26.04.2015 Views

Tests of propagation of Pseudospondias microcarpa A. Rich. under the climatic conditions of Franceville in the southeastern of Gabon

Pseudospondias microcarpa A. Rich is a tropical tree species, which is not domesticated despite its food and pharmacological potentials. This study aims at introducing its domestication using two types of substrate. The first substrate (S1) is a mixture of compost and local soil while the second substrate (S2) is only made of local soil. The goal is to determine the best method of propagating P. microcarpa, among the following three techniques: direct sowing of seeds, cutting and layering. For the direct sowing, seeds germinated in 41.67 % and 29.16 %, respectively in the substrates S1 and S2. Besides, the axillary and foliar growth of the plantlets was identical in both substrates. These results are due to the composition of the substrates and to the phenological stage occurring at the end of the observations. Out of the 55 % of cuttings which recovered, all the plantlets withered then dried out. The insufficiency of the photosynthetic reserves and the lack of formation of calluses introducing the roots formation explain these phenomena. About 83 % of marcotts formed adventitious roots regardless the substrate, which explains a predisposition of the substrates in the induction of the roots formation. Of the three techniques tested, layering was found to be the best method of propagation of P. microcarpa.

Pseudospondias microcarpa A. Rich is a tropical tree species, which is not domesticated despite its food and pharmacological potentials. This study aims at introducing its domestication using two types of substrate. The
first substrate (S1) is a mixture of compost and local soil while the second substrate (S2) is only made of local soil. The goal is to determine the best method of propagating P. microcarpa, among the following three techniques:
direct sowing of seeds, cutting and layering. For the direct sowing, seeds germinated in 41.67 % and 29.16 %, respectively in the substrates S1 and S2. Besides, the axillary and foliar growth of the plantlets was identical in
both substrates. These results are due to the composition of the substrates and to the phenological stage occurring at the end of the observations. Out of the 55 % of cuttings which recovered, all the plantlets withered
then dried out. The insufficiency of the photosynthetic reserves and the lack of formation of calluses introducing the roots formation explain these phenomena. About 83 % of marcotts formed adventitious roots regardless the
substrate, which explains a predisposition of the substrates in the induction of the roots formation. Of the three techniques tested, layering was found to be the best method of propagation of P. microcarpa.

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

International Journal <strong>of</strong> Agronomy and Agricultural Research (IJAAR)<br />

ISSN: 2223-7054 (Pr<strong>in</strong>t) 2225-3610 (Onl<strong>in</strong>e)<br />

http://www.<strong>in</strong>nspub.net<br />

Vol. 3, No. 9, p. 1-11, 2013<br />

RESEARCH PAPER<br />

OPEN ACCESS<br />

<strong>Tests</strong> <strong>of</strong> <strong>propagation</strong> <strong>of</strong> <strong>Pseudospondias</strong> <strong>microcarpa</strong> A. <strong>Rich</strong>.<br />

<strong>under</strong> <strong>the</strong> <strong>climatic</strong> <strong>conditions</strong> <strong>of</strong> <strong>Franceville</strong> <strong>in</strong> <strong>the</strong> sou<strong>the</strong>astern<br />

<strong>of</strong> <strong>Gabon</strong><br />

Pamphile Nguema Ndoutoumou * , Paul Ondo Ovono, Ala<strong>in</strong> Serges Ondo-Azi, Audrey<br />

Wilson Ignanga Ignanga, Anto<strong>in</strong>e Mitte Mbeang Beyeme<br />

Université des Sciences et Techniques de Masuku. Institut National Supérieur d’Agronomie et de<br />

Biotechnologies. B.P. 99 Poto-Poto <strong>Franceville</strong>, <strong>Gabon</strong><br />

Article published on September 22, 2013<br />

Key words: Seeds, cutt<strong>in</strong>gs, layer<strong>in</strong>g, plant growth, roots, <strong>Pseudospondias</strong> <strong>microcarpa</strong> A. <strong>Rich</strong>.<br />

Abstract<br />

<strong>Pseudospondias</strong> <strong>microcarpa</strong> A. <strong>Rich</strong> is a tropical tree species, which is not domesticated despite its food and<br />

pharmacological potentials. This study aims at <strong>in</strong>troduc<strong>in</strong>g its domestication us<strong>in</strong>g two types <strong>of</strong> substrate. The<br />

first substrate (S1) is a mixture <strong>of</strong> compost and local soil while <strong>the</strong> second substrate (S2) is only made <strong>of</strong> local soil.<br />

The goal is to determ<strong>in</strong>e <strong>the</strong> best method <strong>of</strong> propagat<strong>in</strong>g P. <strong>microcarpa</strong>, among <strong>the</strong> follow<strong>in</strong>g three techniques:<br />

direct sow<strong>in</strong>g <strong>of</strong> seeds, cutt<strong>in</strong>g and layer<strong>in</strong>g. For <strong>the</strong> direct sow<strong>in</strong>g, seeds germ<strong>in</strong>ated <strong>in</strong> 41.67 % and 29.16 %,<br />

respectively <strong>in</strong> <strong>the</strong> substrates S1 and S2. Besides, <strong>the</strong> axillary and foliar growth <strong>of</strong> <strong>the</strong> plantlets was identical <strong>in</strong><br />

both substrates. These results are due to <strong>the</strong> composition <strong>of</strong> <strong>the</strong> substrates and to <strong>the</strong> phenological stage<br />

occurr<strong>in</strong>g at <strong>the</strong> end <strong>of</strong> <strong>the</strong> observations. Out <strong>of</strong> <strong>the</strong> 55 % <strong>of</strong> cutt<strong>in</strong>gs which recovered, all <strong>the</strong> plantlets wi<strong>the</strong>red<br />

<strong>the</strong>n dried out. The <strong>in</strong>sufficiency <strong>of</strong> <strong>the</strong> photosyn<strong>the</strong>tic reserves and <strong>the</strong> lack <strong>of</strong> formation <strong>of</strong> calluses <strong>in</strong>troduc<strong>in</strong>g<br />

<strong>the</strong> roots formation expla<strong>in</strong> <strong>the</strong>se phenomena. About 83 % <strong>of</strong> marcotts formed adventitious roots regardless <strong>the</strong><br />

substrate, which expla<strong>in</strong>s a predisposition <strong>of</strong> <strong>the</strong> substrates <strong>in</strong> <strong>the</strong> <strong>in</strong>duction <strong>of</strong> <strong>the</strong> roots formation. Of <strong>the</strong> three<br />

techniques tested, layer<strong>in</strong>g was found to be <strong>the</strong> best method <strong>of</strong> <strong>propagation</strong> <strong>of</strong> P. <strong>microcarpa</strong>.<br />

* Correspond<strong>in</strong>g Author: Pamphile Nguema Ndoutoumou pamphilen@hotmail.com<br />

Ndoutoumou et al. Page 1


Introduction<br />

The tropical forests are very rich and useful<br />

ecosystems. They play an important role <strong>in</strong> <strong>the</strong><br />

regulation <strong>of</strong> <strong>the</strong> greenhouse gas emission, <strong>the</strong><br />

establishment <strong>of</strong> <strong>climatic</strong> great balances, and <strong>the</strong>y<br />

constitute an important biodiversity reservoir for <strong>the</strong><br />

planet (Tchatat and Ndoye, 2006). The flora provides<br />

food products, construction materials, fuel, and drugs<br />

to rural populations. Accord<strong>in</strong>g to many authors<br />

(Breteler, 1990; Bourobou and Posso, 1995), <strong>Gabon</strong><br />

possesses one <strong>of</strong> <strong>the</strong> richest forests <strong>in</strong> <strong>the</strong> Congo<br />

bas<strong>in</strong>. However forest trees <strong>in</strong> <strong>Gabon</strong>, like <strong>in</strong> many<br />

