />

Murewa (high ra<strong>in</strong>fall area) <strong>and</strong> Shurugwi (low<br />

ra<strong>in</strong>fall).<br />

Materials <strong>and</strong> Methods<br />

The trial was conducted <strong>in</strong> two consecutive seasons<br />

(2000/01 <strong>and</strong> 2001/02). <strong>Green</strong> manure <strong>and</strong> gra<strong>in</strong><br />

legumes were grown <strong>in</strong> the first season followed by<br />

the maize <strong>in</strong> the second season. The experiment<br />

comprised of six treatments; three green manure<br />

crops (Crotalaria grahamiana, Crotalaria juncea <strong>and</strong><br />

Mucuna pruriens), <strong>and</strong> two gra)n legumes (Vigna unguiculata<br />

(Cowpea) <strong>and</strong> Glyc<strong>in</strong>e max (Soya bean) <strong>and</strong><br />

a control treatment with maize. The plots were split<br />

<strong>in</strong>to two subplots <strong>for</strong> the analysis of the <strong>in</strong>fluence of<br />

time of <strong>in</strong>corporation of the residues at flower<strong>in</strong>g<br />

<strong>and</strong> at the onset of the follow<strong>in</strong>g season. For the<br />

maize control the plot was divided <strong>in</strong>to two, one<br />

was bare (noth<strong>in</strong>g grown <strong>in</strong> the subplot) <strong>and</strong> the<br />

other one had maize crops. <strong>Soil</strong> samples were taken<br />

when the plant materiai had been ploughed <strong>in</strong> the<br />

soil <strong>for</strong> the early <strong>in</strong>corporation subplots, while<br />

plants were still st<strong>and</strong><strong>in</strong>g <strong>in</strong> the other subplots.<br />

Plant materials <strong>for</strong> biomass production measurements<br />

were taken be<strong>for</strong>e residue <strong>in</strong>corporation <strong>in</strong><br />

each subplot. <strong>Soil</strong> samples <strong>for</strong> moisture content<br />

analysis were taken <strong>in</strong> each plot from 0-10, 10-20,<br />

20-30 <strong>and</strong> 30-40 cm depths. They were dried <strong>and</strong><br />

the moisture content determ<strong>in</strong>ed. The resul ts were<br />

statistically analyzed us<strong>in</strong>g SAS software.<br />

Results <strong>and</strong> Discussion<br />

Biomass production <br />

<strong>Green</strong> <strong>and</strong> gra<strong>in</strong> legumes were grown <strong>in</strong> the <br />

2000/01 season <strong>for</strong> biomass production, <strong>and</strong> the <br />

crop residues were <strong>in</strong>corporated <strong>in</strong>to the soil at dif­<br />

ferent times <strong>for</strong> a subsequent maize crop <strong>in</strong> 2001/02. <br />

Biomass production was higher <strong>in</strong> Murewa (high <br />

ra<strong>in</strong>fall, @ 900 mm) than <strong>in</strong> Shurugwi (low ra<strong>in</strong>fall, <br />

@450 mm)) <strong>in</strong> the 2001/02 season. <br />

In Murewa, Mucuna pruriens produced the highest <br />

biomass followed by Crotalaria grahamiana, with <br />

cowpea produc<strong>in</strong>g the least biomass (Table 1). The <br />

N content of the residues was also determ<strong>in</strong>ed. <br />

Add<strong>in</strong>g all the' Mucuna pruriens residues harvested <br />

was equivalent to the addition of 156 kg N per ha. <br />

In Shurugwi, C. grahamiana outyielded Mucuna pr?lriens,<br />

with Crotalaria grahamiana produc<strong>in</strong>g the high­<br />

<strong>Soil</strong> moisture content <strong>and</strong> maize yields <br />

In the second season (2001/2002) of the study, mois­<br />

ture content was determ<strong>in</strong>ed just be<strong>for</strong>e plant<strong>in</strong>g of <br />

maize, <strong>and</strong> maize yields were determ<strong>in</strong>ed at har­<br />

vest. An analysis of variance of moisture content <br />

measurements showed that soil depth had a signifi­<br />

cant effect on moisture content. The <strong>in</strong>teraction be-<br />

Table 1 .. Legume biomass yields production <strong>for</strong> 2000/01 season<br />

<strong>in</strong> Murewa<br />

Treatment Biomass yield {kg/hal Total N{kg/hal<br />

Cowpea 1442 4B.0<br />

C. grahamiana 4535 137.0 <br />

Mucuna pruriens 4746 155.6 <br />

C. juncea 4120 llB.5 <br />

Soybeans 2300 77.7<br />

LSD 1242.3 34.31<br />

Table 2. Legume biomass yields production <strong>for</strong> 2000/01 season<br />

<strong>in</strong> Shurugwi<br />

Treatment Biomass yield {kg/hal Total N(kg/hal<br />

Cowpea lOBO 39.4<br />

C. grahamiana 7507 24B.3 <br />

Mucuna pruriens 4932 121.4 <br />

C. juncea 5129 144.1 <br />

Maize<br />

2120 (gra<strong>in</strong>) <br />

LSD 1290.2 62.4<br />

170<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


tween factors tested <strong>in</strong> the study did not show any<br />

significant effect <strong>for</strong> moisture content (Table 3). The<br />

mean separations by LSDo.os (least significant differ~<br />

ence) of depth (LSDoos = 0.4975) showed that there<br />

was more moisture at 30-40 cm soil depth than<br />

other depths (Figure 1).<br />

The effect of time of <strong>in</strong>corporation on moisture content<br />

approached significance (0.0677). The comparison<br />

of means us<strong>in</strong>g LSDo.os (0.35) shows as well that<br />

there is no significant difference <strong>in</strong> moisture content<br />

between late (4.20%) <strong>and</strong> early (3.87%) <strong>in</strong>corporation<br />

of green manure residues. Statistically, the difference<br />

between times of <strong>in</strong>corporation of crop residues<br />

was significant at 10%. The timp. of soil sampl<strong>in</strong>g<br />

might have <strong>in</strong>fluenced the difference between<br />

treatments on moisture conservation. Samples were<br />

taken when the soil was too dry because of early<br />

cessation of ra<strong>in</strong> <strong>and</strong> late onset of ra<strong>in</strong>s <strong>for</strong> the follow<strong>in</strong>g<br />

season. However, the numerical difference<br />

shows that late <strong>in</strong>corporation of green manure conserved<br />

more moisture. This might be because <strong>in</strong><br />

early <strong>in</strong>corporation the soil is exposed to the sun,<br />

<strong>and</strong> this <strong>in</strong>creases evaporation, while <strong>in</strong> late <strong>in</strong>corporation<br />

the plants cont<strong>in</strong>ue to cover the soil, -Nhich<br />

reduces evaporation.<br />

Table 3. ANOVA table of moisture content measurements<br />

Source OF Type III SS Mean Square FVal Pr > F<br />

Treatment 5 2.01 0.40 0.36 0.8772<br />

Depth 3 60.34 0.11 17.78 < 0.0001<br />

Time 3.86 3.86 3.42 0.0677<br />

Treatment" Depth 15 16.00 1.07 0.94 0.5204<br />

Treatment "Time 5 3.16 0.63 0.56 0.7309<br />

Depth"Time 3 3.04 1.01 0.90 0.4460<br />

Treatment 15 8.42 0.56 0.50 0.9372<br />

"Depth"Time<br />

Residual 94 106.22 1.13<br />

Total 143 210.74<br />

There was a significant difference wi.th<strong>in</strong> treatments<br />

between late <strong>and</strong> early <strong>in</strong>corporation of crop residues<br />

(Figure 2) . . Late <strong>in</strong>corporation of cowpea, C.<br />

juncea, C. grahamiana <strong>and</strong> maize conserved more<br />

moisture than early <strong>in</strong>corporation, while <strong>in</strong>corporation<br />

time of mucuna <strong>and</strong> soyabean residues did ~ot<br />

show any significant ~ffect on moisture conservation.<br />

A trend of means (not statistically significal'1t) of the<br />

different treatments shows that soya bean had the<br />

least moisture content, followed by C. grahamiana, C.<br />

juncea, cowpea, maize <strong>and</strong> the highest to conserve<br />

moisture was Mucuna pruriens (Figure 3). This<br />

might be due to how these plants cover the ground.<br />

Mucuna pruriens provides a good cover because of<br />

its bushy habit that <strong>in</strong> return reduces evaporation<br />

from the ground.<br />

Addition of organic residues improves crop production<br />

through moisture conservation <strong>and</strong> nutrient<br />

supply to crops. Incorporated organic residues augment<br />

the water retention capacity of the soil by improv<strong>in</strong>g<br />

the structure <strong>and</strong> physical environment of<br />

soil. The maximum benefits are achieved by good<br />

tim<strong>in</strong>g of <strong>in</strong>corporation <strong>for</strong> growth of the' subsequent<br />

crop. Consequently, there is need to conserve<br />

soil moisture to avert moisture deficits at the time of<br />

sow<strong>in</strong>g, <strong>and</strong> provide much-needed nutrients at<br />

early stages of plant growth.<br />

4 '~------------~========~<br />

_ Early(a ll\owa nng)<br />

_ L


Conclusion <strong>and</strong> Recommendation<br />

Mucuna pruriens <strong>and</strong> Crotalaria grahamiana are potential<br />

best bets <strong>for</strong> soil fertility amelioration <strong>in</strong> communal<br />

areas of Zimbabwe. High biomass production<br />

was achieved <strong>for</strong> the two crops <strong>in</strong> the areas of<br />

study. Mucuna pruriens was more susceptible to dry<br />

spells that occurred <strong>in</strong> the middle of the grow<strong>in</strong>g<br />

season than C. grahamiana, but both crops need adequate<br />

moisture at plant<strong>in</strong>g <strong>for</strong> good establishment.<br />

Higher maize yields were obta<strong>in</strong>ed <strong>in</strong> plots where<br />

Mucuna <strong>and</strong> Crotalaria grahamiana residues were <strong>in</strong>corporated<br />

compared to other legumes. Time of <strong>in</strong>corporation<br />

had an effect on yield of the subsequent<br />

crop; maize yields <strong>in</strong> early-<strong>in</strong>corporated plots were<br />

higher than <strong>in</strong> late <strong>in</strong>corporated plots <strong>for</strong> all legumes.<br />

Incorporation of Mucuna residues conserved more<br />

moisture than other legumes, <strong>and</strong> moisture content<br />

was higher (but not significantly so) <strong>in</strong> late <strong>in</strong>corporated<br />

plots. This was probably due to the removal of<br />

plant cover <strong>in</strong> early <strong>in</strong>corporation, <strong>and</strong> hence high<br />

evaporation rates be<strong>for</strong>e the ra<strong>in</strong>s that depleted<br />

moisture <strong>in</strong> the soil. .<br />

Acknowledgements<br />

The authors greatly acknowledge IFAD <strong>for</strong> the<br />

fund<strong>in</strong>g of the research, as well as farmers <strong>in</strong><br />

Murewa <strong>and</strong> Shurugwi <strong>for</strong> their collaboration <strong>in</strong> the<br />

trials.<br />

References<br />

Biederbeck, V.O. <strong>and</strong> O.T. Bouman, 1994. Water use<br />

by annual green manure legumes <strong>in</strong> dryl<strong>and</strong><br />

cropp<strong>in</strong>g systems. Agronomy Journal 86:543-549.<br />

Bolton, F.E. 1981. Optimis<strong>in</strong>g the use of water <strong>and</strong><br />

nitrogen through soil <strong>and</strong> crop management.<br />

Plant <strong>and</strong> <strong>Soil</strong> 58:231-247.<br />

Brar, D.S. <strong>and</strong> A.S. Sidhu 1995. Effect of soil water<br />

on pattern of nitrogen release dur<strong>in</strong>g decomposition<br />

of added green mantire residue. Journal of<br />

Indian Society of <strong>Soil</strong> Science 43:14-17.<br />

Buresh, R.J., T.T. Chua, E.G. Castillo, S.P. Liboon<br />

<strong>and</strong> D.P. Garrity 1993. Fallow <strong>and</strong> Sesbania effects<br />

on soil nitrogen dynamics <strong>in</strong> lowl<strong>and</strong> ricebased<br />

cropp<strong>in</strong>g systems. Agronomy Journal<br />

85:316-321. .<br />

Elliot, L.F <strong>and</strong> 'R.J. Papendick 1986. Crop residue<br />

management <strong>for</strong> improved soil productivity.<br />

Biology, Agriculture <strong>and</strong> Horticulture 3:131-142.<br />

Fugita, K, B. Ofusu <strong>and</strong> S. Ogata 1992. Biological<br />

nitrogen fixation <strong>in</strong> mixed legume-cereal cropp<strong>in</strong>g<br />

systems. Plant <strong>and</strong> <strong>Soil</strong> 141:155-175.<br />

Giller, KE. <strong>and</strong> KJ. Wilson 1991. Nitrogen fixation<br />

<strong>in</strong> tropical cropp<strong>in</strong>g systems. CAB International,<br />

Wall<strong>in</strong>g<strong>for</strong>d, UK 313 p.<br />

McGuire, A.M., D.C. Bryant <strong>and</strong> R.F. Denison 1998.<br />

Wheat yields, nitrogen uptake, <strong>and</strong> moisture follow<strong>in</strong>g<br />

w<strong>in</strong>ter legume cover crop vs. fallow.<br />

Agronomy Journal 90:404-410.<br />

Peoples, M.B. <strong>and</strong> D.F. Herridge 1990. Nitrogen<br />

fixation by legumes <strong>in</strong> tropical ~d subtropical<br />

agriculture. Advances <strong>in</strong> Agronomy 44:155-223.<br />

Young, A. 1989. Agro<strong>for</strong>estry <strong>for</strong> soil conservation.<br />

CAB International, Wall<strong>in</strong>g<strong>for</strong>d, UK, 276 p.<br />

172<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> ~oil <strong>Fertility</strong> <strong>in</strong> Southern Africa


SOIL FERTILITY IMPROVEMENT THROUGH THE USE OF GREEN<br />

MANURE IN CENTRAL ZAMBIA<br />

MOSES MWALE', CASSIM MASI 2 , J. KABONG0 2 <strong>and</strong> L. K. PHIRI'<br />

1Mt. Makulu Central Research Station, PIB 7, Chilanga, genetics@zamnet.zm,<br />

2World Vision International, P. O. Box 31083, Lusaka, Zambia<br />

Abstract<br />

Farmers identify low soil fertility as a major problem affect<strong>in</strong>g crop production <strong>in</strong> Chibombo, Central Prov<strong>in</strong>ce, Zambia.<br />

This means fertilizer is a prerequisite to crop production, particularly maize. But the use of fertilizer is not often viable<br />

due to its high cost <strong>and</strong> poor availability. To boost crop production, there was need to test alternative cost-effective soil<br />

fertility improvement techniques. An experiment was there<strong>for</strong>e conducted to reduce the soil fertility problem us<strong>in</strong>g<br />

green manures. Sunnhemp (Crotalaria juncea) <strong>and</strong> Velvet beans (Mucuna pruriens) were grown either as sole crops<br />

or <strong>in</strong>tercropped with maize (<strong>in</strong> the 1998/99 season). Cont<strong>in</strong>uous maize (fertilized <strong>and</strong> unfertilized) <strong>and</strong> a natural grass<br />

fallow were used as controls. Only phosphorus (50 kg PzOs ha·1) was applied to the unfertilized (zero nitrogen) maize<br />

while compound 0 (10:20:10:8 : N P K S) at 100 kg ha·1 was applied to the other maize treatments. No fertilizers were<br />

added to the green manure treatments. All maize plots (except unfertilized maize) were top dressed with urea at a rate<br />

of 23 kg N ha- 1 . The dry matter yield of sunnhemp <strong>and</strong> velvet bean were determ<strong>in</strong>ed just be<strong>for</strong>e flower<strong>in</strong>g <strong>and</strong> all the<br />

above ground biomass was ploughed under. The maize was harvested at physiological maturity <strong>and</strong> gra<strong>in</strong> weight determ<strong>in</strong>ed.<br />

In the 1999/2000 season, maize was planted <strong>in</strong> all plots <strong>and</strong> cultural practices were the same as <strong>for</strong> 1998/99.<br />

Unfertilized maize had the lowest dry matter <strong>and</strong> gra<strong>in</strong> yield (less than 1 t ha- 1 ) followed by maize after the grass fallow.<br />

All fertilized <strong>and</strong> green manure treatments yielded significantly more gra<strong>in</strong> than unfertilized maize. There were no significant<br />

differences (p=0.05) between the maize grown after the green manures <strong>and</strong> that which. received fertilizer. Incorporat<strong>in</strong>g<br />

sunnhemp biomass not only <strong>in</strong>creased the yield of maize but also <strong>in</strong>creased the organic matter content of the<br />

soil at the experimental sites.<br />

Key words: <strong>Green</strong> manure, sunnhemp, velvet bean, profitability, susta<strong>in</strong>ability, Zambia<br />

Introduction<br />

Low soil fertility is a major problem affect<strong>in</strong>g crop<br />

production <strong>in</strong> Chibombo District of Zambia's Central<br />

Prov<strong>in</strong>ce. This has been made worse by farmers<br />

who commonly monocrop with maize year after<br />

year. This makes fertilizer use a prerequisite to crop<br />

production, particularly maize. The current prices<br />

of fertilizers are beyond the reach of most farmers <strong>in</strong><br />

the area due to liberalization of the economy <strong>and</strong><br />

the removal of fertilizer subsidies. The few that can<br />

af<strong>for</strong>d fertilizers have reduced their application<br />

rates to far below those recommended, result<strong>in</strong>g <strong>in</strong><br />

low crop yield!> per unit area cropped . . This has affected<br />

both food availability <strong>and</strong> <strong>in</strong>come <strong>for</strong> many<br />

people.<br />

To boo~t crop production, there is a need to test alternative<br />

cost-effective soil fertility improvement<br />

techniques. An option identified by the farmers<br />

through participatory rural appraisal (PRA) was the<br />

'lse of green manures notably sunnhemp (Crotalaria<br />

juncea), velvet bean (Mucuna pruriens) <strong>and</strong> some<br />

agro<strong>for</strong>estry tree prun<strong>in</strong>gs such as Sesbania sesban.<br />

These practices were part of the farm<strong>in</strong>g systems<br />

be<strong>for</strong>e m<strong>in</strong>eral fertilizers <strong>and</strong> most elderly farmers<br />

still recall <strong>and</strong> appreciate the usefulness of the two<br />

green manure species. Crotalaria <strong>and</strong> Mucuna have<br />

shown to be excellent N2-fixers <strong>in</strong> a wide range of<br />

enVironments (Bowen, et al. 1988; Kolar et al. 1993;<br />

MacColl, 1990; Yost et al. 1985). <strong>Green</strong> manures<br />

have the potential to accumulate up to 250 kg N ha- 1<br />

yr-l (Giller <strong>and</strong> Wilson, 1991) result<strong>in</strong>g <strong>in</strong> cereal<br />

gra<strong>in</strong> yield <strong>in</strong>creases of 600 - 4100 kg ha- 1 (Peoples<br />

<strong>and</strong> Herridge, 1990). The use of a green manure<br />

may also boost the levels of soil organic matter result<strong>in</strong>g<br />

<strong>in</strong> improved soil structure, better root proliferation<br />

<strong>and</strong> soil water hold<strong>in</strong>g capacity. This would<br />

<strong>in</strong> tum <strong>in</strong>crease crop vigour <strong>and</strong> yields. There is a<br />

need there<strong>for</strong>e to evaluate the beneficial effects of<br />

these green manures on farmers' fields <strong>in</strong> Muswishi<br />

Agricultural Camp <strong>in</strong> Chibombo District <strong>and</strong> document<br />

the results.<br />

Project Objectives<br />

The overall objective was to address the soil fertility<br />

problem us<strong>in</strong>g green manures.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 173


Specific objectives were to:<br />

• Test the viability of velvet bean <strong>and</strong> sunnhemp as<br />

soil fertility improvement legumes with<strong>in</strong> the<br />

farm<strong>in</strong>g system. .,<br />

• Assess the beneficial effects of <strong>in</strong>corporat<strong>in</strong>g green<br />

manur<strong>in</strong>g <strong>in</strong>to the cropp<strong>in</strong>g system.<br />

Materials <strong>and</strong> Methods<br />

The field experiment was conducted at Muswishi<br />

Agricultural Camp <strong>in</strong> Chibombo District of Central<br />

Zambia. The Mushemi soil series at Chibombo is<br />

described as a F<strong>in</strong>e Kaol<strong>in</strong>itic Isohyperthermic Oxic<br />

Paleustalf (<strong>Soil</strong> Survey, 1992). The surface soil was<br />

sampled to a depth of 20 cm, dried <strong>and</strong> ground to<br />

pass through a 2 mm sieve. This was then analyzed<br />

<strong>for</strong> soil pH (<strong>in</strong> 0.01 M CaCh), total nitrogen, organic<br />

carbon (Wakley <strong>and</strong> Black, 1934), exchangeable<br />

cations (1.0 M ammonium acetate, pH 7.0) <strong>and</strong><br />

available phosphorus (Bray <strong>and</strong> Kurtz, 1945). The<br />

soil sample was also analyzed <strong>for</strong> particle size us<strong>in</strong>g<br />

the pipette method. Selected chemical properties of<br />

the soil are given <strong>in</strong> Table 1.<br />

Field Work <strong>in</strong> the 1998/1999 Season<br />

The follow<strong>in</strong>g treatments were applied: Maize (zero<br />

nitrogen), sunnhemp sole crop, velvet bean sole<br />

crop, maize/sunnhemp <strong>in</strong>tercrop, maize/velvet<br />

bean <strong>in</strong>tercrop, maize (fertilized) <strong>and</strong> a grass<br />

(natural) fallow. Triple super phosphate was applied<br />

to unfertilized maize (zero nitrogen) at 50 kg<br />

P20S ha- 1 • Compound 0 (N P K S : 1020108) was<br />

applied to the other maize/GM <strong>in</strong>tercrop treatments<br />

at 100 kg ha- 1 . No fertilizer was added to the<br />

sole green manure treatments. The natural fallow<br />

was left <strong>in</strong>tact. Maize hybrid variety MM604, velvet<br />

bean (Mucuna cv. W. NIRS 16)· <strong>and</strong> sunnhemp<br />

(erotala ria Juncea cv. NIRS 4) were planted.<br />

Maize <strong>and</strong> velvet bean were planted to give a plant·<br />

population density of about 44,000 plants per hectare<br />

while sunnhemp was planted at a seed<strong>in</strong>g rate<br />

of about 20 kg ha- 1 • Plot sizes were 12 m x 8 m <strong>for</strong><br />

all treatments. All maize plots (except unfertilized<br />

maize) were top dressed with urea at a rate of 23 kg<br />

N ha- 1 .<br />

Dry matter yields of sunnhemp <strong>and</strong> velvet bean<br />

were determ<strong>in</strong>ed just be<strong>for</strong>e flower<strong>in</strong>g <strong>and</strong> all the<br />

above ground biomass was ploughed under. The<br />

maize was harvested at physiological maturity from<br />

the fertilized <strong>and</strong> unfertilized plots <strong>and</strong> the gra<strong>in</strong><br />

weight determ<strong>in</strong>ed.<br />

Field Work <strong>in</strong> the 1999/2000 Season<br />

To see the benefits of the green manure, the experiment<br />

was cont<strong>in</strong>ued <strong>in</strong> the 1999/2000 season.<br />

Maize was planted <strong>in</strong> all plots <strong>in</strong>clud<strong>in</strong>g the natural<br />

grass fallow plot which had been left <strong>in</strong>tact the previous<br />

season. All cultural practices were the same<br />

as <strong>in</strong> 1998/99. All plots (except unfertilized maize)<br />

were top dressed with urea at a rate of 23 kg N ha- 1 •<br />

Mid way through the season, soil samples were collected<br />

from all the plots <strong>and</strong> were analyse


Table 2. <strong>Gra<strong>in</strong></strong> yields of maize <strong>and</strong> stover yields of velvet beans <strong>and</strong> sunhemp grass fallow (Table 3). The mean gra<strong>in</strong><br />

Name of Farmer Maize Velvet bean Sunnhemp yield of the unfertilized maize was less<br />

or Farm<strong>in</strong>g Group <strong>Gra<strong>in</strong></strong> Yield Stover Yield than 1 t ha·l . 'There were no significant differences(p=O.05)<br />

between the maize grown<br />

No Fert Fertilized Inter crop Sole crop Intercrop Sole Crop<br />

after the -green manures <strong>and</strong> the fertilized<br />

--------------kg ha-'--------------<br />

maize. Dur<strong>in</strong>g the drought sp~ll, it was<br />

Kanakishiwa Club 933 1533 1931 2133 2883 3183<br />

noted that the maize grown after the green<br />

2 Mr.B.B.Muteto 866 1200 1865 2067 2550 2850<br />

manure species.was less affected than that<br />

3 Mr Chenje 750 950 1798 2000 2150 2450<br />

after the grass fallow or even the fertilized<br />

4 Muswishi Women Group 978 1026 2142 2563 3211 3561 maize. Incorporation of sunnhemp bio­<br />

5 Mr Kamilo 880 1200 1878 2080 2550 2850 mass <strong>in</strong>creased not only the yield of maize<br />

6 Mr Maputa 867 2000 1865 2067 3350 3650 but also <strong>in</strong>creased the organic matter con­<br />

7 Kalangwa Women Club 920 1200 1918 2120 2550 2850 tent of the soil at the experimental sites<br />

8 Rural R. Centre No Data' 1866 2556 3527 3926 (Tables 3 <strong>and</strong> 4). No other effects of green<br />

9 Shana'ngombe No Data 1864 2864 3262 3269 manures on soil properties were observed,<br />

perhaps because a s<strong>in</strong>gle season's <strong>in</strong>puts<br />

10 Chipaba Women Club 1027 2733 2025 2227 4083 4383<br />

were not sufficient to greatly change the<br />

11 Mr. Katiti John 1333 2467 2331 2533 3817 4117<br />

measured properties.<br />

12 Mukuyu Women Club 800 961 1798.0 2015.6 2150.8 2864.6 <br />

13 Mr Manyelekete L. 867 1133 1864.9 2693.5 2458.6<br />

• ·No Data, the maize was grazed by goats<br />

growth was reduced. As a result, maize was<br />

ploughed <strong>in</strong>to the soil together with the green manures.<br />

Orig<strong>in</strong>ally, it was expected that the maize<br />

should have been left st<strong>and</strong><strong>in</strong>g. To obta<strong>in</strong> a crop of<br />

maize from the <strong>in</strong>tercrop, the plant<strong>in</strong>g dates of the<br />

maize <strong>and</strong> the green manures should be staggered<br />

with the maize be<strong>in</strong>g planted first (Gilbert, 1998).<br />

Sunnhemp had generally higher stover yields than<br />

velvet bean, as can be seen from Table 2.<br />

Results of the 1999/2000 season<br />

To see the benefits of the green manures, maize was<br />

planted <strong>in</strong> all plots at all demonstration sites. Un<strong>for</strong>tunately,<br />

there was a drought immediately after<br />

plant<strong>in</strong>g which adversely affected germ<strong>in</strong>ation at<br />

most sites, though gap fill<strong>in</strong>g was done <strong>in</strong> most<br />

fields. Nevertheless, the maize at three sites ( Kanakashiwa<br />

club, Kamilo's <strong>and</strong> Shana'ngombe's farms)<br />

established well.<br />

The unfertilized maize had the lowest dry matter<br />

<strong>and</strong> gra<strong>in</strong> yield followed by the maize after the<br />

Table 3. Influence of green manures on the dry matter <strong>and</strong> gra<strong>in</strong><br />

yield of maize<br />

Treatment Dry matter yield <strong>Gra<strong>in</strong></strong> yield<br />

Maize after Grass Fallow<br />

Unfertilized Maize<br />

Fertilized Maize<br />

Maize after Velvet Bean<br />

-Maize after Sunnhemp<br />

Maize after MaizeIVelvet Bean Intercrop<br />

Maize after MaizelSunnhemp Intercrop<br />

LSD (0.05)<br />

%CV<br />

2720bc<br />

1884c<br />

4137ab<br />

4891a<br />

4523a<br />

4409a<br />

3922ab<br />

kg ha-' <br />

1271 bc <br />

877c <br />

2104ab <br />

2367a <br />

2608a <br />

1969ab <br />

1902ab <br />

1545 842 <br />

43.1 47.5 <br />

2786.9 Results of the Cost Benefit Analysis<br />

Analysis of costs <strong>and</strong> benefits shows that<br />

the treatment with sole sunnhemp had the highest<br />

gross marg<strong>in</strong> <strong>and</strong> returns to capital (Table 5 <strong>and</strong><br />

Figure 1). In terms of gross marg<strong>in</strong>, sole velvet bean<br />

was second while fertilizer was third <strong>in</strong> profitability.<br />

Intercropped sunnhemp was second to sole sunnhemp<br />

<strong>in</strong> profitability us<strong>in</strong>g the return to capital criteria.<br />

This demonstrated the superiority 'of us<strong>in</strong>g<br />

sunnhemp as a fertility enhanc<strong>in</strong>g technology to<br />

substitute <strong>for</strong> m<strong>in</strong>eral fertilizer. The results also<br />

show that even though us<strong>in</strong>g chemical fertilizer<br />

raises the gross benefits <strong>and</strong> marg<strong>in</strong>, the return to<br />

Table 4. Influence of green manures on soil fertility improvement<br />

Treatment %C pH P K Ca Mg<br />

CaClz ppm ----me%---­<br />

Unfertilized Maize 0.54b 4.6 18.3 0.15 0.82 0.22<br />

Maize after Grass Fallow 0.59ab 4.6 16.3 0.16 1.02 0.24<br />

Maize after Velvet Bean 0.59ab 4.7 14.6 0.15 0.86 0.23<br />

Maize after Sunnhemp 0.66a 4.6 16.2 0.17 0.92 0.22<br />

LSD (0.05) 0.08 ns ns ns ns ns<br />

%CV 16.4 4.7 36.8 17.0 35.1 35.2<br />

Table 5. Summary table of cost·benefit analysis. Zambia K/ha)<br />

Treatment<br />

Fallow 571950<br />

Intercropped velvet bean 886050<br />

Sole velvet bean 1065150<br />

Fertilizer 963000<br />

No Nitrogen Fertilizer 394650<br />

Intercropped sunnhemp 855900<br />

Sole sunnhemp 1173600<br />

I US $ - Zambia K 2500 (199912000)<br />

Economic <strong>in</strong>dicator<br />

Gross Benefit Total Costs Gross Return to<br />

Marg<strong>in</strong> Capital<br />

224000 347950 1.6<br />

266000 620050 2.3<br />

266000 799150 3.0<br />

224000 739000 3.3<br />

91000 303650 3.3<br />

182000 673900 3.7<br />

182000 991600 5.4<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 175


'"~<br />

v<br />

'" ~<br />

~<br />

1400000<br />

1200000<br />

1000000<br />

800000<br />

600000<br />

400000<br />

200000<br />

0<br />

~<br />

.£<br />

iii<br />

IL<br />

"0<br />

CI><br />

0­<br />

0­<br />

o ill<br />

~><br />

~<br />

...<br />

ill<br />

><br />

CI><br />

"0<br />

en<br />

Illl 8"055 Benefit<br />

• Total Costs<br />

o 8"05s PJargi1<br />

Figure 1. Cost·benefit analysis of soil fertility improvement technologies Muswishi,<br />

1998·2000<br />

the capital <strong>in</strong>vested is comparable to not apply<strong>in</strong>g<br />

fertilizer.<br />

Problems encountered, lessons, limitation of the<br />

work completed <strong>and</strong> farmer assessment of the<br />

technology<br />

Whilst farmers appreciated the <strong>in</strong>crease <strong>in</strong> yield due<br />

to the green manures, they po<strong>in</strong>ted out it was very<br />

difficult <strong>for</strong> them to justify weed<strong>in</strong>g green manure<br />

crops. This is because other farm operations compete<br />

<strong>for</strong> the same labour. It is possible that this<br />

problem could be overcome by plant<strong>in</strong>g th~ green<br />

manures <strong>in</strong> the same plots where maize has already<br />

been planted, at first weed<strong>in</strong>g of the maize crop.<br />

Some farmers also compla<strong>in</strong>ed about the labour <strong>in</strong>volved<br />

<strong>in</strong> plough<strong>in</strong>g the green manures under, especially<br />

where there is no animal draught power.<br />

Conclusions<br />

The soils of Muswishi Agricultural Camp were very .<br />

low <strong>in</strong> soil organic matter content render<strong>in</strong>g them<br />

<strong>in</strong>fertile <strong>for</strong> most crops without external nutrient<br />

sources.<br />

These results show that <strong>in</strong>corporat<strong>in</strong>g the green manures<br />

<strong>in</strong>to the local farm<strong>in</strong>g systems has beneficial<br />

effects by <strong>in</strong>creas<strong>in</strong>g maize yields. However, the<br />

green manures alone may not be sufficient to provide<br />

all the nutrients needed <strong>for</strong> the maize crop to<br />

full maturity. The maize grown aIter the green manures<br />

need supplement<strong>in</strong>g with some <strong>in</strong>organic fertilizer<br />

at the top dress<strong>in</strong>g stage. The advantage is<br />

that the rate is less than the recommended one. Further,<br />

green manures are ma<strong>in</strong>ly used as a source of<br />

nitrogen while other elements like phosphorus <strong>and</strong><br />

potassium may have to be added to avoid deplet<strong>in</strong>g<br />

the soil further of these essential nutrients.<br />

The number of green manure species<br />

used <strong>in</strong> the demonstration was<br />

limited. More species should be<br />

tried <strong>in</strong> the area to see if they can<br />

per<strong>for</strong>m better <strong>and</strong> provide farmers<br />

with a wider selection.<br />

Analysis of costs <strong>and</strong> benefits<br />

showed that the treatment with<br />

sale sunnhemp had the highest<br />

gross marg<strong>in</strong> <strong>and</strong> return to capital.<br />

~<br />

"0 I<br />

CI> It was sup~rior to all others. Sale<br />

~<br />

CI> en<br />

~<br />

0­<br />

IL<br />

t<br />

'"<br />

g-I "0'"<br />

velvet bean had the second highest<br />

CI> Z<br />

IL<br />

~en en<br />

gross marg<strong>in</strong>, while fertilizer was<br />

0<br />

Z ~<br />

.E third <strong>in</strong> profitability .<br />

Treatment<br />

The methods employed <strong>in</strong> this<br />

project allowed farmers to participate<br />

<strong>in</strong> the project from <strong>in</strong>ception<br />

to conclusion. By farmers identify<strong>in</strong>g<br />

the problem of soil fertility themselves <strong>and</strong> suggest<strong>in</strong>g<br />

that green manures be used <strong>and</strong> then see<strong>in</strong>g<br />

how they were used to alleviate the problem meant<br />

that farmers felt they owned the project <strong>and</strong> results.<br />

As such, they not only contributed l<strong>and</strong> to the project<br />

but also labour, which was essential. Researchers<br />

also made sure that whatever maize was obta<strong>in</strong>ed<br />

from the project was returned to the farmers<br />

after yield determ<strong>in</strong>ation.<br />

Acknowledgements<br />

We wish to thank the Farm Level Research Applied<br />

Methods <strong>in</strong> Eastern <strong>and</strong> Southern Africa<br />

(FARJ\l1ESA) <strong>and</strong> the Tropical <strong>Soil</strong> Biology <strong>and</strong> <strong>Fertility</strong><br />

(TSBF) <strong>for</strong> partially fund<strong>in</strong>g this research project.<br />

Many thanks are also extended to the entire<br />

<strong>Soil</strong> <strong>Fertility</strong> Team at Mt. Makulu <strong>and</strong> the Field Site<br />

Work<strong>in</strong>g Group at Chibombo District <strong>for</strong> diligently<br />

execut<strong>in</strong>g the field trials. We would also like to<br />

thank Mr. Lewis Bangwe <strong>for</strong> cond uct<strong>in</strong>g the economic<br />

analysis.<br />

References<br />

Bowen, W.T., J.O. Qu<strong>in</strong>tana, J. Pereira, D.R. Bould<strong>in</strong>,<br />

W.s. Reid <strong>and</strong> D.T. Lathwell, 1988. Screen<strong>in</strong>g<br />

legume green manures as nitrogen sources to<br />

succeed<strong>in</strong>g non-legume crops. Plant <strong>and</strong> <strong>Soil</strong><br />

111:75-80.<br />

Bray, R.H, <strong>and</strong> L.T. Kurtz, 1945. Determ<strong>in</strong>ation of<br />

total, organic <strong>and</strong> available <strong>for</strong>ms of phosphorous<br />

<strong>in</strong> soils. <strong>Soil</strong> Science 59:39-45.<br />

Gilbert, R.A., 1998. Undersow<strong>in</strong>g green manures<br />

<strong>for</strong> soil fertility enhancement <strong>in</strong> the maize-based<br />

cropp<strong>in</strong>g systems of Malawi. In: Wadd<strong>in</strong>gton, S.<br />

R., H.K. Murwira, J.D.T. Kumwenda, D. Hikwa<br />

176<br />

<strong>Gra<strong>in</strong></strong> le!jumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> ~oil <strong>Fertility</strong> <strong>in</strong> Southern Africa


<strong>and</strong> F. Tagwira (eds.) 1998. <strong>Soil</strong> <strong>Fertility</strong> Research<br />

<strong>for</strong> Maize-Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi <strong>and</strong><br />

Zimbabwe. Proceed<strong>in</strong>gs of the <strong>Soil</strong> Fert Net Results<br />

<strong>and</strong> Plann<strong>in</strong>g Workshop held from 7 to 11<br />

July 1997 at Africa University, Mutare, Zimbabwe.<br />

<strong>Soil</strong> Fert Net <strong>and</strong> CIMMYf-Zimbabwe,<br />

Harare, Zimbabwe, pp. 73-80.<br />

Giller, K.E., <strong>and</strong> K.J. Wilson, 1995. Nitrugen fixation<br />

<strong>in</strong> tropical cropp<strong>in</strong>g systems. CAB International,<br />

Wall<strong>in</strong>g<strong>for</strong>d, UK.<br />

Kolar, J.S., H.5. Grewal <strong>and</strong> B. S<strong>in</strong>gh, 1993. Nitrogen<br />

substitution <strong>and</strong> higher productivity of a ricewheat<br />

cropp<strong>in</strong>g system through green manur<strong>in</strong>g.<br />

Tropical Agriculture 70:301-304.<br />

MacColl, D., 1990. Studies on maize at Bunda, Malawi.<br />

III. Yield <strong>in</strong> rotations with pasture legumes.<br />

Experimental Agriculture 26:263-271.<br />

Peoples, M.B., <strong>and</strong> D.F. Herridge, 1990. Nitrogen<br />

fixation by legumes <strong>in</strong> tropical <strong>and</strong> subtropical<br />

agriculture. Advances <strong>in</strong> Agronomy 44:155-223.<br />

SAS Institute, 1985. SAS user's guide: Statistics. Version<br />

5 edition. Cary, NC, USA: SAS Institute Inc.,<br />

956 pp.<br />

<strong>Soil</strong> Survey, 1992. Keys to <strong>Soil</strong> Taxonomy, 5th edition.<br />

SMSS technical monograph No. 19. Blacksburg,<br />

Virg<strong>in</strong>ia, USA: Pocahontas Press, Inc., 556<br />

pages.<br />

Steel, R.G.D., <strong>and</strong> J.H. Torrie, 1980. Pr<strong>in</strong>ciples <strong>and</strong><br />

procedures of statistics. McGraw-Hill Book Co.<br />

Inc., Ne:v York, USA.<br />

Wakley, A., <strong>and</strong> I.A. Black, 1934. An exam<strong>in</strong>ation of<br />

the Degqareff method <strong>for</strong> determ<strong>in</strong><strong>in</strong>g soil organic<br />

matter <strong>and</strong> a proposed modification of the<br />

chromic acid titration method. <strong>Soil</strong> Science 37:29­<br />

38.<br />

Yost, R.S., D.O. Evans, <strong>and</strong> N.A. Saidy, 1985. Tropical<br />

legumes <strong>for</strong> N production: Growth <strong>and</strong> N<br />

content <strong>in</strong> relation to soil pH. Tropical Agriculture<br />

62:20-24.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 177


EFFECT OF SURFACE APPLICATION AND INCORPORATION OF<br />

SUNNHEMP AND VELVET BEAN GREEN MANURES ON THE<br />

PRODUCTION OF FIELD CROPS IN ZAMBIA<br />

J. MULAMBU, K. MUNYINDA, S. NGANDU <strong>and</strong> 0.1. LUNGU<br />

Department of Crop Sciences, University of Zambia,<br />

P. O. Box 32379, Lusaka, Zambia<br />

Abstract<br />

The use ofgreen manure crops <strong>for</strong> soil fertility improvement <strong>in</strong> Zambian cropp<strong>in</strong>g systems is becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly important<br />

as a cheap source of biologically fixed N. <strong>Green</strong> manure crops can be used alone or supplemented with m<strong>in</strong>eral<br />

fertilizer to reduce the cost of crop production. A field study on green manure placement was carried out at the University<br />

of Zambia field station dur<strong>in</strong>g the 2001/2002 cropp<strong>in</strong>g season, follow<strong>in</strong>g a request from small-scale growers<br />

through the L<strong>and</strong> Management <strong>and</strong> Conservation Farm<strong>in</strong>g (SCAFE) project to evaluate green manure placement. The<br />

experiment was designed to evaluate the most cost effective way to apply green manure biomass <strong>in</strong> small scale cropp<strong>in</strong>g<br />

systems <strong>and</strong> to determ<strong>in</strong>e the most appropriate green manure crop <strong>for</strong> use <strong>in</strong> these cropp<strong>in</strong>g systems. The experiment<br />

was conducted <strong>in</strong> two cropp<strong>in</strong>g seasons. The first phase (2001/2002 cropp<strong>in</strong>g season) consisted of production <strong>and</strong> placement<br />

of the biomass. The second phase (2002/2003 cropp<strong>in</strong>g season) ~onsisted of grow<strong>in</strong>g a test crop of maize over the<br />

biomass treatments applied. In the first cropp<strong>in</strong>g season, five varieties ofgreen manure crops were compared to a grass<br />

fallow.<br />

The results of the first cropp<strong>in</strong>g season are described. Biomass production of 7.5,5.8 <strong>and</strong> 4 t ha- 1 was highest (P < 0.05)<br />

<strong>for</strong> the sunnhemp spp. Crotolaria zanzibarica <strong>and</strong> Crotolaria juncea, <strong>and</strong> velvet bean variety W. Somerset respectively.<br />

The percent N content of the biomass was highest (P < 0.05) <strong>for</strong> velvet bean variety W. <strong>Green</strong> (3.2%) followed<br />

by Crotolaria juncea (2.98%). Sunnhemp spp. produced significantly (P


(SCAFE) requested an evaluation of green manure<br />

biomass placement. The experiment was designed<br />

to evaluate the most cost effective way to place biomass<br />

<strong>and</strong> to determ<strong>in</strong>e the most appropriate green<br />

manure crop.<br />

<strong>and</strong> total nitrogen <strong>and</strong> phosphorus yield were<br />

evaluated <strong>in</strong> the selection of the green manure<br />

crops. This paper reports the results of phase one of<br />

the trial to evaluate the most appropriate green manure<br />

crop among the five that were tested.<br />

Materials <strong>and</strong> Methods<br />

The experiment was planned to be conducted over<br />

two cropp<strong>in</strong>g seasons, with the first season<br />

(2001/2002 cropp<strong>in</strong>g season) consist<strong>in</strong>g of pro


it<br />

4<br />

a···· · ...<br />

-<br />

:.!!<br />

e..... 3.5<br />

c· 3<br />

.c.z<br />

GI- 2.5 .C .J<br />

c<br />

0 .W.G<br />

0<br />

2<br />

c 1.5<br />

GI<br />

01 .Gr<br />

..<br />

0<br />

!:: 0.5<br />

Z<br />

0<br />

C.Z C.J W.G W.S W.St Gr<br />

SOU rce of Nitrog en<br />

Figure 2. Comparison of Ncontent among various types of <br />

biomass. <br />

Means followed by the same letter are not significantly different. <br />

<br />

~<br />

a<br />

~<br />

E<br />

"Q 150 b<br />

ell<br />

u<br />

::> b<br />

.C.J I<br />

.W.G<br />

"C 100<br />

E bc .W.S I<br />

Q.<br />

.W.St'<br />

Z 50 - c<br />

to<br />

0 0<br />

I­<br />

'"<br />

~ Cl ~ en<br />

0 0<br />

~ ~ ~<br />

Source of Nitrogen<br />

....<br />

"-<br />

Cl<br />

III G r<br />

Figure 3. Total Nproduced by various types of biomass. <br />

Means followed by the same letter are not significantly different. <br />

Conclusion <strong>and</strong> Recommendations<br />

The major contribution of the green manure crops<br />

evaluated was found to be their supply of nitrogen<br />

to the subsequent crop. For small-scale producers,<br />

sunnhemp species were likely to supply adequate<br />

nitrogen <strong>for</strong> cereal crops. hI the case of velvet bean<br />

varieties, half of the total N required by cereal crops<br />

would have to be supplemented from organic <strong>and</strong><br />

m<strong>in</strong>eral sources. The amount of P conta<strong>in</strong>ed <strong>in</strong> the<br />

biomass was <strong>in</strong>significant <strong>for</strong> normal plant growth.<br />

External sources of P have to be added to crops at<br />

the recommended rates.<br />

Future Research Needs<br />

There is need to quantify the nu.trient contribution<br />

to the soil by the green manure crops, i.e. evaluate<br />

the below ground effect of the green manure fallows.<br />

Acknowledgements<br />

The authors would like to acknowledge the L<strong>and</strong><br />

Management <strong>and</strong> Conservation Farm<strong>in</strong>g (SCAFE)<br />

B<br />

'",<br />

a<br />

.J::. 7 .C.Z<br />

D.<br />

e<br />

ab .C.J<br />

C!<br />

~<br />

.W.G<br />

5<br />

"C .W.S<br />

41<br />

U 4<br />

::><br />

.W.St<br />

"C<br />

3<br />

.Gr<br />

E<br />

c.<br />

D.<br />

2<br />

!!<br />

0<br />

I­ 0<br />

f"! , C) f/)<br />

C)<br />

U U<br />

0<br />

~<br />

~ ~<br />

Source of Phosphorous<br />

Figure 4. Total Pproduced by various types of biomass. <br />

Means followed by the same letter are not significantly different. <br />

SIDA/MAFF Project <strong>for</strong> the fund<strong>in</strong>g that made this<br />

study possible. Great thanks are also expressed to<br />

the Crop Science Department of the University of<br />

Zambia, <strong>for</strong> the support rendered dur<strong>in</strong>g the study.<br />

References<br />

Allison, F.E., 1973. <strong>Soil</strong> organic matter <strong>and</strong> its role <strong>in</strong><br />

crop production. Elsevier, New York, USA. pp.<br />

450-456.<br />

Bowen W. T., J. O. Qu<strong>in</strong>ta<strong>in</strong>, J. Pereira, D. R.<br />

Bould<strong>in</strong>, W. S. Reid <strong>and</strong> D. J. Lathwell. 1998.<br />

Screen<strong>in</strong>g legume manures as nitrogen sources<br />

to succeed<strong>in</strong>g non legume crops. Plant <strong>and</strong> <strong>Soil</strong><br />

75-80.<br />

Elliot, L.F. <strong>and</strong> Papendick, RJ. 1986. Crop residue<br />

management <strong>for</strong> improved soil productivity.<br />

BioI. Agric. Hortic . 3:131-142.<br />

Faris, M.A., 1986. Plow down effects of different <strong>for</strong>age<br />

legume species, cultivars, cutt<strong>in</strong>g strategies<br />

<strong>and</strong> seed<strong>in</strong>g rates on the yields of subsequent<br />

crops. Plant <strong>and</strong> <strong>Soil</strong> 95: 419-430.<br />

Giller, K.E., <strong>and</strong> K.J. Wilson, 1995. Nitrogen fixation<br />

<strong>in</strong> tropical cropp<strong>in</strong>g systems. CAB International,<br />

Wall<strong>in</strong>g<strong>for</strong>d, UK.<br />

Peoples, M.B., <strong>and</strong> D.F. Herridge, 1990. Nitrogen<br />

fixation by legumes <strong>in</strong> tropical <strong>and</strong> subtropical<br />

agriculture. Advances <strong>in</strong> Agronomy 44:155-223.<br />

Rattray, A.G.H. <strong>and</strong> B.s. Ellis, 1952. Maize green<br />

manur<strong>in</strong>g <strong>in</strong> Southern Rhodesia. Rhodesia Agricultural<br />

Journal 49:188-197.<br />

Yost, R.s., D.O. Evans <strong>and</strong> N.A. Saidy, 1985. Tropical<br />

legumes <strong>for</strong> N production: growth <strong>and</strong> N<br />

content <strong>in</strong> relation to soil pH. Tropical Agriculture<br />

62:20-24.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

181


Questions <strong>and</strong> Answers<br />

Legume Benefits on Maize Productivity <strong>and</strong> <strong>Soil</strong> Properties<br />

To Walter Mupangwa, et al.<br />

Q: Can the smallholder farmers accept the<br />

application of high rates of basal fertilizers, e.g. the<br />

250 kg/ha Compound D used <strong>in</strong> your study? Is it<br />

not advisable to look at a lower range, e.g. 150 kg/<br />

ha of compound fertilizer?<br />

A: Our soils are low <strong>in</strong> P yet legumes have a<br />

relatively high P dem<strong>and</strong>. If the dairy farmers<br />

<strong>in</strong>vest <strong>in</strong> improv<strong>in</strong>g soil fertility, they can recover<br />

such costs from milk sales or livestock sales. For<br />

mean<strong>in</strong>gful biomass from legumes to be produced,<br />

the <strong>for</strong>age legumes have to be fed, i.e. adequate<br />

nutrients should be available.<br />

C: High rates of manure <strong>and</strong> basal fertilizer, e.g. 250<br />

kg ha- 1 of basal fertilizer, seem to make it difficult to<br />

extend otherwise good technologies to some of OUr<br />

resource poor farmers. Isn't it advisable to look at a<br />

range of say 150 - 250 kg ha- 1 to allow extension<br />

personnel to target their different clientele?<br />

To Bonaventure Kay<strong>in</strong>:1mura, et al.<br />

Q: What is the method of <strong>in</strong>corporation used? Can<br />

this method be used on a large area?<br />

A: Farmers <strong>in</strong> ShuI-ugwi acknowledged that it can <br />

be done <strong>in</strong> their fields. <br />

Q: Mucuna without <strong>in</strong>puts failed dismally <strong>in</strong> <strong>Soil</strong><br />