African countries, rema<strong>in</strong> unexploited to <strong>the</strong>ir full<br />

potential beside o<strong>the</strong>r non-timber forest products (de<br />

Jong et al., 2000; Ndoye and Ruiz-Pérez, 2004). In<br />

addition to <strong>the</strong> resources it <strong>of</strong>fers, forest cover<br />

regulates local microclimate, prevents soil erosion,<br />

and safeguards soil fertility accord<strong>in</strong>g to Simons et al.<br />

(2000) and Verheij (2005).<br />

The woody species found <strong>in</strong> <strong>the</strong> humid tropical<br />

regions meet most <strong>of</strong> <strong>the</strong> needs <strong>of</strong> <strong>the</strong> local<br />

populations (Doucet, 2003; Biloso and Lejoly, 2006;<br />

Loubelo, 2012). But this anthropic action contributes<br />

to exhaust resources because <strong>of</strong> <strong>the</strong> <strong>in</strong>creas<strong>in</strong>g<br />

demand <strong>of</strong> <strong>the</strong> arable lands. This phenomenon can be<br />

evidenced by a pronounced deforestation, an<br />

excessive overgraz<strong>in</strong>g and collection <strong>of</strong> firewood.<br />

Moreover, species biodiversity cont<strong>in</strong>ues to shr<strong>in</strong>k<br />

and <strong>the</strong> genetic base <strong>of</strong> <strong>the</strong> tropical forest erodes<br />

<strong>in</strong>clud<strong>in</strong>g resources which are essential for <strong>the</strong><br />

survival <strong>of</strong> <strong>the</strong> populations (Russell and Franzel,<br />

2004; Belcher, 2005).<br />

It becomes thus necessary to nurture forest species<br />

whose products have a high value added to<br />

populations (Simons 1996 &1997; Simons and<br />

Leakey, 2004; Tchoundjeu et al., 2004). It is an<br />

artificial selection process lead<strong>in</strong>g to <strong>the</strong> preservation<br />

<strong>of</strong> <strong>in</strong>terest<strong>in</strong>g characters and to <strong>the</strong> dim<strong>in</strong>ution <strong>of</strong><br />

o<strong>the</strong>rs, undesired and present <strong>in</strong> wild plants. The<br />

tropical fruit trees are species which play an essential<br />

role <strong>in</strong> <strong>the</strong> diversification <strong>of</strong> farm<strong>in</strong>g programs and<br />

agr<strong>of</strong>orestry systems (Ndoye and Tieguhong, 2004;<br />

Russell and Franzel, 2004).<br />

Many <strong>of</strong> <strong>the</strong>se species, <strong>of</strong> which some are very well<br />

known, produce edible products and traditional<br />

medic<strong>in</strong>es. Common examples are Gambeya<br />

lacourtiana De Wild and Picralima nitida Durand,<br />

accord<strong>in</strong>g to several authors (Nguenang et al., 2010;<br />

Moupela et al., 2011). O<strong>the</strong>r fruit tree species rema<strong>in</strong><br />

unknown although <strong>the</strong>y have been proven to be useful<br />

<strong>in</strong> local communities (Priso et al., 2011). Actually<br />

seeds <strong>of</strong> woodland species take a longer time to<br />

germ<strong>in</strong>ate and <strong>the</strong>refore to mature (Gordon and<br />

Rowe, 1982; Cuisance, 1984; Bourobou, 1994;<br />

Tchoundjeu et al., 1998; Jaenicke and Beniest, 2003),<br />

which makes farmers hesitate to grow <strong>the</strong>m.<br />

The vegetative <strong>propagation</strong> refers to <strong>the</strong> techniques <strong>of</strong><br />

regeneration <strong>of</strong> plant materials us<strong>in</strong>g fragments or<br />

plant parts. Accord<strong>in</strong>g to Verheij (2005), various<br />

parts <strong>of</strong> a plant (such as leave, stem and root) can be<br />

used to regenerate a new <strong>in</strong>dividual. The <strong>propagation</strong><br />

by cutt<strong>in</strong>g is carried out by plant<strong>in</strong>g a suitable part <strong>of</strong><br />

<strong>the</strong> tree, shrub or creeper. For species which cannot<br />

be reproduce by cutt<strong>in</strong>g due to an <strong>in</strong>ability to develop<br />

roots it is sometime necessary to circumvent this<br />

difficulty us<strong>in</strong>g layer<strong>in</strong>g. Indeed layer<strong>in</strong>g technique<br />

eases <strong>the</strong> growth <strong>of</strong> adventitious on <strong>the</strong> mo<strong>the</strong>r tree<br />

(Tchoundjeu et al., 1997; Schroth et al., 2004).<br />

Currently, exotic fruit trees are grown along villages.<br />

In fact farmers tend to cultivate wild fruit trees due to<br />

a lack <strong>of</strong> knowledge about <strong>the</strong>ir floral biology and<br />

proper techniques <strong>of</strong> grow<strong>in</strong>g <strong>the</strong>m (Bourobou, 1994).<br />

This situation expla<strong>in</strong>s <strong>the</strong> <strong>in</strong>terest <strong>of</strong> Tchoundjeu et<br />

al. (1997; 2004) <strong>in</strong> this field, which ultimately aims at<br />

improv<strong>in</strong>g <strong>the</strong> liv<strong>in</strong>g <strong>conditions</strong> <strong>of</strong> farmers without<br />

endanger<strong>in</strong>g <strong>the</strong> environment.<br />

<strong>Pseudospondias</strong> <strong>microcarpa</strong> A. <strong>Rich</strong>. is poorly known<br />

<strong>of</strong> <strong>the</strong> public, thus <strong>the</strong> motivation <strong>of</strong> this study. One<br />

expected benefit <strong>of</strong> this research is <strong>the</strong> curb<strong>in</strong>g <strong>of</strong> <strong>the</strong><br />

duration <strong>of</strong> production <strong>of</strong> this species <strong>in</strong> order to<br />

<strong>in</strong>tegrate this practice <strong>in</strong>to our cultural and<br />

agr<strong>of</strong>orestry systems. It becomes <strong>the</strong>refore necessary<br />

to first identify <strong>the</strong> best way <strong>of</strong> propagat<strong>in</strong>g P.<br />

<strong>microcarpa</strong> among <strong>the</strong> techniques described earlier,<br />

that is, generative technique (seed sow<strong>in</strong>g) and<br />

Ndoutoumou et al. Page 2


vegetative techniques (cutt<strong>in</strong>g and layer<strong>in</strong>g) us<strong>in</strong>g two<br />

different types <strong>of</strong> substrates. More specially, this<br />

study assesses <strong>the</strong> impact <strong>of</strong> substrates on <strong>the</strong><br />

germ<strong>in</strong>ation and growth <strong>in</strong> seedbed dur<strong>in</strong>g <strong>the</strong> direct<br />

sow<strong>in</strong>g, on <strong>the</strong> one hand, and perform<strong>in</strong>g <strong>the</strong> same<br />

assessment for <strong>the</strong> cutt<strong>in</strong>g and layer<strong>in</strong>g approaches,<br />

on <strong>the</strong> o<strong>the</strong>r hand.<br />

Materials and methods<br />

Study site<br />

The study was carried out on <strong>the</strong> experimentation<br />

platform <strong>of</strong> Institut National Supérieur d’Agronomie<br />

et de Biotechnologies (INSAB), <strong>in</strong> <strong>Franceville</strong>,<br />

sou<strong>the</strong>astern <strong>of</strong> <strong>Gabon</strong>. The geographic coord<strong>in</strong>ates <strong>of</strong><br />

this site are 13°34'23'' S and 13°34'23'' E, and <strong>the</strong><br />

average altitude is 458 meters. The climate, <strong>of</strong><br />

equatorial type, is characterized by four seasons. The<br />

average ra<strong>in</strong>fall dur<strong>in</strong>g <strong>the</strong> study was 32.3mm, <strong>the</strong><br />

average temperatures was 23.8°C and <strong>the</strong> maximum<br />

relative moisture was 98%.<br />

Substrates<br />

Two types <strong>of</strong> substrates were used: substrate S1 was a<br />

mixture <strong>of</strong> soil collected onsite (66%) and a fraction <strong>of</strong><br />

compost (34%) while substrate S2 conta<strong>in</strong>ed only soil.<br />

Soil used as substrate was treated with fungicide<br />

(Préfongil) and <strong>the</strong> <strong>in</strong>secticide (B<strong>of</strong>ur 5GR) <strong>in</strong> <strong>the</strong><br />

follow<strong>in</strong>g densities: 2 l/ha for <strong>the</strong> fungicide and 12<br />

kg/ha for <strong>the</strong> <strong>in</strong>secticide. Table 1 shows <strong>the</strong><br />

physicochemical characteristics <strong>of</strong> <strong>the</strong> substrates used<br />

for <strong>the</strong> realization <strong>of</strong> this test.<br />

Plant material<br />

The plant material came from <strong>the</strong> species P.<br />

<strong>microcarpa</strong> A. <strong>Rich</strong>. Seeds to be planted were sorted<br />

prior to sow<strong>in</strong>g while branches were used as basic<br />

plant materials for <strong>the</strong> vegetative <strong>propagation</strong>.<br />

Seeds: The pulped fruits were dried for one day, seeds<br />

collected from <strong>the</strong>se fruits (Figure 1) were immersed<br />

<strong>in</strong> water, and a f<strong>in</strong>al sort<strong>in</strong>g <strong>of</strong> seeds was completed.<br />

This mixture was stirred up every 15 m<strong>in</strong>utes <strong>under</strong> a<br />

lam<strong>in</strong>ar flow hood <strong>in</strong> order to monitor <strong>the</strong> digestion<br />

<strong>of</strong> <strong>the</strong> tegument (Roussel, 1984; Danthu et al., 1992;<br />

1996; 2003; Barnes, 2001) and to avoid<br />

contam<strong>in</strong>ations. We sowed one seed per bag.<br />

Table 1. Physicochemical characteristics <strong>of</strong> <strong>the</strong> two<br />

substrates.<br />

Characteristics<br />

Substrate<br />

n°1 (S1)<br />

Substrate<br />

n°2 (S2)<br />

pHwater 5,3 4,4<br />

pHKCl 5,0 3,6<br />

Coarse silt (CS) 31,49 14,04<br />

F<strong>in</strong>e silt (FS) 11,35 18,55<br />

Clay (%) 16,90 22,70<br />

Sand f<strong>in</strong>e (SF) 15,32 15,34<br />

Coarse sand (SC) 24,94 29,40<br />

Table 2. Morphological characteristics <strong>of</strong> fruits and<br />

seeds.<br />

Characteristics Fruits Seeds<br />

Length (cm) 3,1 (±0,28) 2,9 (±0,28)<br />

Width (cm) 2,2 (±0,24) 1,0 (±0,11)<br />

Mass (g) 10,3 (±1,26) 0,7 (±0,08)<br />

Number: n=20 : Average ± standard<br />

deviation.<br />

Cutt<strong>in</strong>gs: The cutt<strong>in</strong>gs orig<strong>in</strong>ated from orthotropic<br />

branches with variable diameters rang<strong>in</strong>g between 1.4<br />

and 2.5 cm. They were 15 cm long with 3 to 4 nodes,<br />

and <strong>the</strong>y were clo<strong>the</strong>d <strong>in</strong> order to m<strong>in</strong>imize <strong>the</strong>ir<br />

dryness. The collect <strong>of</strong> cutt<strong>in</strong>gs was done early <strong>in</strong> <strong>the</strong><br />

morn<strong>in</strong>g <strong>in</strong> order to m<strong>in</strong>imize sweat<strong>in</strong>g as much as<br />

possible. Usually, <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> cutt<strong>in</strong>gs is cut<br />

<strong>in</strong> bevel while <strong>the</strong> lower cut is done at <strong>the</strong> base <strong>of</strong> a<br />

node. The cutt<strong>in</strong>gs, <strong>the</strong>reafter, are placed <strong>in</strong> <strong>the</strong><br />

substrates with<strong>in</strong> polyethylene bags. Transplant<strong>in</strong>g is<br />

done <strong>in</strong> such a way that 2/3 <strong>of</strong> <strong>the</strong> cutt<strong>in</strong>g is buried<br />

<strong>under</strong>ground while ensur<strong>in</strong>g that more than a node<br />

rema<strong>in</strong> above <strong>the</strong> substrate.<br />

Marcotts: The layer<strong>in</strong>g was carried out on branches<br />

with ripened wood, from a vertical to a subvertical<br />

position, with diameter rang<strong>in</strong>g between 1.7 and 3.6<br />

cm. The successive stages <strong>of</strong> <strong>the</strong> layer<strong>in</strong>g <strong>in</strong>clude <strong>the</strong><br />

Ndoutoumou et al. Page 3


circular cut <strong>in</strong> <strong>the</strong> bark <strong>of</strong> branch (us<strong>in</strong>g a knife on 10<br />

cm <strong>in</strong> length), <strong>the</strong> treatment <strong>of</strong> cambium by a light<br />

scrap<strong>in</strong>g, <strong>the</strong> fill<strong>in</strong>g <strong>of</strong> transparent polyethylene bags<br />

with substrate, and <strong>the</strong> f<strong>in</strong>al coverage <strong>of</strong> <strong>the</strong> result<strong>in</strong>g<br />

marcott with ano<strong>the</strong>r black-colored bag protect<strong>in</strong>g <strong>the</strong><br />

substrate from solar radiation.<br />

Experimental device<br />

The experimental device is completely randomized for<br />

each test. The experimental variables are <strong>the</strong><br />

substrate (S1 and S2) and <strong>the</strong> plant materials (seeds,<br />

cutt<strong>in</strong>gs and marcotts) depend<strong>in</strong>g on <strong>the</strong> mode <strong>of</strong><br />

<strong>propagation</strong>. For <strong>the</strong> <strong>propagation</strong> by seeds, <strong>the</strong><br />

number <strong>of</strong> repetitions was 20 for each one <strong>of</strong><br />

comb<strong>in</strong>ations “S1 X Seeds” and “S2 X Seeds”. For <strong>the</strong><br />

<strong>propagation</strong> by cutt<strong>in</strong>g, <strong>the</strong> number <strong>of</strong> repetitions for<br />

each comb<strong>in</strong>ation was also 20. F<strong>in</strong>ally, for <strong>the</strong><br />

layer<strong>in</strong>g, <strong>the</strong> number <strong>of</strong> repetitions was <strong>of</strong> six (06) for<br />

each comb<strong>in</strong>ation. A total <strong>of</strong> 120 experimental units<br />

were completed for this test.<br />

Test<strong>in</strong>g method and observations<br />

The ma<strong>in</strong>tenance <strong>of</strong> seedl<strong>in</strong>gs <strong>in</strong> seedbed (water<strong>in</strong>g<br />

and control <strong>of</strong> weeds) was regular and <strong>the</strong> daily<br />

observations cont<strong>in</strong>ued over three months. In <strong>the</strong><br />

case <strong>of</strong> layer<strong>in</strong>g, marcotts were wetted with 20 ml <strong>of</strong><br />

water per week us<strong>in</strong>g a syr<strong>in</strong>ge. The observations took<br />

place before each water<strong>in</strong>g <strong>in</strong> order to check for <strong>the</strong><br />

occurrence <strong>of</strong> adventitious roots.<br />

where<br />

G is <strong>the</strong> number <strong>of</strong> germ<strong>in</strong>ated seeds and N is <strong>the</strong><br />

total number <strong>of</strong> seeds sown.<br />

The parameters <strong>of</strong> growth, which are <strong>the</strong> size <strong>of</strong> <strong>the</strong><br />

seedl<strong>in</strong>g (cm) and <strong>the</strong> length and <strong>the</strong> width <strong>of</strong> leaves<br />

(cm) were also taken <strong>in</strong>to account.<br />

For <strong>the</strong> <strong>propagation</strong> by cutt<strong>in</strong>gs, <strong>the</strong> response<br />

variables are <strong>the</strong> time <strong>of</strong> occurrence <strong>of</strong> <strong>the</strong> buds<br />