Fert Net trial plots <strong>in</strong> Murehwa/Wedza <strong>in</strong> the<br />

1996/1997 season <strong>and</strong> was almost written off then.<br />

What were the soil characteristics of the study sites?<br />

Did you add any basal fertilizers?<br />

A: S<strong>in</strong>gle superphosphate was added at 200 kg/ha.<br />

These soils are s<strong>and</strong>y <strong>and</strong> were used <strong>for</strong> maize<br />

cropp<strong>in</strong>g by the farmer.<br />

C: Follow-up clarification about the <strong>Soil</strong> Fert Net<br />

mucuna trials. The experiments tha t failed were<br />

specifically sited on exhausted <strong>and</strong> fallowed fields.<br />

They produced little or no biomass. The aim with<br />

that work was to test rehabilitation strategies.<br />

Spatial deployment issues on farm are very<br />

important <strong>for</strong> per<strong>for</strong>mance.<br />

Q: Is the moisture difference between late <strong>and</strong> early<br />

<strong>in</strong>corporation really significant? S<strong>in</strong>ce 2001/2002<br />

was very dry, maize might respond to moisture<br />

benefits of late <strong>in</strong>corporation, but maize showed<br />

ma<strong>in</strong> benefits with early <strong>in</strong>corporation.<br />

A: The moisture difference between early <strong>and</strong> late<br />

<strong>in</strong>corporation is not statistically different at 5% but<br />

numerically early <strong>in</strong>corporation has an advantage of<br />

releas<strong>in</strong>g nutrients early, which might outdo<br />

moisture content effects on yields.<br />

C: For your figures, there is need to keep<br />

consistency <strong>in</strong> the axes, species 1 ==sunnhemp;<br />

species 2 == Crotalaria. Sunnhemp is a species of<br />

Crotalaria. Please use the scientific name to reduce<br />

confusion.<br />

<strong>Gra<strong>in</strong></strong> leglmtS <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 183


PERFORMANCE OF GREEN MANURES AND GRA1N LEGUMES ON<br />

SEVERELY ACIDIC SOILS IN NORTHERN ZAMBIA t AND THEIR<br />

EFFECT ON SOIL FERTILITY IMPROVEMENT<br />

COST AH MALAMA <strong>and</strong> KENNETH KONDOWE<br />

Misamfu Regional Research Centre, P. O. Box 410055, Kasama, Zambia<br />

E-mail: misamfu@zamnet.zm<br />

Abstract<br />

<strong>Green</strong> manures have been used <strong>in</strong> various parts of Zambia, especially where soils are not acidic. TherethR green manures<br />

have been reported to produce large amounts of biomass that leads to improved soil fertility once <strong>in</strong>corporated <strong>in</strong>to<br />

the soil. We assessed the production of above-ground biomass by two green manures <strong>and</strong> the gra<strong>in</strong> production oftwo<br />

gra<strong>in</strong> legumes to see how they affect the fertility of an acidic Ultisol <strong>and</strong> an acidic Alfisol. <strong>Green</strong> manures were <strong>in</strong>corparated<br />

at flower<strong>in</strong>g while gra<strong>in</strong> legume residues were <strong>in</strong>corporated after harvest<strong>in</strong>g the gra<strong>in</strong>. On the Ultisol, sunnhemp<br />

produced the most above-ground biomass (2800 kg ha- l ) <strong>and</strong> velvet bean produced 2000 kg ha- l . Soyabean gra<strong>in</strong> production<br />

was 792 kg ha- l <strong>and</strong> cowpea gra<strong>in</strong> yield was just 9.2 kg ha- 1 . However, on the Alfisol velvet bean produced the highest<br />

above-ground biomass (2100 kg ha- 1 ) <strong>and</strong> sunnhemp produced 2000 kg ha- l • <strong>Gra<strong>in</strong></strong> yield was highest <strong>for</strong> soyabean<br />

(1313 kg ha- l ) <strong>and</strong> lowest <strong>in</strong> velvet bean (83 kg ha- l ). Velvet bean constantly produced high above-ground biomass on<br />

both soil types. Thus it can be used as a green manure on both soils. The results show that cowpea might be unsuitable<br />

<strong>for</strong> gra<strong>in</strong> production on the Ultisol while soyabean can be used <strong>for</strong> gra<strong>in</strong> production. Cowpea seems <strong>in</strong>ferior on both soil<br />

types, while sunnhemp <strong>and</strong> velvet bean appear to be ideal <strong>for</strong> the production of biomass on both acid soils. Thus, these<br />

two green manures can be promoted <strong>for</strong> soil fertility improvement on these acid soils <strong>in</strong> northern Zambia.<br />

Key words: <strong>Green</strong> manures, soil acidity, Al saturation, P-fixation<br />

Introduction<br />

<strong>Soil</strong>s <strong>in</strong> Northern Zambia are general acidic, <strong>in</strong>fertile<br />

<strong>and</strong> of low productivity. As <strong>in</strong> other parts of Southern<br />

Africa, nitrogen is the nutrient most limit<strong>in</strong>g<br />

crop production on these soils. Use of the m<strong>in</strong>eral<br />

fertilizers needed to <strong>in</strong>crease crop yields has become<br />

an almost impossible option <strong>for</strong> smallholder farmers<br />

due to the escalat<strong>in</strong>g prices result<strong>in</strong>g from the<br />

removal of subsidies on fertilizers <strong>and</strong> other agricultural<br />

<strong>in</strong>puts. This has seen many farmers resort<strong>in</strong>g<br />

to biological methods of soil fertility management.<br />

<strong>Green</strong> manure use is one way to <strong>in</strong>crease the basket<br />

of options <strong>for</strong> small-scale farmers. Several green manure<br />

legumes have been identified <strong>for</strong> use <strong>in</strong> Southern<br />

African cropp<strong>in</strong>g systems. However, the boundary<br />

conditions under which they per<strong>for</strong>m best have<br />

not been ascerta<strong>in</strong>ed.<br />

There is need to establish the soil <strong>and</strong> climatic conditions<br />

<strong>for</strong> legume adaptation so they can be used to<br />

improve soil fertility <strong>in</strong> specific environments. Increas<strong>in</strong>g<br />

human population densities <strong>and</strong> the resultant<br />

pressure on l<strong>and</strong> limits the grow<strong>in</strong>g of legumes<br />

<strong>for</strong> green manure <strong>in</strong> some areas as farmers have to<br />

grow crops that ensure they are food secure. The<br />

<strong>in</strong>crease <strong>in</strong> human population has seen <strong>in</strong>tensification<br />

of agriculture without replenishment of depleted<br />

nutrients. Population pressure has led to expansion<br />

of agricultural activities <strong>in</strong>to marg<strong>in</strong>al l<strong>and</strong>s<br />

result<strong>in</strong>g <strong>in</strong> crop production decl<strong>in</strong>es.<br />

Research on practical options that are af<strong>for</strong>dable to<br />

farmers such as <strong>in</strong>tercropp<strong>in</strong>g of green manures<br />

with other crops to maximize area under cultivation<br />

is necessary, as well as explor<strong>in</strong>g the use of gra<strong>in</strong><br />

legumes <strong>for</strong> home consumption <strong>and</strong> <strong>for</strong> soil fertility<br />

improvement. Greert manur<strong>in</strong>g was an <strong>in</strong>tegral part<br />

of some local farm<strong>in</strong>g systems be<strong>for</strong>e <strong>in</strong>organic fertilizers<br />

became widely used. Most elderly smallscale<br />

farmers recall arid appreciate the usefulness of<br />

two green manures, Crotalaria spp. <strong>and</strong> MucurUJ.<br />

spp., which have shown a high potential to fix atmospheric<br />

nitrogen symbiotically <strong>in</strong> a wide range of<br />

environments (Bowen et al. 1988; Kolar, et al. 1993;<br />

MacColl, 1990; Yost et al. 1985).<br />

<strong>Green</strong> manures have been reported to possess the<br />

potential to accumulate up to 250 kg N ha- 1 yr'!.<br />

(Giller <strong>and</strong> Wilson, 1991; Peoples <strong>and</strong> Herridge,<br />

1990). This amount of N leads to an <strong>in</strong>crease <strong>in</strong> yield<br />

of cereals, reported to be between 600 <strong>and</strong> 4100 kg<br />

ha- I (Peoples <strong>and</strong> Herridge, 1990). The use of organic<br />

manures has been shown to improve soil organic<br />

matter (Mwale et al. 2000) <strong>in</strong> non-acid soils of<br />

southern Zambia. The improved organic matter<br />

status <strong>in</strong> tum leads to improved soil structure <strong>and</strong><br />

better root aeration lead<strong>in</strong>g to improved water<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 185


o<br />

')<br />

hold<strong>in</strong>g capacity of the soil. This directly causes an<br />

<strong>in</strong>crease <strong>in</strong> crop vigour <strong>and</strong> gra<strong>in</strong> yields.<br />

The objective of this project was to e\'aluate the biomass<br />

production of sunnhemp <strong>and</strong> velvet bean <strong>and</strong><br />

the gra<strong>in</strong> production of cowpea <strong>and</strong> soyabean on<br />

two acid soils of Northern Zambia.<br />

The work was designed to specifically:<br />

• Determ<strong>in</strong>e the <strong>in</strong>fluence of soil characteristics on<br />

legume establishment, growth <strong>and</strong> biomass production,<br />

• Assess the contribution of gra<strong>in</strong> legumes <strong>and</strong><br />

green manures to soil fertility.<br />

Materials <strong>and</strong> methods<br />

This experiment was conducted <strong>for</strong> two agricultural<br />

seasons: 2001/2002 <strong>and</strong> 2002/2003. The worked reported<br />

<strong>in</strong> this paper is <strong>for</strong> the 2001/2002 season.<br />

The experiment was conducted on the Misamfu soil<br />

series at Misamfu Regional Research Centre (10 0 10'<br />

S, 31 0 12' E) on an Ultisol <strong>and</strong> at Mungwi District<br />

(10 0 10' S 31 0 15' E) on an Aliisol. A composite soil<br />

sample was collected at 0-20 cm soil depth from<br />

each site of the trial. The soil sample was dried <strong>and</strong><br />

ground to pass through a 2 mm sieve. The follow<strong>in</strong>g<br />

properties were analyzed: pH (<strong>in</strong> 0.01 M CaCh), Al<br />

saturation, exchangeable acidity, P (Bray 1) total nitrogen<br />

(Kjeldahl), organic carbon (Walkley <strong>and</strong><br />

Black, 1934), exchangeable cations (1.0 M ammonium<br />

acetate, pH 7.0). Particle size was also determ<strong>in</strong>ed<br />

us<strong>in</strong>g the Pipette method. Table 1 shows the<br />

soil chemical data.<br />

Sunnhemp, velvet bean, cowpea <strong>and</strong> soyabean sole<br />

crop treatments were planted. Velvet bean was<br />

planted to give a plant population density of 44000<br />

plants ha·1, sunnhemp was drilled at a seed<strong>in</strong>g rate<br />

of about 20 kg ha·1, while cowpea <strong>and</strong> soyabean<br />

were also drilled at about 80 kg seed ha·l . The plot<br />

sizes were 5 x 5 m. The design was an RCBD replicated<br />

three times.<br />

The above ground biomass of sunnhemp was determ<strong>in</strong>ed<br />

at the flower<strong>in</strong>g stage <strong>and</strong> then ploughed un-<br />

Table 1. Initial chemical soil properties of a<br />

composite sample (0·20 cm depth) of the<br />

experimental sites <strong>in</strong> northern Zambia<br />

<strong>Soil</strong> characteristics Misamfu Mungwi<br />

pH (<strong>in</strong> 0.01 M CaCh) 4.5 4.7<br />

Organic carbon ('¥o) 0.60 1.31<br />

Bray 1 P (mg kg') 1.07 2.65<br />

Exch. K(cmoltkg') 0.47 0.97<br />

Exch. Ca (cmoltkg') 0.28 0.84<br />

Exch. Mg (cmoltkg') 0.03 0.08<br />

AI saturation ('¥o) 20 10<br />

der while cowpea <strong>and</strong> soya bean gra<strong>in</strong> were harvested<br />

at maturity along with the above ground biomass<br />

production <strong>for</strong> green manures <strong>and</strong> gra<strong>in</strong> production<br />

<strong>for</strong> the gra<strong>in</strong> legumes.<br />

Results <strong>and</strong> Discussion<br />

Both soils are acidic but the Mungwi soil is slightly<br />

more fertile than the Misamfu soil, as seen from the<br />

available P <strong>and</strong> pH (Table 1). <strong>Green</strong> manures established<br />

well at both sites. Soyabean established well<br />

on both soil types but cowpea establishment was<br />

bad on the two sites because it was attacked by<br />

pests.<br />

Above-ground biomass produced by the two green<br />

manures was similar on both soil types (Table 2).<br />

Mungwi site produced a higher gra<strong>in</strong> yieid of soyabean<br />

than the Misamfu site while cowpea yield was<br />

poor throughout (Table 3). The green manures<br />

tested on these acidic soils <strong>in</strong> northern Zambia seem<br />

to have the potential to produce adequate biomass<br />

to allow a cereal crop to produce sufficient gra<strong>in</strong><br />

yield. Breman <strong>and</strong> Reuler (2002) reported a cowpea<br />

above-ground biomass of 2800 kg ha·l . On the acid<br />

soils of Northern Zambia, from 2000 to 2767 kg ha- 1<br />

sunnhemp above-ground biomass was produced<br />

(Table 2). The total content of N accumulated by<br />

legume green manures dur<strong>in</strong>g N2-fixation has been<br />

measured by various authors. Up to 250 kg N ha- 1<br />

yr- 1 was reported to accumulate <strong>in</strong> green legumes<br />

(Giller <strong>and</strong> Wilson, 1991; Peoples <strong>and</strong> Herridge,<br />

1990). Assum<strong>in</strong>g an average 3% N concentration,<br />

then from our experiments,sunnhemp was able to<br />

produce about 59 kg N ha- 1 on the Mungwi soil <strong>and</strong><br />

83 kg ha- 1 N on the Misamfu soil, while velvet bean<br />

produced 63 <strong>and</strong> 60 kg N ha- 1 respectively on these<br />

two soil types. S<strong>in</strong>ce commercial fertilizers are expensive,<br />

a smallholder farmer would be able to produce<br />

enough maize gra<strong>in</strong> yield to meet food security<br />

by plant<strong>in</strong>g the green manure, because they<br />

would be able to supplement part of the N fertilizer<br />

requirement of 120 kg N ha- 1 recommended <strong>for</strong><br />

maize <strong>in</strong> Zambia (McPhillips, 1987).<br />

The gra<strong>in</strong> yield of cowpea was very low on the<br />

Misamfu soil due to low fertility. However, soyabean<br />

per<strong>for</strong>med much better on that same soil.<br />

Cowpea was also diseased <strong>and</strong> this was largely responsible<br />

<strong>for</strong> the low gra<strong>in</strong> yield obta<strong>in</strong>ed. On the<br />

Table 2. Means of green<br />

Table 3. Means of gra<strong>in</strong> legume<br />

manure above ground biomass gra<strong>in</strong> yields (kg ha <strong>in</strong> Zambia<br />

(kg hal) <strong>in</strong> Zambia Treatments Misamfu Mungwi<br />

Treatment Misamfu Mungwi Cowpea 9.2 83.3<br />

Sunnhemp 2767 1967 Soyabean 792 1313<br />

Velvet bean 2000 2100 CV ('¥o) 115.8 36<br />

CV (%) 46.09 13.17 Probability 0.18 0.03<br />

186<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Mungwi soil, cowpea <strong>and</strong> soyabean produced a<br />

higher gra<strong>in</strong> yield compared to the Misamfu site.<br />

This aga<strong>in</strong> follows the fertility trend of the two soil<br />

types as shown <strong>in</strong> Table 1.<br />

Cowpea production was well short of potential. The<br />

potential ra<strong>in</strong>fed production of cowpea has been<br />

reported to be 1200 kg ha'\ of cowpea gra<strong>in</strong>, <strong>in</strong> addition<br />

to the 2800 kg ha- 1 of folder or green manure, <strong>in</strong><br />

the Sudanian savannah (Breman <strong>and</strong> Reuler, 2002).<br />

However, on the acid soils of Northern Zambia, less<br />

than 100 kg ha- 1 was produced (Table 3) . This could<br />

be due to high Al saturation common <strong>in</strong> these soils<br />

(Table I), which might affect root-rhizobium symbiosis<br />

<strong>in</strong>volved <strong>in</strong> N2 fixation, as well as to low<br />

available P lead<strong>in</strong>g to the low gra<strong>in</strong> yield. Accord<strong>in</strong>g<br />

to Breman <strong>and</strong> Reuler (2002), legumes will<br />

flourish under conditions of poor N but available P.<br />

The acid soils of Northern Zambia are low <strong>in</strong> both N<br />

<strong>and</strong> <strong>in</strong> available P (this is due to P fixation by these<br />

acid soils).<br />

Soyabean gra<strong>in</strong> yield was relatively higher on the<br />

more fertile Mungwi soil than the more acid soil<br />

(Table 3). In the less acidic soils of southern Zambia,<br />

average gra<strong>in</strong> yield of 2000 kg ha'\ with rhizobium<br />

applications have been recorded (McPhillips, 1987).<br />

Thus even under acid soils, reasonable yield of soyabean<br />

gra<strong>in</strong> can be achieved as long as seed is <strong>in</strong>oculated<br />

prior to plant<strong>in</strong>g.<br />

Conclusion<br />

Despite the soils be<strong>in</strong>g acidic, establishment of<br />

green manures <strong>and</strong> soyabean was good. Mungwi<br />

soil, be<strong>in</strong>g slightly fertile than Misamfu soil, produced<br />

a higher soyabean gra<strong>in</strong> yield. Cowpea gra<strong>in</strong><br />

yield on both sites was low, not because of the acid<br />

soil, but due to pest <strong>in</strong>festation which is a major<br />

problem <strong>in</strong> the cultivation of cowpea <strong>in</strong> Northern<br />

Zambia. The benefit due to the green manures will<br />

be assessed <strong>in</strong> the next season.<br />

References<br />

Bowen, T. 1997. The 1995/96. Fertilizer verification<br />

trial. Econ9mic analysis of results <strong>for</strong> policy discussion.<br />

Malawi M<strong>in</strong>istry of Agriculture <strong>and</strong><br />

Livestock Development, Lilongwe, Malawi. 22<br />

pp.<br />

Bowen, W.T., Qu<strong>in</strong>tana, J.O., Pert'ira, J., Bould<strong>in</strong>, D.<br />

R., Reid, W.5. <strong>and</strong> Latwell. D.T. 1988. Screen<strong>in</strong>g<br />

legume green manures as nitrogen sources to<br />

succeed<strong>in</strong>g non-legume crops. Plant <strong>and</strong> <strong>Soil</strong><br />

111:75-80.<br />

Breman, H <strong>and</strong> Reuler van, H. 2002. <strong>Legumes</strong>:<br />

When <strong>and</strong> Where an Option? In: Vanlauwe, B.,<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

Diels, J., Sang<strong>in</strong>ga, N<strong>and</strong> Merckx, (eds). -Integrated<br />

Plant Nutr.ient Management <strong>in</strong> sub-Saharan<br />

Africa. CABI International, Wall<strong>in</strong>g<strong>for</strong>d, UK.<br />

Gilbert, R.A. i 988. Underst<strong>and</strong><strong>in</strong>g green manures<br />

<strong>for</strong> soil fertility enhancement <strong>in</strong> the maize-based<br />

cropp<strong>in</strong>g systems of Malawi. In: Wadd<strong>in</strong>gton, S.<br />

R., Murwira, H.K., I


Abstract<br />

AGRONOMIC EFFECTIVENESS OF PHOSPHATE ROCK PRODUCTS,<br />

MONO-AMMONIUM PHOSPHATE AND LIME ON<br />

GRAIN LEGUMES IN SOME ZAMBIAN SOILS<br />

OBED I. LUNGU <strong>and</strong> KALALUKA MUNYII'JDA<br />

University of Zambia, School of Agricultural Sciences, Lusaka, Zambia<br />

Phosphorus deficiency severely limits crop yields <strong>in</strong> some Zambian soils. Where P fertilizer is not applied, yields ofgra<strong>in</strong><br />

legume crops are reduced by as much as 50% from the optimal yields obta<strong>in</strong>ed with adequate fertilization. Some of the<br />

soils are <strong>in</strong>herently low <strong>in</strong> P while many others are depleted of P from lack of, or low application of P fertilizer. Recapitalization<br />

of soil with P fertilizer requires a heavy <strong>in</strong>vestment, which makes greater utilization of local phosphate<br />

rock resources an economically attractive strategy. Additional sav<strong>in</strong>gs on the cost of Pfertilizers could come from utiliz<strong>in</strong>g<br />

accumulated P from previous applications. However, there is also limited <strong>in</strong><strong>for</strong>mation on the contribution of residual<br />

P to the nutrition of the subsequent crop. Field trials were conducted at n<strong>in</strong>e sites <strong>in</strong> two Agro-ecological Regions to<br />

test the agronomic effectiveness of acid treated phosphate rock <strong>and</strong> to evaluate the crop response to residual P from the<br />

previous season. The treatments comprised six rates (0, 40, 80, 120, 160 <strong>and</strong> 200 kg P20S ha· l ) <strong>in</strong> On-Station experiments<br />

<strong>and</strong> three rates (0, 60 <strong>and</strong> 120 kg P20S ha- l ) <strong>in</strong> On-Farm experiments, replicated four <strong>and</strong> two times respectively<br />

<strong>and</strong> arranged <strong>in</strong> a r<strong>and</strong>omized complete block design. Phosphorus was applied <strong>in</strong> the first year of the trials (2000/2001)<br />

as Mono-ammonium phosphate (MAP) <strong>and</strong> Partially Acidulated Phosphate Rock (PAPR). All experimental plots received<br />

70 kg K20 ha- l <strong>and</strong> 26.4 kg S ha- l . The disparity <strong>in</strong> N content between the two P products was balanced us<strong>in</strong>g<br />

urea on PAPR-treated plots, <strong>and</strong> subsequently all treatments On-Station received a topdress<strong>in</strong>g of 200 kg N ha- l while<br />

On-Farm the control <strong>and</strong> 60 kg ha- l rates received 120 kg N ha- l <strong>and</strong> the 120 kg P20S ha- l got 200 kg N ha- l . Maize, sorghum,<br />

cowpea, groundnut, soybean, cotton <strong>and</strong> sunflower were planted at the different sites accord<strong>in</strong>g to the importance<br />

of the crop <strong>in</strong> the region. In the second cropp<strong>in</strong>g season (2001/2002) the plant<strong>in</strong>g rows <strong>in</strong> which the fertilizer was<br />

b<strong>and</strong>ed were ma<strong>in</strong>ta<strong>in</strong>ed, <strong>and</strong> the residual P was evaluated from the higher rates of P application (120, 160 <strong>and</strong> 200 kg<br />

P20S ha- l ) where the P applic'ltion was not repeated. The plots were split so that one half was limed <strong>and</strong> the other half<br />

left un-limed. The crops were rotated, <strong>and</strong> groundnut <strong>and</strong> soybean followed maize, cowpea followed sorghum. In the<br />

first year, there was q significant (p < 0.05) yield <strong>in</strong>crease .to P application, regardless of P source, <strong>and</strong> 80 kg P20S ha- l<br />

appears to be the optimum rate <strong>for</strong> all crops. Application of P <strong>in</strong>creased legume gra<strong>in</strong> yields by more than two times the<br />

yields obta<strong>in</strong>ed from fields where all the major nutrients were applied except P. PAPR is as good as MAP <strong>in</strong> provid<strong>in</strong>g P<br />

to plants <strong>and</strong> improv<strong>in</strong>g yields of crops. On s<strong>and</strong>y soils, an application of more than 120 kg P20S ha- l as MAP depressed<br />

yields of legume crops. In the second year, recurrent P fertilizer application at rates of 40, 60 <strong>and</strong> 80 kg P20S ha- l was<br />

as effective as residual P fertilizer from the application of 120, 160 <strong>and</strong> 200 kg P20S ha- l the previous season. The PAPR<br />

was significantly a superior source of P <strong>for</strong> the legumes than MAP when lime was not applied. This study suggests that<br />

apply<strong>in</strong>g slowly-available <strong>and</strong> simply-processed PAPR <strong>in</strong> amounts sufficient fo·r several seasons <strong>in</strong> comb<strong>in</strong>ation with<br />

readily available N fertilizer may provide a strategy to re-capitalize soil with phosphorus <strong>and</strong> improve crop yields.<br />

KetJ words: Residual fertilizer phosphorus, groundnut, soybean, cowpea, cereal-legume rotation<br />

Introduction<br />

verse environmental impacts associated with nitrogen<br />

use, the nutrient balance should be improved<br />

Crops <strong>in</strong> general respond quickly <strong>and</strong> quite dra­ by promot<strong>in</strong>g P <strong>and</strong> K fertilizer use.<br />

matically to N, hav<strong>in</strong>g a visible effect on crop production.<br />

For this reason the use of N fertilizer is The <strong>in</strong>crease <strong>in</strong> both the costs of fossil energy <strong>and</strong><br />

popular with farmers <strong>and</strong> very often even to the the world-wide dem<strong>and</strong> <strong>for</strong> N fertilizer <strong>in</strong> food prodisadvantage<br />

of other equally essential nutrients duction are major reasons <strong>for</strong> the rek<strong>in</strong>dled <strong>in</strong>terest<br />

such as P <strong>and</strong> K. World fertilizer consumption by <strong>in</strong> biological nitrogen fixation (BNF) as an alternanutrients<br />

dur<strong>in</strong>g the past 36 years up to 1995 (FAO, tive, or at least a supplement to the use of <strong>in</strong>organic<br />

1994,1996) shows a consistent N:P20S ratio of nearly N fertilizers. Nitrogen fixation, whether biological<br />

2.5:1 , illustrat<strong>in</strong>g the dom<strong>in</strong>ance of N <strong>in</strong> total fertil­ or <strong>in</strong>dustrial, is a highly energy-consum<strong>in</strong>g process,<br />

izer use. In Zambia, this ratio is 3:1 (FAO, 1996). To <strong>and</strong> <strong>in</strong>adequate sources of energy is one of the maimprove<br />

fertilizer use efficiency <strong>and</strong> m<strong>in</strong>imize ad- jor limit<strong>in</strong>g factors to achiev<strong>in</strong>g optimum BNF.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 189


Among BNF systems, symbiotic systems <strong>in</strong>volv<strong>in</strong>g<br />

legume/bacteria associations have the highest N2<br />

fix<strong>in</strong>g capability because N2-fix<strong>in</strong>g microorganisms<br />

are supplied directly from the hos} plant with carbohydrates<br />

as a ready source of energy <strong>for</strong> N2 fixation.<br />

There<strong>for</strong>e, root nodulation <strong>and</strong> N2 fixation are<br />

more complete <strong>and</strong> efficient when all the essential<br />

plant nutrient elements are available <strong>in</strong> sufficient<br />

quantities to the macrosymbiont. This fact is not<br />

always appreciated, <strong>and</strong> legumes are generally<br />

thought to be so well endowed that that they will<br />

fix N2 regardless of their non-N nutrition status.<br />

Phosphorus plays a critical regulatory function <strong>in</strong><br />

photosynthesis <strong>and</strong> carbohydrate metabolism of<br />

leaves <strong>and</strong> P deficiency can limit growth, particularly<br />

dur<strong>in</strong>g the reproductive stage of the crop. In<br />

the N2 fixation reaction <strong>in</strong>volv<strong>in</strong>g the catalyz<strong>in</strong>g enzyme<br />

complex nitrogenase, energy <strong>in</strong> the <strong>for</strong>m of a<br />

r~d uctant Adenos<strong>in</strong>e Tri-phosphate (A TP) is essential.<br />

Ciaqu<strong>in</strong>ta <strong>and</strong> Quebedeaux (1980) reported<br />

that the level of P supply dur<strong>in</strong>g this period regulates<br />

the starch/sucrose ratio <strong>in</strong> the source leaves<br />

<strong>and</strong> the partition<strong>in</strong>g of photosynthates between the<br />

source leaves <strong>and</strong> the reproductive organs. This effect<br />

of P on partition<strong>in</strong>g of photosynthate is presumably<br />

responsible <strong>for</strong> the <strong>in</strong>sufficient photosynthate<br />

supply to nodulated roots of phosphorusdeficient<br />

legumes <strong>and</strong> the occurrence of nitrogen<br />

deficiency symptoms <strong>in</strong> N2-fix<strong>in</strong>g legumes receiv<strong>in</strong>g<br />

deficient levels of phosphorus (Marschner, 1986).<br />

Root <strong>in</strong>fection with Versicula-Arbsucular (V A) mycorrhizae<br />

(Aguilar et al. 1979) not only <strong>in</strong>creased P<br />

uptake from soil, but also VA aided the establishment<br />

of bacteria that fix N2 <strong>in</strong> soils that are low <strong>in</strong><br />

available phosphorus.<br />

PR would be one way to provide the PR at low cost,<br />

but this mode of application was not effective with<br />

Zambian PR. In current field trials, simply processed<br />

partially acidulated PR (PAPR) was utilized.<br />

The ma<strong>in</strong> objective of this study was to evaluate the<br />

agronomic effectiveness of P APR produced from<br />

simply-processed phosphate rock products <strong>in</strong> soils<br />

of vary<strong>in</strong>g soil chemical properties, <strong>for</strong> gra<strong>in</strong> legumes.<br />

Materials <strong>and</strong> Methods<br />

The field trials were conducted <strong>in</strong> two Agroecological<br />

Regions of vary<strong>in</strong>g ra<strong>in</strong>fall, length of<br />

grow<strong>in</strong>g season <strong>and</strong> soil properties, as shown <strong>in</strong><br />

Figure 1. In the first year (2000/1 cropp<strong>in</strong>g season),<br />

seven trials were conducted consist<strong>in</strong>g of four On­<br />

Station <strong>and</strong> thr,ee On-Farm experiments. Three On­<br />

Station trials were planted <strong>in</strong> Agro-ecological Region<br />

II at Kafuku Farm Institute <strong>in</strong> Mukonchi, University<br />

Farm (UNZA) <strong>and</strong> Magoye Cotton Development<br />

Trust (COT) on Mushemi, Chelstone <strong>and</strong> Nakambala<br />

soil series respectively, One On-Station<br />

trial was planted <strong>in</strong> Region I at Lusitu. All the onfarm<br />

trials were planted <strong>in</strong> Region II at Chibwe on<br />

Mushemi soil series, Colden Valley Agricultural Research<br />

Trust (CART) on Makeni soil series <strong>and</strong> at<br />

Magoye Mwanach<strong>in</strong>gwala village on Nakambala<br />

soil series. The sites were selected <strong>for</strong> their low<br />

available phosphorus fertility status. The <strong>in</strong>itial soil<br />

test values <strong>for</strong> P <strong>and</strong> pH are shown <strong>in</strong> Table 1. All<br />

the soils were slightly acid, to acid, <strong>and</strong> deficient <strong>in</strong><br />

plant available phosphorus. There<strong>for</strong>e, crop response<br />

to applied phosphorus fertilizer was expected<br />

at all these sites.<br />

Phosphorus deficiency is a major factor limit<strong>in</strong>g<br />

crop production <strong>in</strong> the tropics, presumably<br />

because of the fixation of<br />

phosphate by iron <strong>and</strong> alum<strong>in</strong>um oxides.<br />

Much more P fertilizer, there<strong>for</strong>e,<br />

is required to meet crop requirements<br />

over <strong>and</strong> above the quantities that are<br />

fixed. The cost of fertilizers is often<br />

the reason <strong>for</strong> <strong>in</strong>adequate fertilization.<br />

In the second cropp<strong>in</strong>g season (2001/2002), the tri­<br />

Tentative Distribution ol<strong>Soil</strong> Series <strong>in</strong> the PAPR Project Implementatfon Area of Zambia<br />

Many countries <strong>in</strong> Sub-Saharan Africa<br />

(--_._......_.....<br />

"\<br />

are rich <strong>in</strong> phosphate rock (PR)-the<br />

! LEGEND<br />

primary raw material <strong>for</strong> the produc­<br />

-Sou Series<br />

tion of phosphate fertilizers. Because<br />

I<br />

-Maur,a<br />

of low local dem<strong>and</strong> <strong>and</strong> the global """""'" I<br />

i ­'A'~J<br />

surplus of P fertilizers, these deposits<br />

"':J~ I<br />

Mu~lill<br />

have not been developed. Technical,<br />

()IhoQr 8on.~<br />

economic <strong>and</strong> conducive policy re­<br />

-La......<br />

l~ ~ J<br />

gimes are needed to <strong>in</strong>itiate tapp<strong>in</strong>g of<br />

Se.t, I: 5.010,0.0 ._.... 100&1 .....,__.... ,...,<br />

these resources <strong>and</strong> provid<strong>in</strong>g them at<br />

low cost. Direct application of ground<br />

Figure 1. Agro-ec%gica/ Regions of Zambia<br />

190<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 1. Reduction of soil acidi.ty after lim<strong>in</strong>g at experimental sites.<br />

Acidity (cmol kgl) lime added<br />

Site A1 3 • + H" A1 3 • kg hal Initial After lim<strong>in</strong>g<br />

1. Chibwe 0.20 0.10 360 5.1 5.3<br />

2. GART 1.00 0.66 1500 4.1 5.2<br />

3. Magoye COT 0.30 0.24 510 4.1 4.5<br />

4. Mwanach<strong>in</strong>gwala 0.34 0.28 450 4.4 5.1<br />

5. lusitu 0.12 0.10 450 4.3 5.4<br />

als were extended to three other sites - one site <strong>in</strong><br />

Eastern Prov<strong>in</strong>ce (Region II) <strong>and</strong> two <strong>in</strong> Northern<br />

Prov<strong>in</strong>ce (Region III).<br />

Phosphorus was applied as mono-ammonium phosphate<br />

(MAP) as the reference fertilizer <strong>and</strong> as partially<br />

acidulated phosphate rock (PAPR) produced<br />

at the Pilot Plant of the School of M<strong>in</strong>es at the University<br />

of Zambia from Chilembwe phosphaterbck.<br />

The trials were designed as On-Farm, or On-Station<br />

<strong>in</strong> which the plots were 100 m2 <strong>and</strong> 22.5 m2 respectively.<br />

The P application rates were 0, 60 <strong>and</strong> 120 kg<br />

P20S ha· J <strong>in</strong> On-Farm trials <strong>and</strong> 0, 40, 80, 120, 160<br />

<strong>and</strong> 200 kg P20 S ha- 1 <strong>in</strong> On-Station trials. All treatments<br />

were replicated fouT times <strong>in</strong> a r<strong>and</strong>omized<br />

complete block design. The fertilizer was b<strong>and</strong>ed <strong>in</strong><br />

the plant<strong>in</strong>g furrow below the seed at plant<strong>in</strong>g. All<br />

treatments received adequate amounts of K, S as<br />

recommended <strong>for</strong> the particular sites (70 kg <strong>and</strong><br />

26.4 kg ha- 1 respectively). Nitrogen was applied as a<br />

basal application at 24 kg N ha- 1 at On-Farm sites<br />

<strong>and</strong> 44 kg N ha- 1 at On-Stati0n sites. The test crops<br />

were maize; sorghum, sunflower <strong>and</strong> legumes<br />

(soybean, groundnut <strong>and</strong> cowpea). A peat-based<br />

<strong>in</strong>oculum was applied to soybean at plant<strong>in</strong>g us<strong>in</strong>g<br />

the recommended rate.<br />

The test crops were grown <strong>for</strong> . two seasons, <strong>and</strong> <strong>in</strong><br />

all cases improved varieties of test gra<strong>in</strong> legumes<br />

were planted accord<strong>in</strong>g to the suitability <strong>and</strong> importance<br />

of the legume <strong>in</strong> the locality of the trial. In Onstation<br />

trials <strong>in</strong> Region II, soybean variety Kaleya<br />

<strong>and</strong> groundnut variety MGV4 were planted. These<br />

varieties are well adapted to Region II <strong>and</strong> are very<br />

responsive to <strong>in</strong>oculation with Rhizobium. The<br />

MGV 4 groundnut variety is tolerant to soil acidity<br />

<strong>and</strong> has low pod failure (Pops) <strong>in</strong> these soils. Soybean<br />

was grQwn at Kafuku Farm Institute <strong>and</strong><br />

UNZA Farm, groundnut at Magoye CDT. Cowpea<br />

variety Bubebe was grown at Lusitu <strong>in</strong> Region 1.<br />

The variety was grown because of its earl<strong>in</strong>ess <strong>and</strong><br />

high yields, the <strong>for</strong>mer attribute be<strong>in</strong>g particularly<br />

important <strong>in</strong> this drought prone Region.<br />

Soybean was drilled at an <strong>in</strong>ter row spac<strong>in</strong>g of 75<br />

cm. Groundnut was grown at an <strong>in</strong>ter- <strong>and</strong> <strong>in</strong>trarow<br />

spac<strong>in</strong>g of 75 cm <strong>and</strong> 10 cm respectively. The<br />

spac<strong>in</strong>g <strong>for</strong> cowpea was 75 cm between rows <strong>and</strong> 10<br />

em between plants.<br />

pH<br />

Dur<strong>in</strong>g the second cropp<strong>in</strong>g season (2001/2002), ~he<br />

plant<strong>in</strong>g furrows from the first season were ma<strong>in</strong>ta<strong>in</strong>ed.<br />

However, the crops were rotated around the<br />

plots at each sit~ . No further applications of P were<br />

made to the higher rates of P application (120, 160<br />

<strong>and</strong> 200 kg P20S ha- I ), <strong>and</strong> the residual effects were<br />

evaluated from these treatments. Other nutrients, N,<br />

P, K <strong>and</strong> S <strong>in</strong>clud<strong>in</strong>g the application of <strong>in</strong>oculum<br />

were repeated as <strong>in</strong> the first season accord<strong>in</strong>g to the<br />

current fertilization practice. An absolute control<br />

treatment <strong>in</strong> which no fertilizer was applied was<br />

<strong>in</strong>cluded <strong>for</strong> sites where space permitteQ. adjacent to<br />

the current trial.<br />

The treatments were split, <strong>and</strong> a lime treatment was<br />

<strong>in</strong>cluded to evaluate its effect on crop growth, especially<br />

on the acid soils at Chibwe, GART, Magoye<br />

(both on-station <strong>and</strong> on-farm) <strong>and</strong> Lusitu sites. Each<br />

orig<strong>in</strong>al treatment plot was split <strong>in</strong>to two equal subplots,<br />

<strong>and</strong> one half was limed while the other was<br />

not limed. The amount of lime applied was calculated<br />

based on the exchangeable alum<strong>in</strong>ium values<br />

(Table 1).<br />

The lime was broadcast on the surface <strong>and</strong> then<br />

worked <strong>in</strong>to the soil by light cultivation us<strong>in</strong>g h<strong>and</strong><br />

hoes be<strong>for</strong>e plant<strong>in</strong>g. Crop growth was monitored<br />

dur<strong>in</strong>g the season, <strong>and</strong> some plant growth parameters<br />

were recorded. Crop management both <strong>in</strong> the<br />

first <strong>and</strong> second cropp<strong>in</strong>g seasons was carried out<br />

accord<strong>in</strong>g to the conventional agronomic practices<br />

<strong>for</strong> these crops.<br />

Results <strong>and</strong> Discussion<br />

Although various test crops were evaluated, only<br />

the results <strong>for</strong> the grct<strong>in</strong> legumes are presented <strong>and</strong><br />

discussed <strong>in</strong> this paper. These results are discussed<br />

accord<strong>in</strong>g to crop across trial sites.<br />

Soybean<br />

At Kafuku Farm Institute (sited on Mushemi soil<br />

series), a response to soybean biomass <strong>and</strong> gra<strong>in</strong><br />

yield was obta<strong>in</strong>ed <strong>in</strong> the second cropp<strong>in</strong>g season<br />

only with the application of PAPR at 40 kg P20S<br />

ha- 1 . There was a tendency <strong>for</strong> the residual effect of<br />

both MAP <strong>and</strong> PAPR to decrease with <strong>in</strong>creas<strong>in</strong>g P<br />

level, reach<strong>in</strong>g a m<strong>in</strong>imum when P was applied at<br />

160 kg P20S ha- 1 <strong>and</strong> subsequently <strong>in</strong>creas<strong>in</strong>g at the<br />

highest rate of P application. This is illustrated <strong>in</strong><br />

Figure 2, show<strong>in</strong>g the effect of source <strong>and</strong> level of P<br />

on soybean gra<strong>in</strong> yield.<br />

The soils at Chibwe On-Farm sit-e · were similar to<br />

those at Kafuku Farm Institute except that the soils<br />

were higher <strong>in</strong> <strong>in</strong>itial soil P. Consequently <strong>in</strong> the<br />

first cropp<strong>in</strong>g season (2001/02), there was no yield<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

191


3500<br />

.f"'3000<br />

ca<br />

,c2500<br />

CI<br />

"" - 2000<br />

.PO<br />

~<br />

'ti<br />

>. 1500 • MAP<br />

.PAPR<br />

c 1000<br />

~<br />

(!) 500<br />

0<br />

o 40 80 120 160 200<br />

P level (kg P 2 0 S ha- 1 )<br />

Figure 2_ Effect of source <strong>and</strong> level of P on soybean gra<strong>in</strong> yield at<br />

Kafuku Farm Institute. Means followed by the same letter are not<br />

significantly different.<br />

response to applied P on soybean regardless of P<br />

source. The soil available P was adequate to meet<br />

the nutrient dem<strong>and</strong> of the crop.<br />

In the second cropp<strong>in</strong>g season, there was no response<br />

of biomass <strong>and</strong> gra<strong>in</strong> yield on the control<br />

treatment to lime application. This is because the<br />

<strong>in</strong>itial soil pH <strong>for</strong> this site of 5.1 was high <strong>and</strong> consequently<br />

the exchangeable alum<strong>in</strong>ium of 0.1 cmol<br />

kg-I was low to be detrimental to plant growth. Lim<strong>in</strong>g,<br />

there<strong>for</strong>e, did not reduce exchangeable alum<strong>in</strong>ium<br />

any lower than was already <strong>in</strong> the soil to negatively<br />

<strong>in</strong>fluence plant growth (Table I, Figures 3 <strong>and</strong><br />

4).<br />

High biomass yields of 1.7 <strong>and</strong> 1.3 times over the<br />

control were obta<strong>in</strong>ed <strong>for</strong> the recurrent <strong>and</strong> residual<br />

appiication of MAP respectively. Similarly, high<br />

gra<strong>in</strong> yields of 1.6 times over the control treatments<br />

were obta<strong>in</strong>ed <strong>for</strong> both the fresh <strong>and</strong> residual application<br />

of MAP. Lim<strong>in</strong>g <strong>in</strong>creased biomass <strong>and</strong> gra<strong>in</strong><br />

yields largely <strong>in</strong> the fresh than <strong>in</strong> the residual application<br />

of MAP.<br />

;::-- 5000 ,...,~=-.........~~----_~~<br />

~ . 4500 .1--------.......",~----4;,..-~<br />

~ 4000<br />

;- 3500<br />

Qj 3000<br />

': 2500<br />

~ 2000<br />

E 1500<br />

.S!<br />

..0 1000<br />

500<br />

-tV<br />

0 0<br />

~<br />

o 13.5 27 60 120<br />

P level (kg P 2<br />

0 S ha- 1 )<br />

.PO L<br />

.1'0 UL<br />

.MAP L<br />

.MAP UL<br />

• PAPR L<br />

ill PAPR UL<br />

Figure 3. Effect of source of P, level of P<strong>and</strong> lime on soybean<br />

biomass yield at Chibwe On·farm site. Means followed by the same<br />

letter are not significantly different.<br />

With PAPR·there was a response to P <strong>for</strong> soybean<br />

biomass <strong>and</strong> gra<strong>in</strong> yields only to residual application<br />

of the fertilizer. Highest biomass <strong>and</strong> gra<strong>in</strong><br />

yields were obta<strong>in</strong>ed at the lower rate of 13.5 <strong>and</strong> 27<br />

kg P20S ha- 1 <strong>for</strong> biomass <strong>and</strong> 27 kg PiOs ha- 1 <strong>for</strong> soybean<br />

gra<strong>in</strong> yield. Both the biomass <strong>and</strong> gra<strong>in</strong> yields<br />

decreased with <strong>in</strong>creased rate of P so that there was<br />

no response to P at the ·highest rate (120 kg P20S<br />

ha- 1 ) with <strong>and</strong> without lim<strong>in</strong>g <strong>for</strong> gra<strong>in</strong> yield <strong>and</strong><br />

without lim<strong>in</strong>g <strong>for</strong> biomass. The effect of lime <strong>for</strong><br />

MAP was similar, except at the lowest rate of P <strong>for</strong><br />

gra<strong>in</strong> <strong>and</strong> biomass yield. The reduction of soybean<br />

gra<strong>in</strong> yield with <strong>in</strong>creas<strong>in</strong>g rate of residual P application<br />

suggested adequacy of soil P <strong>for</strong> crop production.<br />

The residual effect of P <strong>for</strong> PAPR was thus<br />

more effective than that of the fresh <strong>and</strong> residual<br />

application of MAP because adequacy <strong>in</strong> soil P <strong>for</strong><br />

plant growth -:vas reached at a lower rate of P application.<br />

On Makeni soil series at GART, higher gra<strong>in</strong> yields<br />

of soybean were obta<strong>in</strong>ed <strong>in</strong> the first cropp<strong>in</strong>g season<br />

with the recommended level of P application of<br />

60 kg P20S ha- 1 <strong>for</strong> MAP than at the improved technology<br />

level of 120 kg P20S ha- 1 . This is shown <strong>in</strong><br />

Figure 5. The yields were 2.4 times more than the<br />

control treatment. In the case of P APR, the soybean<br />

yields were similar <strong>for</strong> both the recommended <strong>and</strong><br />

improved technology with a two-fold <strong>in</strong>crease <strong>in</strong><br />

soybean yield compared to the unfertilized control.<br />

There was a significant reduction (p


2000 ~""""''7:ll!=''''''''__1[::''J!II ;>g!'~~L1!!2:~~<br />

1800 t"-:":"-:-~""='....:r:~<br />

-'Iv 1600 T-'~---'''';::''::~~<br />

.s:: 1400 f-~""'""':-:=:~~<br />

Cl<br />

==- 1200 +:::~-.~~~ .PO<br />

~ 1000 +.'1'"""--",.:-.,..,...-=:;;,<br />

Q.I<br />

.MAP<br />

';;;:' 800 t-"'~"'-:-'7-:'-- .PAPR<br />

600<br />

400<br />

200<br />

o<br />

o 60 120<br />

P Level (kg P~s ha- 1 )<br />

Figure 5. Response of soybean gra<strong>in</strong> yield to level <strong>and</strong> wurce of P<br />

at GA RT. Means follows by the same letter are not significantly<br />

significant.<br />

1600<br />

1400<br />


above-ground biomass was not translated <strong>in</strong>to<br />

higher gra<strong>in</strong> yields, suggest<strong>in</strong>g poor photosynthate<br />

partition<strong>in</strong>g to pods. This was despite <strong>Soil</strong> P <strong>in</strong>creas<strong>in</strong>g<br />

with P application, reach<strong>in</strong>g ad~quate levels <strong>for</strong><br />

plant growth at greater than 60 kg P20S ha- l <strong>for</strong> both<br />

sources of P. The low shell<strong>in</strong>g percentage <strong>in</strong>dicated<br />

that there was need <strong>for</strong> lim<strong>in</strong>g. PAPR was 2.5 times<br />

more effective <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g the level of soil P at the<br />

highest rate of P applied (120 kg P20s ha- 1 ). For<br />

MAP, soil P decreased at this high application rate.<br />

The higher rates of P applied as PAPR tended to <strong>in</strong>crease<br />

soil P values <strong>and</strong> <strong>in</strong> tum tended to produce<br />

higher gra<strong>in</strong> yields <strong>and</strong> <strong>in</strong>creased shell<strong>in</strong>g percentage.<br />

In the second cropp<strong>in</strong>g season, add<strong>in</strong>g nutrients<br />

other than P (N, K, S) <strong>in</strong>creased biomass yield over<br />

the absolute control, <strong>in</strong>dicat<strong>in</strong>g that these nutrients<br />

were limit<strong>in</strong>g. The effect of P on biomass yield depended<br />

on lime. Lime depressed biomass yield of<br />

the absolute zero control treatment, while <strong>in</strong>creas<strong>in</strong>g<br />

the yield of the PO control where P was not applied<br />

(Figure 9). The significant depression of biomass<br />

yield of 1.4 times with lim<strong>in</strong>g was probably<br />

due to a Ca/Mg imbalance. Magnesium was low <strong>in</strong><br />

these soils, <strong>and</strong> there<strong>for</strong>e add<strong>in</strong>g an excess of Ca<br />

through P APR <strong>and</strong> lime probably offsets the balance.<br />

The comparative higher yields of the unlimed<br />

compared to the limed absolute control treatment<br />

was because the exchangeable alum<strong>in</strong>ium was low<br />

<strong>and</strong> not detrimental to plant growth even though<br />

the soil pH was strongly acidic. Overall, lim<strong>in</strong>g <strong>in</strong>creased<br />

the pH from 4.4 without lim<strong>in</strong>g, to 5.1 wi'th<br />

lim<strong>in</strong>g. The change of pH with lime was conf<strong>in</strong>ed<br />

ma<strong>in</strong>ly to the topsoil. The pH was higher <strong>for</strong> PAPR<br />

than MAP when P was applied at 60 kg P20S ha- 1<br />

<strong>and</strong> <strong>in</strong> the sub soil of the limed plots at both 60 <strong>and</strong><br />

120 kg P20 S ha- 1 (Table 2). This suggests a lim<strong>in</strong>g<br />

effect of PAPR that did not occur at the higher rate<br />

of PAPR.<br />

Response of biomass yield to fresh applications of P<br />

over the absolute control with lim<strong>in</strong>g <strong>and</strong> the PO<br />

control without lim<strong>in</strong>g that were observed <strong>for</strong> MAP<br />

without lim<strong>in</strong>g <strong>and</strong> with lim<strong>in</strong>g <strong>for</strong> PAPR was corroborated<br />

by the low levels of soil P<strong>for</strong> the Absolute<br />

zero <strong>and</strong> PO controls (Figure 10). Although residual<br />

application of MAP <strong>and</strong> PAPR with <strong>and</strong><br />

without lim<strong>in</strong>g did not <strong>in</strong>crease soil P beyond that<br />

of the control treatments, response to residual P<br />

was, however, observed <strong>for</strong> the two fertilizers. The<br />

response was obta<strong>in</strong>ed <strong>for</strong> MAp without lim<strong>in</strong>g. For<br />