(days), <strong>the</strong> recovery rate <strong>of</strong> cutt<strong>in</strong>gs (%) and <strong>the</strong><br />

lifetime after <strong>the</strong> recovery (days).<br />

F<strong>in</strong>ally, for <strong>the</strong> <strong>propagation</strong> by layer<strong>in</strong>g, <strong>the</strong> time <strong>of</strong><br />

occurrence <strong>of</strong> <strong>the</strong> roots evaluated <strong>in</strong> weeks was <strong>the</strong><br />

expected response. The rate <strong>of</strong> success <strong>of</strong> layer<strong>in</strong>g is<br />

<strong>the</strong> ratio <strong>of</strong> <strong>the</strong> number <strong>of</strong> rooted marcotts over <strong>the</strong><br />

number <strong>of</strong> marcotts carried out.<br />

Result analysis<br />

The data collected at <strong>the</strong> time <strong>of</strong> <strong>the</strong> observations was<br />

analyzed us<strong>in</strong>g <strong>the</strong> s<strong>of</strong>tware XL.STAT. The test <strong>of</strong><br />

Student was performed to compare means and <strong>the</strong><br />

Chi-Square test was used to analyze simple<br />

correlations. When <strong>the</strong> p-value and <strong>the</strong> correlations <strong>of</strong><br />

Pearson between <strong>the</strong> treatments were found<br />

significant with a 5% threshold, we concluded that<br />

parameters were different.<br />

The parameters observed take <strong>in</strong>to account <strong>the</strong> mode<br />

<strong>of</strong> <strong>propagation</strong> (sow<strong>in</strong>g, cutt<strong>in</strong>g, and layer<strong>in</strong>g) and <strong>the</strong><br />

type <strong>of</strong> substrate. They relate to <strong>the</strong> vegetative growth<br />

<strong>of</strong> <strong>the</strong> seedl<strong>in</strong>g. For <strong>the</strong> <strong>propagation</strong> by seed sow<strong>in</strong>g,<br />

<strong>the</strong> sizes considered and measured were <strong>the</strong> time <strong>of</strong><br />

germ<strong>in</strong>ation, <strong>the</strong> duration <strong>of</strong> germ<strong>in</strong>ation, <strong>the</strong> rate <strong>of</strong><br />

germ<strong>in</strong>ation and <strong>the</strong> rate <strong>of</strong> survival.<br />

The germ<strong>in</strong>ation time or wait<strong>in</strong>g period (<strong>in</strong> days) is<br />

<strong>the</strong> time spent from <strong>the</strong> sow<strong>in</strong>g to <strong>the</strong> first<br />

germ<strong>in</strong>ation. The duration <strong>of</strong> germ<strong>in</strong>ation or<br />

stagger<strong>in</strong>g (<strong>in</strong> days) expresses <strong>the</strong> gap between <strong>the</strong><br />

first and <strong>the</strong> last germ<strong>in</strong>ation. The rate <strong>of</strong> germ<strong>in</strong>ation<br />

(T) can be obta<strong>in</strong>ed us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g formula:<br />

Results and discussion<br />

Generative <strong>propagation</strong><br />

Parameters <strong>of</strong> germ<strong>in</strong>ation<br />

Figures 1 and 2 illustrate <strong>the</strong> emergence <strong>of</strong> <strong>the</strong> species<br />

P. <strong>microcarpa</strong> <strong>in</strong> substrate S2, as well as <strong>the</strong> seedl<strong>in</strong>gs<br />

<strong>in</strong> substrate S1. The germ<strong>in</strong>ation <strong>of</strong> P. <strong>microcarpa</strong> is<br />

aboveground with <strong>the</strong> first two dentale and opposite<br />

leaves simple. The (simple or compound) leaves,<br />

formed after <strong>the</strong> first ones, are opposite alternate.<br />

They are formed between <strong>the</strong> fourth and <strong>the</strong> fifth<br />

position.<br />

The rates <strong>of</strong> germ<strong>in</strong>ation and survival <strong>of</strong> seeds, which<br />

have not been treated with sulfuric acid were<br />

respectively 41.67% and 90% for S1, and 29.16% and<br />

Ndoutoumou et al. Page 4


100% for S2. As Danthu et al. (1992 & 1996) observed<br />

on Acacia sp. seeds, <strong>the</strong> germ<strong>in</strong>ation <strong>of</strong> seeds was<br />

irregular. It expanded over a period from 20 to 66<br />

days whatever <strong>the</strong> substrate used. This irregularity is<br />

related to <strong>the</strong> fact that <strong>the</strong> poll<strong>in</strong>ation is open for P.<br />

<strong>microcarpa</strong>, which is a dioecious species. It is thus<br />

possible to have crossed poll<strong>in</strong>ations between <strong>the</strong><br />

tree-mo<strong>the</strong>r and o<strong>the</strong>r neighbor<strong>in</strong>g plant species. This<br />

situation would lead to obta<strong>in</strong><strong>in</strong>g hybrid <strong>in</strong>dividuals<br />

which could express sterility <strong>in</strong> <strong>the</strong> result<strong>in</strong>g<br />

generations. The seeds treated with <strong>the</strong> sulfuric acid<br />

did not germ<strong>in</strong>ate. This result is identical with <strong>the</strong> one<br />

that Jaouadi et al. (2000) obta<strong>in</strong>ed while <strong>the</strong>y<br />

submitted Acacia tortilis on different abiotic<br />

constra<strong>in</strong>ts. Tables 2 and 3 respectively present <strong>the</strong><br />

morphological characteristics <strong>of</strong> <strong>the</strong> fruits and seeds,<br />

and <strong>the</strong> parameters <strong>of</strong> germ<strong>in</strong>ation <strong>of</strong> seeds <strong>of</strong> P.<br />

<strong>microcarpa</strong>. The weight <strong>of</strong> 1000 seeds was 700<br />

grams.<br />

Table 3. Parameters <strong>of</strong> seeds germ<strong>in</strong>ation.<br />

Parameters S1 S2<br />

Duration <strong>of</strong><br />

20-66 20-66<br />

germ<strong>in</strong>ation (days)<br />

Rate <strong>of</strong> germ<strong>in</strong>ation (%) 41,67 29,16<br />

Taux <strong>of</strong> survival (%) 90 100<br />

Number : n=20.<br />

Table 4 summarizes <strong>the</strong> trend <strong>of</strong> parameters observed<br />

(size <strong>of</strong> <strong>the</strong> stem, length and width <strong>of</strong> <strong>the</strong> leaves) and<br />

<strong>the</strong> comparison <strong>of</strong> means between <strong>the</strong> substrates for<br />

<strong>the</strong>se various parameters <strong>of</strong> growth. Dur<strong>in</strong>g <strong>the</strong> trial<br />

period, substrate S1 produced a longitud<strong>in</strong>al growth<br />

higher than substrate S2 (Table 4). The statistical<br />

analysis helped compare and identify differences <strong>in</strong><br />

<strong>the</strong> growth, on both types <strong>of</strong> substrates. Meanwhile<br />

<strong>the</strong> maximum length <strong>of</strong> leaves was reached at <strong>the</strong> end<br />

<strong>of</strong> <strong>the</strong> second week for substrate S1 whereas this time<br />

was three weeks for substrate S2.<br />

The leaves had a better expression <strong>of</strong> growth <strong>in</strong> width<br />