PAPR, the residual effect was greater <strong>and</strong> more effective<br />

than that of MAP without lim<strong>in</strong>g.<br />

Cowpea<br />

At Lusitu On-Station site, there was a significant (P<br />

> 0.1) response of cowpea gra<strong>in</strong> yield to application<br />

of P above 80 ~g P20S ha- 1 with P APR <strong>and</strong> above 120<br />

kg P20S ha- 1 with MAP (Figure 11) <strong>in</strong> the first cropp<strong>in</strong>g<br />

season. The yield response to P was consistent<br />

with the <strong>in</strong>herent P deficiency <strong>in</strong> the soil at this. site<br />

<strong>and</strong> there<strong>for</strong>e the need <strong>for</strong> P application to <strong>in</strong>crease<br />

yields. This is corroborated by the available soil P<br />

values which <strong>in</strong>creased to levels adequate <strong>for</strong> plant<br />

growth with application of P above 80 kg P20S ha- 1<br />

<strong>for</strong> MAP <strong>and</strong> above 40 kg P20S ha- 1 <strong>for</strong> P APR<br />

(Figure 12).PAPR was more effective <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g<br />

2500 ,....,.,.,.....,..,...,<br />

'0 1500<br />

'ii<br />

'>,<br />

UI 1000<br />

UI<br />

IV<br />

E 500<br />

.2<br />

In<br />

0<br />

....I ....I ....I ....I ....I<br />

o<br />

;:)<br />

o o<br />

;:)<br />

o CD N<br />

.... o<br />

N<br />

....<br />

P <strong>and</strong> Lime (Level kg PzOs ha- 1 )<br />

The soil P was lowest <strong>for</strong> the limed non-P fertilized<br />

control compared to the absolute control whether<br />

limed or unlimed. Crop production of maize <strong>and</strong><br />

groundnut dur<strong>in</strong>g the 2000/01 <strong>and</strong><br />

Figure 9. Effect of source of P, level of P<strong>and</strong> lime on groundnut<br />

biomass yield at Mwanach<strong>in</strong>gwala On-Farm site. Means followed by<br />

the same letter are not significantly different.<br />

2001/02 cropp<strong>in</strong>g seasons depleted soil P Table 2. Response of soil pH to application of lime<br />

compared to the absolute control. Recur­ P level Depth (cm)<br />

rent applications of P as MAP or PAPR kg PzO~ hal (0-15)<br />

<strong>in</strong>creased soil P by 3.7 <strong>and</strong> 4.9 <strong>for</strong> MAP MAP MAP PAPR PAPR MAP<br />

<strong>and</strong> PAPR with lim<strong>in</strong>g <strong>and</strong> by 2.8 <strong>and</strong> 4.2 l Ul l Ul l<br />

<strong>for</strong> MAP <strong>and</strong> PAPR without lim<strong>in</strong>g re­ 60 4.9 bcd 4.1 fgh 5.5 a 4.6 cde 3.9 gh<br />

spectively. The <strong>in</strong>crease <strong>in</strong> soil available 120<br />

P occurred primarily <strong>in</strong> the topsoil, espe- CV _ 4.35 %<br />

5.3 a 4.5 cde! 5.7 a 4.1bcd 4.6 cde<br />

cially with PAPR with lim<strong>in</strong>g <strong>and</strong> to a LSD _ 0.4412<br />

lesser extent with MAP without lim<strong>in</strong>g. Means followed by the same letter are not significantly different.<br />

The <strong>in</strong>crease <strong>in</strong> soil.P was highest <strong>for</strong> Key<br />

PAPR with or without lim<strong>in</strong>g.<br />

MAP L . MAP Limed MAP UL· MAP Unlimed<br />

PAPR L . PAPR Limed<br />

PAPR UL . PAPR Unlimed<br />

(15·30)<br />

MAP PAPR PAPR<br />

Ul l Ul<br />

3.9 h 4.7 cde 4.5 cdef<br />

4.1 fgh 5.2 ab 4.1 fgh<br />

194<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


~'tn<br />

30<br />

25<br />

..:..: 20<br />

~<br />

.PO Limed<br />

.PAPR Limed<br />

15<br />

EmAbsO Un limed<br />

11.<br />

·0 10 • PO Unlimed<br />

en<br />

.MAP Unllmed<br />

5 l1li PAPR Unlimed<br />

o<br />

o 60 120<br />

P Level .( kg P 2 0 S ha·')<br />

Figure 10. Effect of source of P, level of P<strong>and</strong> lime on soil available<br />

Pat Mwanach<strong>in</strong>gwala On-Farm site.<br />

80 ,~~~----~~~__----~<br />

70 ~~---,~--~~~~~~<br />

- 60 -+----4:~--~----::c;-;-;;::-:-;::;-:;:--l<br />

3r ,---------­<br />

0, 50 -~---F-------'\_--;;-7.7---~-; - PAPR (0-15)<br />

.§.. 40 +.-----t'--~--'---~---~ - PA P R ( 15-30)<br />

11.<br />

- MAP (0-15)<br />

30+--+--------~~~~~~<br />

·0 - MAP (15-30)<br />

en 20+-~--~~~~~~~~~<br />

10 +-~~~~~------~~-­<br />

O<br />

+---~--._--._--.---._--,<br />

o 40 80 120 160 200<br />

P level (kg P20S ha- 1 )<br />

Figure 12. Effect of source <strong>and</strong> level of Pon soil available Pat<br />

Lusitu.<br />

the level of soil P at all application rates. Yields of<br />

more than 2 t ha- l were obta<strong>in</strong>ed with the application<br />

of at least 80 kg P20S ha- l compare,s.:l to less than<br />

1 t ha- I without P application. PAPR was more eff~ctive<br />

than MAP <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g cowpea yields. This is<br />

<strong>in</strong>dicated by the difference between the response<br />

area graphs of PAPR <strong>and</strong> MAP (Figure 11).<br />

In the second cropp<strong>in</strong>g season, response to application<br />

of MAP was obta<strong>in</strong>ed only at 80 kg P20S ha- l ,<br />

while response to P APR was observed at a lower<br />

rate of 40 kg P20S ha- l . There was a response to residual<br />

application of P only with PAPR applied at<br />

more than 120 kg P20S ha- I . This is attributed to the<br />

grea ter effectiveness of P APR because . of the slow<br />

release of P from P APR.<br />

Lim<strong>in</strong>g <strong>in</strong>creased soil pH from 4.3 to 5.5 <strong>in</strong> the<br />

limed control treatments. Application of lime decreased<br />

cowpea gra<strong>in</strong> yield by as much as 1.8 compared<br />

to the unlimed control. This was probably<br />

due to an imbalance of nutrients <strong>for</strong> normal plant<br />

growth. The yields were comparatively higher <strong>in</strong><br />

the unlimed control treatment because the exchangeable<br />

alum<strong>in</strong>ium of 0.1 cmol kg-I was too low<br />

to reduce crop yields. The effect of lime on cowpea<br />

~<br />

"I <br />

..c '" <br />

2500<br />

2000<br />

~<br />

..::0: 1500<br />

~<br />

"0<br />

..<br />

.:;.,<br />

c:<br />

'" ...<br />

r.:><br />

1000<br />

500<br />

0<br />

0 40 80 120 160 200<br />

P Level (kg P 205 ha.- 1 )<br />

Figure 11 . Response of cowpea gra<strong>in</strong> yield to source <strong>and</strong> level of P<br />

at Lusitu<br />

-.;- 400 .,----- - -------------­<br />

III<br />

.c 350 +-----------------------­<br />

Cl<br />

~ 300 +-------~--~~~------- ~______~<br />

" '___~L......._~::::=::::~~~___- - MA P L <br />

ai 250 +<br />

.>' 200 +---/-~L----=........:~;;;:_----~- - MA P UL <br />

c::<br />

-PAPRI,.<br />

'~ 150 -PAPR UL<br />

Cl<br />

III 100 +-----------------------­<br />

41<br />

0.. 50+---- ---------------­<br />

::<br />

o 0 +---.---,----,--.--,--,<br />

U<br />

o 40 80 120 160 200<br />

P level (kg P 2 0 S ha- 1 )<br />

Figure 13. Effect of source of P, level of P<strong>and</strong> lime on cowpea<br />

gra<strong>in</strong> yield at Lusitu.<br />

gra<strong>in</strong> yield at higher rates of P was different <strong>for</strong><br />

MAP <strong>and</strong> PAPR. Cowpea gra<strong>in</strong> yields <strong>in</strong>creased<br />

with lime application <strong>for</strong> MAP, while <strong>in</strong> the case of<br />

PAPR the highest yie.lds were obta<strong>in</strong>ed without lim<strong>in</strong>g<br />

(Figure 13). Lime <strong>in</strong>creased cowpea gra<strong>in</strong> yield<br />

by over 50% compared to the unlimed control.<br />

Cowpea gra<strong>in</strong> yields were about n<strong>in</strong>e times lower <strong>in</strong><br />

2001/02 compared to the 2000/01 cropp<strong>in</strong>g season<br />

because of the severe drought experienced <strong>in</strong> Agroecological<br />

Region I at Lusitu.<br />

The first season groundnut was planted <strong>in</strong> the<br />

2001/02 cropp<strong>in</strong>g season with an On-Farm <strong>and</strong> On­<br />

Station trial <strong>in</strong> Petauke <strong>and</strong> Msekera Research Station<br />

respectively. At Petauke, there was a response<br />

to P only at the higher rate of P application of 120<br />

kg P20S l)a- l <strong>for</strong> PAPR (Figure 14). The yield at this<br />

level of P <strong>in</strong>creased two-fold compared to the absolute<br />

control. Other nutrients apart from P were limit<strong>in</strong>g<br />

<strong>in</strong> the absolute control. The level of soil P at<br />

this site was high so that the groundnut yield of the<br />

non-P fertilized control <strong>and</strong> P applied at 60 kg P20s<br />

ha- l was similar.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

195


3000<br />

"0<br />

]i<br />

>.<br />

,5<br />

~<br />

C><br />

800<br />

600<br />

400<br />

200<br />

0<br />

o 60 120<br />

.PAPR<br />

Figure 14. Effect of source <strong>and</strong> level of Pan groundnut yield at<br />

Petauke On·Farm site. Means followed by the same letter are not<br />

significantly different<br />

At Msekera Research Station, there was a response<br />

to P <strong>for</strong> MAP at 40 <strong>and</strong> 80 kg P20S ha·J <strong>and</strong> the highest<br />

rate of P application of 200 kg P20s ha· J , Response<br />

to PAPR was only obta<strong>in</strong>ed at 80 kg P20S<br />

ha· 1 (Figure 15). MAP was superior to PAPR, especially<br />

at the lower rate of P application, possibly because<br />

the PAPR ma<strong>in</strong>ta<strong>in</strong>ed a higher rate of soil P<br />

compared to P APR.<br />

Conclusions<br />

The biomass <strong>and</strong> gra<strong>in</strong> yields of the test legumes<br />

more than doubled with the application of P.<br />

Simply processed PAPR (50% acidulated with concentrated<br />

H2S04) was agronomically as effective as<br />

MAP <strong>and</strong> had an even better effect than MAP on<br />

acid soils. <strong>Soil</strong> recapitalization can be achieved with<br />

PAPR rather than with MAP because it does not depress<br />

plant growth at higher rates. There is greater<br />

soil residual P with PAPR than with MAP. PAPR<br />

ma<strong>in</strong>ta<strong>in</strong>s a higher level of soil available P than<br />

MAP, especially at the higher level of P. The optimal<br />

P application rate was 80 kg P20S ha· 1• The results<br />

of the PAPR study have <strong>in</strong>dicated that nutrients<br />

other than P are limit<strong>in</strong>g gra<strong>in</strong> legume production.<br />

There is there<strong>for</strong>e a need to identify those that<br />

are limit<strong>in</strong>g.<br />

«;-­ 2500<br />

.r:. "'<br />

..<br />

t:n 2000<br />

::.<br />

'0 1500<br />

Qj<br />

':;"<br />

1000<br />

,5<br />

~<br />

(!) 500<br />

0<br />

o 40 80 12() 160 200<br />

P Level (kg P 2 0 S ha·1)<br />

.AbsO<br />

.PO<br />

.MAP<br />

.PAPR<br />

Figure 15. Effect of source <strong>and</strong> level of Pon groundnut gra<strong>in</strong> yield<br />

.at Msekera Research Station. Means followed by the same letter<br />

are not significantly different.<br />

References<br />

Aguilar de, C.A-G, R. Azcon, <strong>and</strong> J.M. Barea. 1979.<br />

Endomycorrhizal fungi <strong>and</strong> Rhizobium as biological<br />

fertilizers <strong>for</strong> Medicago sativa <strong>in</strong> normal<br />

cultivation. Nature 279:325-327.<br />

Giaqu<strong>in</strong>ta, R.T. <strong>and</strong> B. Quebedeaux. 1980. Phosphate-<strong>in</strong>duced<br />

changes <strong>in</strong> assimilate partition<strong>in</strong>g<br />

<strong>in</strong> soybean leaves dur<strong>in</strong>g podfill<strong>in</strong>g. Plant Physiology<br />

65: Suppl., 119.<br />

FAO (Food <strong>and</strong> Agriculture Organization of the<br />

United Nations). 1994. Fertilizer data diskettes.<br />

F AO (Food <strong>and</strong> Agriculture Organization of the<br />

United Nations). 1996. Fertilizer data diskettes.<br />

Marschner, H. 1986. M<strong>in</strong>eral Nutrition of Higher<br />

Plants. Academic Press, New York, USA.<br />

196<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


THE EFFECT OF PHOSPHORUS AND SULPHUR ON GREEN MANURE<br />

LEGUME BIOMASS AND THE YIELD OF SUBSEQUENT<br />

MAIZE IN' NORTHERN MALAWI<br />

ATUSAYE B. MWALWANDA', SPIDER K. MUGHOGHO',<br />

WEBSTER D. SAKALA? <strong>and</strong> ALEX R. SAKA 3<br />

1Bunda College of Agriculture, P. O. Box 219, Lilongwe<br />

2Maize Commodity Team, Chitedze Agricultural Research Station<br />

P. O. Box 158~ Lilongwe<br />

3Department of Agricultural Research <strong>and</strong> Technical Services, M<strong>in</strong>istry of Agriculture<br />

<strong>and</strong> Irrigation, P. O. Box 30134, Lilongwe 3, Malawi<br />

Abstract<br />

A study on the effect of phosphorus <strong>and</strong> sulphur on biomass production of green manure legume crops <strong>and</strong> that of the<br />

green manures on subsequent maize yield was conducted dur<strong>in</strong>g the 1999/2000 <strong>and</strong> 2000/2001 grow<strong>in</strong>g seasons. The<br />

study was undertaken at two sites <strong>in</strong> Northern Malawi. The ma<strong>in</strong> objective of the <strong>in</strong>vestigation was to evaluate the response<br />

ofgreen manure legume crops to Phosphorus <strong>and</strong> 5ulphur application <strong>in</strong> terms of dry matter production <strong>and</strong> the<br />

manure's effect on subsequent maize yield.<br />

Three legume green manure crops: Mucuna pruriens, Cajanus cajan, <strong>and</strong> Tephrosia vogelii <strong>and</strong> one cereal crop,<br />

Zea mays, were planted as sub-plots <strong>and</strong> each crop received three rates of P <strong>and</strong> 5 fertilizer; 0, 20 kg P20S <strong>and</strong> 4 kg 5,<br />

<strong>and</strong> 40 kg PzOs <strong>and</strong> 8 kg 5 per hectare. At each site, the experiment was replicated five times us<strong>in</strong>g five farmers' plots <strong>in</strong><br />

a 2*4"'3'" split-split plot arrangement <strong>in</strong> a R<strong>and</strong>omized Complete Block Design.<br />

There were significant differences between the four crops (P= 0.001) <strong>in</strong> biomass production. Mucuna prurie~ outper<strong>for</strong>med<br />

the other crops (5380 kg ha-1),followed by Tephrosia vogelii (5258 kg ha-1), Zea mays (4972 kg ha-1) <strong>and</strong> Cajanus<br />

cajan (2669 kg ha- 1 ) respectively. Fertilizer application significantly <strong>in</strong>creased (P=O.OOV biomass production.<br />

The lowest amount of biomass was recorded from the treatment without fertilizer <strong>in</strong>put, <strong>and</strong> the highest was recorded<br />

from the treatment with the highest fertilizer rate. The two sites were significantly different (P=O.OOl) <strong>for</strong> biomass production.<br />

Mean biomass yield at Nchenachena (5650 kg ha-1) was higher than from Champhira (3490 kg ha- 1 ).<br />

In the subsequent grow<strong>in</strong>g season, the maize gra<strong>in</strong> <strong>and</strong> total dry matter produced were significantly different at (P <<br />

0.01) <strong>and</strong> (P = 0.001) respectively <strong>and</strong> were attributed to the type of crop preced<strong>in</strong>g them. Maize gra<strong>in</strong> <strong>and</strong> biomass after<br />

Mucuna pruriens was the highest (1104 kg ha-1<strong>for</strong> gra<strong>in</strong> <strong>and</strong> 5170 kg ha-1<strong>for</strong> biomass). This was followed by those<br />

after Cajanus cajan (880 <strong>and</strong> 4430 kg ha- 1 ), Tephrosia vogelii (785 <strong>and</strong> 3915 kg ha- 1 ) <strong>and</strong> then Zea mays (627 kg ha- 1<br />

<strong>for</strong> gra<strong>in</strong> <strong>and</strong> 3059 kg ha-1<strong>for</strong> total dry matter produced) _<br />

Key words: <strong>Green</strong> manure legume, short-term fallow, phosphorous, sulphur, maize, northern Malawi<br />

Introduction<br />

The problem -of decl<strong>in</strong><strong>in</strong>g soil fertility <strong>in</strong> smallholder<br />

farms is recognized as the fundamental cause of decl<strong>in</strong><strong>in</strong>g<br />

per capita food production <strong>in</strong> African agriculture<br />

(Gilbert, 1998; Smal<strong>in</strong>g, 1993; Mokwunye et<br />

ai., 1996). Major causes of decl<strong>in</strong><strong>in</strong>g soil fertility <strong>in</strong>clude<br />

cont<strong>in</strong>uous monocropp<strong>in</strong>g, low use <strong>and</strong> <strong>in</strong>appropriate<br />

application of organic or <strong>in</strong>organic fertilizers,<br />

lack of fallows, <strong>and</strong> lack of proper soil <strong>and</strong> water<br />

conservation practices. These factors have contributed<br />

to lower average crop yields <strong>in</strong> most smallholder<br />

farmers' fields.<br />

One <strong>in</strong>tervention identified to address the problem<br />

of soil fertility decl<strong>in</strong>e, particularly <strong>in</strong> low-<strong>in</strong>put <strong>and</strong><br />

limited l<strong>and</strong> resource base agricultural systems, is<br />

the use of a short-term fallow system with fast<br />

grow<strong>in</strong>g herbaceous legumes planted <strong>in</strong> rotation<br />

with major food crops, such as maize (Zea mays L.).<br />

Some of the promis<strong>in</strong>g legume green manure crops<br />

<strong>in</strong> such a system <strong>in</strong>clude pigeonpea (Cajanus cajan),<br />

fish bean (Tephrosia vogelii), 5esbania sesban anJ velvet<br />

bean (Mucuna pruriens). Sole cropped green manure<br />

legumes have the potential to accumulate up<br />

to 250 kg N ha- 1 yrl (Giller <strong>and</strong> Wilson, 1991) result<strong>in</strong>g<br />

<strong>in</strong> subsequent cereal yield <strong>in</strong>creases of 600-4100<br />

kg ha- 1 (Peoples <strong>and</strong> Herridge, 1990).<br />

<strong>Gra<strong>in</strong></strong> tegumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 197


Most <strong>in</strong>terventions <strong>in</strong>volv<strong>in</strong>g green manure crops<br />

have emphasized the role of the legumes <strong>in</strong> the<br />

maize-based cropp<strong>in</strong>g systems without look<strong>in</strong>g at<br />

improv<strong>in</strong>g the legume itself. It is iffiportant to note<br />

that <strong>for</strong> the legum<strong>in</strong>ous crops to fix nitrogen, they<br />

need good phosphorus <strong>and</strong> sulphur nutrition, <strong>in</strong><br />

addition to other nutrients. The aim of supply<strong>in</strong>g<br />

. green manure legume crops with phosphorus, sulphur<br />

<strong>and</strong> z<strong>in</strong>c is to boost early root development<br />

that would take up soil nutrients <strong>for</strong> plant development,<br />

<strong>and</strong> subsequent biomass production <strong>and</strong> biological<br />

nitrogen fixation (BNF). With low soil nutrient<br />

contents, most legume manure crops do not produce<br />

sufficient quantities of biomass to supply the<br />

required levels of nutrients upon m<strong>in</strong>eralization<br />

(Palm et al. 1997). Many organic materials when applied<br />

<strong>in</strong> modest amounts, i.e. 3-5 t ha·1 dry matter<br />

conta<strong>in</strong> sufficient N to meet the requirements of a 2<br />

t maize crop. However, they cannot. supply the P<br />

requirements of maize, hence legumes must be supplemented<br />

by P <strong>in</strong> areas where P is deficient (Palm,<br />

1995). Application of <strong>in</strong>organic fertilizer to legumes<br />

would thus improve biomass production <strong>and</strong> nutrient<br />

recycl<strong>in</strong>g, thereby releas<strong>in</strong>g higher amounts of<br />

plant nutrients upon decomposition.<br />

The objectives of the experiment were (a) to evaluate<br />

the effect of phosphorus <strong>and</strong> sulphur application<br />

on biomass production by three legume green manure<br />

crops; MUCllna pruriens, Cajanus cajan <strong>and</strong><br />

Tephrosia vogelii <strong>and</strong> (b) to screen a green manure<br />

legume crop that can result <strong>in</strong> higher yields <strong>for</strong> the<br />

subsequent maize crop.<br />

Materials <strong>and</strong> Methods<br />

Experimental sites <br />

The on-farm, farmer-managed, researcher-designed <br />

experiment was conducted <strong>in</strong> two Extension Plan­<br />

n<strong>in</strong>g Areas (EPAs) of Mzuzu Agricultural Develop­<br />

ment Division <strong>in</strong> Northern Malawi. The sites were <br />

Champhira EPA <strong>in</strong> Mbawa Rural Development Pro­<br />

ject <strong>and</strong> Nchenachena EPA <strong>in</strong> Rumphi Rural Devel­<br />

opment Project. <br />

<strong>Soil</strong>s of Champhira (Loudon series) are classified as <br />

weakly Ferallitic Latosols <strong>and</strong> those of Nchenachena <br />

(N chenachena series) are Ferrisols (Young <strong>and</strong> <br />

Brown, 1962). Champhira lies at an elevation rang­<br />

<strong>in</strong>g from 1216 to 1338 ill above sea level <strong>and</strong> located <br />

12° 24' S<strong>and</strong> 33° 40' E while Nchenachena is 1216 to <br />

1307 m above the sea level <strong>and</strong> located at 10° 30' S <br />

<strong>and</strong> 33° 50T <br />

Experimental design <br />

The experiment was laid out <strong>in</strong> a split-split plot ar­<br />

rangement <strong>in</strong> a r<strong>and</strong>omized block design. The two <br />

sites of the experiment were the ma<strong>in</strong> plots. In Year <br />

1 (1999 - 2000), three green manure legume crops; (i)<br />

Pigeon pea, hybrid variety ICP 9145 (Cajanus cajan<br />

(L) Mellsp.), (ii) Velvet bean (Mucuna pruriens) <strong>and</strong><br />

(iii) Fish bean (Tephrosia vogelii) <strong>and</strong> (iv) Maize hybrid<br />

MH 18 (Zea mays (1.)), were the sub-plots. The<br />

sub-plots measured 15 m long with five ridges<br />

spaced at 0.90 m apart (67.5 m2). There were three<br />

sub-sub plots <strong>for</strong> each crop with five ridges each 5m<br />

long <strong>and</strong> spaced at 0.90m (22.5 m2). Treatments <strong>for</strong><br />

sub-sub plots were (i) without phosphorous <strong>and</strong><br />

sulphur, (ii) 20 kg phosphoru~ ha·1 plus 4 kg sulphur<br />

ha- 1 <strong>and</strong> (iii) 40 kg phosphorus ha··1 plus 8 kg<br />

sulphur ha- 1 • Plant density was as shown <strong>in</strong> Table 1.<br />

Immediately after harvest (3 rd week of May <strong>and</strong> 2 nd<br />

week of June, 2000 <strong>for</strong> Champhira <strong>and</strong> Nchenachena<br />

respectively) <strong>in</strong> year 1 (1999-2000), the green<br />

manure <strong>and</strong> m,aize stover were ploughed <strong>in</strong>to the<br />

soil <strong>in</strong> the <strong>in</strong>dividual treatment plots. In Year 2<br />

(2000 - 2001), a maize crop (MH 18 hybrid) was<br />

grown <strong>in</strong> all the plots to assess the residual effect of<br />

the green manure legume crops.<br />

<strong>Soil</strong> sampl<strong>in</strong>g<br />

<strong>Soil</strong> sampl<strong>in</strong>g was done at each site be<strong>for</strong>e the start<br />

of the experiment. <strong>Soil</strong> samples were r<strong>and</strong>omly<br />

taken from 0-15 cm <strong>and</strong> 15-30 cm soil depths from<br />

each of the smallholder-farmers' plots us<strong>in</strong>g an auger.<br />

From each farmer's plot, five samples were<br />

taken at each of the soil depths. The soils from the<br />

same depths with the same farmer were mixed <strong>and</strong><br />

after several splits, about 500 g of the soil was obta<strong>in</strong>ed<br />

<strong>and</strong> stored <strong>in</strong> plastic bottles. The <strong>in</strong>itial soil<br />

samples were <strong>for</strong> characteriz<strong>in</strong>g the two sites. These<br />

samples were analyzed <strong>for</strong> general soil physical <strong>and</strong><br />

chemical properties (Table 2). All soil samples were<br />

air-dried, sieved through a 2 mm sieve <strong>and</strong> stored<br />

<strong>in</strong> plastic bottles be<strong>for</strong>e laboratory analyses.<br />

Plant sampl<strong>in</strong>g <br />

Three plants from the middle ridge of each treat­<br />

ment plot were sampled eight weeks from plant<strong>in</strong>g <br />

<strong>and</strong> at mature harvest <strong>for</strong> both seasons. These sam­<br />

ples were oven-dried at 65°C <strong>for</strong> 48 hours, then <br />

ground to powder (passed through a 0.1 mm sieve) <br />

us<strong>in</strong>g an electric gr<strong>in</strong>der <strong>and</strong> stored <strong>in</strong> plastic bot­<br />

tles. The samples were analyzed to determ<strong>in</strong>e nitro­<br />

gen <strong>and</strong> phosphorus <strong>in</strong> the plant tissue. <br />

Biomass was estimated at harvest <strong>for</strong> both the leg­<br />

ume <strong>and</strong> maize stover after the end of the first sea-<br />

Table 1. Spac<strong>in</strong>g of the crops between <strong>and</strong> with<strong>in</strong> ridges (em)<br />

Crop With<strong>in</strong> ridges Between ridges Plants per station<br />

Maize 50 90 2<br />

Mucuna 15 90 1<br />

Pigeon pea 90 90 3<br />

Tephrosia 75 90 3<br />

198<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 2. Initial properties of soils at the two sites be<strong>for</strong>e the<br />

start of the experiments<br />

Parameter Champhira Nchenachena<br />

<strong>Soil</strong> pH (1 :2.5 H2O) 5.3 5.26<br />

Organic carbon % 0.56 1.032<br />

Total nitrogen % 0.2 0.634<br />

C:N Ratio 3.21 1.63 <br />

Mehlich·3 P(ppm) 0.054 0.078 <br />

Clay % 30.5 26.7 <br />

Silt % 8.3 13.3 <br />

S<strong>and</strong> % 61.2 60.0 <br />

son <strong>and</strong> <strong>for</strong> maize stover orily at harvest <strong>for</strong> the second<br />

season. <strong>Gra<strong>in</strong></strong> yield was also determ<strong>in</strong>ed at 12.5<br />

% moisture content at harvest of both seasons. Dur<strong>in</strong>g<br />

the first grow<strong>in</strong>g season, only maize gra<strong>in</strong> yield<br />

was recorded. This was because Mucuna pruriens<br />

<strong>and</strong> Tephrosia vogelii were <strong>in</strong>corporated at flower<strong>in</strong>g,<br />

when the crops atta<strong>in</strong>ed their potential maximum<br />

dry matter production. Pigeonpea gra<strong>in</strong> yield was<br />

very poor, ma<strong>in</strong>ly due to poor crop establishment,<br />

<strong>and</strong> as such the available data were <strong>in</strong>adequate <strong>for</strong><br />

statistical analyses. The net plot from which yield<br />

data was obta<strong>in</strong>ed was a four-metre section of two<br />

of the <strong>in</strong>nermost ridges from the five ridges of the<br />

sub-sub plots i.e. 2 * 0.90 m * 4 m (7.2 m2). Ra<strong>in</strong>fall<br />

data was recorded from Champhira <strong>and</strong> Nchenachena<br />

meteorological centres (Figure 1).<br />

Treatment management<br />

Agronomic operations 3uch as weed<strong>in</strong>g, harvest<strong>in</strong>g,<br />

<strong>and</strong> sampl<strong>in</strong>g, was done at almost the same time <strong>for</strong><br />

each ·site. Plant<strong>in</strong>g was earlier <strong>in</strong> Champhira EPA<br />

(with<strong>in</strong> the 3 rd week of December) than <strong>in</strong> Nchenachena<br />

EPA (2 nd week of January) ow<strong>in</strong>g to differences<br />

<strong>in</strong> the onset of the ra<strong>in</strong>y season between the<br />

two sites (Fig. 1). In the first season, fertilizer was<br />

applied two weeks after plant<strong>in</strong>g us<strong>in</strong>g 23:21 :0:4S<br />

compound fertilizer. The rates were derived us<strong>in</strong>g<br />

the follow<strong>in</strong>g calculations:<br />

From a 50 kg bag of fertilizer, there is 21 % P20S <strong>and</strong><br />

4 % S that translates to:<br />

(0.21 * 50 kg) = 10.5 kg P20S. Similarly, <strong>for</strong> S = (0.04 *<br />

50 kg) = 2 kg S.<br />

Quantity to apply per unit area us<strong>in</strong>g the fertilizer<br />

<strong>for</strong>mulation at h<strong>and</strong> was obta<strong>in</strong>ed from the simple<br />

proportion calculation below:<br />

Example 20 kg P20S ha·1 treahnent<br />

= (20 kg P20sha·1 * 50 kg bag-I) / 10.5 kg P20S bag- I<br />

= 95 kg ha·1 of the fertilizer. In this there is approximately<br />

4 kg S.<br />

The fertilizer was b<strong>and</strong>ed along the ridge. Weed<strong>in</strong>g<br />

was done twice: be<strong>for</strong>e apply<strong>in</strong>g fertilizer <strong>and</strong> eight<br />

weeks from plant<strong>in</strong>g.<br />

In the second year of the trial, 50 kg N ha·1 was top<br />

dressed us<strong>in</strong>g a high analysis straight fertilizer,<br />

Urea, <strong>in</strong> all the maize.plots. To get the 50 kg N ha·I,<br />

the follow<strong>in</strong>g calculations were done: Each bag of<br />

Urea has 46 % N,that translates to 23 kg N. The required<br />

quantity =(50 kg N ha- 1 * 50 kg bag- 1 )/23 kg<br />

bag- I = 108.7 kg ha·1 Urea. A b<strong>and</strong><strong>in</strong>g method was<br />

used.<br />

The purpose of the second season was to evaluate<br />

maize yield <strong>in</strong> response to the <strong>in</strong>corporated green<br />

manure legume crops. The nutrients released from<br />

decomposition of <strong>in</strong>corporated green manures were<br />

expected to have a residual nutrient replenishment<br />

effect.<br />

Data from the experiment was statistically analyzed<br />

us<strong>in</strong>g the Genstat 5 Release -3.2, (1995) computer<br />

package.<br />

Results <strong>and</strong> Discussion<br />

First Season Results<br />

Characterization of the soils at the two experimental<br />

sites showed that soils at Nchenachena had higher<br />

percent total nitrogen <strong>and</strong> organic carbon than soils<br />

at ChamphiJ;"a (Table 2). The soils at Nchenachena<br />

have been cultivated <strong>for</strong> less time than those at<br />

Champhira.<br />

Ra<strong>in</strong>fall recorded dur<strong>in</strong>g the study period. Dur<strong>in</strong>g<br />

both grow<strong>in</strong>g seasons, Champhira received earlier<br />

ra<strong>in</strong>fall, but it stopped about one month earlier than<br />

at Nchenachena. This meant different times of<br />

plant<strong>in</strong>g at the two sites. Total annual ra<strong>in</strong>fall was<br />

higher at Nchenachena (932 mm) than Champhira<br />

(558 mm) dur<strong>in</strong>g the first season but <strong>in</strong> the second<br />

season the difference was not substantial, i.e. 1061<br />

mm <strong>for</strong> Champhira <strong>and</strong> 1120 mm <strong>for</strong> Nchenachena.<br />

However, Champhira EPA received more ra<strong>in</strong>fall<br />

than normal dur<strong>in</strong>g the second season (Figure 1).<br />

Nitrogen <strong>and</strong> phosphorus <strong>in</strong> plant species at harvest.<br />

The four crop species showed significant differences<br />

(P= 0.001) <strong>in</strong> N content of their tissues at<br />

harvest (Table 3). The highest mean was <strong>for</strong> TephrDsia<br />

vogelii followed by Mucuna pruriens, Cajanus cajan<br />

<strong>and</strong> Zea mays.<br />

Legum<strong>in</strong>ous crops fix ahnospheric nitrogen <strong>in</strong> their<br />

tissues thereby ensur<strong>in</strong>g the supply of this important<br />

nutrient <strong>for</strong> their metabolism. Maize relies on<br />

<strong>in</strong>herent soil nitrogen <strong>and</strong> the external supply of<br />

this nutrient element. There were also Significant<br />

differences (P < 0.05) <strong>in</strong> the content of phosphorus<br />

of the four crops at harvest. Maize had the highest P<br />

content followed by Tephrosia vogelii, Mucuna pruriens<br />

<strong>and</strong> then pigeonpea (Table 3).<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

199


~ ~~----.-~r-~-------------r~~<br />

Aoo<br />

350<br />

Enl<br />

~250<br />

:!axJ<br />

c:<br />

iii 150<br />

0:: 100 <br />

50 <br />

O+-~~~~~~~Lr~~~~~~.y~~~<br />

O~o""~~ ~


of <strong>in</strong>organic fertilizer <strong>and</strong> the crops, the green manure<br />

legumes appeared to respond better than<br />

maize to the <strong>in</strong>creas<strong>in</strong>g rate of <strong>in</strong>organic fertilizer<br />

(Table 6). The differences <strong>in</strong> response to <strong>in</strong>organic<br />

fertilizer application among the crop species are<br />

graphed <strong>in</strong> Figure 3.<br />

Biomass production <strong>in</strong> the first year (199912000 season).<br />

The four crops produced different amounts of<br />

biomass across the twe sites (P= 0.001). Mucuna pruriens<br />

had the highest biomass followed by Tephrosia<br />

vogelii, Zea mays <strong>and</strong> Cajanus cajan (Table 7). In general,<br />

all legumes except pigeonpea outper<strong>for</strong>med<br />

maize. The difference <strong>in</strong> dry matter production between<br />

maize, mucuna <strong>and</strong> tephrosia was not significant.<br />

Pigeonpea had lowest dry matter, probably<br />

due to poor crop establishment.<br />

With nitrogen be<strong>in</strong>g a limit<strong>in</strong>g plant nutrient <strong>in</strong><br />

most Malawian soils (Kumwenda <strong>and</strong> Gilbert,<br />

1998), green manure legume crops are likely to outper<strong>for</strong>m<br />

cereals <strong>in</strong> their dry matter production. Ad-<br />

Table 6. The effect of rate of <strong>in</strong>organic fertilizer on N<br />

accumulated (kg ha I dry matter) <strong>in</strong> different crop species at<br />

harvest<br />

Crop spedes<br />

Rates of <strong>in</strong>organic fertilizer (kg hal)<br />

Nil S 20 kg P20S 40 kg<br />

+ 4 S P20S + 8 S<br />

Zeamays 40.8 53.4 54.3<br />

Mucuna pruriens 124.8 162.0 169.9<br />

Cajanus cajan 50.3 70.8 96.0<br />

Tephrosia vogelii 105.2 172.9 190.2<br />

~..<br />

250 T---r=======c=~==============~~~<br />

200<br />

~ 150<br />

~<br />

c<br />

~ 100<br />

o<br />

~<br />

Z<br />

50<br />

o<br />

maize mucuna pigeon pea tephrosia<br />

Crops species<br />

Figure 3. Nitrogen (k hat) accumulated by crop species as affected<br />

by rate of <strong>in</strong>organic fertilizer<br />

Table 7. Dry matter production (kg hat) of crops at harvest <strong>in</strong><br />

the first grow<strong>in</strong>g Season (1999·2000)<br />

Crop Species Champhira Nchenachena Mean<br />

Maize 4204 ' 5741 b 4972 '<br />

Mucuna pruriens 4352 ' 6407 b 5380 '<br />

Pigeonpea 1906 b 3432 ' 2669 b<br />

Tephrosia vogelii 3497 • 7020,b 5258. '<br />

SED ± 576.6<br />

CV % 20.0<br />

Key: SED ±. St<strong>and</strong>ard error of difference; CV. Coefficient of variation;<br />

NB: Means followed by same letters are not statistically different<br />

ditionally, some legumes explore a deeper volume<br />

of soil ow<strong>in</strong>g to the~r tap root system <strong>and</strong> there<strong>for</strong>e<br />

can extract nutrients that may have been leached to<br />

lower soil depths. Mucuna pruriens produces a<br />

dense vegetative cover, ma<strong>in</strong>ly leafy biomass, that<br />

<strong>in</strong>clude a mass of creep<strong>in</strong>g stems, dur<strong>in</strong>g its vegetative<br />

growth stages. Kumwenda <strong>and</strong> Gilbert, (1998)<br />

found similar results.' Mucuna pruriens had the<br />

greatest mean biomass <strong>and</strong> a greater response to the<br />

added phosphorus than Cajanus cajan <strong>and</strong> Tephrosia<br />

vogelii. The other green manure legumes crops, pigeonpea<br />

<strong>and</strong> Tephrosia vogelii, have a slower early<br />

growth rate <strong>and</strong> tend to lose much of their leafy biomass<br />

by the time they atta<strong>in</strong> physiological maturity<br />

(Giller <strong>and</strong> Cadish, 1995; Sakala, 1994).<br />

Application of <strong>in</strong>organic fertilizer <strong>in</strong>creased biomass<br />

production. There were significant differences (P =<br />

0.001) <strong>in</strong> ciomass production among the crops due<br />

to <strong>in</strong>organic fertilizer. The higher-rate of <strong>in</strong>organic<br />

fertilizer applied had the highest mean dry matter<br />

produced followed by the second rate <strong>and</strong> the treatment<br />

without any <strong>in</strong>organic fertilizer gave the lowest<br />

dry matter yield (Table 8). This positive response<br />

to <strong>in</strong>organic fertilizer application is <strong>in</strong>dicative of the<br />

need to supplement the green manure crops with.<br />

external nutrients <strong>and</strong> that the soils need nutrients.<br />

Maize had the best response to the <strong>in</strong>organic fertilizer<br />

applied, giv<strong>in</strong>g a difference of 2764 kg ha·J between<br />

the treatment without <strong>in</strong>organic fertilizer <strong>and</strong><br />

the treatment with 20 kg PzOs + 4 kg S of <strong>in</strong>organic<br />

fertilizer. This was followed by Tephrosia vogelii,<br />

(2050 kg ha·1), Mucuna pruriens (1069 kg ha·1) <strong>and</strong><br />

pigeonpea (1005 kg ha·l ). The difference <strong>in</strong> biomass<br />

produced between treatments that received 20 kg<br />

PzOs + 4 kg S <strong>and</strong> those that received 40 kg PzOs + 8<br />

kg S was generally lower. The apparently smaller<br />

response to <strong>in</strong>organic fertilizer application by green<br />

manure legume crops compared with maize is because<br />

legumes are relatively <strong>in</strong>dependent of external<br />

nutrient supply, particularly nitrogen, <strong>and</strong><br />

hence require relatively smaller doses.<br />

Second Season Results <br />

The type of preced<strong>in</strong>g crop significantly (P < 0.01) <br />

<strong>in</strong>fluenced maize stover nitrogen content at harvest. <br />

Maize grown after Mucuna pruriens had the highest <br />

Table 8. The effect of rate of fertilizer on biomass production (kg<br />

ha·t)<br />

across the sites<br />

Rate of fertilizer (kg hat) Champhira Nchenachena Mean (kg hal)<br />

No fertilizer 2357 4133 3245'<br />

20 kg pzDs + 4 kg S 3908 6013 4961 b<br />

40 kg P20S + 8 kg S 4204 6803 5503 b<br />

SED ± 306.2<br />

CV % 21.2<br />

Key: SEO:t. St<strong>and</strong>ard error of difference; CV. Coefficient of variation; NB: Means<br />

followed by same letters are not statistically different.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

201


stover N, followed by after pigeon pea, Tephrosia<br />

vcgelii <strong>and</strong> maize respectively (Table 9).<br />

This could be because Mucuna pruriim$ contributed<br />

the highest N through its easily m<strong>in</strong>eralizable leafy<br />

residues. Generally, maize follow<strong>in</strong>g green manure<br />

legumes had higher stover N than the cont<strong>in</strong>uously<br />

grown maize. This was expected s<strong>in</strong>ce the green<br />

manure legume plots provided more N that the subsequent<br />

maize crop benefited from after m<strong>in</strong>eralization.<br />

Maize gra<strong>in</strong> yield. The type of preced<strong>in</strong>g crop significantly<br />

<strong>in</strong>fluenced (P < 0.01) maize gra<strong>in</strong> yield<br />

across the two experimental sites. The highest maize<br />

gra<strong>in</strong> yield followed Mucuna pruriens (1104 kg ha- 1 ),<br />

then after Cajanus cajan (880 kg ha- 1 ), Tephrosia vogelii<br />

(785 kg ha- 1 ) <strong>and</strong> cont<strong>in</strong>uous Zea mays (627 kg<br />

ha- 1 ) (Table 10).<br />

These results are consistent with those by Kumwenda<br />

<strong>and</strong> Gilbert (1998). Their studies on green<br />

manure legumes <strong>in</strong> rotation with maize on exhausted<br />

soils of Malawi found that maize gra<strong>in</strong><br />

yield was the highest after a Mucuna pruriens fallow,<br />

followed by Crotalaria spp. <strong>and</strong> Tephrosia voge/ii fallows.<br />

Maize gra<strong>in</strong> yield average <strong>for</strong> the second season<br />

could have been higher but lack of timely weed<strong>in</strong>g<br />

at Nchenachena EPA <strong>and</strong> high ra<strong>in</strong>fall received<br />

dur<strong>in</strong>g the 2000/2001 season, at Champhira EPA<br />

adversely affected crop growth.<br />

The rate of fertilizer <strong>in</strong> the first season significantly<br />

<strong>in</strong>fluenced (P < 0.015) maize gra<strong>in</strong> yield. The highest<br />

Table 9. The effect of a preced<strong>in</strong>g crop on N content <strong>in</strong> maize <br />

stover at harvest <br />

Fallow sequence<br />

Maize stover nitrogen (kg ha"j<br />

Maize after maize<br />

37.7'<br />

Maize after Mucuna pruriens<br />

69.5 b<br />

Maize after pigeonpea<br />

55.911> <br />

.Maize after Tephrosia vogel;;<br />

44.6'b <br />

SED ±<br />

8.79 <br />

CV %<br />

26.8 <br />

Key: SED ±. St<strong>and</strong>ard error of difference; CV, Coefficient of variation;<br />

NB: means followed by same letters are not statistically different<br />

Table 10. The effect of preced<strong>in</strong>g crop species on subsequent<br />

maize gra<strong>in</strong> yield (kg ha·1)<br />

at Champhira <strong>and</strong> Nchenachena<br />

Fallow sequence Champhira Nchenachena Mean<br />

Maize after maize 986 268 627'<br />

Maize after Mucuna pruriens 1783 424 110411><br />

Maize after Pigeon pea 1402 359 880'<br />

Maize after Tephrosia vogelii 1273 297 785'<br />

SED ± 126.3<br />

CV % 23.5<br />

Key: SED±, St<strong>and</strong>ard error of difference; CV, Coefficient of <br />

variation; NB: Means followed by same letters are not statistically <br />

different; Sites 1<strong>and</strong> 2 are Champhira <strong>and</strong> Nchenachena <br />

maize gra<strong>in</strong> was from the treatment that received 20<br />

kg P20S + 4 5 ha- 1 followed by 40 kg P20S + 8 kg 5<br />

ha- 1 , The treatment without <strong>in</strong>organic fertilizer had<br />

the least mean maize gra<strong>in</strong> (Table 11). This suggests<br />

an optimum fertilizer rate at 20 kg PiOs + 4 5 kg<br />

ha- 1 . The higher rate of <strong>in</strong>organic fertilizer, 40 kg<br />

P20S + 8 kg 5, slightly reduced gra<strong>in</strong> production.<br />

High N fertilizer promotes succulence <strong>and</strong> more<br />

vegetative plant material at the expense of reproductive<br />

organs.<br />

The response of the second season maize crop to the<br />

application of <strong>in</strong>organic fertilizer showed that yield<br />

of maize gra<strong>in</strong> after Mucuna pruriens was the highest<br />

followed by that of pigeonpea, Tephrosia vogelii <strong>and</strong><br />

maize (Figure 4). Maize gra<strong>in</strong> yield after maize <strong>and</strong><br />

pigeonpea was depressed at the higher rate of fertilizer<br />

application (40 kg P20S + 8 kg 5 ha- 1 ). This may<br />

be because the compound <strong>in</strong>organic fertilizer used<br />

has nitrogen, ~hich when applied at high rates<br />

tends to enhance vegetative growth <strong>and</strong> succulence<br />

at the expense of gra<strong>in</strong> production. The other possible<br />

reason, particularly <strong>for</strong> maize, is that maize residues<br />

<strong>in</strong>corporated at harvest after the first season<br />

had a low N content, unlike Mucuna pruriens, pigeonpea<br />

<strong>and</strong> Tephrosia z:ogelii (Table 3). The low N<br />

content could have caused net immobilization of<br />

nutrients, particularly nitrogen, from its residues.<br />

Crop residues of low quality, i.e. less than 2 % nitrogen<br />

can result <strong>in</strong> poor growth of the succeed<strong>in</strong>g cereal<br />

crop s<strong>in</strong>ce the N requirement of the crop is not<br />

<strong>in</strong> synchrony with N m<strong>in</strong>eralization (N<strong>and</strong>wa et al.,<br />

1995).<br />

Table 11. Effect of <strong>in</strong>organic fertilizer rate on maize<br />

gra<strong>in</strong> yield<br />

Rate of fertilizer<br />

Maize gra<strong>in</strong> yield<br />

-----(kg ha'j----­<br />

No fertilizer 708'<br />

20 kg P205 + 4 kg S 921 b<br />

40 kg P205 + 8 kg S 918 b<br />

SED ± 78.8<br />

CV % 29.4<br />

Key: SED ±, St<strong>and</strong>ard error of difference; CV, Coefficient of variation;<br />

NB: means followed by same letters are not statistically different<br />

1400<br />

1200<br />

~ 1000<br />


Maize gra<strong>in</strong> yield after the green manure legumes<br />

was higher compared with that after maize, but<br />

among the three green manure legume crops it was<br />

. m.aize after Mucuna pruriens that gave the highest<br />

gra<strong>in</strong> yield. The likely reason is that Mucuna pruriens<br />

produced the most biomass, besides hav<strong>in</strong>g<br />

residues that had a relatively high N content.<br />

Conclusions<br />

The green manure legume crops tested <strong>in</strong> this study<br />

responded to the application of <strong>in</strong>organic fertilizer<br />

<strong>and</strong> an <strong>in</strong>creased rate of <strong>in</strong>organic fertilizer produced<br />

more dry matter. The response to fertilizer<br />

was greatest between the unfertilized control <strong>and</strong><br />

the lower rate of fertilizer application (20 kg P20S +<br />

4 kg S ha- I ).<br />

Among the three c<strong>and</strong>idate green manure legume<br />

crops tested, Mucuna pruriens is the superior, giv<strong>in</strong>g<br />

the highest dry matter production. It is there<strong>for</strong>e the<br />

best c<strong>and</strong>idate green manure legume crop <strong>for</strong> improv<strong>in</strong>g<br />

soil fertility. Another good c<strong>and</strong>idate was<br />

Tephrosia vogelii, which at the time of <strong>in</strong>corporaiion<br />

gave the highest nitrogen content <strong>in</strong> its tissue.<br />

Maize gave the greatest response to <strong>in</strong>organic fertilizer<br />

among the four crops tested whereas Tephrosia<br />

vogelii responded most favourably among the green<br />

manure legume crops. Cajanus cajan was the least<br />

responsive. Maize residues however, had the least<br />

content of nitrogen, a factor disc;.ualify<strong>in</strong>g it as a potentiat<br />

green manure crop <strong>in</strong> low <strong>in</strong>put systems <strong>and</strong><br />

soils with low fertility. Maize gra<strong>in</strong> yield after the<br />

short-term fallow was higher after the green manure<br />

legume crops than after maize. Maize gra<strong>in</strong><br />

<strong>and</strong> biomass produced was highest after Mucuna<br />

pruriens.<br />

Inorganic fertilizer, particularly at the lower rate,<br />

had a positive residual effect on maize gra<strong>in</strong> yield.<br />

The higher rate of <strong>in</strong>organic fertilizer gave the most<br />

remarkable positive effect on total maize biomass<br />

production.<br />

Recommendations<br />

Application of modest amounts of phosphorus <strong>and</strong><br />

sulphur fertilizer (20 kg P20S + 4 kg S ha- I ) to green<br />

manure legume crops should be adopted to improve<br />

the litter quality of these organic fertilizers as<br />

well as enhance their growth <strong>and</strong> subsequent dry<br />

matter production.<br />

Straight <strong>in</strong>organic fertilizer sources of phosphorus,<br />

sulphur <strong>and</strong> nitrogen should be used <strong>in</strong> further<br />

studies to isolate the <strong>in</strong>dividual effects of these nu-<br />

trient elements as well as their <strong>in</strong>teractive effects.<br />

Other critical nutrient elements such as z<strong>in</strong>c <strong>and</strong><br />

molybdenum have to be tested <strong>in</strong> experiments<br />

where green manure legumes are screened <strong>for</strong> response<br />

to <strong>in</strong>org'anic fertilizers.<br />

Mucuna pruriens should be promoted as a potential<br />

soil fertility-improv<strong>in</strong>g crop where soil fertility is<br />

low. The effect can be seen. <strong>in</strong> as short a fallow as<br />

one season.<br />

Long-term studies of the residual effects of green<br />

manure legume crops on soils, as well as on cereal<br />

crop yields, should be conducted to ascerta<strong>in</strong> sufficient<br />

<strong>in</strong><strong>for</strong>mation about the benefits of the shortterm<br />

fallow system.<br />

Acknowledgements<br />

We are grateful to the Rockefeller Foundation <strong>for</strong><br />

provid<strong>in</strong>g funds <strong>for</strong> the research.<br />

References<br />

Eaglesham, A.RJ. <strong>and</strong> A. Ayanaba. 1984. Tropical<br />

stress ecology of Rhizobia, root nodulation <strong>and</strong><br />

legume fixation. In: Subba Rao, N.5. (ed.) Current<br />

Oevelopments <strong>in</strong> Biological Nitrogen Fixation. 42 p.<br />

Gilbert, RA. 1998. Growth Characteristics <strong>and</strong> N<br />

balance of Maize - <strong>Green</strong> manure <strong>in</strong>tercropp<strong>in</strong>g<br />

systems <strong>in</strong> Malawi. In: J.D.T. Kumwenda <strong>and</strong> M.<br />

K.M. Komwa (ed.) Annual Report <strong>for</strong> 1997/98<br />

season <strong>for</strong> the Cereals Commodity Group, volume<br />

1. Chitedze Agricultural Research Station,<br />

Lilongwe, Malawi. pp. 217-223.<br />

Giller, K.E. <strong>and</strong> K.J. Wilson, 1991. Nitrogen Fixation<br />

<strong>in</strong> Tropical Systems. CAB International, Wall<strong>in</strong>g<strong>for</strong>d,<br />

Engl<strong>and</strong>. p. 43.<br />

Giller, K.E. <strong>and</strong> G. Cadish. 1995. Future benefits<br />

from biological nitrogen fixation: An ecological<br />

approach to agriculture. Plant <strong>and</strong> <strong>Soil</strong> 174:225~<br />

277.<br />

Kumwenda, J.D.T. <strong>and</strong> R Gilbert. 1998. Legume<br />

biomass production <strong>and</strong> maize yield response <strong>in</strong><br />

legume manure rotations <strong>in</strong> Malawi. In: JD.T.<br />

Kumwenda <strong>and</strong> M.K.M. Komwa (ed.) Annual<br />

Research Project Report <strong>for</strong> the 1997/98 season<br />

<strong>for</strong> the Cereals Commodity Group. pp. 148-159.<br />

Kumwenda, J.D.T. <strong>and</strong> R, Gilbert. 1998. Biomass<br />

production by legume green manures on exhausted<br />

soils <strong>in</strong> Malawi: A <strong>Soil</strong> <strong>Fertility</strong> Network<br />

Trial. In: Wadd<strong>in</strong>gton, S.R; Murwira, H.K.;<br />

Kumwenda, J.D.T.; Hikwa, 0; Tagwira, F. (eds).<br />

~oil <strong>Fertility</strong> Research <strong>for</strong> Maize-Based Farm<strong>in</strong>g Sys­<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

203


tems <strong>in</strong> Malawi <strong>and</strong> Zimbabwe. Proceed<strong>in</strong>gs of the<br />

-<strong>Soil</strong> Fert Net Results <strong>and</strong> Plann<strong>in</strong>g Workshop<br />

held from 7 to 11 July 1997 at Africa University,<br />

Mutare, Zimbabwe. <strong>Soil</strong> Fert Net <strong>and</strong> CIMMYT­<br />

Zimbabwe, Harare, Zimbabwe. pp. 85-86.<br />

Mokwunye, A.U., A. de Jager, <strong>and</strong> E.M.A. Sma l<strong>in</strong>g<br />

(ed.). 1996. Restor<strong>in</strong>g <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the productivity<br />

of West African soils: Key to susta<strong>in</strong>able<br />

development. Miscellaneous Fertilizer Studies.<br />

14. International Fertilizer Development<br />

Centre, Lome, Togo. pp. 12-31.<br />

N<strong>and</strong>wa, S.M., J.M. Anderson <strong>and</strong> P.O. Seward.<br />

1995. The effect of placement of maize stover <strong>and</strong><br />

N fertilisation on maize productivity <strong>and</strong> N use<br />

efficiency. Mimeo, 19 pp.<br />

Palm, CA. 1995. Contribution of Agro<strong>for</strong>estry trees<br />

to nutrient requirements of <strong>in</strong>tercropped plants.<br />

Agro<strong>for</strong>estry Systems 30:105-12~.<br />

Palm, CA., R.J.K. Myers, <strong>and</strong> S.M. N<strong>and</strong>wa. 1997.<br />

Comb<strong>in</strong>ed use of organic <strong>and</strong> <strong>in</strong>organic nutrient<br />

source <strong>for</strong> soil fertility ma<strong>in</strong>tenance <strong>and</strong> replenishment.<br />

In: R.J. Buresh et al (ed:) Replenish<strong>in</strong>g<br />

<strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Africa. SSSA special publication<br />

No. 51. SSSA, Madison, Wiscons<strong>in</strong>, USA. pp.<br />

193-217.<br />

Peoples, M.B., <strong>and</strong> D.F. Herridge, 1990. Nitrogen<br />

fixation by legumes <strong>in</strong> tropical <strong>and</strong> subtropical<br />

Agriculture. Advances <strong>in</strong> Agronomy 44:155-223.<br />

Sakala, W.O. 1994. Crop management <strong>in</strong>terventions<br />

<strong>in</strong> traditional maize pige,?npea <strong>in</strong>tercropp<strong>in</strong>g<br />

systems <strong>in</strong> Malawi, MSc. Thesis, Bunda College<br />

of Agriculture, University of Malawi.<br />

Smal<strong>in</strong>g, E.M.A. 1993. An agroecological framework<br />

<strong>for</strong> <strong>in</strong>tegrat<strong>in</strong>g nutrient management, with special<br />

reference to Kenya. PhD Thesis. Wagen<strong>in</strong>gen<br />

Agricultural University, Wagen<strong>in</strong>gen, Netherl<strong>and</strong>s.<br />

.<br />

Young, A. <strong>and</strong> P. Brown. 1962. The PhYSical Environment<br />

of Northern Nyasal<strong>and</strong>. M<strong>in</strong>istry of<br />

L<strong>and</strong> <strong>and</strong> Physical Plann<strong>in</strong>g, Lilongwe, Malawi.<br />

38pp.<br />

204<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


MANAGEMENT OF AN ACID SOIL USING MINE TAILINGS<br />

AS LIME FOR SOYBEAN PRODUCTION<br />

LACKSON K. PHIRI, MOSES MWALE <strong>and</strong> MLOTHA I. DAMASEKE<br />

Mt. Makulu Research Station, <strong>Soil</strong> <strong>Fertility</strong> Programme,<br />

Private Bag 7, Chilanga, Zambia; E-Mail: genetics@zamnet.zm<br />

Abstract<br />

<strong>Soil</strong> acidity is the most limit<strong>in</strong>g constra<strong>in</strong>t <strong>in</strong> acid soils of the high ra<strong>in</strong>fall area (Region III) of Zambia. These soils are<br />

not suitable <strong>for</strong> grow<strong>in</strong>g most arable crops <strong>in</strong>clud<strong>in</strong>g soybean (Glyc<strong>in</strong>e max L.) without adjustment of soil pH. Nampundwe<br />

m<strong>in</strong>e tail<strong>in</strong>gs (NMT) are an abundant <strong>and</strong> readily available dolomitic limestone source <strong>in</strong> Nampundwe area, 60<br />

km west of Lusaka. The objective of this work was to evaluate the effectiveness of NMT <strong>in</strong> manag<strong>in</strong>g soil acidity <strong>for</strong> soybean<br />

production <strong>in</strong> Region III of Zambia <strong>in</strong> comparison with commercial agricultural lime (AgLi). Results <strong>for</strong> the<br />

1995/96 season show that AgLi significantly (P


1965). The tail<strong>in</strong>gs <strong>and</strong> AgLi were analyzed <strong>for</strong> their<br />

chemical characteristics us<strong>in</strong>g established methods<br />

(Page et al. 1982) as shown <strong>in</strong> Table 1.<br />

Plot size used was 0.5 m x 5 m <strong>and</strong> lhe treatments<br />

were arranged as a r<strong>and</strong>omized complete block design<br />

with four replicates. The treatments were control,<br />

NMT <strong>and</strong> AgLi (reference). The quantity of<br />

lime applied was based on exchangeable alum<strong>in</strong>ium<br />

<strong>and</strong> calculated us<strong>in</strong>g the <strong>for</strong>mula by Kamprath<br />

(1967); where one t of lime = 2.0 x Exchangeable AI.<br />

The quantity of lime applied was 2.0 t ha-1of soil.<br />

Lime was applied to the soil surface by h<strong>and</strong> <strong>and</strong><br />

<strong>in</strong>corporated <strong>in</strong>to the soil with a h<strong>and</strong> hoe <strong>and</strong> rake<br />

dur<strong>in</strong>g November 1995, be<strong>for</strong>e the onset of the<br />

ra<strong>in</strong>s. Soybean seed (Cv, SCI) was <strong>in</strong>oculated <strong>and</strong><br />

planted with an <strong>in</strong>itial 30 kg N ha·1as O-compound<br />

to boost <strong>in</strong>itial crop growth. Four weeks after germ<strong>in</strong>ation,<br />

the soybeans were th<strong>in</strong>ned. At physiological<br />

maturity, the gra<strong>in</strong> yield was assessed from a net<br />

plot area of 2.0 m 2 • The gra<strong>in</strong> yield was adjusted to<br />

12.5% moisture content. After harvest<strong>in</strong>g, soil samples<br />

were collected from all plots, air-dried <strong>and</strong><br />

ground to pass through a 2 mm sieve <strong>and</strong> analyzed<br />

as above (Page et al 1982). The plots were ma<strong>in</strong>ta<strong>in</strong>ed<br />

to study the residual effects of the lim<strong>in</strong>g material<br />

applied <strong>in</strong> the previous season.<br />

The trial was repeated <strong>in</strong> the 1996/97 season, with<br />

some modifications. A new location with<strong>in</strong> the same<br />

experimental field, hav<strong>in</strong>g the same soil type, was<br />

planted to determ<strong>in</strong>e the optimal lim<strong>in</strong>g rate <strong>for</strong> the<br />

study soil. Lim<strong>in</strong>g rates used were 0, 1.0,2.0, <strong>and</strong> 3.0<br />

t ha-1. All other management practices were similar<br />

to those used <strong>in</strong> the 1995/96 season except that the<br />

variety of soybean used was 'Santa Rosa' <strong>in</strong>stead of<br />

'SCI'. Statistical analysis of the data was done us<strong>in</strong>g<br />

Proc GLM <strong>in</strong> SAS (SAS Institute, 1995). The·treatment<br />

means were compared -us<strong>in</strong>g the least significant<br />

difference method (Steel <strong>and</strong> Torrie, 1980).<br />

Results <strong>and</strong> Qiscu'ssion<br />

NMT did not significantly (P = 0.05) <strong>in</strong>crease soil<br />

pH nor decrease exchangeable alum<strong>in</strong>ium of the<br />

study soil <strong>in</strong> the first year of the study (1995/96 season)<br />

(Table 2). Comparatively, AgLi significantly<br />

<strong>in</strong>creased soil pH (P > 0.05) <strong>and</strong> reduced exchangeable<br />

alum<strong>in</strong>ium more than NMT <strong>and</strong> the control<br />

treatment. However, the <strong>in</strong>crease <strong>in</strong> soil pH was still<br />

below the optimal soil pH range of 5.0 <strong>and</strong> 6.5<br />

(Mapiki 1997, unpublished) <strong>for</strong> most crops, <strong>in</strong>clud<strong>in</strong>g<br />

soybean. AgLi significantly (P < 0.05) contributed<br />

more exchangeable calcium to the study soil<br />

than NMT <strong>and</strong> the control treatment. The NMT did<br />

not significantly (P > 0.05) contribute exchangeable<br />

magnesium to the study soil dur<strong>in</strong>g the first season,<br />

as expected. Application of calcitic limestone has<br />

been known to <strong>in</strong>crease soil pH <strong>and</strong> exchangeable<br />

calcium more quickly than dolomitic limestone. Ananthanarayana<br />

<strong>and</strong> Hanumantharaju (1993) <strong>in</strong> their<br />

study on efficacy of different lim<strong>in</strong>g materials <strong>in</strong><br />

neutraliz<strong>in</strong>g soil acidity reported that calcium oxide,<br />

calcium hydroxide <strong>and</strong> calcium carbonate <strong>in</strong>creased<br />

soil pH <strong>and</strong> reduced soil acidity more quickly than<br />

dolomitic limestone. Particle size <strong>and</strong> neutraliz<strong>in</strong>g<br />

value are some of the factors that contribute to the<br />

reaction of lime <strong>in</strong> the soil (Coleman <strong>and</strong> Thomas,<br />

1967). AgLi has a 63 ).lm mesh size <strong>and</strong> higher neutraliz<strong>in</strong>g<br />

value than NMT. There<strong>for</strong>e, AgLi was<br />

more soluble <strong>and</strong> reactive, <strong>in</strong>creased soil pH <strong>and</strong><br />

reduced exchangeable alum<strong>in</strong>ium of the study soil.<br />

Dur<strong>in</strong>g the 1996/97 season (second year of the<br />

study), both NMT <strong>and</strong> AgLi significantly (P = 0.05)<br />

<strong>in</strong>creased soil pH of the study soil over the control<br />

treatment. NMT significantly (P < 0.05) <strong>in</strong>creased<br />

exchangeable magnesium over AgLi <strong>and</strong> the control<br />

treatment (Table 3). However, NMT gave significantly<br />

(P < 0.05) higher exchangeable magnesium<br />

than AgLi <strong>and</strong> the control treatment. This was expected<br />

because the magnesium content <strong>in</strong> NMT -is<br />

higher than <strong>in</strong> AgLi, whilst AgLi ma<strong>in</strong>ta<strong>in</strong>ed its superiority<br />

<strong>in</strong> significantly (P < 0.05) <strong>in</strong>creas<strong>in</strong>g exchangeable<br />

calcium. NMT also significantly <strong>in</strong>creased<br />

exchangeable calcium <strong>and</strong> soil pH. <strong>Soil</strong> pH<br />

rose to 4.8 after NMT, which is the establish~d critical<br />

pH value <strong>for</strong> soybean production <strong>for</strong> most soils<br />

<strong>in</strong> the Zambian high ra<strong>in</strong>fall area (Muny<strong>in</strong>da 1984).<br />

Table 1. Chemical characteristics of NMT <strong>and</strong> Agli<br />

used <strong>in</strong> the study<br />

ELEMENT UNIT AgLi NMT<br />

Ca (%) 32 14.2<br />

Mg (%) 1.8 10.1<br />

Free cyanide (%) < DL


Table 3. Residual effects of lim<strong>in</strong>g sources on soil pH,<br />

exchangeable calcium <strong>and</strong> magnesium <strong>for</strong> Mufulira soil<br />

series dur<strong>in</strong>g the 1996/97 season<br />

Treatment <strong>Soil</strong> pH (CaCh) Ca Mg<br />

(cmolc kg 1 )<br />

Control 4.3b 0.45b O.lOb<br />

Nampundwe tail<strong>in</strong>gs 4.8a 0.82b 0.30a<br />

Agricultural lime 5.0a 1.3a 0.18b<br />

Means <strong>in</strong> columns followed by the same letter are not<br />

significantly different at P - 0.05.<br />

Both NMT <strong>and</strong> AgLi produced a l<strong>in</strong>ear <strong>in</strong>crease <strong>in</strong><br />

soil pH with <strong>in</strong>creas<strong>in</strong>g rates of lim<strong>in</strong>g (Figure 1).<br />

However <strong>for</strong> AgLi, no further <strong>in</strong>crease <strong>in</strong> soil pH<br />

occurred beyond 2.0 t ha ot • The soil pH at the new<br />

site was raised more quickly than that at the old site<br />

established <strong>in</strong> 1995/96. It appears that management<br />

practices of the research field <strong>in</strong> which the trial site<br />

was located could be the reason <strong>for</strong> differences <strong>in</strong><br />

the overall soil chemistry of the two locations belong<strong>in</strong>g<br />

to the same study soil. The pH result <strong>for</strong><br />

1996/97 strongly <strong>in</strong>dicates that 2.0 t ha ot is the optimal<br />

lim<strong>in</strong>g rate <strong>for</strong> this soil. This confirms the f<strong>in</strong>d<strong>in</strong>g<br />

by Muny<strong>in</strong>da (1984) that 2.0 t ha oJ was the optimal<br />

lim<strong>in</strong>g rate <strong>for</strong> the Mufulira soil series.<br />

The lim<strong>in</strong>g materials did not significantly <strong>in</strong>crease<br />

soybean gra<strong>in</strong> yield <strong>in</strong> the 1995/96 season (Figure<br />

2). However, the residual effect of both NMT <strong>and</strong><br />

AgLi applied <strong>in</strong> the 1995/96 season did not significantly<br />

(P < 0.05) <strong>in</strong>crease soybean gra<strong>in</strong> yield. It appears<br />

that despite the <strong>in</strong>crease <strong>in</strong> soil pH of Mufulira<br />

soil series from 4.3 to 5.0, <strong>and</strong> the <strong>in</strong>crease <strong>in</strong> exchangeable<br />

calcium by . AgLi <strong>and</strong> exchangeable<br />

magnesium by NMT, the soil conditions <strong>for</strong> healthy<br />

growth of soybean were not atta<strong>in</strong>ed. Mufulira soil<br />

series is dom<strong>in</strong>ated by the kaol<strong>in</strong>ite type of clay<br />

m<strong>in</strong>eral with a substantial amount of amorphous<br />

iron <strong>and</strong> alum<strong>in</strong>ium oxides. S<strong>in</strong>ce tmder most conditions<br />

complete neutralization is not achieved<br />

when acid soils are limed, hydroxyl compounds of<br />

alum<strong>in</strong>ium <strong>and</strong> iron could rema<strong>in</strong> (Coleman <strong>and</strong><br />

Thomas, 1967). There is a time lag between a change<br />

<strong>in</strong> soil pH <strong>and</strong> subsequent changes <strong>in</strong> the concentration<br />

of alum<strong>in</strong>ium (Mtmy<strong>in</strong>da, 1984) be<strong>for</strong>e signifi-<br />

cant yields are realized. It follows that though .the<br />

soil pH of Mufulira soil series was <strong>in</strong>creased from<br />

4.3 to 4.8, the alumirlium polycomplexes were not<br />

<strong>in</strong>stantaneously. reduced to their chemical <strong>in</strong>ert<br />

<strong>for</strong>ms, which reduce slowly over several years.<br />

Thus, at a soil pH 4.8 that was atta<strong>in</strong>ed by NMT it<br />

appears that monomeric exchangeable alum<strong>in</strong>ium<br />

that rema<strong>in</strong>ed tm-neutralized could have affected<br />

the soybean yield. Coleman <strong>and</strong> Thomas (1967) <strong>in</strong>dicated<br />

that the products of complete neutralization<br />

that are atta<strong>in</strong>ed at a pH higher than 8.3 aTe exchangeable<br />

calcium <strong>and</strong> magnesium <strong>and</strong> <strong>in</strong>ert hydroxides<br />

of alum<strong>in</strong>ium <strong>and</strong> iron. There<strong>for</strong>e, to atta<strong>in</strong><br />

near or complete neutralization of soil acidity <strong>for</strong><br />

soils of the Mufulira series requires a longer period<br />

of residual effect than the two-year period of this<br />

study.<br />

NMT <strong>in</strong>creased soybean gra<strong>in</strong> yield l<strong>in</strong>early with<br />

<strong>in</strong>creas<strong>in</strong>g lim<strong>in</strong>g rates, with the maximum yield of<br />

1.1 t ha ot obta<strong>in</strong>ed at3 t ha o 1Jime (Figure 3). The soybean<br />

gra<strong>in</strong> yield obta<strong>in</strong>ed . is similar to yields obta<strong>in</strong>ed<br />

by Coma et al. (1990) at the lim<strong>in</strong>g rate of 2.0<br />

t ha ot on a related soil series. NMT significantly <strong>in</strong>creased<br />

soybean gra<strong>in</strong> yield over AgLi <strong>and</strong> the control<br />

treatment. The trend <strong>in</strong> soybean yield after the<br />

AgLi treatment was not consistent. At 2 t ha oJ AgLi<br />

produced a lower gra<strong>in</strong> yield than NMT. The depressed<br />

soybean yield could have been due to the<br />

loss of AgLi through water erosion <strong>in</strong> two AgLi<br />

treated plots that had a slope.<br />

.E'"<br />

'"~ ..,<br />

Qi<br />

'>'<br />

c<br />

'n;<br />

(j,<br />

c<br />

Q)<br />

'"<br />

.g,<br />

0<br />

en<br />

3000<br />

1500<br />

0<br />

01995116 D19H111 I<br />

Control Agric. lime M<strong>in</strong>e Tail<strong>in</strong>gs<br />

Treatment (tlha)<br />

Figure 2. Effects of lim<strong>in</strong>g sources on soybean gra<strong>in</strong> yield <strong>for</strong><br />

1995/96 <strong>and</strong> 1996/97 seasons<br />

6<br />

5.5<br />

5<br />

4.5<br />

4<br />

a 3.5<br />

'5 3<br />

en 2.5<br />

2<br />

1.5<br />

1<br />

0 .5<br />

o<br />

IB Agrie. LIme 111 M<strong>in</strong>e Tail<strong>in</strong>gs I<br />

control 2 3<br />

lime rates (tlha)<br />

Figure 1. Effects of lim<strong>in</strong>g rates on soil pH, planted <strong>in</strong> 1996/97<br />

season<br />

_ 1200<br />

i .. 1000<br />

..,<br />

800 a;<br />

'>'<br />

c 600<br />

i!<br />

0><br />

iii<br />

400<br />

~ 200<br />

0<br />

r/l<br />

0<br />

control 2 3<br />

Lime rale (tlha)<br />

Figure 3. Effect of lim<strong>in</strong>g rates on soybean gra<strong>in</strong> yield (Cv. Santa<br />

Rosa) <strong>for</strong> the new site planted <strong>in</strong> 1996/97 season<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

207


The significant soybean yield could have been due<br />

to differences <strong>in</strong> management of the research fields<br />

where the trials were located. It appears the location<br />

used <strong>for</strong> the 1996/97 trial to test the rate effect of the<br />

two lim<strong>in</strong>g materials could have been managed so<br />

that soil fertility was improved <strong>and</strong> that <strong>in</strong>fluenced<br />

soybean yield.<br />

Conclusion <strong>and</strong> Recommendation<br />

The residual effect of NMT <strong>in</strong>creased the soil pH<br />

<strong>and</strong> exchangeable magnesium of the study soil.<br />

However, the <strong>in</strong>crease <strong>in</strong> soil pH <strong>and</strong> exchangeable<br />

magnesium did not <strong>in</strong>crease soybean gra<strong>in</strong> yield. It<br />

is recommended that a study of the residual effect<br />

be conducted <strong>for</strong> a longer time <strong>for</strong> NMT to completely<br />

react to conclusively evaluate its effectiveness<br />

<strong>for</strong> soybean production <strong>in</strong> acid soils of the high<br />

ra<strong>in</strong>fall area of Zambia.<br />

Acknowledgement<br />

We acknowledge with many thanks the f<strong>in</strong>ancial<br />

support from Zambia Consolidated Copper M<strong>in</strong>e<br />

(ZCCM), without that this work would not haVe<br />

been carried out. We thank the Government of the<br />

Republic of Zambia <strong>for</strong> logistical <strong>and</strong> adm<strong>in</strong>istrative<br />

support given dur<strong>in</strong>g the execution of this work.<br />

References<br />

Adams F., 1984. Crop response to lim<strong>in</strong>g <strong>in</strong> the<br />

southern United States. In: F. Adams (ed.) <strong>Soil</strong><br />

Acidity <strong>and</strong> Lim<strong>in</strong>g. 2nd Ed. Agronomy 12:211-265.<br />

Day, P.R 1965. Particle fractionation <strong>and</strong> particle<br />

size analysis. In: c.A. Black et al., (Eds.) Methods<br />

of <strong>Soil</strong> Analysis. Part 1. Agronomy. American Society<br />

of Agronomy, Madison, WI, USA.<br />

De Oliveira E.L., <strong>and</strong> M.A. Pravan 1996. Control <strong>in</strong><br />

soil acidity <strong>in</strong> no-tillage system <strong>for</strong> soybean production.<br />

<strong>Soil</strong> <strong>and</strong> Tillage Research 38:47-57.<br />

Goma H., Phiri S., <strong>and</strong> A. Mapiki 1990. Lim<strong>in</strong>g<br />

needs of some benchmark soil series of the high<br />

ra<strong>in</strong>fall zone of Zambia. <strong>Soil</strong> Productivity Research<br />

Programme Annual Report. Misamfu Research<br />

Center, p.o. Box 410055, Kasama, Zambia.<br />

Gnmdon N.J. 1982. Acid soil amendments, soil<br />

chemistry <strong>and</strong> plant growth. Proceed<strong>in</strong>gs of the<br />

International Conference on Fertilizer Usage <strong>in</strong> the<br />

Tropics (Fertrop). Kuala Lumpur, Malaysia.<br />

Kamprath, E.J. 1967. <strong>Soil</strong> Acidity <strong>and</strong> response to<br />

Lim<strong>in</strong>g. International soil test<strong>in</strong>g. North Carul<strong>in</strong>a<br />

State Univ. Agric Exp. Station Tech. Bull. 4. Raleigh,<br />

NC, USA.<br />

SAS Institute, 1995. SAS User's Guide: Statistics.<br />

Version ed.> Statistical Analysis System Institute,<br />

Cary, New York, USA.<br />

<strong>Soil</strong> Taxonomy <strong>and</strong> Agrotechnological Transfer Report<br />

1985. Proceed<strong>in</strong>gs of the X1 U ' International<br />

Forum on <strong>Soil</strong> Taxonomy <strong>and</strong> Agrotechnology<br />

Transfer. Zambia.<br />

<strong>Soil</strong> Survey Staff 1992. Keys to <strong>Soil</strong> Taxonomy. 5 th<br />

Edition. SMSS Technical Monograph No. 19. Pocahontas<br />

Press, Inc, Blacksburg, Virg<strong>in</strong>ia, USA.<br />

556 pp.<br />

Steel RG.D., <strong>and</strong> J.H. Torrie 1980. Pr<strong>in</strong>ciples <strong>and</strong><br />

Procedures of Statistics. McGraw-Hill Book Co.<br />

Inc., New York, USA.<br />

Mengel E.A., <strong>and</strong> K. Kirkby 1987. Lim<strong>in</strong>g <strong>and</strong> its<br />

calcium nutrition. 4 th Ed. International Potash<br />

Institute, Bern, Switzerl<strong>and</strong>.<br />

MW1y<strong>in</strong>da K 1984. Relationship between pH<br />

(CaCh) <strong>and</strong> alum<strong>in</strong>ium saturation. Proceed<strong>in</strong>gs<br />

of The Sem<strong>in</strong>ar on <strong>Soil</strong> Productivity <strong>in</strong> the High<br />

Ra<strong>in</strong>fall Areas of Zambia, Lusaka, 8t11-10 th February<br />

1983.<br />

208<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Afries


Questions <strong>and</strong> Answers<br />

Improv<strong>in</strong>g the Productivity of <strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong><br />

To Obed I. Lungu <strong>and</strong> Kalaluka Muny<strong>in</strong>da<br />

Q: Was the reduction <strong>in</strong> yields after add<strong>in</strong>g MAP <br />

not due to N2 fixation reduction by the presence of <br />

N <strong>in</strong> the MAP? <br />

A: No, all treatments received optimal N, <strong>and</strong> N2 <br />

fixation was not be<strong>in</strong>g evaluated <strong>in</strong> this study. <br />

PAPR has no N, but these treatments received N <br />

from either urea or ammonium nitrate. <br />

Q: <br />

1) Were these trials conducted on station or on <br />

farm? <br />

2) If on farm, do farmers still get the benefits of <br />

PAPR if they plant late or weed less effectively? <br />

3) What is the cost of gett<strong>in</strong>g P20S per unit of <br />

nutrient by apply<strong>in</strong>g PAPR compared to DAP, <br />

consider<strong>in</strong>g the bulk of PAPR is <strong>in</strong>ert material? <br />

A:<br />

1) The trials were researcher-designed <strong>and</strong> farmer<br />

managed. They were both on farm <strong>and</strong> on station.<br />

2) PAPR is just a substitute or alternative to MAP,<br />

TSP, etc. Farmers would there<strong>for</strong>e manage their<br />

crops with PAPR <strong>in</strong> the conventional way.<br />

3) At only 10% P20S <strong>in</strong> PAPR, the material is bulky.<br />

The product that will be promoted will be<br />

beneficiated by a physical process to at least 15%<br />

P20S as already demonstrated.<br />

Additionally, the utilization of PAPR is be<strong>in</strong>g<br />

promoted <strong>for</strong> areas close to the deposits of PR.<br />

Q: Should RP work still be considered a priority<br />

given that so much work has been done, but these<br />

materials are most often not available nor<br />

sufficiency reactive?<br />

A: Yes, PR work is still needed, but there should be<br />

a shift from basic research on-station to promotion<br />

<strong>and</strong> demonstration on-farm. <strong>Soil</strong>s are acutely<br />

deficient <strong>in</strong> P, <strong>and</strong> adequate P application is <strong>in</strong><br />

excess of 80 kg P20S ha·1, which is beyond what<br />

small farmers can af<strong>for</strong>d especially s<strong>in</strong>ce imported<br />

fertilizers <strong>in</strong> the region cost at least four times their<br />

cost outside Africa. The local product would be<br />

developed <strong>and</strong> made available to farmers if there<br />

was the political will <strong>and</strong> the policy <strong>and</strong><br />

<strong>in</strong>stitutional support.<br />

To Atusaye Mwalw<strong>and</strong>a, et al.<br />

Q: I do not th<strong>in</strong>k the effect of S <strong>in</strong>crease was<br />

studied, when look<strong>in</strong>g at your treatments?<br />

A: The fertilizer source used was un<strong>for</strong>tunately a<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

compound fertilizer 23:21:0:4S, hence it is difficult to<br />

isolate the <strong>in</strong>dividual effects of nutrients. However,<br />

the response to the <strong>in</strong>organic fertilizer is an<br />

<strong>in</strong>dication of the deficiency of the elements <strong>in</strong> the<br />

soils at the study sites.<br />

Q: In your first conclusion your attribute an <strong>in</strong>crease<br />

<strong>in</strong> yield to P <strong>and</strong> S, but what is the economic return<br />

<strong>for</strong> the extra yield versus the cost of nutrients?<br />

A: Economic analysis was not done <strong>in</strong> this study.<br />

There is need to do that analysis to get the benefit<br />

from us<strong>in</strong>g <strong>in</strong>organic fertilizer compared with not<br />

us<strong>in</strong>g.<br />

To Lackson K Phiri, et al.<br />

Q: Ca <strong>and</strong> Mg are usually leached <strong>in</strong>to the sub-soil.<br />

In your assessment of the residual effect of the<br />

lim<strong>in</strong>g materials tested on soil Ca <strong>and</strong> Mg levels,<br />

what was the justification <strong>for</strong> trac<strong>in</strong>g the two bases<br />

down to 20 cm soil depth only?<br />

A: I agree that there is the possibility of Ca <strong>and</strong> Mg<br />

leach<strong>in</strong>g <strong>in</strong> a high ra<strong>in</strong>fall envirorunent such as<br />

where the trial was located. But the trial was only <strong>in</strong><br />

the second year so our <strong>in</strong>terestwas to see what was<br />

happen<strong>in</strong>g <strong>in</strong> the root<strong>in</strong>g depth (0 - 20 cm) <strong>and</strong> later<br />

assess the leach<strong>in</strong>g of these cations down the soil<br />

profile. Un<strong>for</strong>tunately fund<strong>in</strong>g ended prematurely.<br />

Q: Your results do not mention the effect of<br />

<strong>in</strong>creas<strong>in</strong>g lime material on available phosphorous,<br />

but only mention pH <strong>and</strong> exchangeable AP+ effects.<br />

Why did you not mention P availability s<strong>in</strong>ce it is<br />

very much <strong>in</strong>fluenced by AP+?<br />

A: Certa<strong>in</strong>ly P is critical. Indeed <strong>in</strong> the middle of<br />

the trial <strong>in</strong> the 1995/96 season, P deficiency<br />

symptoms were observed such that an additional 20<br />

kg P20s/ha had to be added to correct P deficiency.<br />

General Discussion<br />

C: How much yield benefit after a fallow is<br />

necessary <strong>for</strong> the system to yield more than with<br />

two years of cropp<strong>in</strong>g? The naive answer is "twice<br />

as much". But maize next year is not worth as much<br />

as maize <strong>in</strong> your h<strong>and</strong> - an effect economists call<br />

"discount<strong>in</strong>g". This means the yield improvement<br />

must be more than two times <strong>for</strong> the fallow to be<br />

viable. On the other h<strong>and</strong>, the fallow may take less<br />

labour <strong>and</strong> may benefit long term-fertility or reduce<br />

weed populations, which implies that less than<br />

209


twice the yield is necessary. We have to consider<br />

these effects clearly <strong>and</strong> cost them.<br />

C: Both leav<strong>in</strong>g l<strong>and</strong> fallow with non-food legumes<br />

or grow<strong>in</strong>g maize after maize may'face a problem of<br />

adoption. There are agronomic management<br />

systems that m<strong>in</strong>imize competition <strong>and</strong> improve the<br />

compatibility of components <strong>in</strong> <strong>in</strong>tercropp<strong>in</strong>g<br />

systems. Grow<strong>in</strong>g legumes under early matur<strong>in</strong>g<br />

maize may give better opportunities to m<strong>in</strong>imize<br />

risk <strong>and</strong> <strong>in</strong>crease profitability per unit l<strong>and</strong> area<br />

over seasons.<br />

C: Almost all the papers presented on legumes<br />

(gra<strong>in</strong> or green manure) assume that the crop<br />

residue is <strong>in</strong>corporated <strong>in</strong>to the soil by farmers. But<br />

often livestock is a major component of the systems,<br />

<strong>and</strong> farmers give priority to their livestock rather<br />

than soil fertility when it comes to decision-mak<strong>in</strong>g.<br />

We have to reconsider our work to <strong>in</strong>tegrate <strong>and</strong><br />

evaluate it as it affects the whole production system.<br />

C: Various nutrient deficiencies occur <strong>in</strong> tropical<br />

soils <strong>and</strong> this may confound responses to the<br />

application of only a limited number of nutrients.<br />

In practice it is important to apply sufficient levels<br />

of all nutrients except the one be<strong>in</strong>g <strong>in</strong>vestigated to<br />

obta<strong>in</strong> predictable <strong>and</strong> expla<strong>in</strong>able responses.<br />

There are many options with provid<strong>in</strong>g N, e.g.<br />

manures, N2 fixation, N fertilizer, if all other<br />

nutrients are adequate.<br />

C: Often <strong>in</strong> the presentations we hear the statement<br />

"the treatments were not significantly different, but<br />

they were different". If we are go<strong>in</strong>g to ignore the<br />

results of our statistical tests, why bother do<strong>in</strong>g<br />

them? Also we should not accept a significant<br />

difference as mean<strong>in</strong>g a treatment is viable - the<br />

question is, does it show a significant economic<br />

benefit?<br />

210<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Afriea


Abstract<br />

EVALUATION AND PROMOTION OF VARIOUS CLASSES OF ANNUAL<br />

LEGUMES WITH FARMERS IN 'CHIOTA, ZIMBABWE<br />

DORAH MWENYE<br />

AREX, Marondera District, PO Box 150, ('V1arondera, Zimbabwe<br />

Nitrogen is one of the most limit<strong>in</strong>g crop nutrients <strong>in</strong> crop production. It is important, there<strong>for</strong>e, to' identify <strong>and</strong> utilize<br />

all available sources of nitrogen, particularly those that are readily available <strong>and</strong> generally af<strong>for</strong>dable by resource poor<br />

farmers. <strong>Green</strong> manure <strong>and</strong> cereal - legume rotations can be practiced to supply nitrogen.<br />

<strong>Green</strong> manures must be managed well to produce a significant fertiliz<strong>in</strong>g effect on the follow<strong>in</strong>g crop. This is particularly<br />

important <strong>for</strong> the smallholder farmer who is sacrific<strong>in</strong>g a food crop <strong>for</strong> one year through this practice. Smallholder<br />

farmers have practiced cereal - legume rotations <strong>for</strong> many years us<strong>in</strong>g legumes such as groundnut, bambara nut <strong>and</strong><br />

field bean . Oespite this practice of crop rotation, the problem 'of low soil fertility has persisted result<strong>in</strong>g <strong>in</strong> low maize<br />

yield. Generally, the use of m<strong>in</strong>eral fertilizers has decl<strong>in</strong>ed over the years due to high <strong>in</strong>put costs. Hence, the objective of<br />

this work was to <strong>in</strong>troduce better N-fix<strong>in</strong>g legumes to improve soil fertility. Velvet bean, sunnhemp <strong>and</strong> soyabean were<br />

<strong>in</strong>troduced.<br />

Farmer participatory research methods were used <strong>for</strong> three years. Research <strong>and</strong> extension worked with identified farmer<br />

groups <strong>in</strong> a multidiscipl<strong>in</strong>ary approach. Th~ evaluation <strong>and</strong> promotion of technologies was carried out dur<strong>in</strong>g farmer<br />

feedback sessions <strong>and</strong> field days.<br />

The major problems encountered <strong>in</strong> the promotion of these legumes <strong>in</strong>cluded the unavailability of seed material locally,<br />

<strong>and</strong> lack of knowledge on the management aspects of the legumes to atta<strong>in</strong> the optimum biomass. Legume cereal rotations<br />

were widely accepted, whilst green manures were accepted to a lesser extent. The results from the pilot project <strong>in</strong>dicated<br />

that 29% of the farmers used the green manure <strong>and</strong> 57% the soyabean + cereal rotation. Maize yields from different<br />

sites <strong>in</strong>creased by 15-70% <strong>for</strong> green manures <strong>and</strong> by 40-100% <strong>for</strong> the rotations.<br />

Farmers take up technologies with<strong>in</strong> given doma<strong>in</strong>s so there is a need to come up with green manure or legume fertility<br />

packages <strong>for</strong> different farmers <strong>in</strong> their agro-ecological zones. An impact assessment would best <strong>in</strong>dicate the results of this<br />

multidiscipl<strong>in</strong>ary approach.<br />

Key words: Annual legumes, farmer participatory research <strong>and</strong> extension, technology promotion, adoption potential,<br />

impact<br />

Introduction<br />

Nitrogen reserves <strong>in</strong> the soil are difficult to build<br />

due to its liability to leach<strong>in</strong>g losses. It is important,<br />

there<strong>for</strong>e, to identify <strong>and</strong> utilize aU sources of nitrogen,<br />

particularly those that are readily available <strong>and</strong><br />

generally af<strong>for</strong>dable by resource poor farmers.<br />

<strong>Green</strong> manure <strong>and</strong> cereal legume rotations can be<br />

practiced as important ways to supply nitrogen.<br />

<strong>Green</strong> manures must be managed well to produce a<br />

significant fertiliz<strong>in</strong>g effect on the follow<strong>in</strong>g<br />

(usually cereal) crop. This is particularly important<br />

<strong>for</strong> the smallholder farmer who is sacrific<strong>in</strong>g a food<br />

crop <strong>for</strong> one year through this practice. Smallholder<br />

farmers have practiced cereal-legume rotations <strong>for</strong><br />

many years, particularly focus<strong>in</strong>g on gra<strong>in</strong> legumes<br />

such as groundnut, bambara nut <strong>and</strong> edible bean.<br />

The area allocated to bambara nut is so <strong>in</strong>significant<br />

that it can give little impact (AGRITEX, 1998-2002).<br />

Despite crop rotation, the problem of low soil fertility<br />

persists <strong>and</strong> maize yields cont<strong>in</strong>ue to decl<strong>in</strong>e.<br />

Generally, the use of <strong>in</strong>organic fertilizers has decl<strong>in</strong>ed<br />

s<strong>in</strong>ce the early 1990s, ma<strong>in</strong>ly due to high <strong>in</strong>put<br />

costs. Hence there was need to <strong>in</strong>troduce better<br />

per<strong>for</strong>m<strong>in</strong>g legumes that have good nitrogen fixation<br />

abilities. For green manures, velvet bean<br />

(Mucuna spp.) <strong>and</strong> sunnhemp (Crotolaria juncea)<br />

were <strong>in</strong>troduced. With cereal-legume rotations, soyabean<br />

was <strong>in</strong>troduced as a new legume.<br />

A pilot project was set up with <strong>Soil</strong> Fert Net to<br />

evaluate Best Bet soil fertility technologies with<br />

farmers from Chiota Communal Area of Mashonal<strong>and</strong><br />

East Prov<strong>in</strong>ce <strong>in</strong> Zimbabwe. The major goal<br />

of the project was to expose approximately 4000<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 211


Table 1. Maize <strong>and</strong> <strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> Production Statistics<br />

·-Results from the Chiota Pilot Pro·ect<br />

CROP 1998·1999 1999·2000 2000·2001 2001·2002<br />

Area Yield Area Yield Area' Vield Area Yield<br />

(ha) (t/ha) (ha) (t/ha) (ha) (t/ha) (ha) (t/ha)<br />

MAIZE 8784 0.5 7125 1.8 6973 2 7733 0.2<br />

GROUND NUT 546 0.5 439 0.6 399 0.8 420 0.1<br />

SOYABEAN 5 0 12.8 0.6 9 0.8 28 0.1<br />

EDIBLE BEAN 420 0.6 163 0.8 280 0.8 680 0.4 I<br />

Source ·[AREX· Fortnightly Crop <strong>and</strong> livestock Reports]<br />

farmers to the Best Bet soil fertility technologies <strong>in</strong><br />

two years. Table 1 shows production statistics from<br />

the pilot area dur<strong>in</strong>g 1998-2002.<br />

Data from Fortnightly Crop <strong>and</strong> Livestock Reports ­<br />

AREX (Division of Agriculture Research <strong>and</strong> Extension)<br />

<strong>in</strong>dicate production levels of major cereals <strong>and</strong><br />

legumes be<strong>for</strong>e the <strong>in</strong>ception of the project <strong>in</strong> 1998­<br />

1999, dur<strong>in</strong>g the project <strong>and</strong> after the project <strong>in</strong><br />

2001-2002.<br />

Methods Used<br />

Farmer participatory research<br />

Farmer participatory research methods were used.<br />

These methods call <strong>for</strong> a systematic dialogue between<br />

farmers, research <strong>and</strong> extension. In participatory<br />

research, scientists work with <strong>in</strong><strong>for</strong>mants<br />

(farmers provid<strong>in</strong>g <strong>in</strong><strong>for</strong>mation) <strong>and</strong> experimenters<br />

(farmers who per<strong>for</strong>m experiments <strong>and</strong> evaluations)<br />

(Bellon, 2001). The community usually identifies<br />

these farmers with the assistance of extension staff.<br />

The group extension method is one of the extension<br />

methods used. Farmer group members were selected<br />

based on the follow<strong>in</strong>g criteria:<br />

- farmers' ability to grow a variety of crops<br />

- farmers' reputation <strong>and</strong> workmanship<br />

- Sex, age<br />

- L<strong>and</strong> hold<strong>in</strong>g.<br />

In 1998-1999, a Participatory Rural Appraisal was<br />

undertaken to f<strong>in</strong>d out about farmers' underst<strong>and</strong><strong>in</strong>g<br />

of the soil fertility status <strong>in</strong> their areas. Research<br />

<strong>and</strong> extension facilitated the identification of suitable<br />

<strong>in</strong>terventions from a list of exist<strong>in</strong>g technologies.<br />

Dur<strong>in</strong>g the project cycle, monitor<strong>in</strong>g <strong>and</strong><br />

evaluations were carried out through demonstrations,<br />

field days <strong>and</strong> farmer feedback sessions. Research,<br />

extension <strong>and</strong> farmers participated at all<br />

stages.<br />

Demonstrations <strong>and</strong> field days were also used as<br />

evaluation <strong>and</strong> promotion sessions. Demonstrations<br />

were research designed but farmer managed. Each<br />

host farmer served as a replicate of the experimental<br />

Figure 1. Layout of demonstration plots<br />

MAIZE/ MAIZE<br />

O.lha.<br />

MAIZE/LEGUME<br />

O.lha.<br />

unit. Each host farmer had a s<strong>in</strong>gle plot measur<strong>in</strong>g<br />

0.2 ha (Figure 1).<br />

Demo-plots of maize after a gra<strong>in</strong> legume <strong>and</strong><br />

maize after a green manure were compared with the<br />

farmer practice of plant<strong>in</strong>g maize after maize. In<br />

some cases more than one gra<strong>in</strong> legume was established.<br />

Twenty-three sites of cereal - gra<strong>in</strong> legume rotations<br />

<strong>and</strong> 10 sites Qf green manures were established.<br />

Soya bean, groundnut, bambara nut <strong>and</strong> cowpea<br />

were established <strong>in</strong> rotation as sole crops. Velvet<br />

bean <strong>and</strong> sunnhemp were established as either<br />

<strong>in</strong>tercrops or as sole crops. Maize yield from the<br />

demo plots was compared.<br />

Field days were held at all established sites. The<br />

field days served as sessions <strong>for</strong> the shar<strong>in</strong>g <strong>and</strong> exchange<br />

of ideas between farmers, research <strong>and</strong> extension.<br />

In some cases, farmer feedback sessions<br />

were arranged.<br />

Results<br />

Farmer participation <br />

The farmers who used at least one of the technolo­<br />

gies after a year were considered to be adopters. <br />

These farmers were both from with<strong>in</strong> the groups <br />

<strong>and</strong> outside the groups. Field days played an im­<br />

portant role <strong>in</strong> the promotion of the technologies. In <br />

some cases, farmers used more than one of the tech­<br />

nologies on offer. Adoption of the technologies also <br />

depended on the socio-economic status of the <br />

farmer. <br />

More farmers adopted the cereal-legume rotations <br />

(57%) compared with 29% of farmers that adopted <br />

the green manure technology (29%). <br />

Demonstration plots <br />

Several shortcom<strong>in</strong>gs occurred dur<strong>in</strong>g implementa­<br />

tion at some sites. The results from these plots were <br />

discarded. For example, plots with different pre­<br />

establishment treatments were compared (unlimed <br />

plots were compared with limed plots). This <strong>in</strong>­<br />

creased the number of factors, thus complicat<strong>in</strong>g the <br />

demos from the farmers' po<strong>in</strong>t of view. Variability <br />

<strong>in</strong> the results occurred due to different management <br />

abilities of the farmers <strong>and</strong> the competency of the <br />

extension agent, even though pre-plant<strong>in</strong>g demon­<br />

strations had been held. <br />

212<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 2. Maize yields from the cereal· gra<strong>in</strong> legume rotations,<br />

2000-2001.<br />

Maize/ Maize/soya Maize Maize Maize/<br />

maize (t/ha) /groundnut /bambara Cowpea<br />

(t/ha) (t/ha) (t/ha) (t/ha)<br />

Site 1 3.3 5_8 5.4 <br />

Site 3 2.6 4.2 4.1 <br />

Site 3 4.0 4.5 4.3 <br />

Site 4 4.3 4.6 4.5 <br />

Site 5 2.0 4.0 3.8 <br />

Site 6 1.5 3.0 2.7 <br />

Site 7 2.0 3.5 2.5 <br />

Site 8 1.6 3.0 <br />

Average 3.2 4.7 4.2 <br />

L-.­<br />

Table 3. Maize yields from the green manure demonstration plots,<br />

2000-2001.<br />

Maize/maize Maize/velvet Maize/<br />

(t/ha) bean sunnhemp<br />

(t/ha)<br />

(t/ha)<br />

Site 1 2.1 3.7<br />

Site 2 1.6 3.5<br />

Site 3 1.5 3.5<br />

Site 4 2.0 2.0<br />

Site 5 2.5 3.0<br />

Site 6 1.1 1.4<br />

Site 7 0.9 1.0<br />

Site 8 1.1 1.3<br />

Site 9 2.0 2.0<br />

Site 10 2.5 3.0<br />

Average 1.5 1.6 1.4<br />

Maize after a legume outper<strong>for</strong>med maize after <br />

maize at all sites (Table 2). With the green manure <br />

technology, farmers preferred sole cropp<strong>in</strong>g to <strong>in</strong>­<br />

ter-cropp<strong>in</strong>g, ma<strong>in</strong>ly because of the constra<strong>in</strong>ts en­<br />

countered dur<strong>in</strong>g harvest<strong>in</strong>g. The demonstrations <br />

were held <strong>for</strong> two years only <strong>and</strong> no arrangements <br />

were made <strong>for</strong> the third year because project fund­<br />

<strong>in</strong>g had term<strong>in</strong>ated. The data collected was from the <br />

sole cropp<strong>in</strong>g. <br />

The average gra<strong>in</strong> yield of maize after maize was <br />

out-yielded by maize after a green manure (Table <br />

3). Results from Table 3 <strong>in</strong>dicate that the yield <strong>in</strong>­<br />

crease over the two years did not compensate <strong>for</strong> <br />

the yield lost dur<strong>in</strong>g the first year. <br />

Farmer feedback sessions <br />

Attendance at field days was overwhelm<strong>in</strong>g. Atten­<br />

dance ranged from 50 to 160 people at some sites. <br />

At least 14% <strong>and</strong> up to 60% of the targeted farmers <br />

used annual legumes (such as velvet bean <strong>and</strong> soya­<br />

bean) as soil fertility <strong>in</strong>terventions. However, farm­<br />

ers cited the follow<strong>in</strong>g setbacks (AGRlTEX, 2000; <br />

2001): <br />

Table 4. Participation of Chiota farmers <strong>in</strong> legume production, 2000­<br />