<strong>in</strong> substrate S2. Just like for <strong>the</strong> growth <strong>in</strong> length <strong>of</strong><br />

leaves, <strong>the</strong> maximum width <strong>of</strong> leaves was reached<br />

after two weeks <strong>in</strong> substrate S1, and after three weeks<br />

<strong>in</strong> <strong>the</strong> substrate S2.<br />

Whatever <strong>the</strong> parameter <strong>of</strong> growth considered, <strong>the</strong><br />

comparison <strong>of</strong> <strong>the</strong> means dur<strong>in</strong>g <strong>the</strong> first five weeks <strong>of</strong><br />

growth (Table 4) <strong>in</strong>dicates that <strong>the</strong> effect <strong>of</strong> <strong>the</strong><br />

substrate is statistically non-significant at a 5%<br />

threshold.<br />

The absence <strong>of</strong> germ<strong>in</strong>ation <strong>of</strong> seeds treated with <strong>the</strong><br />

sulfuric acid can be expla<strong>in</strong>ed by <strong>the</strong> duration <strong>of</strong> <strong>the</strong><br />

treatment. Indeed, accord<strong>in</strong>g to Verheij (2005) and<br />

Danthu et al. (2003), deepen<strong>in</strong>g seeds <strong>in</strong>to<br />

concentrate acid solution causes a swell<strong>in</strong>g <strong>of</strong> seeds,<br />

which lead to a tear<strong>in</strong>g <strong>of</strong> teguments, a scrubb<strong>in</strong>g <strong>of</strong><br />

substances, and <strong>the</strong>refore a delay <strong>of</strong> germ<strong>in</strong>ation.<br />

Indeed, acid is very abrasive, and for <strong>the</strong>se reason it<br />

causes seeds to become much permeable to <strong>the</strong><br />

chemical, which ultimately damages <strong>the</strong> embryo and<br />

its teguments. It’s about a mechanical dormancy,<br />

which is characterized by permeability to water<br />

although <strong>the</strong> envelope <strong>of</strong> seed is thick and hard. The<br />

end<strong>in</strong>g <strong>of</strong> dormancy is <strong>the</strong>n <strong>in</strong>hibited, even when<br />

water manages to <strong>in</strong>filtrate. Our results agree with<br />

those <strong>of</strong> Gordons and Rowe (1982) who worked on<br />

Vibumum species, as well as Schroth et al. (2004)<br />

who worked on Astrocaryum tucuma seeds and<br />

Tchoundjeu et al. (2002a) who observed <strong>the</strong><br />

vegetative <strong>propagation</strong> <strong>of</strong> Prunus africana.<br />

The composition <strong>of</strong> <strong>the</strong> two substrates used has a<br />

known effect on <strong>the</strong> germ<strong>in</strong>ation rates <strong>of</strong> untreated<br />

seeds. Indeed, <strong>the</strong> mixture soil-compost (S1) is richer<br />

<strong>in</strong> coarse silts compared to substrate S2, which was<br />

made up <strong>of</strong> soil only. In a general, <strong>the</strong> silts have <strong>the</strong><br />

ability <strong>of</strong> preserv<strong>in</strong>g soil humidity as <strong>the</strong>y also <strong>of</strong>fer a<br />

better permeability <strong>of</strong> substrates (Danthu et al., 1996;<br />

Jaenicke and Beniest, 2003). A poor substrate<br />

enhances <strong>the</strong> deformation <strong>of</strong> roots, contam<strong>in</strong>ation by<br />

pathogen and growth delay, accord<strong>in</strong>g to Schiffers et<br />

al. (2007).<br />

The lack <strong>of</strong> statistically significant difference between<br />

<strong>the</strong> means <strong>of</strong> <strong>the</strong> three parameters <strong>of</strong> growth<br />

considered <strong>in</strong> this study implies that <strong>the</strong> <strong>in</strong>crease <strong>in</strong><br />

dry matter is identical dur<strong>in</strong>g <strong>the</strong> first five weeks <strong>in</strong> all<br />

seedl<strong>in</strong>gs, for both substrates S1 and S2. Therefore,<br />

<strong>the</strong> quantity <strong>of</strong> compost associated with <strong>the</strong> local soil<br />

Ndoutoumou et al. Page 5


did not have an impact on <strong>the</strong> <strong>in</strong>crease <strong>in</strong> dry matter.<br />

The granulometric and physicochemical<br />

characteristics (pH) expla<strong>in</strong> this <strong>in</strong>difference (Table<br />

1).<br />

Table 4. Evolution <strong>of</strong> morphometric parameters <strong>in</strong> <strong>the</strong> two substrates.<br />

Parameters Time <strong>of</strong> observation Substrates<br />

S1<br />

S2<br />

Height <strong>of</strong> <strong>the</strong> seedl<strong>in</strong>gs D7 7,88 (±1,52) 6,60 (±2,15)<br />

D14 8,83 (±1,70) 7,91 (±1,79)<br />

D21 10,01 (±2,11) 8,90 (±1,81)<br />

D28 11,51 (±2,41) 9,59 (±2,02)<br />

D35 12,23 (±2,59) 10,93 (±2,25)<br />

Length <strong>of</strong> leaves D7 4,64 (±1,01) 5,23 (±0,74)<br />

D14 5,56 (±1,25) 6,17 (±0,68)<br />

D21 5,61 (±1,28) 6,56 (±1,01)<br />

D28 5,61 (±1,28) 6,58 (±1,05)<br />

D35 5,61 (±1,28) 6,58 (±1,05)<br />

Width <strong>of</strong> leaves D7 2,82 (±0,87) 3,16 (±0,54)<br />

Number : n=20 ;<br />

D14 3,50 (±0,85) 3,72 (±0,68)<br />

D21 3,55 (±0,85) 4,10 (±0,92)<br />

D28 3,60 (±0,86) 4,12 (±0,95)<br />

D35 3,60 (±0,86) 4,12 (±0,95)<br />

: Average ± standard deviation.<br />

In addition, although it did not enhance a better<br />

growth on one <strong>of</strong> <strong>the</strong> substrates, <strong>the</strong> sexual<br />

reproduction has <strong>the</strong> advantage <strong>of</strong> produc<strong>in</strong>g healthy<br />

<strong>in</strong>dividuals by limit<strong>in</strong>g <strong>the</strong> <strong>propagation</strong> <strong>of</strong> parasites at<br />

<strong>the</strong> seed level. This is <strong>the</strong> reason why Jaouadi et al.<br />

(2010) promote this method <strong>of</strong> plant regeneration.<br />

Moreover, several genetic variations exist <strong>in</strong> dioecious<br />

plants, which is <strong>the</strong> case for P. <strong>microcarpa</strong>. Indeed,<br />

this dioecy implies a recomb<strong>in</strong>ation <strong>of</strong> genes <strong>in</strong>volv<strong>in</strong>g<br />

different genetic bases <strong>in</strong> seeds. It is thus possible to<br />

have plants which are phenotypically identical but<br />

with different genome.<br />

The <strong>in</strong>itiation <strong>of</strong> <strong>the</strong> buds precedes <strong>the</strong> recovery <strong>of</strong><br />

cutt<strong>in</strong>gs characterized by <strong>the</strong> occurrence <strong>of</strong> compound<br />

leaves. In general, all aboveground nodes develop<br />

depend<strong>in</strong>g on <strong>the</strong> cutt<strong>in</strong>g’s ability to regenerate new<br />

<strong>in</strong>dividuals.<br />

No matter <strong>the</strong> substrate used, <strong>the</strong> recovery rate <strong>of</strong> <strong>the</strong><br />

cutt<strong>in</strong>gs was 55%. The average survival times <strong>of</strong> buds<br />

were 33 days for substrate S1 and 41 days for<br />

substrate S2. The axillary growth was slow as <strong>the</strong> first<br />

days, followed by a dry<strong>in</strong>g up <strong>of</strong> <strong>the</strong> buds result<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> death <strong>of</strong> seedl<strong>in</strong>gs.<br />

Vegetative regeneration<br />

Propagation by cutt<strong>in</strong>g: Table 5 and figures 3 and 4<br />

represent on one hand <strong>the</strong> ma<strong>in</strong> parameters <strong>of</strong><br />

<strong>propagation</strong> by cutt<strong>in</strong>g us<strong>in</strong>g <strong>the</strong> two substrates, and<br />

on <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> recovery <strong>of</strong> cutt<strong>in</strong>gs <strong>in</strong> P.<br />

<strong>microcarpa</strong>.<br />

The buds gave rise to compound leaves; however, <strong>the</strong><br />

regenerated cutt<strong>in</strong>g lived only dur<strong>in</strong>g a limited time.<br />