2001.<br />

LEGUME TOTAL NO. OF AOOPTERS WITHIN AOOPTERS<br />

PARTICIPATING THE GROUP OUTSIDE<br />

FARMERS<br />

THE GROUP<br />

No. % No.<br />

ROTATION 1433 818 57 381<br />

GREEN MANURES 631 185 29.3 94<br />

- Lack of plant<strong>in</strong>g material. <br />

- Lack of knowledge on the utilization of legumes <br />

<strong>for</strong> human consumption <strong>and</strong> stock-feed. <br />

- Lack of knowledge on either uses of velvet bean <br />

<strong>and</strong> sunnhemp. <br />

- Lack of knowledge on the residual nutrient levels <br />

because of the rotation <strong>and</strong> green manure. <br />

- The concept of <strong>in</strong>put reduction costs was not properly<br />

demonstrated.<br />

. <br />

- Generally, management of the green manure was <br />

poor. <br />

"Adopters" were considered to be those farmers <br />

who used the technology. The table above shows <br />

the total number of adopters over two years. The <br />

number is expected to rise through farmer-to­<br />

farmer contacts. <br />

There was need to repeat the demonstration <strong>in</strong> the <br />

second year, but this could not be carried out due to <br />

unfavourable weather conditions <strong>and</strong> other socio <br />

economic circumstances. However, the follow<strong>in</strong>g <br />

issues <strong>in</strong> management of green manures are to be <br />

considered <strong>for</strong> future demonstrations: <br />

• Sow<strong>in</strong>g <strong>and</strong> site selection - Plant populations<br />

were low due to plant destruction by wild a:nimals.<br />

This resulted <strong>in</strong> very low biomass.<br />

• Fertilizer use - without fertiliz<strong>in</strong>g it is not possible<br />

to achieve a closed green st<strong>and</strong> <strong>and</strong> biomass<br />

quantities obta<strong>in</strong>ed will be low. Farmers considered<br />

that it was not practicable to fertilize fallows.<br />

• Incorporation - rarely was the green manure <strong>in</strong>corporated<br />

at the best stage. The method of <strong>in</strong>corporation<br />

was also not ideal because the green<br />

manure was not fully covered <strong>and</strong> the environmental<br />

conditions were not always good.<br />

• Seed procurement - Seed was not readily<br />

available locally.<br />

The pilot project built a sense of awareness amongst<br />

the farmers. An impact assessment will reveal the<br />

best steps <strong>for</strong>ward.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

213


Recommendations <strong>and</strong> Conclusion<br />

In view of the setbacks given, other options can be<br />

tried out. These <strong>in</strong>clude:<br />

Biomass transfer - plant material can be transferred<br />

from its place of growth <strong>in</strong> other fields <strong>and</strong> be <strong>in</strong>corporated<br />

<strong>in</strong>to the soil as green manure.<br />

<strong>Green</strong> manur<strong>in</strong>g with roots - the green material can<br />

be used as fodder whilst roots rema<strong>in</strong> <strong>in</strong> the soil.<br />

The benefit from this practice depends primarily on<br />

the quantity of root material rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the soil<br />

after harvest. In work done at Makoholi on s<strong>and</strong>y<br />

soils, maize yields obta<strong>in</strong>ed after sunnhemp tops<br />

were removed were similar to those obta<strong>in</strong>ed when<br />

everyth<strong>in</strong>g was <strong>in</strong>corporated (Nyak<strong>and</strong>a, 1996).<br />

The farmer participatory research <strong>and</strong> extension<br />

methods used strengthened farmer research <strong>and</strong><br />

extension l<strong>in</strong>kages. This l<strong>in</strong>kage is important <strong>in</strong> the<br />

promotion of technologies. However strong back-up<br />

from policy makers is required to ensure cont<strong>in</strong>ued<br />

implementation of the technologies. There is also<br />

need to carry out an economic analysis of the results<br />

<strong>and</strong> give farmers some feedback. In most cases the<br />

researcher is <strong>in</strong>terested <strong>in</strong> just the results <strong>and</strong> no<br />

feedback is normally given back to other stakeholders.<br />

On the other h<strong>and</strong>, extension normally uses<br />

narrative <strong>and</strong> qualitative analysis of data, which is<br />

not always ideal.<br />

Farmers are concerned about the dollar they have·<strong>in</strong><br />

the pocket today rather than the three dollars they<br />

may have tomorrow, whereas benefits derived from<br />

rotation <strong>and</strong> green manures are derived 2-3 years<br />

later. Our recommendations should also consider<br />

farmers' circumstances. Farmers differ <strong>in</strong> their<br />

socia-economic status <strong>and</strong> they ma<strong>in</strong>ly take up technologies<br />

that suit their circumstances. Farmers require<br />

cont<strong>in</strong>ued support as back up services from<br />

both research <strong>and</strong> extension if the promotion of.<br />

various annual legumes is to make an impact. Additionally<br />

a more susta<strong>in</strong>able approach should be considered.<br />

At present, all our ef<strong>for</strong>ts are left hang<strong>in</strong>g<br />

or have been suspended. Now that farmers are<br />

aware of the technologies, what is the way <strong>for</strong>ward?<br />

Despite the shortcom<strong>in</strong>gs, the pilot project <strong>in</strong> Chiota<br />

Communal Area played a pivotal role <strong>in</strong> implement<strong>in</strong>g<br />

the farmer participat?ry research methods.<br />

The experiences can be adopted by extensionists<br />

<strong>and</strong> researchers work<strong>in</strong>g with resource-poor farmers.<br />

Promotion of annual legumes with farmers requires<br />

a participatory approach at all stages of the<br />

project cycle.<br />

Acknowledge~ents<br />

This work was supported by a grant from the<br />

Rockefeller Foundation to AGRlTEX <strong>in</strong> conjunction<br />

with the <strong>Soil</strong> Fert Net. Staff <strong>in</strong> the <strong>Soil</strong> Fert Net coord<strong>in</strong>ation<br />

unit provided technical backup.<br />

References<br />

AGRlTEX 2000. Chiota soil fertility project mid season<br />

<strong>and</strong> end of season report. 1999-2000.<br />

AGRITEX 2001. Chiota soil fertility project mid season<br />

<strong>and</strong> end of season report 2000-2001.<br />

AGRITEX 2002. Fortnightly crop <strong>and</strong> livestock reports<br />

1998-2002.<br />

Bellon, M.R. 2001. Participatory research methods<br />

<strong>for</strong> technology evaluation. A manual <strong>for</strong> scientists<br />

work<strong>in</strong>g with farmers. CIMMYT, Mexico,<br />

OF, Mexico. 93 pp.<br />

Nyak<strong>and</strong>a, C. 1996. <strong>Green</strong> manur<strong>in</strong>g as a soil ameliorant<br />

<strong>in</strong> s<strong>and</strong>y soils of Zimbabwe-1996.<br />

214<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


FINANCIAL AND RISK ANALYSIS TO ASSESS THE POTENTIAL<br />

ADOPTION OF GREEN MANURE TECHNOLOGY<br />

IN ZIMBABWE AND MALAWI<br />

MULUGETTA MEKURIA <strong>and</strong> SHEPHARD SIZIBA<br />

CIMMYT-Southern Africa Regional Office, PO Box MP 163,<br />

Mt Pleasant, Harare, Zimbabwe<br />

M. Mekuria@cgiar. org S. Siziba@cgiar. org<br />

Abstract<br />

Smallholder farmers <strong>in</strong> southern Africa face acute food <strong>in</strong>security as the productive capacity of their soils have decl<strong>in</strong>ed.<br />

These resource poor farmers cannot af<strong>for</strong>d to use <strong>in</strong>organic fertilizers. Consequently, <strong>Soil</strong> <strong>Fertility</strong> Management <strong>and</strong><br />

Policy Network researchers <strong>in</strong> Southern Africa engaged <strong>in</strong> develop<strong>in</strong>g best-bet soil fertility technologies have<br />

recommended green manure technologies as possible options to improve soil fertility to <strong>in</strong>crease maize yield.<br />

In the s<strong>and</strong>y soil sites <strong>in</strong> Malawi <strong>and</strong> Zimbabwe, agronomic results showed that the <strong>in</strong>corporated mucuna biomass<br />

substantially improves maize yields. Mucuna was grown <strong>and</strong> the biomass <strong>in</strong>corporated <strong>in</strong> the first grow<strong>in</strong>g season <strong>and</strong><br />

maize was then grown <strong>in</strong> the two subsequent seasons.<br />

The objectives of this paper are: (1) to verify the f<strong>in</strong>ancial <strong>in</strong>centives to farmers <strong>for</strong> <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna as a green<br />

manure technology (as def<strong>in</strong>ed above) by quantify<strong>in</strong>g its Net Present Value (NPV), (2) to assess the possible effects of<br />

likely changes <strong>in</strong> the cost <strong>and</strong> benefit elements of the technology on the NPVs <strong>and</strong> (3) to compute the risk that farmers<br />

might face <strong>in</strong> <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna (i.e. chances of gett<strong>in</strong>g a negative NPV). Analysis was done <strong>for</strong> cases where l<strong>and</strong> is<br />

fallowed (l<strong>and</strong> fallow<strong>in</strong>g farmers) <strong>and</strong> where maize production is <strong>for</strong>gone <strong>in</strong> the first year <strong>for</strong> non-fallow<strong>in</strong>g farmers, who<br />

would be prospective users of mucuna.<br />

F<strong>in</strong>ancial analysis reveals that under the current <strong>in</strong>puts <strong>and</strong> output prices there are positive payoffs to <strong>in</strong>vest<strong>in</strong>g <strong>in</strong><br />

mucuna <strong>for</strong> both Malawian'<strong>and</strong> Zimbabwean farmers. Consider<strong>in</strong>g uncerta<strong>in</strong>ty, l<strong>and</strong> constra<strong>in</strong>ed farmers face more risk<br />

than' l<strong>and</strong> adequate farmers <strong>in</strong> adopt<strong>in</strong>g mucuna. In both countries, the NPVs are sensitive to changes <strong>in</strong> the<br />

discount<strong>in</strong>g rates, maize gra<strong>in</strong> price <strong>and</strong> yield. This implies that policy <strong>in</strong>terventions to decrease the discount<strong>in</strong>g rate<br />

<strong>and</strong>/ or an <strong>in</strong>crease <strong>in</strong> output price would create <strong>in</strong>centives to access credit to <strong>in</strong>vest <strong>in</strong> soil fertility technologies <strong>and</strong><br />

<strong>in</strong>crease farmers' <strong>in</strong>come, respectively. Research ef<strong>for</strong>ts to improve maize yield response to mucuna resitiue<br />

<strong>in</strong>corporation would greatly contribute to <strong>in</strong>creased profitability <strong>and</strong> make the technology more attractive.<br />

Key words: F<strong>in</strong>ancial analysis, Net Present Value, green manure, technology adoption, policy<br />

Introduction<br />

The Problem Sett<strong>in</strong>g<br />

About 70% of the population of Southern Africa<br />

resides <strong>in</strong> rural areas where they subsist on small<br />

farms (Mabeza-Chimedza, 2000) . For many of these<br />

resource poor farmers, maize is the staple crop.<br />

Problems of food <strong>in</strong>security persist <strong>in</strong> the region,<br />

with the 2001-02 year be<strong>in</strong>g one of the worst <strong>in</strong><br />

history. Over 13 million people are currently<br />

threatened with food shortages <strong>in</strong> Lesotho, Malawi,<br />

Mozambique, Swazil<strong>and</strong>, Zambia <strong>and</strong> Zimbabwe<br />

(SADC Food Security Bullet<strong>in</strong> July, 2002).<br />

Crop yields <strong>in</strong> Sub Saharan Africa have been<br />

decl<strong>in</strong><strong>in</strong>g steadily over the years. It is becom<strong>in</strong>g<br />

<strong>in</strong>creas<strong>in</strong>gly acknowledged that low <strong>and</strong> decl<strong>in</strong><strong>in</strong>g<br />

soil fertility reduces maize yield even when normal<br />

ra<strong>in</strong>fall is received (Kumwenda et al. 1996). The<br />

soils have become depleted of nutrients <strong>in</strong> many<br />

smallholder systems where nutrient outputs exceed<br />

nutrient <strong>in</strong>puts, lead<strong>in</strong>g to m<strong>in</strong><strong>in</strong>g of soil nutrients<br />

(Buresh et al. 1998). Reduced access to <strong>in</strong>organic<br />

fertilizer sources expla<strong>in</strong>s this depletion of soil<br />

nutrients from smallholder farm<strong>in</strong>g systems.<br />

Increased human population pressure has resulted<br />

<strong>in</strong> l<strong>and</strong> scarcity <strong>and</strong> shortened fallow periods<br />

limit<strong>in</strong>g the use <strong>and</strong> benefits from traditional soil<br />

fertility management practices like cattle manure,<br />

fallow<strong>in</strong>g <strong>and</strong> slash <strong>and</strong> burn <strong>in</strong> replenish<strong>in</strong>g soil<br />

nutrients. Reduced access to <strong>in</strong>organic fertilizers<br />

derives from unfavourable gra<strong>in</strong> / fertilizer price<br />

ratios, driven by poor <strong>in</strong>frastructure, <strong>and</strong> unsuitable<br />

<strong>in</strong>put <strong>and</strong> product pric<strong>in</strong>g policies, <strong>and</strong> uneven<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Afriea 215


per<strong>for</strong>mance of private sector companies (Mwangi,<br />

1997).<br />

Proposed Interventions<br />

Researchers have attempted to come up with<br />

alternative soil fertility management strategies that<br />

can arrest the decl<strong>in</strong>e <strong>in</strong> soil fertility <strong>in</strong> southern<br />

Africa. An <strong>in</strong>ventory of soil fertility practices known<br />

as 'best bets" be<strong>in</strong>g suggested to farmers <strong>in</strong>clude<br />

among others, <strong>in</strong>organic fertilizer regimes, lime use<br />

<strong>in</strong> acidic soils, improved animal manures, gra<strong>in</strong><br />

legumes <strong>for</strong> rotations, green manure legumes,<br />

agro<strong>for</strong>estry / trees <strong>in</strong> cropl<strong>and</strong>, <strong>and</strong> biomass<br />

transfer systems. Each of these technologies has its<br />

advantages <strong>and</strong> limitations depend<strong>in</strong>g on the<br />

biophysical conditions <strong>in</strong> which it is applied <strong>and</strong><br />

socio-economic attributes of the farmers. It is<br />

generally accepted that the extent <strong>and</strong> <strong>in</strong>tensity of<br />

technology adoption is governed by how well<br />

technology attributes fit <strong>in</strong>to farmers' farm<strong>in</strong>g<br />

systems, its profitability <strong>and</strong> contribution to reduce<br />

risk <strong>and</strong> <strong>in</strong>come variability (Mekuria <strong>and</strong> Wadd<strong>in</strong>gton,<br />

2002).<br />

<strong>Green</strong> manures look promis<strong>in</strong>g <strong>for</strong> such poor farmers.<br />

<strong>Green</strong> manure biomass is rich <strong>in</strong> N <strong>and</strong> there<strong>for</strong>e<br />

has potential of supply<strong>in</strong>g N; the most commonly<br />

limit<strong>in</strong>g nutrient to cereal production <strong>in</strong> both<br />

Zimbabwean <strong>and</strong> Malawian smallholder soils. Results<br />

from trials conducted <strong>in</strong> both Malawi<br />

(Kumwenda 1998; Sakala, 1998) <strong>and</strong> Zimbabwe<br />

(Muza 1998) concur <strong>in</strong> confirm<strong>in</strong>g that Mucuna prurims<br />

compared to other green manure species produces<br />

the highest amount of biomass.<br />

Mucuna pruriens is a herbaceous legume that has the<br />

ability to fix nitrogen from the air <strong>in</strong>to the soil. A<br />

healthy mucuna plant can grow vigorously to produce<br />

10 t/ha of biomass <strong>and</strong> can leave over 100 kg<br />

N /ha <strong>in</strong> the soil. If it is to be used solely as a green<br />

manure, mucuna can be <strong>in</strong>corporated early when it<br />

is still green or late after flower<strong>in</strong>g if the seeds are to<br />

be harvested. To achieve fertility benefits, mucuna<br />

biomass has to be <strong>in</strong>corporated <strong>and</strong> <strong>in</strong> the follow<strong>in</strong>g<br />

seasons maize is grown. It is generally agreed that<br />

maize yield <strong>in</strong>creases are obta<strong>in</strong>ed <strong>for</strong> a maximum<br />

of three years (S Wadd<strong>in</strong>gton, 2002 personal communication)<br />

thereafter the biomass is almost totally<br />

degraded. For farmers to benefit from mucuna, they<br />

have to use it on fallowed l<strong>and</strong> or have to <strong>for</strong>go one<br />

season of maize production. Thus, the mucuna technology<br />

requires additional labour <strong>and</strong> some modest<br />

cash amounts <strong>for</strong> seed purchase <strong>in</strong> the first year. To<br />

some l<strong>and</strong> constra<strong>in</strong>ed farmers, it means <strong>for</strong>go<strong>in</strong>g<br />

one season's harvest of maize. The decision to adopt<br />

mucuna can be difficqlt <strong>for</strong> poor smallholder farmers<br />

who are pressed with the need to produce the<br />

staple maize crop every season <strong>and</strong> at the same tiJ?e<br />

are faced with decl<strong>in</strong><strong>in</strong>g soil fertility <strong>and</strong> maize yields<br />

every year because of cont<strong>in</strong>uous cropp<strong>in</strong>g.<br />

Objectives of the Study<br />

The paper seeks to assess the potential returns <strong>and</strong><br />

<strong>in</strong>centives <strong>for</strong> <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna as a soil -fertility<br />

management technology by smallholder farmers <strong>in</strong><br />

Zimbabwe <strong>and</strong> Malawi. Additionally, the paper<br />

undertakes risk analysis to assess how some changes<br />

<strong>in</strong> the cost <strong>and</strong> benefit elements of this technology<br />

will <strong>in</strong>fluence the attractiveness <strong>and</strong> there<strong>for</strong>e likely<br />

<strong>in</strong>vestment <strong>in</strong> mucuna as a soil'fertility technology. It<br />

draws lessons <strong>for</strong> policy <strong>in</strong>tervention <strong>and</strong> research<br />

strategies.<br />

Data Sources<br />

Maize yield data from on-farm trials generated <strong>for</strong><br />

three seasons from 1997 to 1999 <strong>in</strong> Malawi (provided<br />

by Webster 'Sakala of DARTS Malawi <strong>and</strong><br />

summarized <strong>in</strong>, Sakala et al. 2001) <strong>and</strong> Zimbabwe<br />

(provided by Tendai Gatsi <strong>and</strong> Lucia Muza of<br />

Agronomy Institute, DR&SS <strong>and</strong> summarized <strong>in</strong><br />

Muza, 2002) (see Appendix 1) was used <strong>in</strong> the<br />

analysis. In Zimbabwe, the on-farm trials were<br />

conducted <strong>in</strong> two communal sites, Chihota <strong>and</strong><br />

Zvimba, which are typical smallholder farm<strong>in</strong>g areas<br />

<strong>in</strong> the north central sub-humid ra<strong>in</strong>fall belt with poor<br />

s<strong>and</strong>y soils. In Malawi, the on-farm trials were<br />

conducted <strong>in</strong> two sites <strong>in</strong> central Malawi represent<strong>in</strong>g<br />

s<strong>and</strong>y soils of the country. Mucuna was grown <strong>in</strong> the<br />

<strong>in</strong>itial year <strong>and</strong> <strong>in</strong>corporated early <strong>in</strong> both Zimbabwe<br />

<strong>and</strong> Malawi. The maize yields <strong>for</strong> the subsequent two<br />

seasons were compared to a control of cont<strong>in</strong>uously<br />

cropped maize. Secondary sources of <strong>in</strong><strong>for</strong>mation<br />

were used <strong>for</strong> prices, costs <strong>and</strong> labour data.<br />

Grow<strong>in</strong>g of mucuna <strong>for</strong> <strong>in</strong>corporation of its biomass<br />

is a farm <strong>in</strong>vestment activity whereby ef<strong>for</strong>t <strong>and</strong><br />

money are spent with the anticipation of a future<br />

stream of benefits as <strong>in</strong>creased maize yields due to<br />

improved soil fertility. Be<strong>for</strong>e encourag<strong>in</strong>g farmers to<br />

adopt mucuna, it is necessary to assess whether the<br />

<strong>in</strong>cremental <strong>in</strong>come from mucuna <strong>in</strong>vestment will be<br />

large enough to compensate them <strong>for</strong> the additional<br />

ef<strong>for</strong>t <strong>and</strong> risk they will <strong>in</strong>cur.<br />

Analytical Procedures<br />

The study used f<strong>in</strong>ancial cost-benefit analysis to<br />

determ<strong>in</strong>e the f<strong>in</strong>ancial effects of us<strong>in</strong>g mucuna as a<br />

soil fertility technology on the smallholder farms. In<br />

addition, sensitivity analysis was employed to<br />

evaluate the risk associated with the technology.<br />

F<strong>in</strong>ancial Analysis<br />

For a sound f<strong>in</strong>ancial analysis, it is important to<br />

properly identify costs <strong>and</strong> benefits of an <strong>in</strong>vestment<br />

activity (Gitt<strong>in</strong>ger, 1982). A 'with' <strong>and</strong> 'without'<br />

technology approach was used to capture the<br />

216<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


<strong>in</strong>cremental costs <strong>and</strong> benefits associated with<br />

mucuna as a green manure technology.<br />

The 'without' technology scenario was def<strong>in</strong>ed as<br />

grow<strong>in</strong>g maize cont<strong>in</strong>uously <strong>for</strong> three years without<br />

use of any soil fertility <strong>in</strong>tervention, a practice that<br />

has become common among many poor<br />

smallholder farmers <strong>in</strong> Malawi <strong>and</strong> Zimbabwe. The<br />

'with' technology deals with a mucuna-maize-maize<br />

3-year crop rotation.<br />

The <strong>in</strong>cremental costs <strong>for</strong> us<strong>in</strong>g mucuna are<br />

perceived to be different <strong>for</strong> farmers who are able to<br />

fallow some portions of their field <strong>and</strong> those who<br />

are not able to do so due to l<strong>and</strong> constra<strong>in</strong>t. For<br />

those who fallow l<strong>and</strong>, the <strong>in</strong>cremental costs are<br />

additional labour <strong>and</strong> seed costs associated with<br />

grow<strong>in</strong>g mucuna. For farmers who have to <strong>for</strong>go<br />

maize production on the portion of their l<strong>and</strong><br />

planted to mucuna <strong>in</strong> the <strong>in</strong>vestment year, the<br />

<strong>in</strong>cremental cost is the opportunity cost <strong>in</strong> terms of<br />

value of <strong>for</strong>gone maize production. Benefits were<br />

measured as the value of the <strong>in</strong>cremental maize<br />

gra<strong>in</strong> yields <strong>in</strong> the subsequent two seasons which<br />

was derived as the difference between cont<strong>in</strong>uously<br />

cropped maize yields <strong>and</strong> the maize yield after<br />

mucuna <strong>in</strong>corporation. To value the costs <strong>and</strong><br />

benefits of mucuna, 1999 market prices of <strong>in</strong>puts<br />

<strong>and</strong> outputs <strong>in</strong> both countries were used (see<br />

Appendix 2).<br />

NPV<br />

The. Net Present Value (NPV) was used to quantify<br />

the net f<strong>in</strong>ancial ga<strong>in</strong>s to farmers <strong>for</strong> <strong>in</strong>vest<strong>in</strong>g <strong>in</strong><br />

mucuna. NPV is the djfference between the sum of<br />

discounted benefits (<strong>in</strong>cremental maize yields <strong>in</strong><br />

two seasons) <strong>and</strong> the sum of discounted costs (cost<br />

of mucuna production/<strong>for</strong>gone maize gra<strong>in</strong><br />

harvest). NPV is an absolute measure of the present<br />

worth of an <strong>in</strong>come stream accru<strong>in</strong>g to the<br />

<strong>in</strong>dividual farmers; which is what the farmers are<br />

more <strong>in</strong>terested <strong>in</strong> (Gitt<strong>in</strong>ger, 1982).<br />

The NPV was calculated per one hectare unit of<br />

l<strong>and</strong>. If NPV is greater than zero it is worthwhile<br />

<strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna <strong>and</strong> if it is less than zero it is<br />

not worthwhile <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna. The larger the<br />

value of NPV· the higher the f<strong>in</strong>ancial returns to<br />

<strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna.<br />

Sensitivity <strong>and</strong> Risk Analysis<br />

Sensitivity analysis shows to what extent the returns<br />

(NPV) to <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna is <strong>in</strong>fluenced by<br />

variations <strong>in</strong> the major quantifiable elemerits. This<br />

is important <strong>for</strong> identify<strong>in</strong>g those elements whose<br />

changes have the largest impact on viability of the<br />

technology. Monitor<strong>in</strong>g <strong>and</strong> management of such<br />

elements is critical <strong>in</strong> ensur<strong>in</strong>g viability of the technology.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> Fertilitv <strong>in</strong> Southern Africa<br />

Risk analysis shows th~ probability out-comes af the<br />

NPV derived from the changes <strong>in</strong> its elements. The<br />

probability that the NPV would be negative can be<br />

used as an <strong>in</strong>dieator of the degree of risk <strong>in</strong> adopt<strong>in</strong>g<br />

the technology.<br />

Both sensi tivity <strong>and</strong> risk analysis were perfomied<br />

us<strong>in</strong>g @RISK (a risk analysis software). @RISK uses<br />

distribution functions <strong>in</strong>stead of constant values<br />

<strong>and</strong> can simulate 1000s of possible outcomes of<br />

NPV. Because of a lack of historic data, triangular<br />

distributions were used to estimate the distribution<br />

functions of all the parameters used <strong>in</strong> comput<strong>in</strong>g<br />

NPV (see Appendix 3).<br />

In sensitivity analysis the regression <strong>and</strong> correlation<br />

coefficients <strong>for</strong> the relationship between the changes<br />

<strong>in</strong> NPVs <strong>and</strong> changes <strong>in</strong> the cost <strong>and</strong> benefit elements<br />

are computed. The larger the regression coefficient<br />

of an NPV element · the more important it is<br />

<strong>in</strong> account<strong>in</strong>g <strong>for</strong> changes <strong>in</strong> the expected NPV. The<br />

correlation coefficient simply shows the nature of<br />

the relationship (positive or negative) between<br />

changes <strong>in</strong> expected NPV <strong>and</strong> the element. In fisk<br />

analysis, a cumulative distribution curve <strong>for</strong> the<br />

simulated NVP outcomes is generated.<br />

Results<br />

F<strong>in</strong>ancial Incentives<br />

For both farmers who fallow <strong>and</strong> those who can not<br />

fallow, the NPVs <strong>in</strong> both Zirrlbabwe <strong>and</strong> Malawi are<br />

positive, imply<strong>in</strong>g positive pays-offs .<strong>for</strong> <strong>in</strong>vest<strong>in</strong>g <strong>in</strong><br />

mucuna <strong>for</strong> the two types of farmers (Table 1). The<br />

NPV s are larger <strong>in</strong> Zimbabwe than <strong>in</strong> Malawi. This<br />

means that there is less additional returns <strong>for</strong><br />

<strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna <strong>in</strong> Malawi than <strong>in</strong> Zimbabwe,<br />

largely expla<strong>in</strong>ed by the much higher maize yield<br />

responses to mucuna <strong>in</strong> Zimbabwe compared with<br />

Malawi (see Appendix 1).<br />

In Zimbabwe, <strong>in</strong>vest<strong>in</strong>g <strong>in</strong>to mucuna yields higher<br />

returns (NPV) to farmers who <strong>for</strong>go maize<br />

production than <strong>for</strong> those who fallow their l<strong>and</strong>s<br />

(Table 1). The difference between NPVs <strong>for</strong> the two<br />

types of farmer is accounted <strong>for</strong> by the difference <strong>in</strong><br />

Table 1. NPVs hal <strong>for</strong> <strong>in</strong>vest<strong>in</strong>g,<strong>in</strong> Mucuna as agreen manure<br />

(US Dollars)<br />

Zimbabwe<br />

Malawi<br />

(Discount<strong>in</strong>g at 50%) (Discount<strong>in</strong>g .at 34%)<br />

(<strong>in</strong> US$) Non· Fallow<strong>in</strong>g Non· Fallow<strong>in</strong>g<br />

Fallow<strong>in</strong>g farmers fallow<strong>in</strong>g farmers<br />

farmers<br />

farmers<br />

Total costs 37.11 57.46 56.64 50.76<br />

Total benefits 189.88 189.88 7a.ll 70.11<br />

NPV 152.77 132.42 13.48 19.35<br />

Source: calculated by authors from on·farm trial data<br />

217


the <strong>in</strong>vestment costs <strong>in</strong>curred. The <strong>in</strong>vestment cost<br />

.<strong>for</strong> farmers who <strong>for</strong>go maize production<br />

(opportunity cost of the l<strong>and</strong> <strong>in</strong> terms of <strong>for</strong>gone<br />

maize gra<strong>in</strong>) is less than <strong>for</strong> those who fallow their<br />

l<strong>and</strong>s (mucuna production cost). This is due to very<br />

low maize yields achieved on the soils that are<br />

degraded.<br />

In Malawi, the opportunity cost of <strong>for</strong>go<strong>in</strong>g maize<br />

production is more than the production cost (on<br />

labour <strong>and</strong> seed) of grow<strong>in</strong>g mucuna <strong>in</strong> the<br />

<strong>in</strong>vestment season. ' This expla<strong>in</strong>s why, unlike <strong>in</strong><br />

Zimbabwe, <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna is more attractive<br />

(better NPY) <strong>for</strong> farmers who fallow than <strong>for</strong><br />

farmers who have to <strong>for</strong>go maize production.<br />

The fact that NPY is positive is not the only criterion<br />

or factor that farmers may cOf\Sider <strong>in</strong> their decision<br />

to adopt mucuna. The magnitude of the NPY <strong>and</strong><br />

the risk<strong>in</strong>ess of the technology are additional factors<br />

farmers may consider <strong>in</strong> adoption of the mucuna<br />

technology.<br />

Significance of NPV<br />

To assess the magnitude of the NPY <strong>and</strong> its<br />

significance to farmers, the maize gra<strong>in</strong> equivalent<br />

value can be a simple benchmark <strong>in</strong>dicator. In<br />

Zimbabwe the NPYs ha-] <strong>for</strong> both types of farmers<br />

are worth about 1.1 t of additional maize gra<strong>in</strong> to<br />

the farmer's household over the mucuna-maizemaize<br />

rotation period (3 years) while <strong>in</strong> Malawi the<br />

NPYs ha-] are worth about 0.25 t of additional maize<br />

gra<strong>in</strong>. Whether these additional pay-offs 'are<br />

worthwhile or not will vary from farmer to farmer<br />

depend<strong>in</strong>g on their various socio-economic<br />

characteristics. However, an additional tonne of<br />

For farmers who fallow l<strong>and</strong>:<br />

#1 Maize <strong>Gra<strong>in</strong></strong> price (K/kg) <br />

#2 Year 1 yield <strong>in</strong>crease (kg) <br />

#3 Discount<strong>in</strong>g factor <br />

#4 Year 2 yield <strong>in</strong>crease (kg) <br />

#5 Wage rate (K/day) <br />

#6 Mucuna labour (days). <br />

#7 Seed rate (Kg/ha) <br />

1#8<br />

Mucuna seed costs (K/kg)<br />

maize can be very mean<strong>in</strong>gful <strong>for</strong> many farmers<br />

who are faced with food <strong>in</strong>security <strong>and</strong> limited<br />

choices. Note that the additional cash dem<strong>and</strong>s <strong>for</strong><br />

labour <strong>and</strong> seed <strong>for</strong> <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna are very<br />

modest compared to <strong>in</strong>put costs <strong>for</strong> grow<strong>in</strong>g maize.<br />

Sensitivity <strong>and</strong> Risk Assessment<br />

Farmers operate <strong>in</strong> an environment of risk <strong>and</strong><br />

uncerta<strong>in</strong>ty. In reality the expected maize yield<br />

<strong>in</strong>crease a'ssociated with mucuna, maize gra<strong>in</strong>. price<br />

<strong>and</strong> labour costs are not \ fixed but subject to<br />

changes. This makes it necessary to subject NPYs to<br />

sensitivity analysis to take <strong>in</strong>to account the<br />

uncerta<strong>in</strong>ties <strong>in</strong>herent <strong>in</strong> the elements of the NPYs.<br />

Results of risk analysis show that <strong>in</strong> general the<br />

technology is more risky to farmers who <strong>for</strong>ego<br />

maize produ~tion than farmers who fallow <strong>in</strong> both<br />

countries (see Appendix 4). There is a 30% <strong>and</strong> 38%<br />

chance <strong>in</strong> Zimbabwe <strong>and</strong> Malawi, respectively, that<br />

the NPY is negative <strong>for</strong> farmers who <strong>for</strong>go maize <strong>in</strong><br />

the <strong>in</strong>vestment year. For farmers who fallow,<br />

chances that the NPY is negative are about 10% <strong>in</strong><br />

both countries. The risk level of 30 <strong>and</strong> 38% of<br />

gett<strong>in</strong>g negative returns can be high to many<br />

smallholder farmers who are generally risk averse.<br />

This level of risk can be prohibitive to mucuna<br />

adoption by l<strong>and</strong> constra<strong>in</strong>ed smallholder' farmers<br />

<strong>in</strong> Malawi <strong>and</strong> Zimbabwe who are pressed with the<br />

need to produce maize every season. Farmers who<br />

alreaady fallow l<strong>and</strong> are there<strong>for</strong>e more likely to<br />

adopt mucuna as their <strong>in</strong>vestments <strong>in</strong> mucuna are<br />

less risky than <strong>for</strong> farmers who have to <strong>for</strong>ego<br />

maize production.<br />

The sensitivity analysis reveals that changes <strong>in</strong> the<br />

benefit elements are more<br />

Table 2. Sensitivity of NPVs to changes <strong>in</strong> costs <strong>and</strong> benefit elements<br />

Malawi<br />

Zimbabwe<br />

important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g<br />

the NPY than changes <strong>in</strong><br />

For non· fallow<strong>in</strong>g farmers<br />

the cost elements <strong>for</strong><br />

Rank<br />

Element<br />

Regr Corr Rank<br />

Element Regr Corr fallow<strong>in</strong>g farmers (Table<br />

#1 Forgone maize harvest (kg) ·0.67 ·0.72 #1 Forgone Maize harvest (kg) .0,60 .0.66 , 2). For farmers who fallow<br />

#2 Discount<strong>in</strong>g factor<br />

0.40 0.49 #2 Year 1maize yield <strong>in</strong>crease (kg) 0.55 0.57 l<strong>and</strong> <strong>in</strong> Malawi, changes <strong>in</strong><br />

the maize gra<strong>in</strong> price have<br />

#3 Year 1 maize yield <strong>in</strong>crease (kg) 0.36 0.42 #3 Year 2 maize yield <strong>in</strong>crease (kg) 0.41 0.15 the most <strong>in</strong>fluence on<br />

#4 Year 2 maize yield <strong>in</strong>crease (kg) 0.31 0.27 #4 Discount<strong>in</strong>g Factor<br />

0.40 0.33<br />

#5 Maize <strong>Gra<strong>in</strong></strong> price (K/kg) 0.09 0.06 #5 Maize gra<strong>in</strong> price (S/kg) 0.21 0.07<br />

0.64 0.52 #1 Discount<strong>in</strong>g factor 0.64 0.47<br />

0.57 0.67 #2 Maize <strong>Gra<strong>in</strong></strong> price (S/kg) 0.57 0.42<br />

0.40 0.35 #3 Year 1 yield <strong>in</strong>crease (kg) 0.45 0.37<br />

0.35 0.25 #4 Year 2 yield <strong>in</strong>crease (kg) . 0.41 0.42<br />

·0:07 ·0.12 #5 Mucuna labour (hrs) 0.00 0.12<br />

0.00 ·0.06 #6 L<strong>and</strong> prep cost (S) 0.00 0.03<br />

0.00 0.08 #7 Wage rate (S/hr) 0.00 0.05<br />

0.00 ·0.06 #8 Seed rate (Kg/ha) 0.00 ·0.02<br />

#9 Mucuna seed costs (S/kg) 0.00 0.02<br />

NPY. The changes <strong>in</strong> year<br />

1 maize yield <strong>in</strong>crement,<br />

discount<strong>in</strong>g factor <strong>and</strong><br />

year 2 maize yield<br />

<strong>in</strong>crement are ranked <strong>in</strong><br />

th,at order as the<br />

additional factors<br />

positively related to NPY.<br />

For farmers who fallow<br />

l<strong>and</strong> <strong>in</strong> Zimbabwe, the<br />

discount<strong>in</strong>g factor is the<br />

most important factor<br />

positively related to NPY<br />

218<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong>· <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


<strong>for</strong> mucuna. Other important factors are maize gra<strong>in</strong>·<br />

price, Year 1 maize yield <strong>in</strong>crement <strong>and</strong> year 2 maize<br />

yield <strong>in</strong>crement, <strong>in</strong> that order of importance.<br />

For furmers who <strong>for</strong>go maize production <strong>in</strong> the<br />

<strong>in</strong>vestment year, the most critical element <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g NPV is the maize yield <strong>for</strong>gone <strong>in</strong> both<br />

countries. This is a cost element <strong>and</strong> as expected is<br />

negatively related to NPV. This means that mucuna<br />

adoption can easily be more attractive where <strong>for</strong>gone<br />

maize yields are low <strong>and</strong> the converse is true.<br />

Hold<strong>in</strong>g other factors constant, mucuna would be<br />

more attractive on · those pieces of l<strong>and</strong> where<br />

cont<strong>in</strong>uously cropped maize yields are already very<br />

low. For farmers who <strong>for</strong>go maize production, maize<br />

gra<strong>in</strong> price is the least important determ<strong>in</strong>ant of<br />

NPV. This means that an <strong>in</strong>crease <strong>in</strong> the maize gra<strong>in</strong><br />

price does not <strong>in</strong>crease the attractiveness of <strong>in</strong>vest<strong>in</strong>g<br />

<strong>in</strong> mucuna <strong>for</strong> non-fallow<strong>in</strong>g farmers as much as it<br />

does <strong>for</strong> farmers who fallow l<strong>and</strong>. This is because an<br />

<strong>in</strong>crease <strong>in</strong> maize gra<strong>in</strong> price <strong>in</strong>creases both the costs<br />

<strong>and</strong> benefits of <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna technology <strong>for</strong><br />

non-fallow<strong>in</strong>g farmers, hence m<strong>in</strong>imiz<strong>in</strong>g the net<br />

effect on the NPV.<br />

Conclusions<br />

The pay-offs to <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna as a green<br />

manure <strong>in</strong> both Zimbabwe <strong>and</strong> Malawi were positive<br />

though modest <strong>in</strong> magnitude <strong>for</strong> both categories of<br />

smallholder farmers. After <strong>in</strong>vest<strong>in</strong>g their labour <strong>and</strong><br />

some modest amount of cash to buy mucuna seed~,<br />

farmers st<strong>and</strong> to ga<strong>in</strong> a net present <strong>in</strong>come worth an<br />

additional 1.1 t ha-1of maize over th~ 3-year mucunamaize-maize<br />

(<strong>in</strong>vestment-benefit-benefit) period <strong>in</strong><br />

Zimbabwe <strong>and</strong> 0.25 t ha- 1 <strong>in</strong> Malawi.<br />

Although adoption of mucuna could generate higher<br />

returns (positive NPVs), it is necessary to look <strong>in</strong>to<br />

the uncerta<strong>in</strong>ties <strong>in</strong>herent <strong>in</strong> the· NPV elemeiUS of<br />

mu.c.una technology, such as maize yield responses,<br />

prices <strong>and</strong> discount<strong>in</strong>g rates. The study has shown<br />

that the mucuna technology is not free from risk. The<br />

risk of farmers encounter<strong>in</strong>g losses after <strong>in</strong>vest<strong>in</strong>g <strong>in</strong><br />

mucuna was substantial <strong>for</strong> the category of farmers<br />

who have to <strong>for</strong>go one season of maize to grow<br />

mucuna. The chances <strong>for</strong> farmers to realize negative<br />

returns to their <strong>in</strong>vestment <strong>in</strong> mucuna were<br />

calculated to be 30% <strong>in</strong> Zimbabwe <strong>and</strong> 38% <strong>in</strong><br />

Malawi. Mucuna has few other uses (the seed is not<br />

edible) <strong>and</strong> so has a low monetary value. The risk of<br />

negative returns can expose l<strong>and</strong>-constra<strong>in</strong>ed farmers<br />

to <strong>in</strong>creased food <strong>in</strong>security. These two aspects of<br />

mucuna technology could strongly deter its wide<br />

adoption by smallholder farmers, many of whom are<br />

l<strong>and</strong> constra<strong>in</strong>ed <strong>and</strong> need to produce maize every<br />

season.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

The regression results from sensitivity analysis have<br />

shown that the maize gra<strong>in</strong> <strong>for</strong>gone had the greatest<br />

<strong>in</strong>fluence on the expected NPVs <strong>for</strong> non-fallow<strong>in</strong>g<br />

farmers <strong>in</strong> both Zimbabwe <strong>and</strong> Malawi.<br />

For such farmers, mucuna would give relatively<br />

better pay-offs on l<strong>and</strong>s where maize yields are very<br />

low than where they are relatively high. In other<br />

words, mucuna pays off better <strong>for</strong> the nonfallow<strong>in</strong>g<br />

farmers on those pieces of l<strong>and</strong> where<br />

they sacrifice little gra<strong>in</strong> by choos<strong>in</strong>g to plant<br />

mucuna <strong>in</strong>stead of maize.<br />

This implies that m<strong>in</strong>imiz<strong>in</strong>g the amount of maize<br />

gra<strong>in</strong> sacrificed by farmers <strong>in</strong> the first season would<br />

<strong>in</strong>crease PCly-offs of mucuna to l<strong>and</strong> constra<strong>in</strong>ed<br />

farmers. This calls <strong>for</strong> <strong>in</strong>creased research ef<strong>for</strong>ts <strong>in</strong>to<br />

ways of m<strong>in</strong>imiz<strong>in</strong>g the amount of maize <strong>for</strong>gone <strong>in</strong><br />

the first season <strong>for</strong> example by explor<strong>in</strong>g <strong>in</strong>tercrop<br />

arrangements of mucuna with maize. Research<br />

should also focus on improv<strong>in</strong>g the maize 'yield<br />

response to mucuna <strong>in</strong>corporation <strong>and</strong> the<br />

alternative end use possibilities <strong>for</strong> human<br />

consumption.<br />

Maize gra<strong>in</strong> prices <strong>and</strong> discount<strong>in</strong>g factors were<br />

ranked the most important determ<strong>in</strong>ants of<br />

expected NPVs <strong>for</strong> farmers who fallow <strong>in</strong> both<br />

countries. Policy <strong>in</strong>struments can be used to make<br />

these two economic parameters favorable <strong>for</strong><br />

mucuna adoption. For example, <strong>in</strong> Zimbabwe<br />

where the cost of borrow<strong>in</strong>g was very high,<br />

reduc<strong>in</strong>g the discount rate has the most significant<br />

effect <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g attractiveness of <strong>in</strong>vest<strong>in</strong>g <strong>in</strong><br />

mucuna by farmers who fallow ·l<strong>and</strong>. In Malawi, a<br />

policy measure to <strong>in</strong>crease maize gra<strong>in</strong> price would<br />

easily <strong>in</strong>crease <strong>in</strong>centives <strong>for</strong> <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> mucuna as<br />

a soil fertility improv<strong>in</strong>g technology by those<br />

farmers who fallow l<strong>and</strong>. In both countries, a<br />

comb<strong>in</strong>ed effect of policy <strong>in</strong>struments to reduce the<br />

discount rate <strong>and</strong> to <strong>in</strong>crease the gra<strong>in</strong> price of<br />

maize would create more <strong>in</strong>centives <strong>for</strong> <strong>in</strong>vest<strong>in</strong>g <strong>in</strong><br />

mucuna as a soil fertility technology.<br />

Acknowledgements<br />

The authors would like to acknowledge Webster<br />

Sakala of DARTS, Malawi <strong>and</strong> Lucia Muza of the<br />

Agronomy Institute, DR&SS <strong>for</strong> provid<strong>in</strong>g the<br />

agronomic data used <strong>in</strong> this paper.<br />

References<br />

Buresh, RJ. <strong>and</strong> K.E. Giller, 1998. Strategies to reple~ish<br />

soil fertility <strong>in</strong> African smallholder agriculture.<br />

In: Wadd<strong>in</strong>gton, S.R et al. (eds.) <strong>Soil</strong> <strong>Fertility</strong><br />

<strong>for</strong> Maize-Based Farm<strong>in</strong>g Systems <strong>in</strong> Malawi<br />

<strong>and</strong> Zimbabwe. Proceed<strong>in</strong>gs of the <strong>Soil</strong> Fert Net<br />

219


Results <strong>and</strong> Plann<strong>in</strong>g Workshop. <strong>Soil</strong> Fert Net<br />

<strong>and</strong> CIMMYf-Zimbabwe, Harare, Zimbabwe.<br />

p.13-19.<br />

Gitt<strong>in</strong>ger, J.P, 1982. Economic Analysis ofAgricultural<br />

Projects. Second Edition. Johns Hopk<strong>in</strong>s University<br />

Press, Maryl<strong>and</strong>, USA.<br />

Kumwenda, JD.T., S.R. Wadd<strong>in</strong>gton, S.s. Snapp, R.<br />

B. Jones, <strong>and</strong> M.J. Blackie, 1996. <strong>Soil</strong> fertility<br />

management research <strong>for</strong> the maize cropp<strong>in</strong>g<br />

systems of smallholders <strong>in</strong> southern Africa: A<br />

review. NRG Paper 96-02. Mexico, D.F.: CIM­<br />

MYT.36p.<br />

Mabeza-Chimedza, R., 2000. Agricultural production<br />

<strong>and</strong> food security situation <strong>in</strong> southern Africa.<br />

IDEAA Work<strong>in</strong>g paper 1/2000, Harare,<br />

Zimbabwe.<br />

Matabwa, c.J., <strong>and</strong> J. Wendt, 1993. <strong>Soil</strong> fertility<br />

management: present knowledge <strong>and</strong> prospects.<br />

In: (M<strong>in</strong>tha Ii et al. eds) Proceed<strong>in</strong>gs Conference on<br />

Agricultural Research<strong>for</strong> Development. p. 107-123.<br />

Mekuria, M. <strong>and</strong> S.R. Wadd<strong>in</strong>gton. 2002. Initiatives<br />

to encourage farmer adoption of soil fertility<br />

technologies <strong>for</strong> maize based cropp<strong>in</strong>g systems <strong>in</strong><br />

Southern Africa. In: Barrett, C.B., F. Place <strong>and</strong><br />

Aboud, A.A. (eds) Natural Resource Management <strong>in</strong><br />

African Agriculture: Underst<strong>and</strong><strong>in</strong>g <strong>and</strong> Improv<strong>in</strong>g<br />

Current Practices. CABI, <strong>in</strong> AssoCiation with the<br />

International Centre <strong>for</strong> Research <strong>in</strong> Agro<strong>for</strong>estry<br />

(ICRAF), Wall<strong>in</strong>g<strong>for</strong>d, UK.<br />

Muza, L. 2002. <strong>Green</strong> Manure Use <strong>in</strong> Zimbabwe.<br />

Unpublished Report, Department of Research <strong>and</strong><br />

Specialist Services, Harare, Zimbabwe. .<br />

Mwangi, W., 1997. Low use of fertilizers <strong>and</strong> low<br />

productivity <strong>in</strong> sub-Saharan Africa. Nutrient Cycl<strong>in</strong>g<br />

<strong>in</strong> Agroecosystems 47:135-147.<br />

SADC- 2002. Early Warn<strong>in</strong>g System Food Security<br />

Bullet<strong>in</strong>, July 2002, Harare Zimbabwe.<br />

Sakala, W.O., JD.T. Kumwenda, Alex R. Saka <strong>and</strong><br />

Vernon H. Kabambe 2001. The potential of green<br />

manures to <strong>in</strong>crease soil fertility <strong>and</strong> maize yields<br />

<strong>in</strong> Malawi. <strong>Soil</strong> Fert Net Network Research Results<br />

Work<strong>in</strong>g Paper Number 7. Harare, Zimbabwe 8 p.<br />

Wadd<strong>in</strong>gton, S. 2002. Personal communication,<br />

CIMMYT Zimbabwe.<br />

Appendix 1. On·Farm Trial Maize Yields (kg/ha) after mucuna <strong>in</strong><br />

Zimbabwe <strong>and</strong> Malawi<br />

Year 0 Year 1 Year 2<br />

Zimbabwe: (1996/7) (1997/8) (1998/9)<br />

Maize after maize 225 454.7 260<br />

Maize after mucuna 0 1400.3 2456<br />

Malawi:<br />

Maize after maize 951.5 828 1075<br />

Maize after mucuna 0 2178 1381<br />

Appendix 2. Rates, Prices <strong>and</strong> Costs used <strong>in</strong> the cost benefit<br />

analysis (US$)<br />

Zimbabwe:<br />

Maize <strong>Gra<strong>in</strong></strong> price ($/kg) 4.5, 0.12<br />

Mucuna labour (hrs) 107.2<br />

L<strong>and</strong> prep cost ($) 900 23.7<br />

Wage raie ($/hr) 6.75 0.18<br />

Seed rate (Kg/ha) 80<br />

Mucuna seed cos.ts ($/kg) 7 0.18<br />

Malawi:<br />

Maize gra<strong>in</strong> price (K/kg) 5 0.06<br />

Mucuna seed cost (K/kg) 26 0.31<br />

Wage rate (K/day) 26 0.31<br />

Mucuna labour (labour days) 84<br />

Mucuna seed rate (kg/ha) 80<br />

Note <strong>in</strong> 1999 lUS$ -ZM$38 <strong>and</strong> lUS$ -MK84<br />

220<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong>'<strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Appendix 3. Distribution Functions <strong>for</strong> uncerta<strong>in</strong> Mucuna cost <strong>and</strong> benefit elements used <strong>in</strong> simulat<strong>in</strong>g NPV distributions <strong>for</strong> Zimbabwean<br />

<strong>and</strong> Malawian farmers<br />

Zimbabwe<br />

Malawi<br />

Parameter Distribution function Parameter Distribution funciion<br />

Benefits:<br />

Benefits:<br />

Year 1 maize yield <strong>in</strong>crease (kg) Triang.(O 945 2500) Year 1 maize yield <strong>in</strong>crease (kg) Triang.(O 13502500)<br />

Year 2 maize yield <strong>in</strong>crease (kg) Triang.(O 2196 2500) Year 2 maize yield <strong>in</strong>crease (kg) Triang.(O 305 2000)<br />

Discount<strong>in</strong>g factor Triang.(O.5 0.666 1) Discount<strong>in</strong>g.factor Triang.(0.5 0.746 1)<br />

Maize <strong>Gra<strong>in</strong></strong> price ($/kg) Triang.(3 4.5 10) Maize <strong>Gra<strong>in</strong></strong> price (K/kg) Triang.(3512)<br />

Costs:<br />

Mucuna labour (hrs) Triang.(105 107.18 110) Mucuna labour (days) Triang.(82 8486)<br />

l<strong>and</strong> prep cost ($) Triang.(800 900 1500) Wage rate (K/day) Triang.(24 26 35)<br />

Wage rate ($/hr) Triang.(5 6.75 10) Seed rate (Kg/ha) Triang.(78 80 82)<br />

I Seed rate (Kg/ha) Triang.(78 80 82) Mucuna seed costs (K/kg) Triang.(20 27 30)<br />

I<br />

i<br />

Mucuna seed costs ($/kg) Triang.(5 79) Maize harvest <strong>for</strong>gone (kg) Triang.(800 951 .5 1500)<br />

Maize harvest <strong>for</strong>gone Triang.(300 3131000)<br />

Costs:<br />

Appendix 4. NPV Cumulative distribution curves <strong>in</strong> Zimbabwe <strong>and</strong> Malawi generated by @risk4.5<br />

Prob.<br />

0.6<br />

10 15<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

·2 8 10 12 14<br />

Thous<strong>and</strong> ZM$<br />

Non-fallow<strong>in</strong>g farmers ZIMBABWE Fallow<strong>in</strong>g farmers<br />

Prob. 0.6 0.6<br />

0.6 0.6<br />

0.4 0.4<br />

0.2 0.2<br />

o<br />

0<br />

·5 20<br />

·10 .0 0 15 20 25<br />

Thous<strong>and</strong>MK<br />

NPV<br />

NPV<br />

Fallow<strong>in</strong>g farmers MALAWI Non-fallow<strong>in</strong>g farmers<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 221


A SOCIO-ECONOMIC ANALYSIS OF LEGUME· PRODUCTION MOTIVES<br />

AND PRODUCTIVITY VARIATIONS AMONG SM.ALLHOLDER FARMERS<br />

OF SHURUGWI COMMUNAL AREA, ZIMBABWE<br />

CHARLES NHEMACHENA1, HERBERT K MURWIRA2, KILIAN MUTIR0 2<br />

<strong>and</strong> PAULINE CHIVENGE 2<br />

1Department of Agricultural Economics <strong>and</strong> Ext£!nsion, <br />

University of Zimbabwe, Box MP167, Mt Pleasant, <br />

2 Tropical <strong>Soil</strong> Biology <strong>and</strong> <strong>Fertility</strong> Institute of CIA T, Department of <strong>Soil</strong> Science <strong>and</strong> <br />

Agricultural Eng<strong>in</strong>eer<strong>in</strong>g, University of Zimbabwe, Box MP228, <br />

Mt Pleasant, Harare, Zimbabwe <br />

Abstract'<br />

The impacts of poor soil fertility <strong>in</strong> Zimbabwe's communal farm<strong>in</strong>g systems have great implications on the food security<br />

<strong>and</strong> livelihoods of communal households. This study identifies opportunities <strong>for</strong> us<strong>in</strong>g legumes <strong>in</strong> replenish<strong>in</strong>g soil<br />

fertility to improve agricultural production <strong>in</strong> the communal sedor through an assessment of social <strong>and</strong> economic<br />

factors that affect legume production. The study also identifies the economic potential of green manures on farm.<br />

Interviews with <strong>in</strong>dividual farmers <strong>and</strong> focus group discussions were conducted to establish perceived roles <strong>for</strong> legumes<br />

<strong>in</strong> soil fertility improvement. Data were also collected from the on farm trials. Analytical tools such as frequency<br />

analysis, regression analysis, descriptive analysis <strong>and</strong> cost benefit analysis were used to test proposed hypotheses.<br />

The motives <strong>for</strong> legume production were <strong>in</strong>dicated to be food, cash <strong>and</strong> sometimes soil fertility improvement. It was also<br />

shown that the area under legume production, legume crop prices <strong>and</strong> labour availability are important factors affect<strong>in</strong>g<br />

legume productivity. Legume production as <strong>in</strong>dicated by the area cropped, yield, <strong>in</strong>come <strong>and</strong> home consumption is very<br />

low. The constra<strong>in</strong>ts raised by farmers of limited cropp<strong>in</strong>g area, lack of markets, seed unavailability <strong>and</strong> lack of sufficient<br />

labour greatly contribute to the low status of legumes <strong>in</strong> the smallholder cropp<strong>in</strong>g system. The potential exists to<br />

<strong>in</strong>tensify the use of legumes <strong>in</strong> the communal areas. The approach required to do this needs to be holistic <strong>and</strong> take <strong>in</strong>to<br />

account their multiple use purposes, <strong>in</strong>put <strong>and</strong> output markets, <strong>and</strong> promote new legumes.<br />

Key words: socio-economics, gra<strong>in</strong> legume, motives <strong>for</strong> legume production, soil fertility<br />

Introduction<br />

Dim<strong>in</strong>ish<strong>in</strong>g soil fertility rema<strong>in</strong>s the most limit<strong>in</strong>g<br />

biophysical constra<strong>in</strong>t to smallholder agricultural<br />

production <strong>in</strong> Zimbabwe. Increas<strong>in</strong>g scarcity of<br />

locally derived nutrient sources <strong>and</strong> the chang<strong>in</strong>g<br />

socio-economic environment has rendered soil<br />

fertility improvement <strong>in</strong> smallholder farm<strong>in</strong>g<br />

systems <strong>in</strong> semi-arid <strong>and</strong> sub-humid Africa more<br />

difficult <strong>and</strong> complicated. External options <strong>for</strong><br />

improv<strong>in</strong>g soil fertility have failed over the years<br />

because of <strong>in</strong>consistency with the current<br />

circumstances of the farmers.<br />

The major sources of N available to farmers <strong>in</strong>clude<br />

animal manure, m<strong>in</strong>eral fertilizers, woodl<strong>and</strong> leaf<br />

litter <strong>and</strong> termitarium soil. Cattle manure, which is<br />

the commonly used source of organic fertilizer, is<br />

often limited <strong>in</strong> its supply by lack of cattle among<br />

farmers. Where available it is often of low quality<br />

due to the poor state of the rangel<strong>and</strong>s <strong>and</strong> lack of<br />

adequate prote<strong>in</strong>s <strong>in</strong> the animals' diet. Use of<br />

m<strong>in</strong>eral fertilizers, especially ammonium nitrate<br />

(34.5% N), which is the major alternative source of<br />

N, is limited <strong>in</strong> the communal sector due to high<br />

costs, unavailability, risk <strong>and</strong> low returns to<br />

<strong>in</strong>vestment due to poor crop prices. Furthermore,<br />

the traditional sources of N, which <strong>in</strong>clude<br />

woodl<strong>and</strong> leaf litter, have been depleted due to<br />

rapid population <strong>in</strong>creases. There is an opportunity<br />

<strong>for</strong> nitrogen-fix<strong>in</strong>g legumes to be used as cheap<br />

alternative sources of soil fertility improvement to<br />

help reverse the worsen<strong>in</strong>g poverty <strong>in</strong> these farm<strong>in</strong>g<br />

systems.<br />

Though traditional legume crops such as groundnut<br />

are widely grown <strong>in</strong> the smallholder farm<strong>in</strong>g<br />

system, areas planted <strong>and</strong> yields are very low. Thus,<br />

there is need <strong>for</strong> <strong>in</strong>tensive promotion of these crops<br />

<strong>for</strong> them to be significant sources of N to enhance<br />

agricultural production. This study explores the<br />

motivation beh<strong>in</strong>d legume production among<br />

smallholder farmers, the important factors affect<strong>in</strong>g<br />

legume productivity <strong>and</strong> the economic potential of<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 223


green manures under the current farm<strong>in</strong>g system <strong>in</strong><br />

Shurugwi, Zimbabwe. It was hypothesized that<br />

consumption requirements rather than reasons <strong>for</strong><br />

<strong>in</strong>come <strong>and</strong> soil fertility improVement motivate<br />

legume production.<br />

Research Methodology<br />

Data Collection<br />

The study drew on primary data obta<strong>in</strong>ed through a<br />

farm survey of 100 r<strong>and</strong>omly selected households <strong>in</strong><br />

Mfiri ward of Shurugwi. The survey was carried<br />

out <strong>in</strong> January <strong>and</strong> February 2002. All survey<br />

<strong>in</strong><strong>for</strong>mation was collected by <strong>in</strong>terviews with<br />

<strong>in</strong>dividual farmers us<strong>in</strong>g a st<strong>and</strong>ard questionnaire.<br />

Prior to the field survey, a pre-test of the<br />

questionnaire was undertaken to improve the<br />

questionnaire design <strong>and</strong> enhance quality of<br />

responses obta<strong>in</strong>ed from the farmers; Discussions<br />

were held with a group of 15 farmers to establish<br />

constra<strong>in</strong>ts be<strong>in</strong>g faced by farmers <strong>in</strong> legume<br />

production, <strong>and</strong> identify opportunities <strong>for</strong><br />

<strong>in</strong>creas<strong>in</strong>g the role of legumes <strong>in</strong> soil fertility<br />

management.<br />

Data Analysis<br />

The data were analyzed us<strong>in</strong>g the Statistical<br />

Package <strong>for</strong> Social Scientists (51'55). Cross<br />

tabulations were used to determ<strong>in</strong>e important<br />

factors affect<strong>in</strong>g area under legume production.<br />

Frequency analysis <strong>and</strong> descriptive statistics were<br />

used to analyze motives <strong>for</strong> production, <strong>and</strong><br />

regression analysis <strong>and</strong> descriptive statistics were<br />

used <strong>for</strong> analyz<strong>in</strong>g important factors affect<strong>in</strong>g<br />

legume productivity. Measures of project worth<br />

(Net Present Value <strong>and</strong> Internal Rate of Return) <strong>and</strong><br />

gross marg<strong>in</strong> analysis were used to identify the<br />

economic potential of green manure legumes.<br />

Results <strong>and</strong> Discussion<br />

Comparative assessment of motives <strong>for</strong> legume<br />

production among smallholder farmers<br />

There are three motives <strong>for</strong> legume production;<br />

household consumption (100% of households), sales<br />

(78%) <strong>and</strong> soil fertility (12% of households).<br />

All households <strong>in</strong>terviewed <strong>in</strong>dicated that they<br />

grow legumes <strong>for</strong> household food requirements.<br />

This shows that farmers are aware of the potential<br />

role of legumes as a source of food <strong>for</strong> the family.<br />

<strong>Legumes</strong> can be promoted <strong>in</strong> the farm<strong>in</strong>g systems<br />

as alternative sources of prote<strong>in</strong> <strong>in</strong> place of animal<br />

prote<strong>in</strong> sources. Svubure et al (2000) also found that<br />

the primary reason <strong>for</strong> produc<strong>in</strong>g legumes <strong>in</strong><br />

Wedza <strong>and</strong> Buhera was <strong>for</strong> household<br />

consumption, although yield levels are very low.<br />

Cash was the second reason <strong>for</strong> grow<strong>in</strong>g legumes,<br />

with 78% of the respondents cit<strong>in</strong>g it as the motive<br />

<strong>for</strong> grow<strong>in</strong>g legumes. The relatively high<br />

percentage of farmers conscious of the cashgenerat<strong>in</strong>g<br />

role of legumes <strong>in</strong>dicates that promotion<br />

of legumes can be built on this role. This wiII need<br />

efficient market<strong>in</strong>g structures <strong>for</strong> the commonly<br />

grown legumes. Hildebr<strong>and</strong> (1996) also found that<br />

both <strong>in</strong>put <strong>and</strong> output markets are very important if<br />

farmers are to <strong>in</strong>crease legume production <strong>for</strong> the<br />

market. Thus if farmers are assured of good output<br />

markets <strong>for</strong> their legumes, they are likely to <strong>in</strong>crease<br />

production of legumes <strong>for</strong> both consumption <strong>and</strong><br />

<strong>for</strong> the market. Currently there is no <strong>for</strong>mal market<br />

<strong>for</strong> sell<strong>in</strong>g legume prod ucts <strong>in</strong> the area <strong>and</strong> most of<br />

the produce is sold <strong>in</strong> the local market at very low<br />

prices.<br />

In Mfiri, farmers do not deliberately grow legumes<br />

<strong>for</strong> soil fertility improvement, though there is some<br />

appreciation of a residual benefit through reta<strong>in</strong>ed<br />

residues. Only 12% of the responses <strong>in</strong>dicated that<br />

they grow legumes <strong>for</strong> soil fertility improvement.<br />

This is probably due to a scarcity of l<strong>and</strong> resources<br />

result<strong>in</strong>g <strong>in</strong> legumes be<strong>in</strong>g allocated small pieces of<br />

l<strong>and</strong> <strong>in</strong> relation to maize, the major food <strong>and</strong> cash<br />

crop. Although farmers <strong>in</strong>dicated that they do not<br />

grow legumes <strong>for</strong> soil fertility improvement, they<br />

are aware of some soil fertility benefits of grow<strong>in</strong>g<br />

legumes. Eighty-six percent of farmers were<br />

deliberately <strong>and</strong> consciously aware that legumes<br />

add nutrients <strong>in</strong> the soil. The farmers reported<br />

notable changes <strong>in</strong> crop growth on areas where<br />

legumes were previously grown, espeCially with<br />

maize. The fact that farmers are aware that legumes<br />

add nutrients <strong>in</strong> the soil suggests that they are likely<br />

to <strong>in</strong>crease their use of legumes <strong>in</strong>. soil fertility<br />

improvement if appropriate extension messages are<br />

provided.<br />

Economic analysis of gra<strong>in</strong> <strong>and</strong> green manure<br />

legume options <strong>for</strong> soil fertility improvement<br />

Tables 1 <strong>and</strong> 2 show the gross marg<strong>in</strong> analysis <strong>and</strong><br />

measures of project worth (NPV <strong>and</strong> IRR) <strong>for</strong> the<br />

green manures.<br />

5unnhemp <strong>and</strong> mucuna had negative overall 2-year<br />

gross marg<strong>in</strong>s per hectare us<strong>in</strong>g the official gra<strong>in</strong><br />

prices from the <strong>Gra<strong>in</strong></strong> Market<strong>in</strong>g Board (GMB), the<br />

sole buyer of maize <strong>in</strong> Zimbabwe. Cowpea had the<br />

highest positive overall 2-year benefit, Z$ 16 198,<br />

compared to other options, maize without fertility<br />

<strong>in</strong>puts (Z$3 003), crotalaria (Z$3 542), mucuna (Z$-2<br />

701), <strong>and</strong> sunnhemp (-Z$3 384). Gross marg<strong>in</strong>s at<br />

local prices of gra<strong>in</strong>, Z$36.39/kg, were much higher<br />

<strong>and</strong> positive overall <strong>for</strong> all options. At a GMB price<br />

of Z$18.34/kg, the NPV values <strong>for</strong> mucuna,<br />

crotalaria, sunnhemp <strong>and</strong> maize without fertility<br />

224<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 1. Gross marg<strong>in</strong>s from the different treatments at the gazetted price <strong>for</strong> gra<strong>in</strong> sold to GMB (Z$18.34/kg) <strong>and</strong> at local market prices<br />

(Z$36.39/kg)<br />

Treatment Gross marg<strong>in</strong> per ha (Z$lha) Overa. 2 year benefits per ha (Z $)<br />

First Year (legume)<br />

Second Year (maize) At GMBprice At local price<br />

At GMB price At local price<br />

(Z$18.34) (Z$36.39)<br />

Maize after maize. no fertility 1501.46 (maize) 16123.42<br />

Cowpea followed by maize 4526.44 26414.44<br />

Mucuna followed by maize ·13320.56 ·13320.56<br />

C. grahamiana followed by maize ·13320.56 ·13320.56<br />

C. juncea followed by maize ·13320.56 ·13320.56<br />

At GMB price At local price<br />

(Z$18.34) (Z$36.39)<br />

1501.46 16123.42 3002.92 32246.84 '<br />

11671.50 36303.68<br />

. 16197.94 62718.12<br />

10619.31 34215.84 ·2701.25 20895.28<br />

16862.29 46603.70 3541.73 33283.14<br />

9936.09 32860.14 -3384.47 19.539.58<br />

Table 2. Net Present Values <strong>for</strong> the different treatments at the<br />

opportunity cost of capital (20% <strong>in</strong>terest)<br />

Treatment Net Present Value (NPV) Internal Rate of Return<br />

(lRR) %<br />

GMB price Local price GMB price Local price<br />

Maize after maize. ·1786.47 20552.63 7% 84%<br />

no fertility<br />

(maize)<br />

Cowpea followed 8344.93 43690.62 37% 204%<br />

by maize<br />

Mucuna followed ·7800.75 8585.72 22% 21%<br />

by maize<br />

C. grahamiana ·3465.35 17188.40 9% 40% <br />

followed by maize <br />

IC. juncea followed ·8275.21 7644.27 24% 19%<br />

by maize<br />

<strong>in</strong>puts were all negative, except <strong>for</strong> cowpea. At a<br />

discount rate of 20%, the IRR was significantly<br />

improved by sell<strong>in</strong>g gra<strong>in</strong> on the local market<br />

where the price of gra<strong>in</strong> was higher. Us<strong>in</strong>g the<br />

discount rate of 120%, which is the current <strong>in</strong>flation<br />

rate <strong>for</strong> Zimbabwe, only the cowpea option had a<br />

small positive NPV.<br />

Econometric analysis of factors affect<strong>in</strong>g legume<br />

productivity across smallholder farmers<br />

A verage yields per hectare <strong>for</strong> the commonly grown<br />

legumes were compared to the staple maize. As<br />

shown <strong>in</strong> Table 3 <strong>for</strong> the commonly grown legumes,<br />

gra<strong>in</strong> yield levels are very low (rang<strong>in</strong>g from 18 kg/<br />

ha to 164 kg/ha). Maize gra<strong>in</strong> yields range from 464<br />

kg/ha to 550 kg/ha. Although average maize yields<br />

are higher than those of commonly grown legumes,<br />

the yield levels of all crops are generally low. This<br />

might be due to low soil fertility <strong>and</strong> consistent dry<br />

spells <strong>in</strong> the area, allied with lack of work<strong>in</strong>g capital<br />

Table 3. Average crop yields per hectare <strong>for</strong> the past three seasons<br />

Crop Average yield per hectare <strong>for</strong> Approximate area under<br />

past three seasons (kglha) croplhousehold (Mean<br />

household size - 3.2ha<br />

1999 2000 2001<br />

Groundnut 154 164 146 15%<br />

Bambaranut 28 34 31 2%<br />

Cowpea 18 19 20 Intercropped with maize<br />

Maize 464 550 510 75%<br />

Source: survey data<br />

to buy purchased <strong>in</strong>puts such as imptoved seed <strong>and</strong><br />

chemicals to control pests <strong>and</strong> diseaseS. Work<strong>in</strong>g <strong>in</strong><br />

Wedza <strong>and</strong> Buhera, Svubure et al. (2000) also found<br />

that yield levels <strong>for</strong> legumes were very low <strong>and</strong><br />

cited low <strong>and</strong> erratic ra<strong>in</strong>fall -<strong>and</strong> poor soil fertility<br />

as the major factors contribut<strong>in</strong>g to low yields.<br />

Analysis of important factors affect<strong>in</strong>g legume<br />

productivity<br />

To determ<strong>in</strong>e the important factors that affect<br />

smallholder farmers' legume productivity, a simple<br />

regression equation was estimated from the survey<br />

data. Only factors affect<strong>in</strong>g groundnut productivity<br />

were analyzed because it is the major legume grown<br />

by communal farmers, account<strong>in</strong>g <strong>for</strong> about 20% of<br />

the total arable l<strong>and</strong> area.<br />

The follow<strong>in</strong>g model was used:<br />

Yieldgt = po+plareat+p2gpricet+p3mpricet<br />

+p4amount of labotir+ E i .<br />

Where, Yieldgt= groundnut yield per hectare <strong>in</strong><br />

a given year (kg/ha)<br />

areat=area under legume production <strong>in</strong> a given<br />

year (acres)<br />

gpricet =sell<strong>in</strong>g price groundnut <strong>in</strong> a given<br />

year ($/kg)<br />

mpricet=sell<strong>in</strong>g price of maize <strong>in</strong> a given year<br />

($/kg)<br />

labour = amount" of permanent labour to work<br />

<strong>in</strong> fields<br />

po =constant parameter<br />

PI,P2, P3, p4, = coefficients of the variables<br />

Ei =disturbance or etror term<br />

From the results, 58% of the total variation of the<br />

groundnut yield per hectare <strong>for</strong> the 2001 season was<br />

expla<strong>in</strong>ed by the regressors <strong>in</strong>cluded <strong>in</strong> the model<br />

as <strong>in</strong>dicated by the adjusted R-square. This<br />

there<strong>for</strong>e implies that the rema<strong>in</strong><strong>in</strong>g 42% of total<br />

variation was unaccounted <strong>for</strong> by the regressors,<br />

but by other factors not <strong>in</strong>cluded <strong>in</strong> the model,<br />

perhaps by l<strong>and</strong> shortage, seed unavailability <strong>and</strong><br />

natural variability of production due to ra<strong>in</strong>fall<br />

patterns. L<strong>and</strong> atea, groundnut sell<strong>in</strong>g prices <strong>and</strong><br />

labour availability were important factors affect<strong>in</strong>g<br />

groundnut productivity (Table 4).<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

225


Table 4. Summary statistics <strong>for</strong> OlS Estimation <strong>for</strong> factors<br />

affect<strong>in</strong>g groundnut productivity<br />

Variable Coefficient t·velue Significance<br />

-<br />

Constant ·28.458 ·1.014 0.313 <br />

Area under groundnut production 0.395 5.434 0.000 <br />

Sell<strong>in</strong>g price of groundnut 0.466 6.508 0.000 <br />

Amount of permanent labour to 0.162 2.332 0.022 <br />

work <strong>in</strong> fields<br />

Sell<strong>in</strong>g price of maize ·0.028 ·0.415 0.679<br />

R·Square adjusted - 0.58 F- 34.82 Significance- 0.000<br />

Source: Survey data<br />

Conclusion<br />

Consumption requirements of the household were<br />

shown to be the primary reason <strong>for</strong> produc<strong>in</strong>g<br />

legumes, followed by <strong>in</strong>come <strong>and</strong> lastly soil fertility<br />

reasons. Farmers do not deliberately grow legumes<br />

<strong>for</strong> soil fertility improvement despite the fact that<br />

they are consciously aware of some soil fertility<br />

benefits from grow<strong>in</strong>g legumes. The potential <strong>for</strong><br />

exp<strong>and</strong><strong>in</strong>g legume production has not been realized<br />

due to a shortage of l<strong>and</strong> resources <strong>and</strong> lack of<br />

knowledge, among other factors. Legume<br />

productivity was generally low <strong>in</strong> the area. Area<br />

under groundnut production, labour availability,<br />

<strong>and</strong> groundnut output prices are important factors<br />

affect<strong>in</strong>g legume productivity <strong>in</strong> the smallholder<br />

farm<strong>in</strong>g systems. Cowpea, which is a multipurpose<br />

gra<strong>in</strong> legume, was more attractive compared to<br />

green manures. This <strong>in</strong>dicates that legumes with<br />

multiple uses have a higher adoption potential than'<br />

green manures.<br />

There is need <strong>for</strong> extension services, nongovernmental<br />

organizations <strong>and</strong> market<strong>in</strong>g<br />

agencies <strong>in</strong>terested <strong>in</strong> the production of legumes to<br />

provide <strong>in</strong>centives <strong>and</strong> improve access to <strong>in</strong>puts (e.<br />

g. seed, fertilizers) to encourage farmers to <strong>in</strong>crease<br />

l<strong>and</strong> area under legume production. Benefits of<br />

legumes need to be expla<strong>in</strong>ed to farmers, especially<br />

by health <strong>and</strong> community workers, as they can help<br />

contribute to fight aga<strong>in</strong>st malnutrition reported <strong>in</strong><br />

many communal areas of Zimbabwe. Increas<strong>in</strong>g the<br />

availability of credit can enable farmers to purchase<br />

the needed <strong>in</strong>puts <strong>in</strong> legume production such as<br />

hir<strong>in</strong>g labour <strong>and</strong> purchas<strong>in</strong>g seeds. This could help<br />

relieve farmers from some major constra<strong>in</strong>ts such as<br />

labour shortages ' <strong>and</strong> so <strong>in</strong>crease legume<br />

productivity that would benefit farmers through<br />

more consumption, farm <strong>in</strong>comes <strong>and</strong> soil fertility<br />

improvement through effective maize-legume<br />

rotations.<br />

References<br />

Hildebr<strong>and</strong> G.L. no date. The status of technologies<br />

used to achieve high groundnut yields <strong>in</strong><br />

Zimbabwe, In: Achiev<strong>in</strong>g High Groundnut Yields:<br />

Proceed<strong>in</strong>gs of an International Workshop, 25-29<br />

August, Laixi City, Sh<strong>and</strong>ong, Ch<strong>in</strong>a (Renard c.,<br />

Gowda c.L.L., Nigam S.N., <strong>and</strong> Johansen C.<br />

eds). Patancheru, Andhra Pradesh, India:<br />

International Crops Research Institute <strong>for</strong> Semi­<br />

Arid Tropics. pp. 101-104.<br />

Mapfumo P., Campbell B.M., Mpepereki S. <strong>and</strong><br />

Mafongoya P. 2001. <strong>Legumes</strong> <strong>in</strong> soil fertility<br />

management: The case of pigeon pea <strong>in</strong><br />

smallholder farm<strong>in</strong>g systems of Zimbabwe:<br />

African Crop Science Journal 9 (4):629-644.<br />

Mazhangara E., An<strong>and</strong>ajayasekeram P., Mudhara<br />

M., Martella D. <strong>and</strong> Murata M. 1997. Impact<br />

assessment of groundnut research <strong>and</strong> the<br />

enabl<strong>in</strong>g environment <strong>in</strong> Zimbabwe: 1960-2000,<br />

SACCAR, Gaborone, Botswana.<br />

Morris RA. <strong>and</strong> Garrity D.P. 1993. Resource capture<br />

<strong>and</strong> utilization <strong>in</strong> <strong>in</strong>tercropp<strong>in</strong>g: water. Field<br />

Crops Research 34:303-317.<br />

Mwenye D. <strong>and</strong> Kuwaza C. 2001. Chiota <strong>Soil</strong><br />

<strong>Fertility</strong> Promotion Project, End of season report<br />

<strong>for</strong> the period 1999-2000. Agritex Marondera,<br />

Zimbabwe.<br />

Svubure 0., Mpepereki S., <strong>and</strong> Makonese F. 2000.<br />

Legume production <strong>and</strong> farmer awareness of<br />

Biological Nitrogen Fixation (BNF) technologies<br />

<strong>in</strong> Communal areas of Zimbabwe: Survey of<br />

Wedza <strong>and</strong> Buhera. Biotechnology: Vol. 4 No.5.<br />

Department of <strong>Soil</strong> Science <strong>and</strong> Agricultural<br />

Eng<strong>in</strong>eer<strong>in</strong>g, University of Zimbabwe, Harare,<br />

Zimbabwe.<br />

Truskott K. 1985. Socio-economic factors related to<br />

food production <strong>and</strong> consumption: a case study<br />

of twelve households <strong>in</strong> Wedza communal l<strong>and</strong>.<br />

Agritex, Harare, Zimbabwe.<br />

226<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Abstract<br />

LINKING TECHNOLOGY DEVELOPMENT AND DISSEMINATION WITH<br />

MARKET COMPETITIVENESS: PIGEONPEA IN THE SEMI-ARID<br />

AREAS OF'MALAWI AND TANZANIA<br />

JOSEPH RUSIKE, GABRIELE LO MONACO <strong>and</strong> GEOFF M. HEINRICH<br />

/eR/SAT, Matopos Research Station, PO Box 776, Bu/awayo, Zimbabwe<br />

<strong>Legumes</strong> have long been grown <strong>in</strong> smallholder farm<strong>in</strong>g systems throughout Southern <strong>and</strong> Eastern Africa <strong>in</strong> <strong>in</strong>tercrops<br />

<strong>and</strong> rotations with cereals. <strong>Legumes</strong> play an important role as food <strong>and</strong> cash crops, livestock feed, as a soil fertility<br />

amendment through biological Nrfixation (BNF) <strong>and</strong> <strong>for</strong> firewood, Because of recent <strong>in</strong>creases <strong>in</strong> <strong>in</strong>ternational <strong>and</strong> domestic<br />

prices of <strong>in</strong>organic fertilizers, there has been more <strong>in</strong>terest to exp<strong>and</strong> legume plant<strong>in</strong>gs <strong>and</strong> management <strong>in</strong><br />

smallholder areas especially <strong>in</strong> the semi-arid areas <strong>in</strong> order to provide a low-cost supply of nutrients, This paper uses<br />

the sub sector approach to explore two hypotheses, First that farmer uptake of pigeon pea-based technologies is driven by<br />

improvements <strong>in</strong> <strong>in</strong>put <strong>and</strong> output markets. Second that l<strong>in</strong>k<strong>in</strong>g technology development <strong>and</strong> uptake pathways with <strong>in</strong>creas<strong>in</strong>g<br />

competitiveness of pigeon pea products <strong>in</strong> <strong>in</strong>ternational <strong>and</strong> domestic markets drives adoption of improved crop<br />

management practices, thereby enabl<strong>in</strong>g farmers to capture the potential soil fertility benefits of pigeonpea. The hypotheses<br />

are tested us<strong>in</strong>g farm survey <strong>and</strong> case study data from Malawi <strong>and</strong> Tan zania.<br />

The analysis shows that pigeonpea markets are now highly globalized <strong>and</strong> competitive. Pigeonpeas from Malawi <strong>and</strong><br />

Tanzania are los<strong>in</strong>g their competitiveness to pigeonpea from Myanmar <strong>and</strong> yellow pea substitutes from Canada <strong>and</strong><br />

France. To <strong>in</strong>crease the competitiveness of African pigeonpea <strong>and</strong> pull technologies through the system, crop variety<br />

improvement, choice of variety, seed distribution, production practices <strong>and</strong> more-efficient market<strong>in</strong>g arrangements need<br />

to be established target<strong>in</strong>g the needs <strong>and</strong> competitive patterns of specific identified markets.<br />

Key words: Pigeonpea-based technology, sub sector approach, competitiveness, uptake pathways, globalization<br />

Introduction<br />

<strong>Legumes</strong> have long been grown <strong>in</strong> smallholder<br />

farm<strong>in</strong>g systems throughout Southern <strong>and</strong> Eastern<br />

Africa <strong>in</strong> <strong>in</strong>tercrops <strong>and</strong> rotations with cereals, <strong>Legumes</strong><br />

play an important role as food <strong>and</strong> cash crops;<br />

they also provide livestock feed <strong>and</strong> firewood, <strong>and</strong><br />

improve soil fertility through biological nitrogen<br />

fixation (BNF). Despite these multiple benefits,<br />

most households only allocate between 10 <strong>and</strong> 30<br />

percent of their total cropped area to legumes,<br />

mostly <strong>for</strong> subsistence food requirements<br />

(Rohrbach, 2001; Twomlow, 2001 ; Freeman, 2001;<br />

Semgal,2001), Farmers expla<strong>in</strong> that legume cultivation<br />

is limited by seed <strong>and</strong> l<strong>and</strong> shortages, lack of<br />

money to buy mputs, high labor requii-ements, lack<br />

of cash markets, pests <strong>and</strong> diseases, <strong>and</strong> low yields,<br />

Start<strong>in</strong>g <strong>in</strong> the mid-1990s, prices of <strong>in</strong>organic fertilizer<br />

escalated because national currencies depreciated<br />

<strong>and</strong> subsidies were removed under struchual<br />

adjustment programs. The escalation of <strong>in</strong>organic<br />

fertilizer prices has <strong>for</strong>ced farmers <strong>and</strong> scientists to<br />

look <strong>for</strong> cheaper substitutes, Researchers have hy"<br />

pothesized that because legumes provide a low-cost<br />

means of supply<strong>in</strong>g N to the cropp<strong>in</strong>g system, <strong>in</strong>creas<strong>in</strong>g<br />

the area under legumes <strong>and</strong> improv<strong>in</strong>g legume<br />

residue management will enable smallholder<br />

farmers to reduce <strong>in</strong>organic fertilizer use <strong>and</strong> still<br />

ma<strong>in</strong>ta<strong>in</strong> soil fertility,<br />

Researchers have identified pigeonpea as the "best<br />

bet" legume <strong>for</strong> semi-arid areas because the crop<br />

has a deep root system that makes it drought tolerant.<br />

It mobilizes unavailable soil phosphorus; it has<br />

high nitrogen fixation; it adds organic residues<br />

through leaf fall; it recycles nutrients lost from the<br />

root<strong>in</strong>g zone; <strong>and</strong> .it is semi-perennial, which reduces<br />

yield <strong>and</strong> production risk (Nene, 1991; S<strong>in</strong>gh,<br />

1991), Research <strong>in</strong>vestments by national programs,<br />

ICRlSAT, <strong>and</strong> other CGIAR centers have resulted <strong>in</strong><br />

the development <strong>and</strong> release of superior varieties<br />

<strong>and</strong> better crop management options, <strong>in</strong>clud<strong>in</strong>g<br />

<strong>in</strong>tercropp<strong>in</strong>g comb<strong>in</strong>ations, plant spac<strong>in</strong>g, patterns<br />

<strong>and</strong> dates of plant<strong>in</strong>g, fertilizer management, <strong>and</strong><br />

control of weeds, pests <strong>and</strong> diseases (Silim,<br />

Johansen, <strong>and</strong> Chauhan, 1991; Silim, 1992; Soko et al<br />

1995; Daudi <strong>and</strong>Mak<strong>in</strong>a, 1995; <strong>and</strong> Mbwaga, 1995),<br />

But adoption of these technologies rema<strong>in</strong>s limited,<br />

Surveys have shown that <strong>for</strong> farmers to adopt improved<br />

technologies <strong>and</strong> <strong>in</strong>tensify legume production,<br />

collateral <strong>in</strong>vestments are needed to improve<br />

<strong>in</strong>put <strong>and</strong> output markets, In addition, legume <strong>in</strong>tensification<br />

needs to target poor households <strong>for</strong><br />

food <strong>for</strong> home consumption <strong>and</strong> wealthier house-<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 227


holds <strong>for</strong> cash <strong>in</strong>come from the sale of surplus produce.<br />

This paper analyzes opportunitie#s <strong>and</strong> constra<strong>in</strong>ts<br />

<strong>for</strong> improv<strong>in</strong>g the adoption <strong>and</strong> impact of pigeonpea<br />

technologies by l<strong>in</strong>k<strong>in</strong>g technology development<br />

<strong>and</strong> dissem<strong>in</strong>ation with <strong>in</strong>creas<strong>in</strong>g competitiveness<br />

of pigeonpea products <strong>in</strong> domestic <strong>and</strong> <strong>in</strong>ternational<br />

markets. The study draws on pilot studies<br />

carried out by ICRISAT. with national programs,<br />

NGOs, <strong>and</strong> private·sector partners <strong>in</strong> Malawi <strong>and</strong><br />

Tanzania. The studies on pigeonpea <strong>in</strong> Malawi <strong>and</strong><br />

Tanzania also provide lessons that can be applied <strong>in</strong><br />

other countries <strong>and</strong> on other legumes such as<br />

groundnut, cowpea, lablab, mucuna, common bean,<br />

<strong>and</strong> bambaranut.<br />

Objectives<br />

This paper aims to analyze the determ<strong>in</strong>ants of<br />

competitiveness of pigeonpea <strong>in</strong> <strong>in</strong>ternational markets<br />

<strong>and</strong> identify strategic <strong>in</strong>terventions that can improve<br />

competitive advantage (<strong>and</strong> thus technology<br />

adoption). The specific objectives are to:<br />

• Describe the pigeonpea subsectors <strong>in</strong> Malawi <strong>and</strong><br />

Tanzania;<br />

• Identify opportunities <strong>and</strong> constra<strong>in</strong>ts <strong>for</strong> <strong>in</strong>creas<strong>in</strong>g<br />

competitiveness of pigeonpea <strong>in</strong> <strong>in</strong>ternational<br />

markets, <strong>in</strong>clud<strong>in</strong>g target<strong>in</strong>g of <strong>in</strong>vestments;<br />

• Assess the profitability of adopt<strong>in</strong>g new pigeonpea<br />

technologies; <strong>and</strong><br />

• Draw lessons <strong>for</strong> other legume sub-sectors <strong>and</strong><br />

semi-arid areas <strong>in</strong> Southern Africa.<br />

Research Approach: Theory, Hypotheses<br />

<strong>and</strong> Methods<br />

The conceptual framework that guides this study is<br />

derived from bus<strong>in</strong>ess strategic management theory<br />

<strong>and</strong> agricultural commodity subsector analysis.<br />

Over the past two decades, these have emerged as<br />

useful tools <strong>for</strong> analyz<strong>in</strong>g the per<strong>for</strong>mance of agricultural<br />

markets, diagnos<strong>in</strong>g constra<strong>in</strong>ts <strong>and</strong> <strong>in</strong>stitutional<br />

<strong>in</strong>novations to resolve them <strong>and</strong> prioritiz<strong>in</strong>g<br />

potential <strong>in</strong>terventions.<br />

Conceptual Framework<br />

The market<strong>in</strong>g of agricultural products is subject to<br />

the law of dem<strong>and</strong> <strong>and</strong> supply. Fall<strong>in</strong>g trader barriers<br />

<strong>and</strong> globalization of agricultural markets have<br />

led to st<strong>and</strong>ardization of consumer preferences, <strong>and</strong><br />

price <strong>for</strong>mation <strong>for</strong>ces now operate at <strong>in</strong>ternational<br />

rather than national or regional levels. Competition<br />

has <strong>in</strong>tensified, imply<strong>in</strong>g lower returns to <strong>in</strong>vestments<br />

by farmers, pro~essors <strong>and</strong> traders.<br />

Porter (1980; 1985; 1986; 1990) has developed a conceptual<br />

framework <strong>for</strong> identify<strong>in</strong>g major determ<strong>in</strong>ants<br />

of competitiveness <strong>in</strong> globalized <strong>in</strong>dustries.<br />

Industries achieve <strong>and</strong> susta<strong>in</strong> competitive advantage<br />

through <strong>in</strong>novation, <strong>in</strong>clud<strong>in</strong>g. new technologies,<br />

new product design, new production processes,<br />

new market<strong>in</strong>g approaches, <strong>and</strong> new ways of<br />

trad<strong>in</strong>g. To ga<strong>in</strong> competitive advantage, a firm<br />

must per<strong>for</strong>m activities <strong>in</strong> its value added cha<strong>in</strong> better<br />

than its competitors. Because activities at any<br />

stage depend on activities <strong>in</strong> the upstream <strong>and</strong><br />

downstream stages, value-added cha<strong>in</strong>s of different<br />

firms <strong>in</strong>teract at the different stages of technology<br />

development-<strong>in</strong>put supply-production-distributionconsumption<br />

sequence. There<strong>for</strong>e, firms need to<br />

coord<strong>in</strong>ate <strong>and</strong> harmonize their activities at different<br />

stages of the vertical cha<strong>in</strong> to match supply <strong>and</strong><br />

dem<strong>and</strong> throughout the vertical stages at prices<br />

consistent with the costs of production of least cost<br />

producers. To be globally competitive, an agricultural<br />

<strong>and</strong> food <strong>in</strong>dustry cannot be organized <strong>in</strong> an<br />

ad hoc way. Vertical coord<strong>in</strong>ation is imperative.<br />

To analyze vertical coord<strong>in</strong>ation of a whole sub sector,<br />

identify opportunities <strong>for</strong> improv<strong>in</strong>g economic<br />

per<strong>for</strong>mance, diagnose constra<strong>in</strong>ts <strong>and</strong> prescribe<br />

technological <strong>and</strong> <strong>in</strong>stitutional changes to resolve<br />

the constra<strong>in</strong>ts one can use the subsector approach<br />

(Shaffer, 1973; Marion et al 1986; Staatz, 1996). Sub<br />

sector analysis views effective dem<strong>and</strong> as the pump<br />

that pulls goods <strong>and</strong> services, <strong>in</strong>clud<strong>in</strong>g new technologies<br />

such as cultivars, nutrients, <strong>and</strong> farm<br />

equipment <strong>in</strong>novations through the vertical system.<br />

There<strong>for</strong>e, the approach emphasizes underst<strong>and</strong><strong>in</strong>g<br />

the dynamics of how dem<strong>and</strong> is chang<strong>in</strong>g at both<br />

the domestic <strong>and</strong> <strong>in</strong>ternational levels (<strong>in</strong>clud<strong>in</strong>g the<br />

evolution of different niche markets) <strong>and</strong> the implications<br />

of that evolution <strong>for</strong> sub sector organization<br />

<strong>and</strong> per<strong>for</strong>mance.<br />

Hypotheses<br />

This study explores three hypotheses:<br />

1. Tanzania <strong>and</strong> Malawi can <strong>in</strong>crease the domestic<br />

<strong>and</strong> <strong>in</strong>ternational competitiveness of their pigeonpea<br />

sub-sectors by pursu<strong>in</strong>g niche markets;<br />

l<strong>in</strong>k<strong>in</strong>g quality characteristics required by buyers<br />

<strong>in</strong> premium markets with farmers' choice of varieties,<br />

crop production management practices,<br />

harvest<strong>in</strong>g, <strong>and</strong> post-harvest h<strong>and</strong>l<strong>in</strong>g dur<strong>in</strong>g<br />

the physical movement to markets; improv<strong>in</strong>g<br />

market<strong>in</strong>g efficiency, <strong>and</strong> reduc<strong>in</strong>g costs of production<br />

<strong>and</strong> transportation.<br />

2. Investments to <strong>in</strong>crease the competitiveness of<br />

Tanzania <strong>and</strong> Malawi's pigeonpea sub-sectors<br />

will generate high payoffs if targeted to promote<br />

the use of best varieties, extension of crop management<br />

advice, market <strong>in</strong><strong>for</strong>mation systems<br />

<strong>and</strong> reduction of transaction <strong>and</strong> transportation<br />

costs.<br />

228<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


3. If households are l<strong>in</strong>ked to produce specifically<br />

<strong>for</strong> cash domestic <strong>and</strong> export markets then there<br />

is significant adoption of technologies, which<br />

permits farmers to capture soil fertility improv<strong>in</strong>g<br />

benefits.<br />

Methods<br />

In-depth <strong>in</strong>terviews were conducted with selected<br />

participants - traders, processors, policy makers,<br />

<strong>and</strong> others - <strong>in</strong> order to obta<strong>in</strong> their subjective<br />

evaluations <strong>and</strong> perceptions of constra<strong>in</strong>ts <strong>and</strong> opportunities.<br />

Additional <strong>in</strong>terviews were conducted<br />

with traders, processors <strong>and</strong> government officials <strong>in</strong><br />

India, United K<strong>in</strong>gdom, Kenya, Malawi <strong>and</strong> Tanzania<br />

dur<strong>in</strong>g the 2001/02 cropp<strong>in</strong>g seasons to generate<br />

data on quantity dem<strong>and</strong>ed, quality st<strong>and</strong>ards<br />

required by <strong>in</strong>ternational buyers, <strong>and</strong> competition<br />

from alternative suppliers <strong>and</strong> alternative products<br />

(Lo Monaco, 2002.). Rapid reconnaissance surveys<br />

were cond ucted <strong>in</strong> Tanzania <strong>and</strong> Malawi to follow<br />

the flow of pigeon pea down the market<strong>in</strong>g cha<strong>in</strong><br />

from <strong>in</strong>ternational buyers to farmers. Dur<strong>in</strong>g the<br />

reconnaissance surveys, <strong>in</strong><strong>for</strong>mal <strong>in</strong>terviews were<br />

conducted with farmers, extension agents, rural<br />

traders, NCO representatives, crop assemblers,<br />

transporters, <strong>and</strong> government officials. Trader,<br />

farmer <strong>and</strong> key <strong>in</strong><strong>for</strong>mant <strong>in</strong>terviews were comb<strong>in</strong>ed<br />

with an analysis of quantity <strong>and</strong> price data,<br />

relative price relationships, <strong>and</strong> gross market<strong>in</strong>g<br />

marg<strong>in</strong>s. Quantity <strong>and</strong> price data ·were collected<br />

from secondary sources, <strong>in</strong>clud<strong>in</strong>g m<strong>in</strong>istries of agriculture,<br />

national statistical offices, the Food <strong>and</strong><br />

Agriculture Organization (FAO) database, <strong>and</strong> published<br />

<strong>and</strong> unpublished ·reports.<br />

Overview of the Pigeonpea Sub-sector <strong>in</strong><br />

Malawi <strong>and</strong> Tanzania<br />

Pigeonpea is widely grown <strong>in</strong> the semi-arid areas of<br />

Malawi <strong>and</strong> Tanzania, mostly as an <strong>in</strong>tercrop with<br />

maize, sorghum <strong>and</strong> pearl millet; but also <strong>in</strong> hedges<br />

around fields <strong>and</strong> on soil conservation barriers<br />

along contours. This makes it difficult to obta<strong>in</strong> accurate<br />

estimates of planted area, yield <strong>and</strong> production.<br />

National statistics <strong>in</strong>dicate that <strong>in</strong> Malawi; pigeonpea<br />

is planted on 180,000 ha, yields are about<br />

600 kg per hectare <strong>and</strong> annual production is about<br />

100,000 t (M<strong>in</strong>istry of Agriculture <strong>and</strong> Irrigation,<br />

2001). In Tanzania about 815,000 ha are planted to<br />

pulses, <strong>in</strong>clud<strong>in</strong>g pigeonpea, yields average 800 kg<br />

per hectare, <strong>and</strong> production is about 635,500 t<br />

(M<strong>in</strong>istry of Agriculture <strong>and</strong> Food Security, 2002).<br />

But the FAO estimates are considerably lower<br />

(Table 1). Plant<strong>in</strong>gs <strong>in</strong> Malawi are concentrated <strong>in</strong><br />

Blantyre, Mach<strong>in</strong>ga, <strong>and</strong> Shire Valley regions. In<br />

Tanzania, pigeonpea is mostly grown <strong>in</strong> Mtwara<br />

<strong>and</strong> L<strong>in</strong>di <strong>in</strong> the southern coastal areas, Babati <strong>in</strong> the<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

Table 1. Pigeonpea area <strong>and</strong> p.roduction <strong>in</strong> Kenya, Malawi <strong>and</strong><br />

Tanzania, 1980 to 2001<br />

.Area ('ODD hal<br />

Production ('ODD tl<br />

1980·82 mean 1999·01 mean 1980·82 mean 1999·01 mean<br />

Kenya 66 147a 29 45a<br />

Malawi 127 ~ 23 85 79<br />

Tanzania 37 65 23 47<br />

Source: FAOSTAT, a. 1996·98 average<br />

north, <strong>and</strong> Kondoa <strong>in</strong> the central region.<br />

Management practices vary widely with<strong>in</strong> <strong>and</strong> between<br />

regions. Wide differences exist <strong>in</strong> choice of<br />

variety, tillage, plant<strong>in</strong>g methods, <strong>in</strong>tercropp<strong>in</strong>g,<br />

spac<strong>in</strong>g, soil water <strong>and</strong> fertility management, weed<strong>in</strong>g,<br />

pest <strong>and</strong> disease control, harvest<strong>in</strong>g, <strong>and</strong> postharvest<br />

management. For example with<strong>in</strong> the same<br />

agroecological zone <strong>in</strong> Kondoa, better resourceendowed<br />

farmers grow as much as 5 ha of pigeonpea<br />

<strong>in</strong>tercropped with maize <strong>for</strong> export markets,<br />

us<strong>in</strong>g improved varieties <strong>and</strong> science-based management<br />

practices. Poor households grow a few<br />

plants <strong>in</strong> homestead gardens <strong>for</strong> home consumption<br />

us<strong>in</strong>g local varieties <strong>and</strong> traditional practices. Because<br />

farmers cultivatesmall plots, they often plant<br />

crop mixtures <strong>in</strong> the same field to maximize returns<br />

to l<strong>and</strong> <strong>and</strong> labor. In the ma<strong>in</strong> pigeonpea produc<strong>in</strong>g<br />

areas, 58 percent of the maize area is a maizepigeonpea<br />

<strong>in</strong>tercrop, particularly <strong>in</strong> areas where pigeonpea<br />

is a cash crop.<br />

In the major pigeon pea grow<strong>in</strong>g regions, 90 percent<br />

of farmers grow the crop <strong>and</strong> 70 percent of farmers<br />

are "commercial", sell<strong>in</strong>g over half their production<br />

(Orr, Jere, <strong>and</strong> Koloko, 1997). There is a long market<strong>in</strong>g<br />

cha<strong>in</strong>, with many <strong>in</strong>termediaries. Households<br />

sell to vendors who buy from door to door, or<br />

transport the gra<strong>in</strong> to village markets <strong>for</strong> sale to <strong>in</strong>termediaries.<br />

All transactions are <strong>in</strong> cash, <strong>and</strong> by<br />

volume (bucket), not weight. The <strong>in</strong>termediaries<br />

sell to other <strong>in</strong>termediaries who then sell to traders<br />

<strong>for</strong> transport to the major towns <strong>and</strong> sale to large<br />

exporters by weight. Traders do not pursue grades<br />

<strong>and</strong> quality st<strong>and</strong>ards. They believe the market is<br />

not mature enough <strong>for</strong> trad<strong>in</strong>g <strong>in</strong> graded <strong>for</strong>m, <strong>and</strong><br />

that farmers may not produce a marketable surplus<br />

if grades <strong>and</strong> st<strong>and</strong>ards are <strong>in</strong>troduced. Exporters<br />

clean, grade, pack, <strong>and</strong> ship it to <strong>in</strong>ternational buyers.<br />