The coefficient <strong>of</strong> correlation observed revealed <strong>the</strong><br />

existence <strong>of</strong> a very weak bond between <strong>the</strong> various<br />

parameters considered, no matter <strong>the</strong> substrate.<br />

However, accord<strong>in</strong>g to <strong>the</strong> table <strong>of</strong> distribution <strong>of</strong><br />

Ndoutoumou et al. Page 6


Student, <strong>the</strong> t-value computed from <strong>the</strong> coefficients <strong>of</strong><br />

correlation compared to <strong>the</strong> table value <strong>of</strong> t led to a<br />

rejection <strong>of</strong> <strong>the</strong> dependence between variables.<br />

Indeed, accord<strong>in</strong>g to <strong>the</strong> results <strong>of</strong> analysis, <strong>the</strong><br />

variations <strong>of</strong> recovery times and diameters are nei<strong>the</strong>r<br />

dependent between <strong>the</strong>mselves nor with <strong>the</strong><br />

substrate.<br />

The results <strong>of</strong> this study, with respect to <strong>the</strong><br />

<strong>propagation</strong> by cutt<strong>in</strong>g <strong>of</strong> P. <strong>microcarpa</strong> us<strong>in</strong>g 15 cm<br />

long plant materials, agree with Bourobou (1994),<br />

who used macrocutt<strong>in</strong>gs <strong>of</strong> <strong>Pseudospondias</strong><br />

longifolia. Both studies highlight <strong>the</strong> difficulty <strong>in</strong><br />

<strong>in</strong>duc<strong>in</strong>g <strong>the</strong> root formation dur<strong>in</strong>g <strong>the</strong> <strong>propagation</strong><br />

by cutt<strong>in</strong>g <strong>in</strong> <strong>the</strong>se two species.<br />

Table 5. Parameters <strong>of</strong> resumption <strong>of</strong> <strong>the</strong> cutt<strong>in</strong>gs.<br />

Parameters<br />

Substrates<br />

S1 S2<br />

Time <strong>of</strong> appearance <strong>of</strong> <strong>the</strong> buds 12 12<br />

(days)<br />

Duration <strong>of</strong> appearance <strong>of</strong> <strong>the</strong> buds 9-13 9-15<br />

(days)<br />

Rate <strong>of</strong> resumption <strong>of</strong> <strong>the</strong> cutt<strong>in</strong>gs 60 55<br />

(%)<br />

Rate <strong>of</strong> survival (%) 0 0<br />

Duration <strong>of</strong> <strong>the</strong> life (days) 33 41<br />

Number: n=20<br />

Table 6. Parameters <strong>of</strong> resumption <strong>of</strong> <strong>the</strong> layers.<br />

Parameters<br />

Substrates<br />

S1 S2<br />

Time <strong>of</strong> appearance <strong>of</strong> roots 11,2 12,4<br />

(days)<br />

Duration <strong>of</strong> appearance <strong>of</strong> 9-13 9-15<br />

roots (days)<br />

Rate <strong>of</strong> resumption (%) 83 83<br />

Rate <strong>of</strong> survival (%) 0 0<br />

Duration <strong>of</strong> life (dyas) 33 41<br />

Number: n=20<br />

More than 50% <strong>of</strong> <strong>the</strong> cutt<strong>in</strong>gs, planted <strong>in</strong> <strong>the</strong><br />

substrates S1 and S2 resumed <strong>the</strong>ir growth but <strong>the</strong>y<br />

desiccated <strong>the</strong>reafter. The absence <strong>of</strong> regeneration <strong>of</strong><br />

certa<strong>in</strong> cutt<strong>in</strong>gs is due to an early dry<strong>in</strong>g out <strong>of</strong> <strong>the</strong><br />

cutt<strong>in</strong>g <strong>under</strong> <strong>the</strong> effect <strong>of</strong> <strong>the</strong> wea<strong>the</strong>r after <strong>the</strong><br />

cutt<strong>in</strong>g’s detachment from <strong>the</strong> mo<strong>the</strong>r tree, as Simons<br />

and Leakey (2004) recorded.<br />

Accord<strong>in</strong>g to Kengué (2002), <strong>the</strong> formation <strong>of</strong><br />

vegetative axes hav<strong>in</strong>g persisted for a relatively long<br />

period <strong>of</strong> time before wi<strong>the</strong>r<strong>in</strong>g and desiccat<strong>in</strong>g is due<br />

to a small quantity <strong>of</strong> photosyn<strong>the</strong>tic products <strong>in</strong> <strong>the</strong><br />

stems. The growth happened thanks to <strong>the</strong> food<br />

reserves <strong>in</strong>side <strong>the</strong> cutt<strong>in</strong>g while <strong>the</strong> wi<strong>the</strong>r<strong>in</strong>g was<br />

caused by <strong>the</strong> depletion <strong>of</strong> <strong>the</strong>se reserves due to <strong>the</strong><br />

absence <strong>of</strong> a root system that could take over. Indeed,<br />

when a branch is separated from <strong>the</strong> mo<strong>the</strong>r plant, it<br />

becomes autonomous from a nutritive standpo<strong>in</strong>t<br />

must first stimulate <strong>the</strong> formation <strong>of</strong> a scar callus,<br />

which <strong>in</strong>duces <strong>the</strong> growth <strong>of</strong> <strong>the</strong> roots. Surely, <strong>the</strong><br />

vegetative axes (leaves and buds) <strong>in</strong> growth have a<br />

stimulat<strong>in</strong>g effect on <strong>the</strong> root formation, but this<br />

phenomenon depends enormously first on <strong>the</strong><br />

<strong>in</strong>itiation <strong>of</strong> <strong>the</strong> callus.<br />

Layer<strong>in</strong>g: Table 6 and Fig. 5 and 6 present on one<br />

hand <strong>the</strong> characteristic parameters <strong>of</strong> <strong>the</strong> recovery <strong>of</strong><br />

marcotts, and on <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> root<strong>in</strong>g <strong>of</strong> a<br />

marcott and <strong>the</strong> aspect <strong>of</strong> two weaned marcotts.<br />

The first roots were observed with<strong>in</strong> n<strong>in</strong>e weeks,<br />

while <strong>the</strong> last ones occurred <strong>in</strong> 15 weeks. The rate <strong>of</strong><br />

success <strong>of</strong> <strong>the</strong> layer<strong>in</strong>g was 83% <strong>in</strong> <strong>the</strong> two substrates.<br />

Only two marcotts could not root up.<br />

The two media <strong>of</strong> root<strong>in</strong>g appeared to be adequate for<br />

<strong>the</strong> root formation <strong>of</strong> P. <strong>microcarpa</strong> <strong>in</strong> spite <strong>of</strong> <strong>the</strong><br />

differences observed <strong>in</strong> terms <strong>of</strong> occurrence <strong>of</strong> roots<br />

relative to <strong>the</strong> diameter <strong>of</strong> marcott and <strong>the</strong> nature <strong>of</strong><br />

<strong>the</strong> substrates.<br />

The matrices <strong>of</strong> correlation between <strong>the</strong> diameter <strong>of</strong><br />

<strong>the</strong> marcott and <strong>the</strong> time <strong>of</strong> occurrence <strong>of</strong> <strong>the</strong> roots <strong>in</strong><br />

<strong>the</strong> substrates S1 (- 0.262) and S2 (- 0.594) reveal<br />

that this time is <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> diameter <strong>of</strong> <strong>the</strong><br />

branch regardless <strong>the</strong> substrate used. Indeed, <strong>the</strong><br />

Ndoutoumou et al. Page 7


coefficients <strong>of</strong> correlation are by far lower than <strong>the</strong><br />

value read on <strong>the</strong> table <strong>of</strong> distribution <strong>of</strong> Student.<br />

The layer<strong>in</strong>g thus seems to be a success overall. This<br />

fact corroborates with <strong>the</strong> assertions <strong>in</strong> connection<br />

with <strong>the</strong> <strong>in</strong>sufficiency <strong>of</strong> reserves conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

stems <strong>of</strong> <strong>the</strong> tree for a total recovery dur<strong>in</strong>g cutt<strong>in</strong>g.<br />