In Tanzania there is no mill<strong>in</strong>g of pigeon pea;<br />

the gra<strong>in</strong> is exported 'raw'. Traders estimated that<br />

annual exports currently average 30,000 to 35,000 t,<br />

almost double the official estimates (Table 2) . Some<br />

exports are shipped through Kenya. Likewise <strong>in</strong><br />

Malawi, traders estimated that about 30,000 tare<br />

exported annually, although official estimates are<br />

lower (Table 3). Traders estimated that as much as<br />

35 percent of Malawi's exports is grown <strong>in</strong> Mozambique,<br />

although this share has been decl<strong>in</strong><strong>in</strong>g beg<strong>in</strong>­<br />

\<br />

229


Table 2. Pigeonpea production <strong>and</strong> exports (t) <strong>in</strong> Tanzania,<br />

1993·97<br />

1993 1994<br />

Production 38,000 34,000<br />

1995 1996<br />

42,000 '55,000<br />

Exports 6934 17,633 3594 17,430<br />

Source: TCFB <strong>for</strong> exports; FAD <strong>for</strong> production data<br />

Table 3. Pigeonpea production <strong>and</strong> exports, Malawi<br />

1997<br />

41,000<br />

15,489<br />

1994 1995 1996 1997 1998 1999<br />

Production 43,311 52,601 87,880 72.67218,400b 80,000b<br />

Whole 1209 13852 1506 7877<br />

Processed 6394 7709 6552 9704<br />

Total Whole 10343 24865 10866 21740 18400 b 19600 b<br />

Exports equivalent'<br />

• Whole equivalent calculated assum<strong>in</strong>g arecovery yield of 70% <strong>for</strong> dhill<br />

b Only aggregate data available<br />

Sources: FEWS <strong>and</strong> FAD<br />

1994·97: Bvumbwe Research Station; Patel, 1998<br />

1998·1999: Malawi National Statistical Office<br />

n<strong>in</strong>g <strong>in</strong> 1999/2000 because of traders buy<strong>in</strong>g directly<br />

<strong>in</strong> that country. The bulk of Malawi's exports<br />

are milled <strong>in</strong>to fur dhal, thus add<strong>in</strong>g value, <strong>and</strong><br />

shipped to India.<br />

Trader <strong>in</strong>terviews revealed that both domestic <strong>and</strong><br />

<strong>in</strong>ternational markets are very volatile because there<br />

is negligible consumption of dry pigeonpea <strong>in</strong> domestic<br />

markets; pigeonpea is mostly exported. The<br />

<strong>in</strong>ternational market is highly globalized <strong>and</strong> dom<strong>in</strong>ated<br />

by India, the major producer <strong>and</strong> consumer.<br />

Tables 4 <strong>and</strong> 5). Export dem<strong>and</strong> depends largely on<br />

production <strong>in</strong> India -- dem<strong>and</strong> <strong>and</strong> prices <strong>for</strong> African<br />

pigeonpea are high when there is a poor crop <strong>in</strong><br />

India <strong>and</strong> Myanmar. Trader <strong>in</strong>terviews also show<br />

that there is a market<strong>in</strong>g w<strong>in</strong>dow <strong>for</strong> exports from<br />

Tanzania <strong>and</strong> Malawi, which opens around August<br />

to September <strong>and</strong> closes <strong>in</strong> October or November.<br />

Subsequently prices drop because the crops <strong>in</strong> India<br />

<strong>and</strong> Myanmar are harvested. This is an opportunistic<br />

market. Tanzanian <strong>and</strong> 'Malawian traders need.<br />

to discover prices, obta<strong>in</strong> confirmed orders with<br />

Table 4. World pigeonpea production ('000 t), 1980·98<br />

1980·82 1990·92 1996·98 1996·98<br />

1% share)<br />

India 1983 2432 2420 83.8<br />

Myanmar 29 47 159 5.5<br />

Africa 165 254 250 8.7<br />

Rest of the world 56 72 58 2.0<br />

Total 2805.4 2805 2887 100<br />

Source: FADSTAT. 2001<br />

Table 5. World dry pea imports ('000 t), 1995·99<br />

1995 1996 1997 1998 1999<br />

European Union 2522 3838 1530 1882 1890<br />

India 173 155 282 257 366<br />

Total 3603 4743 2538 2845 3016<br />

Source: FAD. 2001<br />

specified prices be<strong>for</strong>e they start buy<strong>in</strong>g from farmers,<br />

<strong>and</strong> then buy the crop, transport gra<strong>in</strong> to export<br />

centers, clean, pack, <strong>and</strong> export it be<strong>for</strong>e prices <strong>in</strong><br />

India start to fall. Be<strong>for</strong>e declar<strong>in</strong>g prices to farmers,<br />

traders take <strong>in</strong>to account bagg<strong>in</strong>g costs, transportation,<br />

h<strong>and</strong>l<strong>in</strong>g, clean<strong>in</strong>g, port charges, freight,<br />

local levies, corporate tax, corruption <strong>and</strong> harassment<br />

charges, <strong>and</strong> f<strong>in</strong>ancial costs. An <strong>in</strong>crease <strong>in</strong><br />

any of these cost elements is passed down to smallholder<br />

farmers because the farm level-derived supply<br />

is highly <strong>in</strong>elastic <strong>in</strong> the short run. Exporters are<br />

reluctant to hold <strong>in</strong>ventory stocks because of the<br />

high price uncerta<strong>in</strong>ty of the Indian market. Because<br />

Indian traders have monopolistic market<br />

power <strong>and</strong> can drive prices down, <strong>for</strong>ward contract<strong>in</strong>g<br />

with farmers is difficult s<strong>in</strong>ce exporters cannot<br />

assure farmers the contracted prices.<br />

Market Participants' Assessment of Opportunities<br />

<strong>and</strong> Constra<strong>in</strong>ts to Increas<strong>in</strong>g<br />

Competitiveness<br />

Trader <strong>in</strong>terviews, analysis of volumes traded, <strong>and</strong><br />

<strong>in</strong>ternational prices <strong>in</strong>dicate mixed prospects <strong>for</strong><br />

<strong>in</strong>creas<strong>in</strong>g the long-term competitiveness of African<br />

pigeonpea exports. Historically there has been a<br />

strong export market dem<strong>and</strong>, but this market is<br />

shr<strong>in</strong>k<strong>in</strong>g due to <strong>in</strong>creased competition from other<br />

exporters (notably Myanmar) <strong>and</strong> substitution of<br />

pigeonpea with yellow pea (exported by Canada).<br />

In the past five years, Myanmar has more than<br />

quadrupled exports to India, driv<strong>in</strong>g down wholesale<br />

prices (Table 6). There also has been a sharp<br />

<strong>in</strong>crease of compet<strong>in</strong>g yellow pea exports from Canada<br />

(Table 7). Because yellow peas have been used<br />

<strong>in</strong> the past as animal feed, they are be<strong>in</strong>g exported<br />

to India, the Middle East, <strong>and</strong> North Africa at extremely<br />

low prices. Because of. <strong>in</strong>creas<strong>in</strong>g price<br />

competition, the prospects <strong>for</strong> produc<strong>in</strong>g pigeon pea<br />

as a cash crop <strong>for</strong> the export market are dim<strong>in</strong>ish<strong>in</strong>g<br />

(Table 8). hldeed, Tanzania <strong>and</strong> Malawi have lost<br />

market share <strong>and</strong> farm gate prices have decl<strong>in</strong>ed<br />

compared to three years ago, when exports were<br />

<strong>in</strong>creas<strong>in</strong>g, production <strong>in</strong> India was poor, <strong>and</strong><br />

Myanmar was still not competitive (Table 9). Traders<br />

reported that opportunities exist <strong>for</strong> export<strong>in</strong>g to<br />

niche markets <strong>in</strong> Europe. But the volumes are small,<br />

about 1000 to 1500 t annually, <strong>and</strong> markets get<br />

Table 6. Myanmar Table 7. Annual exports of dry peas<br />

pigeonpea (I) exports to from Canada ('000 t), 1997·2001<br />

India, 1999·2001<br />

Canada to Asia<br />

1999 73,430 1997·98 395 <br />

2000 185,964 1998·99 700 <br />

2001 293,934 1999·00 638<br />

Source: Directorate of Economics 2000·01 850<br />

<strong>and</strong> Statistics. M<strong>in</strong>istry of<br />

Agriculture, India<br />

Source: Agriculture <strong>and</strong> Agri·Food Canada, FAO<br />

230<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Table 9. Average<br />

Table 8. Pigeonpea import prices, US<br />

pigeonpea prices (US$/t)<br />

$ per onne C.I•• . f M urn bai 19952001<br />

paid by market<strong>in</strong>g agents<br />

September October November at the first assembly <br />

1995 375 415 400 stage, Malawi <strong>and</strong> <br />

1996 315 320 295 Tanzania, 1998·2002 <br />

1997 n.a. n.a. 445 Malawi Tanzania <br />

1998 450 410 395 1998 483 478 <br />

1999 325 300 310 1999 431 288 <br />

2000 300 n.a. n.a. 2000 336 248 <br />

2001 295 275 250 2001 139 136 <br />

Source: The Pulse Importers AssociatIOn<br />

2002 154<br />

quickly saturated. Another possibility is to supply<br />

pigeonpea as green vegetables to Europe. The companies<br />

surveyed did not have experience with these<br />

niche markets. To exp<strong>and</strong> exports, there is a need to<br />

target particular niches <strong>and</strong> develop ways of reduc<strong>in</strong>g<br />

prices.<br />

Trader <strong>in</strong>terviews revealed that the major determ<strong>in</strong>ants<br />

of competitiveness <strong>in</strong> <strong>in</strong>ternational markets<br />

are consistent quality <strong>and</strong> quantity, price, <strong>and</strong> timel<strong>in</strong>ess<br />

of delivery, especially <strong>for</strong> the August­<br />

November w<strong>in</strong>dow. Buyers look <strong>for</strong> gra<strong>in</strong> color,<br />

size <strong>and</strong> mill<strong>in</strong>g characteristics, <strong>in</strong>clud<strong>in</strong>g ease of<br />

dehull<strong>in</strong>g, shape, cleanness, <strong>and</strong> uni<strong>for</strong>mity. White<br />

gra<strong>in</strong>s are preferred <strong>and</strong> fetch premium price~. B~bati<br />

White from northern Tanzania <strong>and</strong> whIte PIgeonpea<br />

varieties from Malawi have a unique taste<br />

that Asian <strong>and</strong> European customers like; <strong>and</strong> this<br />

expla<strong>in</strong>s why export<strong>in</strong>g firms are still surviv<strong>in</strong>g. In<br />

terms of gra<strong>in</strong> size, market requirements vary. Indian<br />

millers prefer small to medium-gra<strong>in</strong>ed varieties<br />

such as Babati White, while European millers<br />

require large-sized gra<strong>in</strong>s. Moreover, size requirements<br />

can change rapidly from large to small from<br />

one year to the next because of shifts <strong>in</strong> mill<strong>in</strong>g technology.<br />

Compared to Myanmar <strong>and</strong> India, Malawi<br />

<strong>and</strong> northern Tanzania produce better quality pigeonpea<br />

(Table 10). However, pigeonpea from central<br />

<strong>and</strong> southern Tanzania is mostly red color <strong>and</strong><br />

poor quality because of <strong>in</strong>sect damage. Infestation<br />

beg<strong>in</strong>s <strong>in</strong> the field, dur<strong>in</strong>g the flower<strong>in</strong>g stage. Insects<br />

are carried over <strong>in</strong>to storage, <strong>and</strong> cause high<br />

losses. Quality st<strong>and</strong>ards are largely determ<strong>in</strong>ed by<br />

traders who buy, grade, <strong>and</strong> sort gra<strong>in</strong> <strong>for</strong> specific<br />

markets. For farmers to obta<strong>in</strong> a high-quality crop,<br />

Table 10. <strong>Gra<strong>in</strong></strong> quality traits relevant <strong>for</strong> the mill<strong>in</strong>g <strong>in</strong>dustry<br />

Africa Myanmar Yellow pea<br />

<strong>Gra<strong>in</strong></strong> size Medium to large Small to medium Large<br />

<strong>Gra<strong>in</strong></strong> shape Round Round Round<br />

Ease of dehull<strong>in</strong>g Low Fair Very high<br />

Cleanness High Low High<br />

Weeviled gra<strong>in</strong>s Fair High Low<br />

Homogeneity High Low High<br />

Average yields % 65·70 65·75 90<br />

various issues need to be addressed, <strong>in</strong>clud<strong>in</strong>g correct<br />

choice of variety, seed delivery systems <strong>for</strong> gett<strong>in</strong>g<br />

pure seed to farmers, crop management, pest<br />

<strong>and</strong> disease management, harvest<strong>in</strong>g methods,<br />

post-harvest management <strong>and</strong> h<strong>and</strong>l<strong>in</strong>g dur<strong>in</strong>g the<br />

various stages from farm gate through assembly,<br />

transportation, clean<strong>in</strong>g, 9rad<strong>in</strong>g <strong>and</strong> pack<strong>in</strong>g <strong>for</strong><br />

export.<br />

Traders cited several major constra<strong>in</strong>ts affect<strong>in</strong>g the<br />

pigeonpea sub sector <strong>in</strong> Malawi <strong>and</strong> Tanzania:<br />

• Low yield<br />

• Poor quality<br />

• Low farm gate prices<br />

• High transport costs<br />

• Lack of <strong>in</strong><strong>for</strong>mation<br />

• Attitudes towards traders<br />

• Lack of domestic markets<br />

• Inconsistent government policies<br />

Yield <br />

Because yields are low, gra<strong>in</strong> cannotbe delivered at <br />

competitive prices. This is partly because farmers <br />

use recycled seed of traditional varieties (low­<br />

yield<strong>in</strong>g, <strong>and</strong> susceptible to Fusarium wilt) <strong>and</strong> use <br />

poor crop management practices. Also farm gate <br />

prices are not high enough to attract <strong>in</strong>vestment <br />

from other compet<strong>in</strong>g activities -- farmers often <br />

view pigeonpea as a "wild" crop <strong>and</strong> focus their <strong>in</strong>­<br />

vestments on other cash crops. <br />

Quality <br />

Pigeonpea from central <strong>and</strong> southern Tanzania is of <br />

poor quality. The varieties are not white-seeded, <br />

crop management (especially pest <strong>and</strong> disease con­<br />

trol) is poor, harvest<strong>in</strong>g <strong>and</strong> post-harvest manage­<br />

ment are poor. Weevil <strong>in</strong>festation is a major prob­<br />

lem. <br />

Farm gate price <br />

Farmers receive a much lower price than the prices <br />

offered by exporters at the factory gate. This is be­<br />

cause of the large number of <strong>in</strong>termediaries <strong>and</strong> <strong>in</strong>­<br />

efficient trad<strong>in</strong>g mechanisms. For example, export­<br />

ers believe that they offer prices as competitive as <br />

anywhere <strong>in</strong> the world. Farmers believe that the <br />

prices they receive are too low <strong>for</strong> pigeonpea to <br />

compete with alternative activities. Dur<strong>in</strong>g the <br />

2000/01 market<strong>in</strong>g season, exporters <strong>in</strong> Malawi <br />

were offeririg MK 10/kg at the factory gate, while <br />

farmers received not more than MK 5/kg at the <br />

farm gate. The first middleman was mak<strong>in</strong>g MK 1/ <br />

kg <strong>and</strong> the other <strong>in</strong>termediaries were earn<strong>in</strong>g at <br />

least MK 2/kg. Traders <strong>in</strong>terviewed <strong>for</strong> this study <br />

<strong>in</strong>dicated that farmers are justified when they com­<br />

pla<strong>in</strong> that farm gate prices are low. <br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

231


Transport costs<br />

Competitiveness is eroded by high transport costs<br />

<strong>and</strong> the short time available to buy the crop, move it<br />

to export centers, clean, pack, <strong>and</strong> 'ship gra<strong>in</strong> to the<br />

markets be<strong>for</strong>e the export w<strong>in</strong>dow closes. Because<br />

of poor <strong>in</strong>frastructure <strong>and</strong> short tim<strong>in</strong>g there is a<br />

need to ship large quantities of pigeon pea to export<br />

centers at the same time that either commodities<br />

such as cashew nuts <strong>and</strong> tobacco are be<strong>in</strong>g transported.<br />

Transport costs are high because roads are<br />

bad (high vehicle .depreciation <strong>and</strong> operational<br />

costs) <strong>and</strong> because few transporters operate, <strong>and</strong> set<br />

monopolistic prices. For example, transport<strong>in</strong>g pigeonpea<br />

from Babati to Dar es Salaam cost 42,000<br />

TSh/t, the same as shipp<strong>in</strong>g costs from Dar es Salaam<br />

to Mumbai. Transport from Tunduru to<br />

Mtwara takes 24 hours to travel 265 km <strong>and</strong> is more<br />

expensive than send<strong>in</strong>g goods fro~ Dar es Salaam<br />

to Durban. It costs US$ 95/t to transport pigeonpea<br />

by road to South Africa from Malawi <strong>for</strong> transshipment<br />

to <strong>in</strong>ternational markets. If· Nacala port <strong>in</strong><br />

Mozambique worked, transport costs would be only<br />

US$23 / t. Traders reported that failure to deliver<br />

products <strong>in</strong> time results <strong>in</strong> renegotiation of contracts<br />

<strong>and</strong> heavy f<strong>in</strong>ancial losses.<br />

Lack of <strong>in</strong><strong>for</strong>mation<br />

Industry, exporters <strong>and</strong> farmers often lack <strong>in</strong><strong>for</strong>mation<br />

on production <strong>and</strong> quanUty available <strong>for</strong> sale <strong>in</strong><br />

different areas, prices offered <strong>and</strong> quality st<strong>and</strong>ards<br />

dem<strong>and</strong>ed by different buyers, <strong>and</strong> transport options.<br />

Because of the lack of a market <strong>in</strong><strong>for</strong>mation<br />

system, there is high price uncerta<strong>in</strong>ty, which<br />

makes it difficult <strong>for</strong> exporters to procure pigeonpea<br />

<strong>and</strong> discourages farmers from <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> pigeonpea<br />

production as they do not what prices they will<br />

get. Because of lack of <strong>in</strong><strong>for</strong>mation, farmers, middlemen<br />

<strong>and</strong> large traders engage <strong>in</strong> strategic barga<strong>in</strong><strong>in</strong>g,<br />

further <strong>in</strong>creas<strong>in</strong>g transaction costs.<br />

Attitudes towards traders<br />

There are negative attitudes towards <strong>in</strong>termediaries<br />

<strong>and</strong> political rhetoric aga<strong>in</strong>st traders, many of<br />

whom are ethnic m<strong>in</strong>orities.<br />

Lack of domestic markets<br />

Few local companies manufacture pigeonpea food<br />

products <strong>for</strong> the domestic market <strong>and</strong> there is little<br />

domestic consumption of processed pigeonpea food<br />

products. If exporters are unable to sell the crop <strong>in</strong><br />

export markets, they <strong>in</strong>cur heavy losses.<br />

Government policies<br />

Pigeonpea production <strong>and</strong> trade are hampered by<br />

<strong>in</strong>consistent government policies, <strong>in</strong>clud<strong>in</strong>g licens<strong>in</strong>g<br />

requirements <strong>for</strong> traders, road haulage, district<br />

local government levies <strong>and</strong> cess. The regulations<br />

create opportunities <strong>for</strong> corruption <strong>and</strong> harassment<br />

<strong>and</strong> <strong>in</strong>crease transaction costs. For example, the<br />

Tanzanian government declared that levies <strong>and</strong> cess<br />

should not exceed 5 percent of the farm gate price<br />

but today district rural councils charge levies of<br />

more than 25 percent. This directly results <strong>in</strong> farmers<br />

be<strong>in</strong>g paid less. Farm gate prices are <strong>in</strong>directly<br />

reduced because traders are required to have several<br />

licenses. For example, a trader requires 6 to 7<br />

licenses to deal <strong>in</strong> cashew nuts. Traders often need<br />

to visit district by district to obta<strong>in</strong> licenses because<br />

of excessive bureaucratic controls <strong>and</strong> regulations . .<br />

Despite these constra<strong>in</strong>ts, traders argued that there<br />

are high payoffs to <strong>in</strong>vestments <strong>in</strong> the pigeon pea<br />

sub-sector. For example, <strong>in</strong> Malawi, 15 years ago<br />

there were only two firms process<strong>in</strong>g pigeonpea.<br />

Today over 10 firms process <strong>and</strong> export pigeonpea,<br />

<strong>and</strong> at least 15 ,firms export raw pigeonpea.<br />

Farm-level Opportunities <strong>and</strong> Constra<strong>in</strong>ts<br />

Farmer <strong>in</strong>terviews revealed that opportunities exist<br />

<strong>for</strong> exp<strong>and</strong><strong>in</strong>g the production of pigeonpea both as<br />

a food security crop <strong>and</strong> as a cash crop, target<strong>in</strong>g<br />

niche export markets. But <strong>in</strong>creas<strong>in</strong>g production <strong>for</strong><br />

the market requires greater use of quality seed of<br />

the right varieties (i.e., varieties with traits <strong>in</strong> dem<strong>and</strong><br />

<strong>in</strong> specific markets), <strong>and</strong> better crop management<br />

<strong>in</strong> order to achieve grades <strong>and</strong> st<strong>and</strong>ards required<br />

by <strong>in</strong>ternational buyers. ICRlSAT <strong>and</strong><br />

NARS scientists have developed improved, short<strong>and</strong><br />

medium-duration varieties, with white bold<br />

gra<strong>in</strong>. These varieties are suitable <strong>for</strong> cultivation by<br />

small-scale farmers aim<strong>in</strong>g to service the August-to­<br />

November export market to India. Both on-station<br />

<strong>and</strong> on-farm agronomic trials show that the yield<br />

ga<strong>in</strong>s from the improved pigeonpea varieties vary<br />

from 27 to 190 percent (Figure 1). The marg<strong>in</strong>al rate<br />

of return from adoption of the varieties ranges from<br />

500 to 1000 percent, which far exceeds the 100 percent<br />

hurdle rate of return that is required <strong>for</strong> widespread<br />

adoption by smallholders. But the per<strong>for</strong>m­<br />

"0<br />

~<br />

2000<br />

1500<br />

1000<br />

500<br />

o<br />

Treatrrent<br />

DOn-farm 2000/1<br />

.On-station:2001/2<br />

Figure 1. Per<strong>for</strong>mance of new pigeonpea varieties <strong>in</strong> on·station <strong>and</strong><br />

on·farm trials, Oodoma, Tanzania, 2000/01·2001/02.<br />

232<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


ance of sorghum-pigeonpea <strong>in</strong>tercropp<strong>in</strong>g technology<br />

is highly variable depend<strong>in</strong>g on varieties, soil<br />

type, ra<strong>in</strong>fall, <strong>and</strong> crop management practices <strong>in</strong>clud<strong>in</strong>g<br />

methods of l<strong>and</strong> preparation, crop residues<br />

management, manure application, plant<strong>in</strong>g time<br />

<strong>and</strong> methods weed, pest control, harvest<strong>in</strong>g <strong>and</strong><br />

post-harvest h<strong>and</strong>l<strong>in</strong>g. Productivity ga<strong>in</strong>s from<br />

short-season varieties under farmers' conditions<br />

have been limited, largely because of high <strong>in</strong>sect<br />

damage as these cultivars flower dur<strong>in</strong>g the ra<strong>in</strong>y<br />

season, when pest populations are high. In addition,<br />

short-season varieties are unsuited to the traditional<br />

practice of <strong>in</strong>tercropp<strong>in</strong>g. Medium-duration<br />

varieties have given much higher ga<strong>in</strong>s because<br />

they flower dur<strong>in</strong>g the dry period when pest <strong>in</strong>cidence<br />

is low <strong>and</strong> there<strong>for</strong>e escape <strong>in</strong>sect damage.<br />

In collaboration with TechnoServe, a US-based<br />

NCO, gra<strong>in</strong> samples of the new varieties have been<br />

sent <strong>for</strong> test market<strong>in</strong>g <strong>in</strong> Europe <strong>and</strong> India. Several<br />

varieties have been identified that are high yield<strong>in</strong>g,<br />

have characteristics dem<strong>and</strong>ed <strong>in</strong> <strong>in</strong>ternational markets,<br />

<strong>and</strong> offer productivity ga<strong>in</strong>s even when<br />

planted late <strong>and</strong> grown without <strong>in</strong>tensive weed<strong>in</strong>g.<br />

NARS scientists have also developed a range of<br />

crop management options, (<strong>in</strong>tercropp<strong>in</strong>g, plant<strong>in</strong>g<br />

date, spac<strong>in</strong>g <strong>and</strong> plant arrangement) designed to fit<br />

the different resource endowments, <strong>in</strong>vestment<br />

strategies, <strong>and</strong> risk management practices of different<br />

smallholders. Use of these management options<br />

along with the new varieties will enable farmers to<br />

produce gra<strong>in</strong> that fetches a premium <strong>in</strong> <strong>in</strong>ternational<br />

markets.<br />

Farmers identified opportunities to exp<strong>and</strong> pigeonpea<br />

cultivation <strong>in</strong> semi-arid areas, <strong>in</strong>clud<strong>in</strong>g maizepigeon<br />

<strong>in</strong>tercrops <strong>in</strong> areas with less ra<strong>in</strong>fall risk, <strong>and</strong><br />

sorghum-pigeonpea <strong>in</strong>tercrops <strong>in</strong> areas of higher<br />

risk. Cross marg<strong>in</strong> analysis reveals that pigeonpeamaize<br />

<strong>and</strong> pigeonpea sorghum <strong>in</strong>tercrops are the<br />

most profitable among the major compet<strong>in</strong>g cropp<strong>in</strong>g<br />

activities <strong>in</strong> Tanzania <strong>and</strong> third most profitable<br />

<strong>in</strong> Malawi (Tables 11 <strong>and</strong> 12). This expla<strong>in</strong>s why <strong>in</strong><br />

Kondoa district <strong>in</strong> Tanzania, pigeonpea is now the<br />

major cash crop, follow<strong>in</strong>g an expansion of research<br />

<strong>and</strong> extension over the last five years. Farmers used<br />

to grow pigeonpea on a small scale; production exp<strong>and</strong>ed<br />

when they adopted the Kombowa variety,<br />

developed at Ilonga Research Station, <strong>and</strong> <strong>in</strong>tercropp<strong>in</strong>g<br />

<strong>and</strong> spac<strong>in</strong>g technologies developed by<br />

the Selian Agricultural Research Institute. Because<br />

of <strong>in</strong>creased availability of white-seeded mediumsize<br />

Kombowa gra<strong>in</strong>, traders came <strong>in</strong> from the<br />

neighbor<strong>in</strong>g Babati district, where pigeonpea was<br />

already highly commercialized. Farmers found<br />

they could earn high cash <strong>in</strong>come from pigeonpea,<br />

dna eKfi'dl1u\~d fi'l\JdU"L....IUf., dl.\·l-dL......i-rg- ~eli ffl\Jl."e'<br />

traders. Farmers have become much more receptive<br />

to new technology, adopt<strong>in</strong>g crop management<br />

practices such as rotat<strong>in</strong>g the maize--pigeonpea<br />

<strong>in</strong>tercrop with lab lab, us<strong>in</strong>g mucuna as a cover crop,<br />

<strong>and</strong> adopt<strong>in</strong>g the Magoye ripper to <strong>in</strong>corporate crop<br />

residues <strong>in</strong>to the soil to <strong>in</strong>crease fertility.<br />

Farmers <strong>in</strong>terviewed <strong>for</strong> this study also believe that<br />

significant opportunities exist to <strong>in</strong>crease household<br />

food security by exp<strong>and</strong><strong>in</strong>g pigeonpea cultivation.<br />

<strong>Legumes</strong> are commonly eaten as relish, along' with<br />

cereals. Cowpea <strong>and</strong> beans are the traditional legume<br />

crops but <strong>in</strong> most semi-arid areas, farmers cannot<br />

produce beans successfully because of drought.<br />

Pigeonpea is a better alternative, but most households<br />

do not plant pigeonpea because they are unfamiliar<br />

with the crop <strong>and</strong> do not know how to utilize<br />

it. Some varieties are bitter when dry <strong>and</strong> difficult<br />

to cook.<br />

Farmers reported several constra<strong>in</strong>ts to exp<strong>and</strong>ed<br />

pigeonpea production, <strong>in</strong>clud<strong>in</strong>g poor farm<strong>in</strong>g implements<br />

which results <strong>in</strong> <strong>in</strong>adequate l<strong>and</strong> preparation<br />

<strong>and</strong> late plant<strong>in</strong>g, poor access to seed of im~<br />

proved varieties, non-availability of.chemicals <strong>for</strong><br />

spray<strong>in</strong>g, poor farm<strong>in</strong>g knowledge, lack of e~tension<br />

agents, pests <strong>and</strong> diseases, <strong>and</strong> lack of reliable<br />

organized markets.<br />

Technological, Institutional <strong>and</strong> Policy Innovations<br />

with Potential to Increase<br />

Competitiveness<br />

Traders suggested that to <strong>in</strong>crease competitiveness<br />

on the <strong>in</strong>ternational market, constra<strong>in</strong>ts must be resolved,<br />

<strong>and</strong> available opportunities exploited. This<br />

will require <strong>in</strong>novative approaches.<br />

Table 11. Profitability of pr<strong>in</strong>cipal crops <strong>in</strong> Kondoa District, Tanza·<br />

nia, 2001/02 (Tanzania Shill<strong>in</strong>g)<br />

Maize + F<strong>in</strong>ger Sesame Sun· Sorgo Pearl Maize<br />

Pig'npea millet flower hum millet<br />

Gross marg<strong>in</strong> 123,731 53,672 48,626 16,519 7,289 6,948 6,379<br />

(Sh/ha)<br />

Breakeven 32 66 82 47 83 53 51<br />

price (Sh/kg)<br />

Breakeven 133 541 224 960 907 873 635<br />

yield (kg/ha)<br />

Table 12. Profitability of pr<strong>in</strong>cipal crops <strong>in</strong> Chisepo Extension<br />

Plann<strong>in</strong>g Area, Malawi, 2000/01<br />

Tobacco Ground· Maize + Soybean Bambara Maize<br />

nut Pig'npea<br />

Gross marg<strong>in</strong> 34,906 10,771 6,495 4,769 4,337 (626)<br />

(Kwacha/ha)<br />

Breakeven price 21 15 5 11 18 11<br />

(Kwacha/kg)<br />

Breakeven yield 198 249 330 155 340 1,144<br />

I (kg/ha)<br />

I<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

233


Traders suggest that the most important <strong>in</strong>tervention<br />

would be to promote the use of improved,<br />

high-yield<strong>in</strong>g varieties with traits dem<strong>and</strong>ed <strong>in</strong> target<br />

markets. This can be achieved 'by exp<strong>and</strong><strong>in</strong>g<br />

<strong>in</strong>vestments <strong>in</strong> breeder, foundation <strong>and</strong> certified<br />

seed production. They also recommend target<strong>in</strong>g<br />

<strong>in</strong>vestments to improve productivity by provid<strong>in</strong>g<br />

advice on crop management, harvest<strong>in</strong>g <strong>and</strong> postharvest<br />

sort<strong>in</strong>g through village-level demonstrations<br />

<strong>and</strong> farmer tra<strong>in</strong><strong>in</strong>g. Traders argued that if<br />

farmers <strong>in</strong>crease productivity <strong>and</strong> production, unit<br />

costs of gra<strong>in</strong> assembly <strong>and</strong> transportation will fall.<br />

Farmers recommended farm level tra<strong>in</strong><strong>in</strong>g on pigeonpea<br />

production (how to improve yields <strong>and</strong><br />

quality), sale of <strong>in</strong>puts <strong>in</strong> retail outlets with<strong>in</strong> walk<strong>in</strong>g<br />

distance, loan of small seed packs, more government<br />

extension agents, farmer to farmer extension,<br />

<strong>and</strong> direct participation by smallholders <strong>in</strong> market<strong>in</strong>g.<br />

Other recommendations <strong>in</strong>cluded: improve market<br />

efficiency by establish<strong>in</strong>g a market <strong>in</strong><strong>for</strong>mation system.<br />

This will lead to price premiums <strong>for</strong> quality,<br />

reduce transportation <strong>and</strong> transaction costs, <strong>and</strong> improve<br />

technical <strong>and</strong> operational efficiency of buy<strong>in</strong>g<br />

<strong>in</strong> the villages <strong>and</strong> transport<strong>in</strong>g to export centers.<br />

Because of the decl<strong>in</strong>e <strong>in</strong> cash-cropp<strong>in</strong>g opportunities<br />

(<strong>in</strong> turn due to decl<strong>in</strong><strong>in</strong>g export markets), respondents<br />

argued <strong>for</strong> promot<strong>in</strong>g pigeonpea <strong>for</strong> food<br />

security by familiariz<strong>in</strong>g <strong>and</strong> encourag<strong>in</strong>g people to<br />

eat it. To <strong>in</strong>crease domestic consumption they rec- '<br />

ommended tra<strong>in</strong><strong>in</strong>g of farmers <strong>in</strong> better cook<strong>in</strong>g<br />

methods us<strong>in</strong>g, <strong>for</strong> example, the radio to reach more<br />

households. Respondents also recommended that<br />

local <strong>in</strong>dustries be encouraged to exparid collateral<br />

<strong>in</strong>vestments <strong>in</strong> new product <strong>and</strong> market development<br />

such as us<strong>in</strong>g pigeonpea <strong>for</strong> livestock feed.<br />

F<strong>in</strong>ally, recommendations were made <strong>for</strong> more<br />

enlightened tax<strong>in</strong>g <strong>and</strong> licens<strong>in</strong>g policies, removal<br />

of legislative <strong>and</strong> adm<strong>in</strong>istrative barriers to trad<strong>in</strong>g,<br />

<strong>and</strong> measures to correct market imperfections.<br />

Summary <strong>and</strong> Conclusions<br />

The prospects <strong>for</strong> pigeonpea <strong>in</strong> <strong>in</strong>ternational markets<br />

are mixed. Historically pigeonpea cultivation<br />

exp<strong>and</strong>ed because of export-led growth. Pigeonpea<br />

markets are highly globalized <strong>and</strong> dom<strong>in</strong>ated by<br />

India. The export w<strong>in</strong>dow <strong>for</strong> Tanzanian <strong>and</strong> Malawian<br />

pigeonpea is shr<strong>in</strong>k<strong>in</strong>g because of compet<strong>in</strong>g<br />

exports from Myanmar, <strong>and</strong> substitution of pigeonpea<br />

with yellow peas exported by Canada <strong>and</strong><br />

France. Farm gate pri~es are fall<strong>in</strong>g, so farmers<br />

preferentially <strong>in</strong>vest <strong>in</strong> other crops (<strong>and</strong> non-farm<br />

activities) rather than pigeonpea. To '<strong>in</strong>crease competitiveness,<br />

the pigeonpea sub-sectors <strong>in</strong> Tanzania<br />

<strong>and</strong> Malawi need to reduce prices <strong>and</strong> look at particular<br />

niches. Traders identified several opportunities<br />

<strong>for</strong> <strong>in</strong>creas<strong>in</strong>g competitiveness: <strong>in</strong>clud<strong>in</strong>g promot<strong>in</strong>g<br />

the use of high-yield<strong>in</strong>g varieties with traits<br />

dem<strong>and</strong>ed <strong>in</strong> niche markets; extend<strong>in</strong>g crop management<br />

advice that is l<strong>in</strong>ked to produc<strong>in</strong>g gra<strong>in</strong><br />

with quality characteristics required by buyers; sett<strong>in</strong>g<br />

up market<strong>in</strong>g arrangements to encourage a premium<br />

<strong>for</strong> quality production, <strong>and</strong> reduc<strong>in</strong>g transaction<br />

<strong>and</strong> transport costs. At the (arm level, opportunities<br />

lie <strong>in</strong> farmer tra<strong>in</strong><strong>in</strong>g to improve yields <strong>and</strong><br />

quality, sale of <strong>in</strong>puts at retail outlets with<strong>in</strong> walk<strong>in</strong>g<br />

distance, loans <strong>for</strong> small packs of <strong>in</strong>puts, more<br />

government extension agents, farmer to farmer extension,<br />

<strong>and</strong> direct participation by smallholders <strong>in</strong><br />

market<strong>in</strong>g. Because of the decl<strong>in</strong>e <strong>in</strong> opportunities<br />

<strong>for</strong> produc<strong>in</strong>g <strong>for</strong> export, respondents argued <strong>for</strong><br />

promot<strong>in</strong>g pigeonpea <strong>for</strong> food security by familiariz<strong>in</strong>g<br />

<strong>and</strong> encourag<strong>in</strong>g people to eat it. To <strong>in</strong>crease<br />

domestic consumption respondents recommended<br />

tra<strong>in</strong><strong>in</strong>g of farmers <strong>in</strong> better cook<strong>in</strong>g me.thods us<strong>in</strong>g,<br />

<strong>for</strong> example, the radio to reach more households.<br />

These <strong>in</strong>itiatives, together with improvements <strong>in</strong><br />

policy, will improve adoption of pigeonpea technologies,<br />

<strong>and</strong> thus help smallholder farmers improve<br />

food security, <strong>in</strong>come, <strong>and</strong> soil fertility.<br />

References<br />

Daudi, A.T., <strong>and</strong> D.W. Mak<strong>in</strong>a, 1995. Screen<strong>in</strong>g pigeonpea<br />

l<strong>in</strong>es <strong>for</strong> resistance to root-knot nematodes.<br />

In: Improvement of Pigeonpea <strong>in</strong> Eastern <strong>and</strong><br />

Southern Africa, Annual Research Plann<strong>in</strong>g<br />

Meet<strong>in</strong>g 1994, 21-23 September 1994, . Nairobi,<br />

Kenya. Silim, S.N., K<strong>in</strong>g, S.B., <strong>and</strong> Tuwafe, S.<br />

(eds) Patancheru, Andhra Pradesh, India, International<br />

Crops Research Institute <strong>for</strong> the Semi­<br />

Arid Tropics. pp 1-4.<br />

Freeman, A. 2001. Malawi basel<strong>in</strong>e survey report.<br />

In: Improv<strong>in</strong>g <strong>Soil</strong> Management Options <strong>for</strong> Women<br />

Farmers <strong>in</strong> Malawi <strong>and</strong> Zimbabwe. Twomlow S.}.<br />

<strong>and</strong> Ncube, B. (eds) Bulawayo, Zimbabwe: International<br />

Crops Research Institute <strong>for</strong> the Semi­<br />

Arid Tropics. pp 13-16.<br />

Mbwaga, A.M., 1995. Fusarium wilt screen<strong>in</strong>g <strong>in</strong><br />

Tanzania. In: Improvement of Pigeonpea <strong>in</strong> Eastern<br />

<strong>and</strong> Southern Africa- Annual Research Plann<strong>in</strong>g<br />

Meet<strong>in</strong>g 1994, 21-23 September 1994, Nairobi,<br />

Kenya. Silim, S.N., K<strong>in</strong>g, S.B., <strong>and</strong> Tuwafe, S.<br />

(eds) Patancheru, Andhra Pradesh, India, International<br />

Crops Research Institute <strong>for</strong> the Semi­<br />

Arid Tropics. pp 1-4.<br />

234<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Mligo, J.K., 1995. Pigeonpea breed<strong>in</strong>g research <strong>in</strong><br />

Tanzania. In: Improvement of Pigeonpea <strong>in</strong> Eastern<br />

<strong>and</strong> Southern Africa - Annual Research Plann<strong>in</strong>g<br />

Meet<strong>in</strong>g 1994, 21-23 September 1994, Nairobi,<br />

Kenya. Silim, S.N., K<strong>in</strong>g, S.B., <strong>and</strong> Tuwafe, S.<br />

(eds). Patancheru, Andhra Pradesh, India, International<br />

Crops Research Institute <strong>for</strong> the Semi­<br />

Arid Tropics. pp 1-4.<br />

Nene, YL., 1991. Pigeonpea research: Future strategies<br />

<strong>in</strong> Africa. In: Proceed<strong>in</strong>gs of the First Eastern<br />

<strong>and</strong> Southern Africa Regional <strong>Legumes</strong> (Pigeonpea)<br />

Workshop, 25-27 June 1990, Nairobi, Kenya.<br />

Sigh, Laxman Silim, S.N., Ariyanayagam, RP.<br />

<strong>and</strong> Reddy, M.V. (eds) Nairobi, Kenya: Eastern<br />

Africa Regional Cereals <strong>and</strong> <strong>Legumes</strong> (EARCAL)<br />

Program, International Crops Research Institute<br />

<strong>for</strong> the Semi-Arid Tropics. pp 1-4.<br />

Rohrbach, D. 2001. Zimbabwe basel<strong>in</strong>e: Crop management<br />

options <strong>and</strong> <strong>in</strong>vestment priorities <strong>in</strong><br />

Tsholotsho. In: Improv<strong>in</strong>g <strong>Soil</strong> Management Options<br />

<strong>for</strong> Women Farmers <strong>in</strong> Malawi <strong>and</strong> Zimbabwe.<br />

Twomlow S.J. <strong>and</strong> Ncube, B. (eds) Bulawayo,<br />

Zimbabwe: International Crops Research Institute<br />

<strong>for</strong> the Semi-Arid Tropics. pp 13-16.<br />

Semgal, 2001. Same Survey Report. ICRISAT: Bulawayo,<br />

Zimbabwe.<br />

S<strong>in</strong>gh, Laxman, 1990. Overview of pigeonpea improvement<br />

research: Objectives, achievements<br />

<strong>and</strong> look<strong>in</strong>g ahead <strong>in</strong> the African context. In: Proceed<strong>in</strong>gs<br />

of the First Eastern <strong>and</strong> Southern Africa Regional<br />

<strong>Legumes</strong> (Pigeonpeq) Workshop, 25-27 June<br />

1990, Nairobi, Kenya. Sigh, Laxman, Silim, S.N.,<br />

Ariyanayagam, R.P. <strong>and</strong> Reddy, M.V. (eds) Nairobi,Kenya:<br />

Eastern Africa Regional Cereals <strong>and</strong><br />

<strong>Legumes</strong> (EARCAL) Program, International<br />

Crops Research Institute <strong>for</strong> the Semi-Arid Tropics.<br />

pp 1-4.<br />

Silim, S.N., C. Johansen <strong>and</strong> y.s. Chauhan, 1991.<br />

Agronomy of traditiQnal <strong>and</strong> new cropp<strong>in</strong>g systems<br />

of pigeonpea <strong>and</strong> potential <strong>for</strong> Eastern Africa.<br />

In: Pr(Jceed<strong>in</strong>gs of the First Eastern <strong>and</strong> Southern<br />

Africa Regional <strong>Legumes</strong> (Pigeonpea) Workshop,<br />

25-27 June 1990, Nairobi, Kenya. Sigh, Laxman,<br />

Silim, S.N., Ariyanayagam, R.P. <strong>and</strong> Reddy, M.<br />

V. (eds), Nairobi, Kehya: Eastern Africa Regional<br />

Cereals <strong>and</strong> <strong>Legumes</strong> (EARCAL) Program, International<br />

Crops Research Institute <strong>for</strong> the Semi- .<br />

Arid Tropics. pp 17-30.<br />

Silim, S.N. 1992. Traditional <strong>and</strong> alternative pigeonpea-based<br />

cropp<strong>in</strong>g systems. In: Pigeonpea <strong>in</strong><br />

Eastern <strong>and</strong> Southern Africa: Summary Proceed<strong>in</strong>gs<br />

of the Launch<strong>in</strong>g Meet<strong>in</strong>gs <strong>for</strong> the African Development<br />

Bank/ICRISAT Collaborative Pigeonpea Project<br />

<strong>for</strong> Eastern <strong>and</strong> Southern Africa, 17-18 March 1992,<br />

Narobi, Kenya, <strong>and</strong> 30-31 March 1992, Lilongwe,<br />

Malawi. Eds Silim, S.N., Tuwafe, S., <strong>and</strong> McGaw,<br />

E.M. Patancheru, India: International Crops Research<br />

Institute <strong>for</strong> the Semi-Arid Tropics.<br />

Soko, H.N., A.A. Likoswe, S. Tuwafe, <strong>and</strong> T.<br />

Kapewa, 1995. Pigeonpea improvement <strong>in</strong> Malawi.<br />

In: Improvement of Pigeonpea <strong>in</strong> Eastern <strong>and</strong><br />

Southern Africa- Annual Research Plann<strong>in</strong>g Meet<strong>in</strong>g<br />

1994,21-23 September 1994, Nairobi, Kenya.<br />

Silim, S.N., K<strong>in</strong>g, S.B., <strong>and</strong> Tuwafe, S. (eds) pp 1­<br />

4. Patancheru, Andhra Pradesh, Indi~, International<br />

Crops Research Institute <strong>for</strong> the Semi-Arid<br />

Tropics.<br />

Twomlow, S.J. 2001. Zimuto (Zimbabwe) basel<strong>in</strong>e<br />

survey report. In: Improv<strong>in</strong>g <strong>Soil</strong> Management Options<br />

<strong>for</strong> Women Farmers <strong>in</strong> Malawi <strong>and</strong> Zimbabwe.<br />

Twomlow S.J. <strong>and</strong> Ncube, B. (eds) Bulawayo,<br />

Zimbabwe: International Crops Research Institute<br />

<strong>for</strong> the Semi-Arid Tropics. pp 17-25.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 235


Questions <strong>and</strong> Answers<br />

Promotion, Economics <strong>and</strong> Adoption of Annual <strong>Legumes</strong><br />

To Dorah Mwenye<br />

Q: How much was your project try<strong>in</strong>g to promote a<br />

presumably tested <strong>and</strong> trusted package, <strong>and</strong> how<br />

much wete you ask<strong>in</strong>g farmers to test technologies?<br />

A: The project tried <strong>and</strong> tested 1) rotations of<br />

cereals/legumes, 2) <strong>in</strong>tercrops of gra<strong>in</strong> legumes <strong>and</strong><br />

green manures, <strong>and</strong> 3) evaluated two green manure<br />

legumes (sunnhemp + velvet bean). Farmers tested<br />

all the technologies <strong>and</strong> evaluated them, but only<br />

those technologies acceptable by them are be<strong>in</strong>g<br />

promoted.<br />

Q: 1) To what extent are long-term benefits<br />

associated with different legume technologies be<strong>in</strong>g<br />

expla<strong>in</strong>ed <strong>in</strong> current promotion ef<strong>for</strong>ts?<br />