Indeed, Tchoundjeu et al. (2002a), <strong>the</strong>n Jaenicke and<br />

Beniest (2003) and Schippers et al. (2007) assert that<br />

<strong>the</strong>re is, at <strong>the</strong> time <strong>of</strong> <strong>the</strong> layer<strong>in</strong>g, an accumulation<br />

<strong>of</strong> photosyn<strong>the</strong>tic products (such as carbohydrates<br />

and aux<strong>in</strong>s) <strong>in</strong> <strong>the</strong> upper part <strong>of</strong> <strong>the</strong> anneal<strong>in</strong>g.<br />

Therefore, <strong>the</strong> aux<strong>in</strong>s activate <strong>the</strong> root formation <strong>in</strong><br />

<strong>the</strong> presence <strong>of</strong> a wet substrate.<br />

Accord<strong>in</strong>g to Tchoungdjeu et al. (1997) <strong>the</strong>n Jaenicke<br />

and Beniest (2003), <strong>the</strong> clones result<strong>in</strong>g from <strong>the</strong><br />

vegetative multiplication have an accelerated<br />

development and an early entry <strong>in</strong> production<br />

without young fragile stages. In addition, <strong>the</strong>y present<br />

homogeneity by preserv<strong>in</strong>g <strong>the</strong> genetic constitution <strong>of</strong><br />

<strong>the</strong> mo<strong>the</strong>r plant.<br />

The above authors highlighted that <strong>the</strong> importance <strong>of</strong><br />

choos<strong>in</strong>g <strong>the</strong> vegetative technique <strong>in</strong> <strong>the</strong><br />

domestication <strong>of</strong> woody species is l<strong>in</strong>ked to <strong>the</strong><br />

evaluation <strong>of</strong> <strong>the</strong> potential <strong>of</strong> certa<strong>in</strong> trees and to <strong>the</strong><br />

reactions produc<strong>in</strong>g fruits <strong>of</strong> higher quality. It allows<br />

check<strong>in</strong>g <strong>the</strong> exist<strong>in</strong>g reaction bond between <strong>the</strong> tree<br />

and its environment or management. In agreement<br />

with <strong>the</strong> above-cited authors, this study <strong>in</strong>dicates that<br />

Ndoutoumou et al. Page 8


<strong>the</strong> vegetative technique is more adequate for<br />

propagat<strong>in</strong>g dioecious tree species and for produc<strong>in</strong>g<br />

fruits <strong>of</strong> great value.<br />

Conclusion<br />

The domestication program <strong>of</strong> P. <strong>microcarpa</strong> A. <strong>Rich</strong>.<br />

requires <strong>the</strong> knowledge <strong>of</strong> <strong>the</strong> floral biology <strong>of</strong> this<br />

species and <strong>the</strong> identification <strong>of</strong> <strong>the</strong> best method <strong>of</strong> its<br />

<strong>propagation</strong>, between <strong>the</strong> generative and <strong>the</strong><br />

vegetative technique.<br />

This study shows that <strong>the</strong> treatment <strong>of</strong> <strong>the</strong> seeds <strong>of</strong> P.<br />

<strong>microcarpa</strong> with sulfuric acid for four hours<br />

deteriorates <strong>the</strong> seeds and reduces <strong>the</strong>ir germ<strong>in</strong>ation<br />

ability. Moreover, <strong>the</strong> evaluation <strong>of</strong> <strong>the</strong> <strong>in</strong>crease <strong>in</strong> dry<br />

matter <strong>of</strong> seedl<strong>in</strong>gs, dur<strong>in</strong>g <strong>the</strong> first five weeks <strong>of</strong><br />

growth <strong>in</strong> <strong>the</strong> two substrates (soil only and soilcompost<br />

mixture) does not present a significant<br />

difference because <strong>of</strong> <strong>the</strong> similarities observed <strong>in</strong> <strong>the</strong>ir<br />

respective composition. While <strong>the</strong> cutt<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

species P. <strong>microcarpa</strong> present a potential for<br />

recovery, <strong>the</strong>y wi<strong>the</strong>r and desiccate <strong>the</strong>reafter due to a<br />

deficiency <strong>of</strong> photosyn<strong>the</strong>tic products and <strong>the</strong> lack <strong>of</strong><br />

a callus formation. The layer<strong>in</strong>g, however, seems to be<br />

a better alternative for <strong>propagation</strong> for regenerat<strong>in</strong>g<br />

P. <strong>microcarpa</strong> because it allows an easy occurrence <strong>of</strong><br />

adventitious roots on <strong>the</strong> marcotts. This technique<br />

rema<strong>in</strong>s <strong>the</strong> method most advisable for propagat<strong>in</strong>g<br />

<strong>the</strong> species P. <strong>microcarpa</strong>.<br />

Follow<strong>in</strong>g this study, which represents an <strong>in</strong>itial step<br />

for domesticat<strong>in</strong>g P. <strong>microcarpa</strong>, fur<strong>the</strong>r<br />

<strong>in</strong>vestigations need to be done notably by focus<strong>in</strong>g<br />

more on <strong>the</strong> possibilities <strong>of</strong> its <strong>propagation</strong>. This<br />

dynamics could be articulated around <strong>the</strong><br />

development <strong>of</strong> a better technique for treat<strong>in</strong>g seeds<br />

before sow<strong>in</strong>g and <strong>the</strong> test <strong>of</strong> micro<strong>propagation</strong> <strong>of</strong> <strong>the</strong><br />

species for <strong>the</strong> procurement <strong>in</strong> great quantity and <strong>in</strong> a<br />

short period <strong>of</strong> time very healthy plant materials.<br />

F<strong>in</strong>ally, it is important to cont<strong>in</strong>ue <strong>the</strong> observations<br />

after <strong>the</strong> wean<strong>in</strong>g <strong>of</strong> <strong>the</strong> marcotts <strong>in</strong> order to evaluate<br />

and quantify <strong>the</strong> parameters <strong>of</strong> growth follow<strong>in</strong>g <strong>the</strong><br />

replant<strong>in</strong>g <strong>of</strong> marcotts.<br />

References<br />

Barnes ME. 2001. Seed predation, germ<strong>in</strong>ation and<br />

seedl<strong>in</strong>g establishment <strong>of</strong> Acacia erioloba <strong>in</strong> nor<strong>the</strong>rn<br />

Botswana. Journal <strong>of</strong> Arid Environment 49(3), 541-<br />

554.<br />

Belcher B. 2005. Forest product markets, forests<br />

and poverty reduction. International Forestry Review<br />

7(2), 82-89.<br />

Biloso A, Lejoly D. 2006. Etude de l’exploitation<br />

et du marché des produits forestiers non ligneux à<br />

K<strong>in</strong>shasa. Tropicultura 24(3), 183-188.<br />

Bourobou H. 1994. Biologie et domestication de<br />

quelques arbres fruitiers sauvages de la forêt du<br />

<strong>Gabon</strong>. Thèse doctorale. Université Montpellier II,<br />

France, 126-139.<br />

Bourobou H, Posso P. 1995. Un aperçu sur<br />

l’importance des arbres fruitiers sauvages dans le<br />

Nord-Est du <strong>Gabon</strong>. Nature et Faune 11(3), 42-48.<br />

Breteler FJ. 1990. A new species and a new record<br />

<strong>of</strong> Dichapetalum from Tanzania. Kew Bullet<strong>in</strong> 45 4),<br />

721-723.<br />

Cuisance P. 1984. Multiplier des végétaux en<br />

pép<strong>in</strong>ière, Collection d’enseignement horticole, Paris<br />

/ France, p. 177.<br />

Danthu P, Roussel J, Dia M, Sarr A. 1992.<br />

Effect <strong>of</strong> pretreatement on <strong>the</strong> germ<strong>in</strong>ation <strong>of</strong> Acacia<br />