2) What is the m<strong>in</strong>imum <strong>in</strong>vestment required to<br />

kick-start legumes on degraded (ab<strong>and</strong>oned) fields?<br />

A: 1) The long benefits <strong>in</strong> the promotion of<br />

soyabean rotations are <strong>in</strong> the provision of food <strong>and</strong><br />

reduction <strong>in</strong> <strong>in</strong>put costs. <strong>Green</strong> manures will<br />

complement the meager rates of fertilizers applied<br />

by farmers to their maize crop.<br />

2) The m<strong>in</strong>imum <strong>in</strong>put <strong>in</strong>vestment required will be<br />

provided, as a result of the soil analysis to assess the<br />

<strong>in</strong>itial fertility status of the field. Further research is<br />

needed <strong>in</strong> this area.<br />

Q: There is need to look more at management of<br />

green manures, <strong>in</strong>clud<strong>in</strong>g the time of plant<strong>in</strong>g on<br />

green manure per<strong>for</strong>mance. Late plant<strong>in</strong>g would<br />

also reduce legume per<strong>for</strong>mance rather than<br />

attribut<strong>in</strong>g poor per<strong>for</strong>mance solely to the s<strong>and</strong>y<br />

nature of the soils.<br />

A: Agreed, the general management of green <br />

manures is important. All the demonstrations were <br />

set up on limed plots. <br />

Q: What are the causes <strong>for</strong> the non-availability of <br />

<strong>in</strong><strong>for</strong>mation on green manures to extension <strong>and</strong> the <br />

farm<strong>in</strong>g community <strong>and</strong> what measures should be <br />

put <strong>in</strong> place to improve the situation? <br />

A: In<strong>for</strong>mation generated st1lllies <strong>in</strong> the h<strong>and</strong>s of<br />

researchers. One of the limit<strong>in</strong>g factors is the weak<br />

l<strong>in</strong>kage between research <strong>and</strong> extension. The<br />

measures to be put <strong>in</strong> place to improve the situation<br />

are discussed at the end of the conference.<br />

Q : When you add the element of utilization <strong>in</strong> your <br />

project it will help to <strong>in</strong>crease the adoption rate of <br />

the legume crops. <br />

A: Yes I agree. An impact assessment will best<br />

reveal the way <strong>for</strong>ward. One of the issues to be<br />

considered <strong>in</strong> the next step is utilization.<br />

To Mulugetta Mekuria <strong>and</strong> Shephard Siziba .<br />

Q: Your comments on macroeconomic policy were<br />

all criticisms of governments <strong>in</strong> southern Africa.<br />

What do you th<strong>in</strong>k IS the effect of agricultural<br />

policies <strong>in</strong> the EU <strong>and</strong> the USA?<br />

A: Yes agricultural development has been adversely<br />

affected by poor policies <strong>in</strong> Southern Africa. For<br />

example, decl<strong>in</strong><strong>in</strong>g <strong>in</strong>vestments <strong>in</strong> extension,<br />

agricultural research. It is also true that protection<br />

<strong>and</strong> subsidy policies of the OEeD will affect ou·r<br />

competitiveness. Hence the debate on free world<br />

trade.<br />

Q: Discount<strong>in</strong>g rate came out as hav<strong>in</strong>g a large<br />

effect on NPV. How do you measure discount<strong>in</strong>g<br />

rate, <strong>for</strong> different groups of farmers?<br />

A: The discount<strong>in</strong>g rate used <strong>for</strong> both farmers is the<br />

same. It is the go<strong>in</strong>g <strong>in</strong>terest (borrow<strong>in</strong>g) rate used<br />

by a public bank.<br />

Q: In the medium term we can <strong>for</strong>get subsidies. The<br />

USA has launched the GOA <strong>in</strong>itiative <strong>and</strong> regional<br />

trade hubs.<br />

A: I th<strong>in</strong>k you are right.<br />

Q: The presenters cited the issue of policy be<strong>in</strong>g<br />

wrong. It is now three or four years s<strong>in</strong>ce the SFNet<br />

Economics <strong>and</strong> Policy Work<strong>in</strong>g Group (EPWG) was<br />

constituted. What is the impact of EPWG <strong>in</strong> terms of<br />

mak<strong>in</strong>g the policy right?<br />

A: Its not easy <strong>for</strong> researchers to <strong>in</strong>fluence policy<br />

change - policies are not favorable still.<br />

Q: Look<strong>in</strong>g at sensitivity analysis, what policy<br />

<strong>in</strong>struments would you advocate <strong>for</strong> concern<strong>in</strong>g<br />

green manures, <strong>and</strong> are there major<br />

recommendations from this conference?<br />

A: Profitability of green manure technology is<br />

sensitive to prices <strong>and</strong> <strong>in</strong>put costs.<br />

Recommendations are that relatively high output<br />

market prices of maize favour adoption of mucuna.<br />

A low <strong>in</strong>terest rate will also facilitate adoption of<br />

mucuna by farmers.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

237


To Charles Nhemachena, et al.<br />

Q:<br />

1) What target yields (or limits) carrb~<br />

recommended <strong>for</strong> gra<strong>in</strong> <strong>and</strong> green manure legumes<br />

lillder the current economic tools of analysis <strong>in</strong><br />

order to give a positive feedback to research?<br />

2) Most of the economic evaluation seems to be<br />

based on data sets that do not represent the optimal<br />

practices/experimental designs. Are we sure we<br />

are not dismiss<strong>in</strong>g orupgrad<strong>in</strong>g technologies<br />

prematurely?<br />

A:<br />

1) Due to great diversity of the biophysical <strong>and</strong><br />

socio-economic environments, it is difficult to<br />

recommend specific yields <strong>for</strong> gra<strong>in</strong> <strong>and</strong> green<br />

manure legumes. Depend<strong>in</strong>g on the available<br />

conditions <strong>in</strong> an area, yield levels should be high<br />

enough to cover the costs of production <strong>in</strong>curred<br />

<strong>and</strong> give positive net returns to farmers. Generally,<br />

from a given gra<strong>in</strong> <strong>and</strong> green manure legume, yield<br />

levels should be high enough to offer positive net<br />

returns to factors of production used.<br />

2) Economic evaluations of any undertak<strong>in</strong>g or<br />

enterprise make assumptions or goes <strong>in</strong> the <strong>for</strong>m of<br />

an abstraction from reality to lillderst<strong>and</strong><br />

relationships between certa<strong>in</strong> variables, hold<strong>in</strong>g<br />

other conditions constant. Like any scientific<br />

experiment, it has controls. In addition, provisions<br />

are given <strong>for</strong> possible outcomes if other factors<br />

previously held constant come <strong>in</strong>to play, <strong>for</strong><br />

example <strong>in</strong> sensitivity analysis, so I don't th<strong>in</strong>k we<br />

are dismiss<strong>in</strong>g or upgrad<strong>in</strong>g technologies<br />

prematurely.<br />

C: There is need <strong>for</strong> longer-term rotational trials to<br />

have a quantitative idea about longer effects of<br />

legumes on soil fertility.<br />

To Joseph Rusike, et al.<br />

Q: .Can we learn from what happened <strong>in</strong> Myanmar<br />

where pigeonpea production has <strong>in</strong>creased<br />

substantially <strong>in</strong> a few years time?<br />

A: Agricultural sector growth is be<strong>in</strong>g actively <br />

promoted by the Myanmar Government. <br />

Q: What is the potential size of the pigeonpea <br />

market <strong>in</strong> India <strong>and</strong> the world? <br />

A: Total world pigeon pea production from 1980-82<br />

to 1996-98 is as follows: (<strong>in</strong> 1000 t).<br />

1980-1982 2,805.4<br />

1990-1992 2,805<br />

1996-1998 2,887<br />

Q: <strong>Gra<strong>in</strong></strong> yields <strong>for</strong> pigeonpea from most<br />

presentations are around 200 kg/ha. Is the yield<br />

potential <strong>for</strong> pigeonpea any higher than this <strong>for</strong><br />

Zimbabwe? How do our potential yields compare<br />

with yield levels achieved elsewhere <strong>in</strong> the world,<br />

<strong>in</strong> places such as India?<br />

Q: I too am <strong>in</strong>terested <strong>in</strong> the pigeon pea yields <strong>in</strong><br />

ideal conditions. Seeds are also a constra<strong>in</strong>t. There<br />

are seeds com<strong>in</strong>g through donations, com<strong>in</strong>g<br />

through NGO programs, etc. Maybe the <strong>Soil</strong> Fert<br />

Net can help with pigeonpea mfuture.<br />

A: Here is the per<strong>for</strong>mance of new pigeonpea<br />

varieties <strong>in</strong> on-station trials at Hombolo <strong>and</strong><br />

Makutupora Research Stations, Tanzania, 2001­<br />

2002.<br />

Variety Days to 50% 100-seed Yield<br />

flower<strong>in</strong>g weight (kg/hal<br />

Farmer 183 16.2 476<br />

ICEAPOO053 165 16.4 604<br />

ICEAPOO040 162 20.0 667<br />

ICEAPOO020 163 18.8 752<br />

ICEAPOO068 85 14.0 1530<br />

Q: The market <strong>for</strong> pigeonpea <strong>in</strong> India will be<br />

saturated if the whole of SA DC grows pigeonpea.<br />

We need to diversity markets to <strong>in</strong>clude domestic<br />

markets.<br />

A: Yes I agree.<br />

Q: How do we promote technologies to farmers?<br />

Are the technologies <strong>in</strong>troduced to the farmers one<br />

after the other or simultaneously.<br />

C: We can ask, should the technologies be<br />

<strong>in</strong>troduced at once or should we choose which<br />

technologies to expose to farmers? One of the<br />

approaches we are us<strong>in</strong>g <strong>in</strong> Zimbabwe is to cluster<br />

technologies <strong>in</strong> an area. We give each farmer one or<br />

two technologies <strong>and</strong> give other different<br />

technologies to other farmers <strong>in</strong> the area to try.<br />

Involve all farmers <strong>in</strong> the area on implementation,<br />

monitor<strong>in</strong>g, evaluation of all the technologies <strong>and</strong><br />

hold field days. Allow farmers later to choose the<br />

technology they want to adopt.<br />

238<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> Sail <strong>Fertility</strong> <strong>in</strong> Southern Africa


Synthesis <strong>and</strong> Work<strong>in</strong>g Group Reports<br />

Synthesis Reports<br />

Reporters:<br />

Webster Sakala, Steve Twomlow, Aggrey Agumya,<br />

Ishmael Pompi, Moses Mwale, Wezi Mhango, Paul<br />

Mapfumo, <strong>and</strong> Joseph Rusike<br />

Introductory Key Papers<br />

The papers <strong>in</strong> this session were very broad rang<strong>in</strong>g.<br />

Important po<strong>in</strong>ts <strong>in</strong>cluded:<br />

Target<strong>in</strong>g <strong>and</strong> Niches:<br />

• Target<strong>in</strong>g is useful, through decision trees <strong>and</strong><br />

whole farm models, <strong>in</strong>to niches on farm. Niches<br />

were thought to be important because not all<br />

technologies per<strong>for</strong>m best <strong>in</strong> all environments.<br />

For example, mucuna does not grow well <strong>in</strong> waterlogged<br />

conditions. Another example on<br />

proper utilization of niches is the use of long<br />

duration pigeonpea. These do well <strong>in</strong> a wellextended<br />

ra<strong>in</strong>y season. The system is well<br />

adapted to southern parts of Malawi because of<br />

the extended Chiperoni ra<strong>in</strong>s after the ma<strong>in</strong><br />

ra<strong>in</strong>s.<br />

• From this work we have learned <strong>and</strong> need to<br />

accept that some technologies may not be useful<br />

<strong>and</strong> adaptable, e.g. alley cropp<strong>in</strong>g compared<br />

with soyabean <strong>in</strong> some parts of Zimbabwe.<br />

• Process research is to be encouraged so that we<br />

can develop a clear underst<strong>and</strong><strong>in</strong>g on some factors<br />

that limit technology adaptation to marg<strong>in</strong>al<br />

niches.<br />

Multiple value of green manure:<br />

• The papers also <strong>in</strong>dicated that fast <strong>and</strong> quick<br />

adoption of some green manures <strong>and</strong> gra<strong>in</strong> legumes<br />

is facilitated by their multiple uses <strong>in</strong>clud<strong>in</strong>g<br />

as food, feed, cash <strong>and</strong> firewood.<br />

• Technologies with higher multip'l~ values are<br />

likely to be adopted. Examples were pigeonpea<br />

because of its. cash attractiveness, <strong>and</strong> soyabean<br />

(not ma<strong>in</strong>ly <strong>for</strong> soil fertility but) because of the<br />

cash <strong>in</strong>centive.<br />

Socio Economic Factors:<br />

• When new technologies are be<strong>in</strong>g tested <strong>in</strong> new<br />

areas there is need to further underst<strong>and</strong> the<br />

exist<strong>in</strong>g farm<strong>in</strong>g household systems <strong>in</strong> the area.<br />

• Once the systems have been fully studied, some<br />

aspects of the cropp<strong>in</strong>g systems can be <strong>in</strong>corporated<br />

<strong>in</strong>to the technology, to better fit the technology<br />

<strong>in</strong>to the exist<strong>in</strong>g system.<br />

• Conduct cos,t-benefit analysis as a rout<strong>in</strong>e.<br />

Scal<strong>in</strong>g Up: <br />

A range of questions emerged dur<strong>in</strong>g the discus­<br />

sion: <br />

• Who does it <strong>and</strong> who is best placed to do it?<br />

• When is the best time to measure technology<br />

<strong>and</strong> method adoption?<br />

• What <strong>in</strong>fluences adoption?<br />

Synchrony:<br />

• We need to look more at the practicality of<br />

match<strong>in</strong>g nutrient release <strong>and</strong> nutrient dem<strong>and</strong><br />

from comb<strong>in</strong>ed organics <strong>and</strong> <strong>in</strong>organics.<br />

Seed Issues:<br />

• Who provides the starter seed with annual legumes?<br />

• If seed is of no cleJ.r economic value (as with<br />

some green manures), how then do we susta<strong>in</strong><br />

its supply?<br />

Rhizobium, N Fixation <strong>and</strong> Microbiology<br />

Four papers were presented:<br />

Nitrogen fixation, gra<strong>in</strong> yields <strong>and</strong> residual N­<br />

benefits of promiscuous soyabean tomaize under<br />

smallholder field conditions. kasasa et al.<br />

Interaction of <strong>in</strong>oculum <strong>and</strong> lim<strong>in</strong>g on yield <strong>and</strong> N<br />

fixation by soyabean grown on s<strong>and</strong>y soil:- A case<br />

study of Murewa District. Nemasasi et al.<br />

Response of different cultivars of bean to <strong>in</strong>oculation<br />

<strong>and</strong> nitrogen fertilizer application. Sikombe et<br />

al.<br />

Role of phosphorus <strong>and</strong> mycorrhizal fungi on<br />

nodulation <strong>and</strong> shoot nitrogen content <strong>in</strong> groundnut,<br />

pigeonpea <strong>and</strong> lab lab bean. Besmer et al.<br />

Reasons <strong>for</strong> Quantify<strong>in</strong>g N Fixation:<br />

• There is a need <strong>for</strong> an underst<strong>and</strong><strong>in</strong>g of the relative<br />

contribution of N-fix<strong>in</strong>g components to the<br />

N cycle with<strong>in</strong> ecological conditions.<br />

• To underst<strong>and</strong> the amount of N2 fixed by legumes<br />

<strong>for</strong> the development of an efficient agricultural<br />

production system.<br />

• Evaluation of the symbiotic effectiveness of<br />

rhizobial <strong>in</strong>oculants <strong>and</strong> success of <strong>in</strong>oculation,<br />

or the N fix<strong>in</strong>g capabilities of legumege1Ol.Qtypes<br />

<strong>in</strong> plant breed<strong>in</strong>g programs.<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

239


• Assessment of the potential benefits from the<br />

_<strong>in</strong>put of fixed N2, residual effects on subsequent<br />

crops follow<strong>in</strong>g the growth of legumes or effects<br />

on crops associated withlegu!11es.<br />

Need <strong>for</strong> a Reference Crop:<br />

-The assumption is that both non-fix<strong>in</strong>g (control)<br />

.<strong>and</strong> fix<strong>in</strong>g crops take up N from the soil <strong>in</strong> the same<br />

ratio.<br />

-Wrong choice of a.reference crop can either underestimate<br />

or overestimate the N2 fixed.<br />

• Reference crop comb<strong>in</strong>ations <strong>in</strong>clude wheat<br />

(bean), maize (soyabean), <strong>and</strong> non-promiscuous<br />

soyabean variety (soya bean).<br />

Why do legumes fix nitrogen?:<br />

• "Conventional wisdom" has it that legumes fix<br />

N <strong>for</strong> themselves.<br />

• However data here showed thaf maize yields<br />

after soya bean <strong>in</strong>creased even where stover was<br />

removed. This appeared due to root exudates<br />

<strong>and</strong> build-up <strong>in</strong> SOM.<br />

Inoculum Use:<br />

The follow<strong>in</strong>g aspects are important:<br />

1. Isolate<br />

2. Selection <strong>and</strong> authentication (Test<strong>in</strong>g)<br />

3. Production <strong>for</strong> specific locations<br />

The possibility exists that apply<strong>in</strong>g exotic stra<strong>in</strong>s of<br />

rhizobium <strong>in</strong>discrim<strong>in</strong>ately can suppress <strong>in</strong>dige~<br />

nous stra<strong>in</strong>s.<br />

Effect of N source on Bean gra<strong>in</strong> yield:<br />

• CIAT 899 <strong>and</strong> the local isolate were comparable<br />

<strong>in</strong> Mbala <strong>and</strong> Lundazi, Zambia.<br />

• In Pembela, the native rhizobia stra<strong>in</strong>s at the<br />

trial site were as effective as other stra<strong>in</strong>s <strong>in</strong> <strong>in</strong>creas<strong>in</strong>g<br />

gra<strong>in</strong> yields.<br />

• <strong>Soil</strong> available P determ<strong>in</strong>es to a large degree the<br />

nodulation <strong>in</strong> groundnut <strong>in</strong> semi-arid parts of<br />

Zimbabwe.<br />

• Enhanc<strong>in</strong>g AMF activity of native fungi promotes<br />

nodulation <strong>and</strong> <strong>in</strong>creases shoot N concentration<br />

<strong>in</strong> lab lab bean.<br />

• To enhance N fixation, can we explore comb<strong>in</strong>ations<br />

of P <strong>and</strong> Rhizobia?<br />

Screen<strong>in</strong>g of Annual <strong>Legumes</strong> <strong>for</strong> Adaptation<br />

<strong>and</strong> Use<br />

Presentations covered <strong>in</strong>digenous herbaceous legumes,<br />

tim<strong>in</strong>g of legum~ <strong>in</strong>corporation, per<strong>for</strong>mance<br />

of short duration pigeon pea, risk diversification<br />

through legumes <strong>and</strong> simulat<strong>in</strong>g maize response to<br />

mucuna.<br />

Three of the five papers were directly devoted to<br />

screen<strong>in</strong>g. The other two dealt with issues relevant<br />

to screen<strong>in</strong>g. Only the paper on <strong>in</strong>difallows dealt<br />

with br<strong>in</strong>g<strong>in</strong>g on stream a new family of legumesthe<br />

<strong>in</strong>digenous ones .<br />

Indifallows:<br />

• These appear to be self-regenerat<strong>in</strong>g <strong>and</strong> well<br />

adapted.<br />

• Among the benefits <strong>for</strong> N2fixation <strong>and</strong>farmer<br />

adoption, some <strong>in</strong>difallow species demonstrated<br />

high levels of N2 fixation, <strong>and</strong> the<br />

"Gwezu smell approach" participatory method<br />

<strong>for</strong> identify<strong>in</strong>g legumes works well.<br />

• There was some concern that these species may<br />

not withst<strong>and</strong> graz<strong>in</strong>g.<br />

• Suggestions .<strong>for</strong> the <strong>in</strong>difallow work <strong>in</strong>cluded<br />

extend<strong>in</strong>g the study to Matebelel<strong>and</strong> <strong>and</strong> measur<strong>in</strong>g<br />

how the population of species varies with<br />

the duration of the fallow. It is likely to change<br />

markedly.<br />

Effect of time of legume <strong>in</strong>corporation on maize<br />

yield:<br />

• Yields from early or late <strong>in</strong>corporation were not<br />

statistically different. Late <strong>in</strong>corporation<br />

spreads labour dem<strong>and</strong>. This is consistent with<br />

the earlier <strong>Soil</strong>FertNet study over three seasons.<br />

• <strong>Soil</strong> moisture content from late <strong>in</strong>corporation is<br />

higher.<br />

• Water use efficiency is an additional benefit to<br />

N2-fixation. Inclusion of water use <strong>in</strong> the study<br />

objectives was commended.<br />

• Mucuna <strong>and</strong> C. grahamiana are recommended as<br />

best bets <strong>for</strong> Zimbabwe communal l<strong>and</strong>s. C. grahamitma<br />

adapts better to degraded soils due to<br />

its strong roots.<br />

• Exam<strong>in</strong>e the method of <strong>in</strong>corporation-it might<br />

be a constra<strong>in</strong>t <strong>for</strong> expansion of plot sizes.<br />

Short duration pigeonpea <strong>in</strong> Matebelel<strong>and</strong>:<br />

• The short duration types per<strong>for</strong>med better <strong>in</strong><br />

clayey than <strong>in</strong> s<strong>and</strong>ier soils.<br />

• Concern was raised about the low yields <strong>and</strong><br />

competition by weeds.<br />

• Also there was concern about the need <strong>for</strong><br />

spray<strong>in</strong>g aga<strong>in</strong>st pests. Explore the effect of not<br />

spray<strong>in</strong>g on per<strong>for</strong>mance.<br />

• The recommended time of <strong>in</strong>corporation is after<br />

harvest<strong>in</strong>g the gra<strong>in</strong>.<br />

• We also need to see how to improve access to<br />

literature about past work on legumes <strong>in</strong> the<br />

region.<br />

240<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Afriea


Screen<strong>in</strong>g:<br />

• New options identified were "<strong>in</strong>difallows" <strong>and</strong><br />

a broaden<strong>in</strong>g of the suitability range <strong>for</strong> pigeon<br />

pea <strong>in</strong> southern Africa.<br />

• All three screen<strong>in</strong>g studies reported were<br />

started recently <strong>in</strong> the 2000/01 <strong>and</strong> 2001/02 seasons,<br />

yet benefits usually accrue after 3-5 years.<br />

Computer simulation of benefits could augment<br />

the experiments.<br />

• There was a general view that weshould cont<strong>in</strong>ue<br />

screen<strong>in</strong>g but that first we should establish<br />

what has already been done by a thorough<br />

literature review <strong>and</strong> employ<strong>in</strong>g tools such as<br />

the Legume Expert System.<br />

• Biotechnology offers prospects of improv<strong>in</strong>g<br />

our ability to screen thous<strong>and</strong>s of species.<br />

Risk diversification <strong>and</strong> computer simulation:<br />

• Adoption of legumes depends on return on <strong>in</strong>vestment<br />

<strong>and</strong> risk characteristics.<br />

• Computer simulation is undertaken to explore<br />

long-term trends.<br />

• The results (recommendations) from the APSIM<br />

simulations are consistent with current farmer<br />

practices except <strong>for</strong> the use of kraal manure <strong>in</strong><br />

drier areas.<br />

• The extremely low rates of fertilizer application<br />

<strong>in</strong> serni-arid areas (18 kg/ha) reflect farmer<br />

aversion to risk <strong>in</strong> these areas.<br />

• Non-market benefits (rema<strong>in</strong><strong>in</strong>g <strong>in</strong> the soil) are<br />

captured <strong>in</strong> the yield through APSIM. Values<br />

not captured are considered not relevant to<br />

farmers.<br />

Simulat<strong>in</strong>g maize yield response:<br />

• Computer simulation is undertaken to overcome<br />

the short-term perspective of most expetimental<br />

trials. The simulations reported covered<br />

a 46-year period.<br />

• APSIM, unlike many model<strong>in</strong>g tools, considers<br />

carry-over effects of variables <strong>in</strong>clud<strong>in</strong>g soil N.<br />

• Long-term simulation of Mucuna <strong>in</strong>dicates large<br />

potential benefits over the long term. Increases<br />

of 100-200% <strong>in</strong> maize yield were reported.<br />

These benefits are not captured <strong>in</strong> short-term<br />

experiments.<br />

• So far, the simulated maize yields are show<strong>in</strong>g<br />

satisfactory agreement 'with field trials, but<br />

more needs to be done about legumes. Consultations<br />

are underway to validate legume gra<strong>in</strong><br />

yields.<br />

General comments: <br />

We should look at soil fertility more broadly <strong>and</strong> <br />

give greater attention to other benefits from leg­<br />

umes besides N-fixation, e.g. soil physical proper­<br />

ties, water use efficiency, weed suppression <strong>and</strong> till-<br />

age effects. For example, pigeon pea's noted contribution<br />

to SOM is probably traceable to deep root<strong>in</strong>g,<br />

while chickpea <strong>in</strong>creases the availability of P.<br />

With respect to soil nutrients, whereas P <strong>and</strong> N are<br />

adequately discussed; more consideration should be<br />

given to other nutrients such as z<strong>in</strong>c.<br />

A general question was, where should we start the<br />

screen<strong>in</strong>g; from the plant side or the rhizobium side?<br />

It is important that improved legume varieties be<br />

developed. This means that we need to <strong>in</strong>volve/<br />

collaborate with breeders <strong>in</strong> the screen<strong>in</strong>g. We also<br />

need to be <strong>in</strong>volved <strong>in</strong> their work so that the soil<br />

fertility improvement, water use, weed suppression<br />

<strong>and</strong> other traits that we would like to see enhanced<br />

<strong>in</strong> legumes are given some attention by breeders.<br />

Identification of Best Bet <strong>Legumes</strong> <strong>for</strong><br />

On-Farm Per<strong>for</strong>mance as <strong>Gra<strong>in</strong></strong> <strong>Legumes</strong>,<br />

Intercrops, Rotations, <strong>and</strong> <strong>Green</strong> <strong>Manures</strong><br />

Eight papers <strong>and</strong> one poster were presented.<br />

Key f<strong>in</strong>d<strong>in</strong>gs from the presentations <strong>and</strong> discussion:<br />

• From the evidence presented <strong>in</strong> the different<br />

papers, it is clear that yield responses were<br />

greater when crop residues <strong>and</strong> manures were<br />

ploughed <strong>in</strong>, i.e. <strong>in</strong>corporated, compared to ·<br />

when they were left on the surface as a mulch.<br />

Consequently, we may beg<strong>in</strong> to see some conflicts<br />

between soil fertility <strong>and</strong> conservation<br />

farm<strong>in</strong>g which advocates that crop residues be<br />

left on the soil surface as a mulch.<br />

• Intercropp<strong>in</strong>g vs. rotation issues. Data presented<br />

by the authors suggest that <strong>in</strong> the short<br />

term (two or three seasons) a cereal-green manure<br />

rotation is less productive than a cereal/<br />

gra<strong>in</strong> legume <strong>in</strong>tercrop. This is supported by the<br />

fact that many farmers that have participated <strong>in</strong><br />

trials are more will<strong>in</strong>g to adopt an <strong>in</strong>tercrop approach<br />

to soil fertility amendment than a green<br />

manure-cereal rotation, particularly when l<strong>and</strong><br />

is scarce.<br />

• We had little <strong>in</strong><strong>for</strong>mation presented on the<br />

<strong>in</strong>tercropp<strong>in</strong>g characteristics of the different legume<br />

<strong>and</strong> cereal varieties currently available.<br />

More work needs to be done on that.<br />

• Although many of the studies reported <strong>in</strong> this<br />

session were conducted on farmers fields, very<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> SQil <strong>Fertility</strong> <strong>in</strong> Southern Africa<br />

241


few studies characterized the household assets<br />

of the host farmers. Consequently it is difficult<br />

to assess the reasons why some farmers may<br />

favour one technology <strong>and</strong> others another.<br />

• Few papers presented actually showed clear<br />

hypotheses <strong>for</strong> the experiments.<br />

• It is evident from the papers presented that host<br />

farmers are beg<strong>in</strong>n<strong>in</strong>g to develop their own local<br />

taxonomies. These need to be catalogued to<br />

enable wider dissem<strong>in</strong>ation.<br />

Suggestions aris<strong>in</strong>g:<br />

• There is a need to collate <strong>in</strong><strong>for</strong>mation from different<br />

trials <strong>in</strong> the region <strong>in</strong>to GIS databases to<br />

look at soil, climate <strong>and</strong> social <strong>in</strong>teractions.<br />

• Ex ante market studies on legumes are required.<br />

This will meet a grow<strong>in</strong>g need to assess market<br />

dem<strong>and</strong>s <strong>for</strong> legumes be<strong>for</strong>e they are promoted<br />

<strong>in</strong> an area.<br />

• Need a synthesis study on results ~e have to<br />

date concern<strong>in</strong>g the relative merits <strong>and</strong> benefits<br />

of <strong>in</strong>tercropp<strong>in</strong>g <strong>and</strong> rotations.<br />

• Comb<strong>in</strong>ations of <strong>in</strong>organics <strong>and</strong> organics need<br />

further attention. More <strong>and</strong> detailed studies are<br />

required on the synergistic effects of organiC<br />

<strong>and</strong> <strong>in</strong>organic fertility amendments. At the<br />

same time, work is required to develop simple<br />

<strong>and</strong> transferable messages.<br />

• Detailed economic analyses of many of the <strong>in</strong>terventions<br />

br<strong>in</strong>g <strong>in</strong>to question their appropriateness<br />

<strong>for</strong> smallholder farm<strong>in</strong>g systems. If research<br />

<strong>in</strong>tends that the smallholder farmer is to<br />

benefit from their work, it is essential that research<br />

take on a greater participatory emphasis<br />

<strong>in</strong> problem identification, development <strong>and</strong><br />

evaluation of <strong>in</strong>terventions.<br />

legume residues <strong>and</strong> concluded t fertilizer N<br />

applications were necessary <strong>for</strong> susta<strong>in</strong>ed production<br />

(based on one abnormal year).<br />

2. N availability/dynamics <strong>in</strong> soil:<br />

• M<strong>in</strong>eral-N <strong>in</strong> soil does not correlate well with N<br />

recovery by maize from preced<strong>in</strong>g legumes nor<br />

with maize yield response.<br />

• M<strong>in</strong>eral-N dynamics suggest that m<strong>in</strong>eralized<br />

N is flushed through the soil profile be<strong>for</strong>e<br />

maize roots are present to extract it, lead<strong>in</strong>g to<br />

poor synchrony of N availability <strong>and</strong> N uptake<br />

by maize.<br />

3. N recovery from legumes (<strong>and</strong> fertilizer) by<br />

subsequent maize crops:<br />

• Measured us<strong>in</strong>g 15N techniques by Chikowo et<br />

al.<br />

• Net N <strong>in</strong>puts from legumes were < 10 kg/ha <strong>for</strong><br />

soybean, pigeonpea <strong>and</strong> erotolaria but> 80 kg/<br />

ha <strong>for</strong> mucuna.<br />

• N recovery was always < 36%; be<strong>in</strong>g least <strong>for</strong><br />

mucuna (12%) <strong>and</strong> greater <strong>for</strong> legumes with<br />

small N <strong>in</strong>puts. Their high percent recovery<br />

possibly be<strong>in</strong>g due to their low total N <strong>in</strong>put.<br />

• N recovery from fertilizer was 2x N recovery<br />

. from mucuna, which had similar <strong>in</strong>puts (95 <strong>and</strong><br />

84 kg-N fha, respectively).<br />

Issues from the questions <strong>and</strong> discussion:<br />

• Economics of green manures: What marg<strong>in</strong>al<br />

<strong>in</strong>crement/ yield ga<strong>in</strong> is necessary <strong>for</strong> farmers<br />

to take up the technology?<br />

• The multiple uses of green manures need 'to be<br />

considered <strong>in</strong> maize/green manure-gra<strong>in</strong> legume<br />

systems; e.g., animals that graze residues.<br />

Legume Benefits on Maize Productivity<br />

<strong>and</strong> <strong>Soil</strong> Properties<br />

Ma<strong>in</strong> issues from the three presentations <strong>in</strong> this<br />

session were:<br />

1. Maize response to legumes <strong>in</strong> rotations <strong>and</strong><br />

<strong>in</strong>tercrops.<br />

2. N availability / dyna.mics <strong>in</strong> soil as affected by<br />

green manures <strong>and</strong> gra<strong>in</strong> legumes <strong>in</strong> rotations<br />

<strong>and</strong> <strong>in</strong>tercrops.<br />

3. N recovery from legumes (<strong>and</strong> fertilizer) by<br />

subsequent maize crops.<br />

1. Maize response to legumes <strong>in</strong> rotations <strong>and</strong><br />

<strong>in</strong>tercrops:<br />

• In two studies, legumes gave very large maize<br />

yield <strong>in</strong>creases; by 2-3x the yields without fertilizer.<br />

• BUT one study found only weak responses to<br />

Improv<strong>in</strong>g the Productivity of <strong>Gra<strong>in</strong></strong> <strong>Legumes</strong><br />

<strong>and</strong> <strong>Green</strong> <strong>Manures</strong><br />

Highlight po<strong>in</strong>ts from the papers:<br />

1. Agronomic effectiveness of phosphate rock<br />

products, mono-ammonium phosphate <strong>and</strong><br />

lime on gra<strong>in</strong> legume productivity <strong>in</strong> some<br />

Zambian soils (abed I. Lungu <strong>and</strong> Kalaluka<br />

Muny<strong>in</strong>da)<br />

• Partially acidulated phosphate rock (PAPR)<br />

ma<strong>in</strong>ta<strong>in</strong>ed a high level of soil P than mono ammonium<br />

phosphate (MAP)<br />

• Lime <strong>in</strong>creased P effectiveness <strong>and</strong> legume biomass<br />

productivity<br />

• Optimal P application rate <strong>for</strong> legumes was 80<br />

kg P20S per ha<br />

• Simply processed PAPR (acidulated with sulphuric<br />

acid) was agronomically as effective as<br />

242<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


MAP <strong>and</strong> even more effective than MAP on<br />

acid soils<br />

• Was greater soil residual P with PAPR than<br />

with MAP.<br />

2. The effect of P <strong>and</strong> S on biomass productivity of<br />

gra<strong>in</strong> legume crops <strong>and</strong> subsequent maize gra<strong>in</strong><br />

yields <strong>in</strong> Malawi (AB Mwalw<strong>and</strong>a, Spider Mughogho<br />

<strong>and</strong> Webster Sakala)<br />

• Dry matter yields ranged from 2 t per ha with<br />

no P <strong>and</strong> S to >6 t per ha with 20-40 kg P per ha<br />

<strong>and</strong> 4-8 kg per ha S<br />

• Yields were Pigeonpea


• Conduct more research to measure <strong>and</strong> value<br />

other benefits<br />

• Develop policy <strong>in</strong>struments (ptjce <strong>in</strong>creases <strong>and</strong><br />

decrease <strong>in</strong> <strong>in</strong>terest rates) to support green manures.<br />

2. To raise the economic potential of <strong>Green</strong> Manure,<br />

we need to address:<br />

a) Market constra<strong>in</strong>ts<br />

• Low yields<br />

• Poor quality<br />

• Gap, factory vs. farm gate<br />

• Lack of <strong>in</strong><strong>for</strong>mation<br />

• Government policies<br />

• Local <strong>in</strong>dustrial use.<br />

b) Farm constra<strong>in</strong>ts<br />

• Poor fit <strong>in</strong>to cropp<strong>in</strong>g system<br />

• Poor <strong>in</strong>put market<br />

• Communication problems (poor market<strong>in</strong>g).<br />

3. Learn from socio economic analysis<br />

• Policy <strong>and</strong> development plann<strong>in</strong>g is vital<br />

• Assess the conditions under which cereal legume<br />

rotations <strong>and</strong> <strong>in</strong>tercropp<strong>in</strong>g are most feasible<br />

<strong>in</strong> the smallholder sector<br />

Appreciate that cowpea appears the most attractive<br />

of all legumes to Zimbabwe farmers.<br />

Work<strong>in</strong>g Group Reports<br />

Biophysical Work<br />

244<br />

1. Benefits of the Technologies <strong>and</strong> the Work<br />

Completed<br />

• <strong>Legumes</strong> (gra<strong>in</strong> legumes as well as green<br />

manures) <strong>in</strong>crease soil fertility <strong>and</strong> productivity<br />

<strong>and</strong> there<strong>for</strong>e the gra<strong>in</strong> yields of subsequent<br />

maize crops.<br />

• <strong>Green</strong> manures tended to give more consistent<br />

<strong>and</strong> substantive effects on subsequent maize<br />

yields than did gra<strong>in</strong> legumes. <strong>Green</strong> manures<br />

can <strong>in</strong>crease maize gra<strong>in</strong> yields by as much as<br />

385%, or 2.5 - 3.0 t/ha on farmer's fields <strong>in</strong><br />

Malawi.<br />

• The yield benefit of N from a legume can be due<br />

to an <strong>in</strong>crease <strong>in</strong> below ground biomass, as<br />

appears to be the case with soyabean.<br />

• Improvements <strong>in</strong> maize productivity have<br />

important consequences <strong>for</strong> diversification <strong>and</strong><br />

food security.<br />

• Various types of economic benefits accrue,<br />

<strong>in</strong>clud<strong>in</strong>g the reduction <strong>in</strong> amounts <strong>and</strong> costs of<br />

<strong>in</strong>organic fertilizer ·<strong>in</strong>puts <strong>and</strong> extra gra<strong>in</strong> <strong>and</strong><br />

cash.<br />

• Weed suppression may result (<strong>and</strong> can be especially<br />

beneficial with Striga). There may be important<br />

labour sav<strong>in</strong>gs <strong>for</strong> weed<strong>in</strong>g, especially<br />

<strong>in</strong> high ra<strong>in</strong>fall areas.<br />

• There is a potential benefit with improved soil<br />

physical properties (aggregates, <strong>in</strong>filtration, porosity,<br />

soil loss/surface runoff, water use efficiency).<br />

• Fodder resources may <strong>in</strong>crease also.<br />

2. Gaps <strong>and</strong> Limits with Exist<strong>in</strong>g Work <strong>and</strong><br />

Knowledge<br />

Reviews <strong>and</strong> Synthesis:<br />

• The current reviews presented <strong>for</strong> Malawi <strong>and</strong><br />

Zimbabwe cover green manures but not the<br />

gra<strong>in</strong> legumes.<br />

• A review of Zambian work highlights the need<br />

<strong>for</strong> widespread dissem<strong>in</strong>ation of green<br />

manures.<br />

• Not all the lessons from the comprehensive<br />

work presented from other regions of Africa,<br />

particularly West Africa, are directly<br />

transferable to Southern Africa. The<br />

environments (<strong>and</strong> socio-economics) are<br />

different.<br />

<strong>Soil</strong> Science:<br />

• There is <strong>in</strong>adequate measurement of soil. physical<br />

properties <strong>and</strong> related issues like reduced<br />

tillage.<br />

• Non-nitrogen benefits of legumes on below<br />

ground biomass, texture, Ca/Mg balance <strong>and</strong> P,<br />

cations, need more attention, as does SOM <strong>and</strong><br />

C sequestration.<br />

• We need to p<strong>in</strong> down the fate of N <strong>in</strong> the system.<br />

What goes <strong>in</strong>to the plant anq what elsewhere?<br />

This also <strong>in</strong>volves nutrient balances <strong>and</strong><br />

partition<strong>in</strong>g of N <strong>in</strong> pools.<br />

• Far more <strong>in</strong><strong>for</strong>mation is needed on mycorhiza/<br />

P <strong>in</strong>teractions <strong>for</strong> us to provide appropriate<br />

recommendations.<br />

• The evaluation of long-term benefits <strong>and</strong> susta<strong>in</strong>ability<br />

aspects need attention.<br />

Legume Germplasm:<br />

• The genetic base of species/provenances we<br />

have worked with has been too narrow. We<br />

need to screen more of these. What approac.hes<br />

should be used <strong>and</strong> where should screen<strong>in</strong>g be<br />

done?<br />

• L<strong>in</strong>k up with breeders more often. They need to<br />

work on issues that we are already work<strong>in</strong>g on<br />

<strong>and</strong> we need to help focus their work onto new<br />

useful traits.<br />

• Need to <strong>in</strong>oculate with rhizobium/mycorhizae<br />

(where, which legumes, <strong>and</strong> with what?).<br />

• Alternative uses of green manures, as seeds <strong>and</strong><br />

firewood, need to be determ<strong>in</strong>ed.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa


Systems <strong>and</strong> Networks:<br />

There are gaps on:<br />

-4> . Shar<strong>in</strong>g of <strong>in</strong><strong>for</strong>mation with<strong>in</strong> the <strong>Soil</strong> Fert Net<br />

<strong>and</strong> other networks.<br />

-4> <strong>Soil</strong>-Crops-Livestock <strong>in</strong>tegration.<br />

-4> Management of legumes, <strong>in</strong>clud<strong>in</strong>g time of residue<br />

<strong>in</strong>corporation, method, time of plant<strong>in</strong>g <strong>in</strong><br />

<strong>in</strong>tercrops, <strong>and</strong> seed ma<strong>in</strong>tenance.<br />

-4> Establish<strong>in</strong>g the agro-ecological niches <strong>for</strong> the<br />

species <strong>and</strong> varieties.<br />

Research Methods <strong>and</strong> Interpretations:<br />

• People should synthesize their data fully.<br />

• We must avoid generalization with no data or<br />

evidence. Do we know where we haven't done<br />

enough research?<br />

• There are big gaps on <strong>in</strong><strong>for</strong>mation flows between<br />

research-extension-farmers.<br />

3. Strategies <strong>and</strong> Work <strong>for</strong> the Future<br />

Research Synthesis:<br />

• Review the literature on exist<strong>in</strong>g uses of gra<strong>in</strong><br />

legumes <strong>and</strong> green manures <strong>in</strong> different countries,<br />

<strong>in</strong>clud<strong>in</strong>g <strong>in</strong>digenous <strong>and</strong> private sector<br />

knowledge. L<strong>in</strong>k with other discipl<strong>in</strong>es, e.g.<br />

food technology <strong>and</strong> animal nutritionists.<br />

• Review <strong>and</strong> synthesize <strong>in</strong><strong>for</strong>mation on the management<br />

of legumes. Identify gaps that can then<br />

be researched. Develop a database.<br />

Research:<br />

• We need further work to identify the<br />

biophysical, socio-economic, <strong>and</strong> cultural<br />

conditions where the legumes per<strong>for</strong>m best.<br />

• There is need to explore ways that may<br />

maximize the benefit from green manures as<br />

<strong>in</strong>tercrops or <strong>in</strong> rotations.<br />

• Establish long-term trials to monitor soil physical<br />

properties, <strong>and</strong> evaluate other long-term<br />

benefits of green manures <strong>and</strong> gra<strong>in</strong> legumes.<br />

• Plant breeders need to breed <strong>for</strong> the farmers us<strong>in</strong>g<br />

their conditions, e.g. breed <strong>in</strong> soils with low<br />

soil fertility. We need to collect legume materials<br />

from the breeders <strong>and</strong> screen them <strong>in</strong> different<br />

conditions.<br />

• Screen<strong>in</strong>g should be done <strong>for</strong> new species <strong>and</strong><br />

not endlessly repeated <strong>for</strong> the same ones<br />

already done. More screen<strong>in</strong>g of <strong>in</strong>digenous<br />

legumes is needed, as they seem to have a<br />

positive role to play <strong>in</strong> soil fertility<br />

improvement.<br />

• Further research is required on nutrients other<br />

than N<strong>and</strong> P, <strong>and</strong> on C sequestration.<br />

• When screen<strong>in</strong>g <strong>for</strong> BNF, we have to be more<br />

systematic <strong>and</strong> take plant samples from<br />

different geographic areas <strong>and</strong> see if legumes<br />

are nodulat<strong>in</strong>g <strong>in</strong> different soils.<br />

• There is a great need <strong>for</strong> more <strong>in</strong>terdiscipl<strong>in</strong>ary<br />

<strong>Soil</strong>s-Crops-Livestock '<strong>in</strong>teraction research, e.g.<br />

on feed quality <strong>and</strong> manure quality. Howserious<br />

are the susta<strong>in</strong>ability issues where the cycle<br />

is not balanced?<br />

• There is a clear need to re-visit the ideas (widely<br />

used dur<strong>in</strong>g the first few years of <strong>Soil</strong> Fert Net)<br />

of develop<strong>in</strong>g common experimental protocols<br />

<strong>and</strong> establish multi-Iocational trials.<br />

• Management issues should be considered to<br />

improve the chances <strong>for</strong> green manures, e.g.<br />

avoid very late plant<strong>in</strong>g.<br />

• Negative results should also be reported so that<br />

similar experiments are not repeated <strong>in</strong> future,<br />

e.g. it is all right to say "<strong>Legumes</strong> did not<br />

suppress Striga".<br />

Technology Promotion:<br />

• Rules of thumb will be useful on the economic<br />

yield <strong>in</strong>crease of maize <strong>and</strong> other cereals follow<strong>in</strong>g<br />

various classes of legumes. Should it be a<br />

two fold, three fold or five fold yield <strong>in</strong>crease<br />

that we need <strong>for</strong> it to be economic?<br />

• GIS <strong>and</strong> modell<strong>in</strong>g should be used more often<br />

<strong>for</strong> scal<strong>in</strong>g up purposes.<br />

• We need to do more on the process<strong>in</strong>g <strong>and</strong> utilization<br />

of legumes, <strong>in</strong>clud<strong>in</strong>g l<strong>in</strong>kages with food<br />

technologists to encourage local utilization.<br />

Network<strong>in</strong>g <strong>and</strong> Capacity Build<strong>in</strong>g:<br />

• Improve network l<strong>in</strong>kages. We need to keep<br />

try<strong>in</strong>g to develop an effective network databank<br />

<strong>for</strong> members to know what is happen<strong>in</strong>g, what<br />

has been done, etc.<br />

• <strong>Soil</strong> Fert Net <strong>and</strong> others should look at conduct<strong>in</strong>g<br />

more tra<strong>in</strong><strong>in</strong>g courses on new techniques.<br />

• Networks can help with the sett<strong>in</strong>g up of<br />

screen<strong>in</strong>g experiments.<br />

• Build capacity to undertake our research more<br />

effectively, <strong>in</strong>clud<strong>in</strong>g how to measure <strong>and</strong><br />

assess the longer-term benefits of legumes.<br />

• Attach graduate students to work on different<br />

issues with Government research, not necessarily<br />

us<strong>in</strong>g network funds.<br />

• Members should l<strong>in</strong>k more effectively with<br />

other exist<strong>in</strong>g networks e.g. ANAFE.<br />

<strong>Gra<strong>in</strong></strong> legumes <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa 245


Socio-Economics, Policy <strong>and</strong> Technology Promotion<br />

Results<br />

Benefits<br />

Research gaps<br />

Research strategies<br />

Application<br />

of GIS <strong>for</strong><br />

target<strong>in</strong>g<br />

<strong>and</strong> scal<strong>in</strong>g<br />

up<br />

Efficiency <strong>and</strong><br />

speed. It saves<br />

resources.<br />

Multiple<br />

biophysical <strong>and</strong><br />

economic data<br />

can be collected.<br />

Capacity lack<strong>in</strong>g -<br />

<strong>and</strong> capital.<br />

both human<br />

Tra<strong>in</strong><strong>in</strong>g of research <strong>and</strong> extension staff on the use or<br />

<strong>in</strong>terpretation of GIS data.<br />

Decision<br />

guides<br />

(Decision<br />

support<br />

systems,<br />

DSS)<br />

Technology<br />

promotion<br />

approaches<br />

Several<br />

promis<strong>in</strong>g<br />

gra<strong>in</strong><br />

legumes <strong>and</strong><br />

green<br />

manures<br />

have been<br />

developed<br />

<strong>and</strong><br />

identified,.<br />

but adoption<br />

is low<br />

Gives flexible<br />

options <strong>for</strong><br />

choice of<br />

technologies <strong>and</strong><br />

their<br />

management.<br />

Farmer<br />

empowennent.<br />

Enhanced<br />

l<strong>in</strong>kages between<br />

research,<br />

extension,<br />

farmers <strong>and</strong><br />

other role players<br />

<strong>in</strong> technology<br />

promotion.<br />

Improve soil<br />

fertili ty <strong>and</strong><br />

<strong>in</strong>crease food<br />

production <strong>and</strong><br />

<strong>in</strong>come.<br />

Available guides are <strong>in</strong>complete <br />

<strong>and</strong> consider ma<strong>in</strong>ly biophysical <br />

traits. <br />

Inadequate farmer characterization. <br />

There is ample data <strong>in</strong> the region, <br />

wait<strong>in</strong>g <strong>for</strong> synthesis. <br />

Priority should be given to gap <br />

fill<strong>in</strong>g <strong>and</strong> synthesis of regional <br />

knowledge. <br />

There is limited multi-discipl<strong>in</strong>ary <br />

<strong>in</strong>tegration <strong>and</strong> <strong>in</strong>itiative <strong>for</strong> true <br />

l<strong>in</strong>kages among the various actors <br />

<strong>and</strong> stakeholders. <br />

Limited capacity of extension/ <br />

research to extend "best bet" <br />

options. <br />

Lack of solutions to emergency <br />

problem of l<strong>and</strong> degradation. <br />

The synthesis <strong>and</strong> development of guides should <br />

consider <strong>and</strong> <strong>in</strong>corporate sodo-economic factors, policy <br />

issues <strong>and</strong> current production trends. <br />

DSS <strong>and</strong> qualitative <strong>in</strong>dicators should be tested, <br />

validated, ref<strong>in</strong>ed <strong>and</strong> identified to target socio­<br />

economic <strong>and</strong> biophysical niches <strong>and</strong> over larger areas <br />

<strong>for</strong> the <strong>in</strong>tegration of legumes. <br />

DSS should be geared not only towards <strong>in</strong>creas<strong>in</strong>g <br />

productivity, but also suggest ways that could <br />

m<strong>in</strong>imize or distribute risk, decrease opportunity costs, <br />

identify niches <strong>and</strong> respect social values. <br />

Identify appropriate technologies that could be scaled <br />

up immediately to be effective <strong>in</strong> the short <strong>and</strong> long <br />

term. <br />

Improve researcher-extension-fanner l<strong>in</strong>kages. <br />

Increase the capacity of fanners to organize themselves <br />

to have barga<strong>in</strong><strong>in</strong>g power <strong>in</strong> markets. <br />

Seed unavailability is a major Seed bulk<strong>in</strong>g. <br />

constra<strong>in</strong>t. <br />

Enhance extension ef<strong>for</strong>ts. <br />

Limited knowledge among Conduct comprehensive adoption <strong>and</strong> impact: studies. <br />

extension staff. <br />

Focus on adoption barriers, <strong>and</strong> give feedback to <br />

Poor / limited farmer participation researchers to modify <strong>and</strong> improve the technology. <br />

<strong>in</strong> research <strong>and</strong> scal<strong>in</strong>g up process. Technology adoption could be enhanced if farmers <br />

Lack of communication media with participate <strong>in</strong> the research <strong>and</strong> scal<strong>in</strong>g-up processes. <br />

fanners (bullet<strong>in</strong>s, pamphlets, that To m<strong>in</strong>imize poor adoption, encourage l<strong>in</strong>kage <br />

are developed <strong>in</strong> local languages, between farmers, scientists, extension. Develop <br />

<strong>and</strong> <strong>in</strong> <strong>for</strong>ms that are easy to ownership <strong>and</strong> follow up the problem. <br />

underst<strong>and</strong>). <br />

Unfavorable<br />

policy<br />

environment<br />

Need <strong>for</strong><br />

more<br />

economic<br />

analysis of<br />

gra<strong>in</strong><br />

legumes <strong>and</strong><br />

green<br />

manure<br />

technologies<br />

None<br />

Incentive to<br />

produce.<br />

Concrete <strong>and</strong> conv<strong>in</strong>c<strong>in</strong>g data <br />

seems to be absent. <br />

Policy makers are unaware or do <br />

not believe or underst<strong>and</strong> what is <br />

com<strong>in</strong>g out of the research centres. <br />

Lack of advocacy, <strong>and</strong> poor <br />

l<strong>in</strong>kages between policy makers <br />

<strong>and</strong> researchers. <br />

Limited market <strong>in</strong><strong>for</strong>mation. <br />

Limited productivity <strong>and</strong> quality. <br />

No organized markets. <br />

F<strong>in</strong>ancial returns not attractive to <br />

farmers. <br />

Produce <strong>and</strong> present conv<strong>in</strong>c<strong>in</strong>g <strong>in</strong>fonnation to <br />

<strong>in</strong>fluence the .decision mak<strong>in</strong>g of policy makers. <br />

Demonstrate benefits of technology to policy makers <br />

under different scenarios. <br />

Simplify our f<strong>in</strong>d<strong>in</strong>gs, create a <strong>for</strong>um <strong>and</strong> facilitate <br />

opportunities so as to create awareness among policy <br />

makers. Invite them to targeted meet<strong>in</strong>gs. <br />

Create a <strong>for</strong>um where fanners will have access to <br />

policy makers (e.g. <strong>in</strong>vite farmers to meet<strong>in</strong>gs <strong>and</strong> <br />

encourage discussion with policy makers). <br />

Proper f<strong>in</strong>ancial analysis. <br />

Undertake empirical studies to demonstrate the <br />

profitability <strong>and</strong> susta<strong>in</strong>ability of technologies across <br />

regions, locations <strong>and</strong> times. <br />

Promotion of local utilization. <br />

Develop market studies <strong>and</strong> provide market <br />

<strong>in</strong><strong>for</strong>mation on both <strong>in</strong>puts <strong>and</strong> outputs. <br />

Crea te farmer groups <strong>for</strong> market<strong>in</strong>g purposes. <br />

246<br />

<strong>Gra<strong>in</strong></strong> <strong>Legumes</strong> <strong>and</strong> <strong>Green</strong> <strong>Manures</strong> <strong>for</strong> <strong>Soil</strong> <strong>Fertility</strong> <strong>in</strong> Southern Africa

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!