Senegal seeds. Seed Science and Technology 20, 111-<br />

117.<br />

Danthu P, Gaye A, Roussel J, Sarr A. 1996.<br />

Long-term conservation <strong>of</strong> seed pretreated by sulfuric<br />

acid. In: Innovations <strong>in</strong> tropical tree seed technology.<br />

Humlebaek, Denmark: Danida Forest Seed Centre 37-<br />

44.<br />

Danthu P, Roussel J, Neffati M. 2003. La gra<strong>in</strong>e<br />

et la germ<strong>in</strong>ation d'Acacia raddiana. In : Grouzis M.<br />

& Le Floc'h E., eds. Un arbre au désert Acacia<br />

raddiana. Paris : IRD, 265-283.<br />

Ndoutoumou et al. Page 9


Doucet JL. 2003. L’alliance délicate et la gestion<br />

forestière et de la biodiversité dans les forêts du<br />

centre du <strong>Gabon</strong>. Thèse de doctorat, Faculté<br />

Universitaire des sciences agronomique, Gembloux<br />

(Belgique). 323p.<br />

Nguenang GM, Fongnzossie Fedoung E,<br />

Nkongmeneck BA. 2010. Importance des forêts<br />

secondaires pour la collecte des plantes utiles chez les<br />

Badjoué de l’Est Cameroun. Tropicultura 28 (4), 238-<br />

245.<br />

Gordon AG, Rowe DCF. 1982. Germ<strong>in</strong>ation and<br />

seedl<strong>in</strong>g production <strong>of</strong> species <strong>of</strong> Viburnum.<br />

Contributions <strong>of</strong> <strong>the</strong> Boyce Thompson Institute 9, 79-<br />

90.<br />

Jaenicke H, Beniest J. (Eds.). 2003. La<br />

multiplication végétative des ligneux en<br />

agr<strong>of</strong>oresterie. Manuel de formation et bibliographie.<br />

World Agr<strong>of</strong>orestry Centre (ICRAF). 139 p.<br />

Jaouadi W, Hamrouni L, Souayeh N, Khouja<br />

ML. 2010. Étude de la germ<strong>in</strong>ation des gra<strong>in</strong>es<br />

d'Acacia tortilis sous différentes contra<strong>in</strong>tes<br />

abiotiques. Biotechnologie Agronomie Sociétés et<br />

Environnement 14 (4), 643-652.<br />

de Jong W, Campbell BM, Schroder JM. 2000.<br />

Susta<strong>in</strong><strong>in</strong>g <strong>in</strong>comes from non timber forest products:<br />

<strong>in</strong>troduction and syn<strong>the</strong>sis. International Tree Crops<br />

Journal 10(4), 267-275.<br />

Loubelo E, 2012. Impact des produits forestiers<br />

non ligneux (PFNL) sur l’économie des ménages et la<br />

sécurité alimentaire : cas de la République du Congo.<br />

Thèse de doctorat. Université de Rennes 2. France,<br />

231 p.<br />

Moupela C, Vermeulen C, Daïnou K, Doucet<br />

JL. 2011. Le noisetier d’Afrique (Coula edulis Baill.).<br />

Un produit forestier non ligneux méconnu.<br />

Biotechnologie Agronomie Sociétés et Environnement<br />

15(3), 485-495.<br />

Ndoye O, Tieguhong JC. 2004. Forest ressources<br />

and rural livelihoods: <strong>the</strong> conflict between timber and<br />

non-timber forest products <strong>in</strong> <strong>the</strong> Congo Bas<strong>in</strong>.<br />

Scand<strong>in</strong>avian Journal <strong>of</strong> Forest Research 19 (4), 36-<br />

44.<br />

Priso RJ, Nnanga JF, Etame J, D<strong>in</strong> Ndongo,<br />

Amougou Akoa. 2011. Les produits forestiers non<br />

ligneux d’orig<strong>in</strong>e végétale : valeur et importance dans<br />

quelques marchés de la région du Littoral -<br />

Cameroun. Journal <strong>of</strong> Applied Biosciences 40, 2715–<br />

2726.<br />

Roussel J, 1984. Germ<strong>in</strong>ation des semences<br />

forestières : utilisation de l'acide sulfurique en<br />

traitement des pr<strong>in</strong>cipales espèces sahéliennes,<br />

soudano-sahéliennes et exotiques. Fiche technique<br />

n°3. Dakar : Centre national de recherches<br />

forestières.<br />

Russell D, Franzel S. 2004. Trees <strong>of</strong> Prosperity:<br />

Agr<strong>of</strong>orestry, markets and <strong>the</strong> African smallholder.<br />

Agr<strong>of</strong>orestry Systems 61, 345-355.<br />

Schippers C, Mouguengue JF, Bracke C. 2007.<br />

Module de formation sur les techniques de<br />

production de plants d’arbres fruitiers dans les<br />

pép<strong>in</strong>ières villageoises en zone tropicale humide.<br />

Gembloux / Belgique. 11 p.<br />

Schroth G, da Mota MSS, Lopes R, de Freitas<br />

AF. 2004. Extractive use, management and <strong>in</strong> situ<br />

domestication <strong>of</strong> a weedy palm, Astrocaryum<br />

tucuma, <strong>in</strong> <strong>the</strong> central Amazon. Forest Ecology and<br />

Management 202(1/3), 161-179<br />

Simons AJ. 1996. ICRAF’s strategy for <strong>the</strong><br />

domestication <strong>of</strong> non-wood tree products. In:<br />

Domestication and Commercialisation <strong>of</strong> NTFPs <strong>in</strong><br />

Agr<strong>of</strong>orestry Systems. FAO NWFP 9, 8-22.<br />

Simons AJ. 1997. Tree domestication – better trees<br />

for rural prosperity. Agr<strong>of</strong>orestry Today 9(2), 4-7.<br />

Ndoutoumou et al. Page 10


Simons AJ, Jaenicke H, Tchoundjeu Z,<br />

Dawson I, K<strong>in</strong>dt R, Og<strong>in</strong>osako Z, Lengkeek A,<br />

Degrande A. 2000. The future <strong>of</strong> trees is on farms:<br />

Tree domestication <strong>in</strong> Africa. In: Forests and Society:<br />

The Role <strong>of</strong> Research. XXI IUFRO World Congress,<br />

Kuala Lumpur, Malaysia, p 752–760.<br />

Simons AJ, Leakey RRB. 2004. Tree<br />

domestication <strong>in</strong> tropical agr<strong>of</strong>orestry. Agr<strong>of</strong>orestry<br />

Systems 61, 167-181.<br />

Tchatat M, Ndoye O. 2006. Étude des produits<br />

forestiers non ligneux d'Afrique Centrale : réalités et<br />

perspectives. Bois et Forêts des Tropiques 289(3),<br />

27-39.<br />

Tchoundjeu Z, Duguma B, Fondoun J-M and<br />

Kengue J. 1998. Strategy for <strong>the</strong> domestication <strong>of</strong><br />

<strong>in</strong>digenous fruit trees <strong>of</strong> West Africa : case <strong>of</strong> Irv<strong>in</strong>gia<br />

gabonensis <strong>in</strong> sou<strong>the</strong>rn Cameroon. Cameroon<br />

Journal <strong>of</strong> Biology and Biochemistry Science 4, 21-28.<br />

Tchoundjeu Z, Avana ML, Leakey RRB,<br />

Simons AJ, Asaah E, Duguma B and Bell JM.<br />

2002a. Vegetative <strong>propagation</strong> <strong>of</strong> Prunus africana:<br />

effects <strong>of</strong> root<strong>in</strong>g medium, aux<strong>in</strong> concentrations and<br />

leaf area. Agr<strong>of</strong>orestry Systems 54, 183-192.<br />

Verheij E. 2005. Multiplier et planter des arbres,<br />

deuxième édition. Wagen<strong>in</strong>gen / Pays Bas. 110 p.<br />

Tchoundjeu Z, de Wolf J, Jaenicke H. 1997.<br />

Vegetative <strong>propagation</strong> for domestication <strong>of</strong><br />

agr<strong>of</strong>orestry trees. Agr<strong>of</strong>orestry Today 9(2), 10-12.<br />

Ndoutoumou et al. Page 11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!